2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/proc_fs.h>
35 #include <linux/pci.h>
36 #include <linux/pci_hotplug.h>
39 #include "cpqphp_nvram.h"
45 static u16 unused_IRQ
;
48 * detect_HRT_floating_pointer
50 * find the Hot Plug Resource Table in the specified region of memory.
53 static void __iomem
*detect_HRT_floating_pointer(void __iomem
*begin
, void __iomem
*end
)
57 u8 temp1
, temp2
, temp3
, temp4
;
60 endp
= (end
- sizeof(struct hrt
) + 1);
62 for (fp
= begin
; fp
<= endp
; fp
+= 16) {
63 temp1
= readb(fp
+ SIG0
);
64 temp2
= readb(fp
+ SIG1
);
65 temp3
= readb(fp
+ SIG2
);
66 temp4
= readb(fp
+ SIG3
);
79 dbg("Discovered Hotplug Resource Table at %p\n", fp
);
84 int cpqhp_configure_device (struct controller
*ctrl
, struct pci_func
*func
)
86 struct pci_bus
*child
;
89 pci_lock_rescan_remove();
91 if (func
->pci_dev
== NULL
)
92 func
->pci_dev
= pci_get_bus_and_slot(func
->bus
,PCI_DEVFN(func
->device
, func
->function
));
94 /* No pci device, we need to create it then */
95 if (func
->pci_dev
== NULL
) {
96 dbg("INFO: pci_dev still null\n");
98 num
= pci_scan_slot(ctrl
->pci_dev
->bus
, PCI_DEVFN(func
->device
, func
->function
));
100 pci_bus_add_devices(ctrl
->pci_dev
->bus
);
102 func
->pci_dev
= pci_get_bus_and_slot(func
->bus
, PCI_DEVFN(func
->device
, func
->function
));
103 if (func
->pci_dev
== NULL
) {
104 dbg("ERROR: pci_dev still null\n");
109 if (func
->pci_dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
110 pci_hp_add_bridge(func
->pci_dev
);
111 child
= func
->pci_dev
->subordinate
;
113 pci_bus_add_devices(child
);
116 pci_dev_put(func
->pci_dev
);
119 pci_unlock_rescan_remove();
124 int cpqhp_unconfigure_device(struct pci_func
*func
)
128 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__
, func
->bus
, func
->device
, func
->function
);
130 pci_lock_rescan_remove();
131 for (j
=0; j
<8 ; j
++) {
132 struct pci_dev
*temp
= pci_get_bus_and_slot(func
->bus
, PCI_DEVFN(func
->device
, j
));
135 pci_stop_and_remove_bus_device(temp
);
138 pci_unlock_rescan_remove();
142 static int PCI_RefinedAccessConfig(struct pci_bus
*bus
, unsigned int devfn
, u8 offset
, u32
*value
)
146 if (pci_bus_read_config_dword (bus
, devfn
, PCI_VENDOR_ID
, &vendID
) == -1)
148 if (vendID
== 0xffffffff)
150 return pci_bus_read_config_dword (bus
, devfn
, offset
, value
);
157 * @bus_num: bus number of PCI device
158 * @dev_num: device number of PCI device
159 * @slot: pointer to u8 where slot number will be returned
161 int cpqhp_set_irq (u8 bus_num
, u8 dev_num
, u8 int_pin
, u8 irq_num
)
165 if (cpqhp_legacy_mode
) {
166 struct pci_dev
*fakedev
;
167 struct pci_bus
*fakebus
;
170 fakedev
= kmalloc(sizeof(*fakedev
), GFP_KERNEL
);
171 fakebus
= kmalloc(sizeof(*fakebus
), GFP_KERNEL
);
172 if (!fakedev
|| !fakebus
) {
178 fakedev
->devfn
= dev_num
<< 3;
179 fakedev
->bus
= fakebus
;
180 fakebus
->number
= bus_num
;
181 dbg("%s: dev %d, bus %d, pin %d, num %d\n",
182 __func__
, dev_num
, bus_num
, int_pin
, irq_num
);
183 rc
= pcibios_set_irq_routing(fakedev
, int_pin
- 1, irq_num
);
186 dbg("%s: rc %d\n", __func__
, rc
);
190 /* set the Edge Level Control Register (ELCR) */
191 temp_word
= inb(0x4d0);
192 temp_word
|= inb(0x4d1) << 8;
194 temp_word
|= 0x01 << irq_num
;
196 /* This should only be for x86 as it sets the Edge Level
199 outb((u8
) (temp_word
& 0xFF), 0x4d0); outb((u8
) ((temp_word
&
200 0xFF00) >> 8), 0x4d1); rc
= 0; }
206 static int PCI_ScanBusForNonBridge(struct controller
*ctrl
, u8 bus_num
, u8
*dev_num
)
212 ctrl
->pci_bus
->number
= bus_num
;
214 for (tdevice
= 0; tdevice
< 0xFF; tdevice
++) {
215 /* Scan for access first */
216 if (PCI_RefinedAccessConfig(ctrl
->pci_bus
, tdevice
, 0x08, &work
) == -1)
218 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num
, tdevice
);
219 /* Yep we got one. Not a bridge ? */
220 if ((work
>> 8) != PCI_TO_PCI_BRIDGE_CLASS
) {
226 for (tdevice
= 0; tdevice
< 0xFF; tdevice
++) {
227 /* Scan for access first */
228 if (PCI_RefinedAccessConfig(ctrl
->pci_bus
, tdevice
, 0x08, &work
) == -1)
230 dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num
, tdevice
);
231 /* Yep we got one. bridge ? */
232 if ((work
>> 8) == PCI_TO_PCI_BRIDGE_CLASS
) {
233 pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(tdevice
, 0), PCI_SECONDARY_BUS
, &tbus
);
234 /* XXX: no recursion, wtf? */
235 dbg("Recurse on bus_num %d tdevice %d\n", tbus
, tdevice
);
244 static int PCI_GetBusDevHelper(struct controller
*ctrl
, u8
*bus_num
, u8
*dev_num
, u8 slot
, u8 nobridge
)
248 u8 tbus
, tdevice
, tslot
;
250 len
= cpqhp_routing_table_length();
251 for (loop
= 0; loop
< len
; ++loop
) {
252 tbus
= cpqhp_routing_table
->slots
[loop
].bus
;
253 tdevice
= cpqhp_routing_table
->slots
[loop
].devfn
;
254 tslot
= cpqhp_routing_table
->slots
[loop
].slot
;
259 ctrl
->pci_bus
->number
= tbus
;
260 pci_bus_read_config_dword (ctrl
->pci_bus
, *dev_num
, PCI_VENDOR_ID
, &work
);
261 if (!nobridge
|| (work
== 0xffffffff))
264 dbg("bus_num %d devfn %d\n", *bus_num
, *dev_num
);
265 pci_bus_read_config_dword (ctrl
->pci_bus
, *dev_num
, PCI_CLASS_REVISION
, &work
);
266 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work
>> 8, PCI_TO_PCI_BRIDGE_CLASS
);
268 if ((work
>> 8) == PCI_TO_PCI_BRIDGE_CLASS
) {
269 pci_bus_read_config_byte (ctrl
->pci_bus
, *dev_num
, PCI_SECONDARY_BUS
, &tbus
);
270 dbg("Scan bus for Non Bridge: bus %d\n", tbus
);
271 if (PCI_ScanBusForNonBridge(ctrl
, tbus
, dev_num
) == 0) {
283 int cpqhp_get_bus_dev (struct controller
*ctrl
, u8
*bus_num
, u8
*dev_num
, u8 slot
)
285 /* plain (bridges allowed) */
286 return PCI_GetBusDevHelper(ctrl
, bus_num
, dev_num
, slot
, 0);
290 /* More PCI configuration routines; this time centered around hotplug
298 * Reads configuration for all slots in a PCI bus and saves info.
300 * Note: For non-hot plug buses, the slot # saved is the device #
302 * returns 0 if success
304 int cpqhp_save_config(struct controller
*ctrl
, int busnumber
, int is_hot_plug
)
311 struct pci_func
*new_slot
;
323 /* Decide which slots are supported */
327 * is_hot_plug is the slot mask
329 FirstSupported
= is_hot_plug
>> 4;
330 LastSupported
= FirstSupported
+ (is_hot_plug
& 0x0F) - 1;
333 LastSupported
= 0x1F;
336 /* Save PCI configuration space for all devices in supported slots */
337 ctrl
->pci_bus
->number
= busnumber
;
338 for (device
= FirstSupported
; device
<= LastSupported
; device
++) {
340 rc
= pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(device
, 0), PCI_VENDOR_ID
, &ID
);
342 if (ID
== 0xFFFFFFFF) {
344 /* Setup slot structure with entry for empty
347 new_slot
= cpqhp_slot_create(busnumber
);
348 if (new_slot
== NULL
)
351 new_slot
->bus
= (u8
) busnumber
;
352 new_slot
->device
= (u8
) device
;
353 new_slot
->function
= 0;
354 new_slot
->is_a_board
= 0;
355 new_slot
->presence_save
= 0;
356 new_slot
->switch_save
= 0;
361 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, 0), 0x0B, &class_code
);
365 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, 0), PCI_HEADER_TYPE
, &header_type
);
369 /* If multi-function device, set max_functions to 8 */
370 if (header_type
& 0x80)
379 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
380 /* Recurse the subordinate bus
381 * get the subordinate bus number
383 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), PCI_SECONDARY_BUS
, &secondary_bus
);
387 sub_bus
= (int) secondary_bus
;
389 /* Save secondary bus cfg spc
390 * with this recursive call.
392 rc
= cpqhp_save_config(ctrl
, sub_bus
, 0);
395 ctrl
->pci_bus
->number
= busnumber
;
400 new_slot
= cpqhp_slot_find(busnumber
, device
, index
++);
402 (new_slot
->function
!= (u8
) function
))
403 new_slot
= cpqhp_slot_find(busnumber
, device
, index
++);
406 /* Setup slot structure. */
407 new_slot
= cpqhp_slot_create(busnumber
);
408 if (new_slot
== NULL
)
412 new_slot
->bus
= (u8
) busnumber
;
413 new_slot
->device
= (u8
) device
;
414 new_slot
->function
= (u8
) function
;
415 new_slot
->is_a_board
= 1;
416 new_slot
->switch_save
= 0x10;
417 /* In case of unsupported board */
418 new_slot
->status
= DevError
;
419 new_slot
->pci_dev
= pci_get_bus_and_slot(new_slot
->bus
, (new_slot
->device
<< 3) | new_slot
->function
);
421 for (cloop
= 0; cloop
< 0x20; cloop
++) {
422 rc
= pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), cloop
<< 2, (u32
*) & (new_slot
-> config_space
[cloop
]));
427 pci_dev_put(new_slot
->pci_dev
);
433 /* this loop skips to the next present function
434 * reading in Class Code and Header type.
436 while ((function
< max_functions
) && (!stop_it
)) {
437 rc
= pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), PCI_VENDOR_ID
, &ID
);
438 if (ID
== 0xFFFFFFFF) {
442 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), 0x0B, &class_code
);
446 rc
= pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(device
, function
), PCI_HEADER_TYPE
, &header_type
);
453 } while (function
< max_functions
);
454 } /* End of FOR loop */
461 * cpqhp_save_slot_config
463 * Saves configuration info for all PCI devices in a given slot
464 * including subordinate buses.
466 * returns 0 if success
468 int cpqhp_save_slot_config (struct controller
*ctrl
, struct pci_func
*new_slot
)
483 ctrl
->pci_bus
->number
= new_slot
->bus
;
484 pci_bus_read_config_dword (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, 0), PCI_VENDOR_ID
, &ID
);
486 if (ID
== 0xFFFFFFFF)
489 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, 0), 0x0B, &class_code
);
490 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, 0), PCI_HEADER_TYPE
, &header_type
);
492 if (header_type
& 0x80) /* Multi-function device */
497 while (function
< max_functions
) {
498 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
499 /* Recurse the subordinate bus */
500 pci_bus_read_config_byte (ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), PCI_SECONDARY_BUS
, &secondary_bus
);
502 sub_bus
= (int) secondary_bus
;
504 /* Save the config headers for the secondary
507 rc
= cpqhp_save_config(ctrl
, sub_bus
, 0);
510 ctrl
->pci_bus
->number
= new_slot
->bus
;
514 new_slot
->status
= 0;
516 for (cloop
= 0; cloop
< 0x20; cloop
++)
517 pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), cloop
<< 2, (u32
*) & (new_slot
-> config_space
[cloop
]));
523 /* this loop skips to the next present function
524 * reading in the Class Code and the Header type.
526 while ((function
< max_functions
) && (!stop_it
)) {
527 pci_bus_read_config_dword(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), PCI_VENDOR_ID
, &ID
);
529 if (ID
== 0xFFFFFFFF)
532 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), 0x0B, &class_code
);
533 pci_bus_read_config_byte(ctrl
->pci_bus
, PCI_DEVFN(new_slot
->device
, function
), PCI_HEADER_TYPE
, &header_type
);
545 * cpqhp_save_base_addr_length
547 * Saves the length of all base address registers for the
548 * specified slot. this is for hot plug REPLACE
550 * returns 0 if success
552 int cpqhp_save_base_addr_length(struct controller
*ctrl
, struct pci_func
*func
)
562 struct pci_func
*next
;
564 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
567 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
569 while (func
!= NULL
) {
570 pci_bus
->number
= func
->bus
;
571 devfn
= PCI_DEVFN(func
->device
, func
->function
);
573 /* Check for Bridge */
574 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
576 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
577 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_SECONDARY_BUS
, &secondary_bus
);
579 sub_bus
= (int) secondary_bus
;
581 next
= cpqhp_slot_list
[sub_bus
];
583 while (next
!= NULL
) {
584 rc
= cpqhp_save_base_addr_length(ctrl
, next
);
590 pci_bus
->number
= func
->bus
;
592 /* FIXME: this loop is duplicated in the non-bridge
593 * case. The two could be rolled together Figure out
594 * IO and memory base lengths
596 for (cloop
= 0x10; cloop
<= 0x14; cloop
+= 4) {
597 temp_register
= 0xFFFFFFFF;
598 pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, temp_register
);
599 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &base
);
600 /* If this register is implemented */
604 * set base = amount of IO space
607 base
= base
& 0xFFFFFFFE;
613 base
= base
& 0xFFFFFFF0;
623 /* Save information in slot structure */
624 func
->base_length
[(cloop
- 0x10) >> 2] =
626 func
->base_type
[(cloop
- 0x10) >> 2] = type
;
628 } /* End of base register loop */
630 } else if ((header_type
& 0x7F) == 0x00) {
631 /* Figure out IO and memory base lengths */
632 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
633 temp_register
= 0xFFFFFFFF;
634 pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, temp_register
);
635 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &base
);
637 /* If this register is implemented */
641 * base = amount of IO space
644 base
= base
& 0xFFFFFFFE;
650 * base = amount of memory
653 base
= base
& 0xFFFFFFF0;
663 /* Save information in slot structure */
664 func
->base_length
[(cloop
- 0x10) >> 2] = base
;
665 func
->base_type
[(cloop
- 0x10) >> 2] = type
;
667 } /* End of base register loop */
669 } else { /* Some other unknown header type */
672 /* find the next device in this slot */
673 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
681 * cpqhp_save_used_resources
683 * Stores used resource information for existing boards. this is
684 * for boards that were in the system when this driver was loaded.
685 * this function is for hot plug ADD
687 * returns 0 if success
689 int cpqhp_save_used_resources (struct controller
*ctrl
, struct pci_func
*func
)
705 struct pci_resource
*mem_node
;
706 struct pci_resource
*p_mem_node
;
707 struct pci_resource
*io_node
;
708 struct pci_resource
*bus_node
;
709 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
712 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
714 while ((func
!= NULL
) && func
->is_a_board
) {
715 pci_bus
->number
= func
->bus
;
716 devfn
= PCI_DEVFN(func
->device
, func
->function
);
718 /* Save the command register */
719 pci_bus_read_config_word(pci_bus
, devfn
, PCI_COMMAND
, &save_command
);
723 pci_bus_write_config_word(pci_bus
, devfn
, PCI_COMMAND
, command
);
725 /* Check for Bridge */
726 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
728 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
729 /* Clear Bridge Control Register */
731 pci_bus_write_config_word(pci_bus
, devfn
, PCI_BRIDGE_CONTROL
, command
);
732 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_SECONDARY_BUS
, &secondary_bus
);
733 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_SUBORDINATE_BUS
, &temp_byte
);
735 bus_node
= kmalloc(sizeof(*bus_node
), GFP_KERNEL
);
739 bus_node
->base
= secondary_bus
;
740 bus_node
->length
= temp_byte
- secondary_bus
+ 1;
742 bus_node
->next
= func
->bus_head
;
743 func
->bus_head
= bus_node
;
745 /* Save IO base and Limit registers */
746 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_IO_BASE
, &b_base
);
747 pci_bus_read_config_byte(pci_bus
, devfn
, PCI_IO_LIMIT
, &b_length
);
749 if ((b_base
<= b_length
) && (save_command
& 0x01)) {
750 io_node
= kmalloc(sizeof(*io_node
), GFP_KERNEL
);
754 io_node
->base
= (b_base
& 0xF0) << 8;
755 io_node
->length
= (b_length
- b_base
+ 0x10) << 8;
757 io_node
->next
= func
->io_head
;
758 func
->io_head
= io_node
;
761 /* Save memory base and Limit registers */
762 pci_bus_read_config_word(pci_bus
, devfn
, PCI_MEMORY_BASE
, &w_base
);
763 pci_bus_read_config_word(pci_bus
, devfn
, PCI_MEMORY_LIMIT
, &w_length
);
765 if ((w_base
<= w_length
) && (save_command
& 0x02)) {
766 mem_node
= kmalloc(sizeof(*mem_node
), GFP_KERNEL
);
770 mem_node
->base
= w_base
<< 16;
771 mem_node
->length
= (w_length
- w_base
+ 0x10) << 16;
773 mem_node
->next
= func
->mem_head
;
774 func
->mem_head
= mem_node
;
777 /* Save prefetchable memory base and Limit registers */
778 pci_bus_read_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_BASE
, &w_base
);
779 pci_bus_read_config_word(pci_bus
, devfn
, PCI_PREF_MEMORY_LIMIT
, &w_length
);
781 if ((w_base
<= w_length
) && (save_command
& 0x02)) {
782 p_mem_node
= kmalloc(sizeof(*p_mem_node
), GFP_KERNEL
);
786 p_mem_node
->base
= w_base
<< 16;
787 p_mem_node
->length
= (w_length
- w_base
+ 0x10) << 16;
789 p_mem_node
->next
= func
->p_mem_head
;
790 func
->p_mem_head
= p_mem_node
;
792 /* Figure out IO and memory base lengths */
793 for (cloop
= 0x10; cloop
<= 0x14; cloop
+= 4) {
794 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &save_base
);
796 temp_register
= 0xFFFFFFFF;
797 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
798 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &base
);
800 temp_register
= base
;
802 /* If this register is implemented */
804 if (((base
& 0x03L
) == 0x01)
805 && (save_command
& 0x01)) {
807 * set temp_register = amount
808 * of IO space requested
810 temp_register
= base
& 0xFFFFFFFE;
811 temp_register
= (~temp_register
) + 1;
813 io_node
= kmalloc(sizeof(*io_node
),
819 save_base
& (~0x03L
);
820 io_node
->length
= temp_register
;
822 io_node
->next
= func
->io_head
;
823 func
->io_head
= io_node
;
825 if (((base
& 0x0BL
) == 0x08)
826 && (save_command
& 0x02)) {
827 /* prefetchable memory base */
828 temp_register
= base
& 0xFFFFFFF0;
829 temp_register
= (~temp_register
) + 1;
831 p_mem_node
= kmalloc(sizeof(*p_mem_node
),
836 p_mem_node
->base
= save_base
& (~0x0FL
);
837 p_mem_node
->length
= temp_register
;
839 p_mem_node
->next
= func
->p_mem_head
;
840 func
->p_mem_head
= p_mem_node
;
842 if (((base
& 0x0BL
) == 0x00)
843 && (save_command
& 0x02)) {
844 /* prefetchable memory base */
845 temp_register
= base
& 0xFFFFFFF0;
846 temp_register
= (~temp_register
) + 1;
848 mem_node
= kmalloc(sizeof(*mem_node
),
853 mem_node
->base
= save_base
& (~0x0FL
);
854 mem_node
->length
= temp_register
;
856 mem_node
->next
= func
->mem_head
;
857 func
->mem_head
= mem_node
;
861 } /* End of base register loop */
862 /* Standard header */
863 } else if ((header_type
& 0x7F) == 0x00) {
864 /* Figure out IO and memory base lengths */
865 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
866 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &save_base
);
868 temp_register
= 0xFFFFFFFF;
869 pci_bus_write_config_dword(pci_bus
, devfn
, cloop
, temp_register
);
870 pci_bus_read_config_dword(pci_bus
, devfn
, cloop
, &base
);
872 temp_register
= base
;
874 /* If this register is implemented */
876 if (((base
& 0x03L
) == 0x01)
877 && (save_command
& 0x01)) {
879 * set temp_register = amount
880 * of IO space requested
882 temp_register
= base
& 0xFFFFFFFE;
883 temp_register
= (~temp_register
) + 1;
885 io_node
= kmalloc(sizeof(*io_node
),
890 io_node
->base
= save_base
& (~0x01L
);
891 io_node
->length
= temp_register
;
893 io_node
->next
= func
->io_head
;
894 func
->io_head
= io_node
;
896 if (((base
& 0x0BL
) == 0x08)
897 && (save_command
& 0x02)) {
898 /* prefetchable memory base */
899 temp_register
= base
& 0xFFFFFFF0;
900 temp_register
= (~temp_register
) + 1;
902 p_mem_node
= kmalloc(sizeof(*p_mem_node
),
907 p_mem_node
->base
= save_base
& (~0x0FL
);
908 p_mem_node
->length
= temp_register
;
910 p_mem_node
->next
= func
->p_mem_head
;
911 func
->p_mem_head
= p_mem_node
;
913 if (((base
& 0x0BL
) == 0x00)
914 && (save_command
& 0x02)) {
915 /* prefetchable memory base */
916 temp_register
= base
& 0xFFFFFFF0;
917 temp_register
= (~temp_register
) + 1;
919 mem_node
= kmalloc(sizeof(*mem_node
),
924 mem_node
->base
= save_base
& (~0x0FL
);
925 mem_node
->length
= temp_register
;
927 mem_node
->next
= func
->mem_head
;
928 func
->mem_head
= mem_node
;
932 } /* End of base register loop */
935 /* find the next device in this slot */
936 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
944 * cpqhp_configure_board
946 * Copies saved configuration information to one slot.
947 * this is called recursively for bridge devices.
948 * this is for hot plug REPLACE!
950 * returns 0 if success
952 int cpqhp_configure_board(struct controller
*ctrl
, struct pci_func
*func
)
958 struct pci_func
*next
;
962 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
965 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
967 while (func
!= NULL
) {
968 pci_bus
->number
= func
->bus
;
969 devfn
= PCI_DEVFN(func
->device
, func
->function
);
971 /* Start at the top of config space so that the control
972 * registers are programmed last
974 for (cloop
= 0x3C; cloop
> 0; cloop
-= 4)
975 pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, func
->config_space
[cloop
>> 2]);
977 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
979 /* If this is a bridge device, restore subordinate devices */
980 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
981 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_SECONDARY_BUS
, &secondary_bus
);
983 sub_bus
= (int) secondary_bus
;
985 next
= cpqhp_slot_list
[sub_bus
];
987 while (next
!= NULL
) {
988 rc
= cpqhp_configure_board(ctrl
, next
);
996 /* Check all the base Address Registers to make sure
997 * they are the same. If not, the board is different.
1000 for (cloop
= 16; cloop
< 40; cloop
+= 4) {
1001 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &temp
);
1003 if (temp
!= func
->config_space
[cloop
>> 2]) {
1004 dbg("Config space compare failure!!! offset = %x\n", cloop
);
1005 dbg("bus = %x, device = %x, function = %x\n", func
->bus
, func
->device
, func
->function
);
1006 dbg("temp = %x, config space = %x\n\n", temp
, func
->config_space
[cloop
>> 2]);
1012 func
->configured
= 1;
1014 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1022 * cpqhp_valid_replace
1024 * this function checks to see if a board is the same as the
1025 * one it is replacing. this check will detect if the device's
1026 * vendor or device id's are the same
1028 * returns 0 if the board is the same nonzero otherwise
1030 int cpqhp_valid_replace(struct controller
*ctrl
, struct pci_func
*func
)
1036 u32 temp_register
= 0;
1039 struct pci_func
*next
;
1041 struct pci_bus
*pci_bus
= ctrl
->pci_bus
;
1044 if (!func
->is_a_board
)
1045 return(ADD_NOT_SUPPORTED
);
1047 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1049 while (func
!= NULL
) {
1050 pci_bus
->number
= func
->bus
;
1051 devfn
= PCI_DEVFN(func
->device
, func
->function
);
1053 pci_bus_read_config_dword (pci_bus
, devfn
, PCI_VENDOR_ID
, &temp_register
);
1055 /* No adapter present */
1056 if (temp_register
== 0xFFFFFFFF)
1057 return(NO_ADAPTER_PRESENT
);
1059 if (temp_register
!= func
->config_space
[0])
1060 return(ADAPTER_NOT_SAME
);
1062 /* Check for same revision number and class code */
1063 pci_bus_read_config_dword (pci_bus
, devfn
, PCI_CLASS_REVISION
, &temp_register
);
1065 /* Adapter not the same */
1066 if (temp_register
!= func
->config_space
[0x08 >> 2])
1067 return(ADAPTER_NOT_SAME
);
1069 /* Check for Bridge */
1070 pci_bus_read_config_byte (pci_bus
, devfn
, PCI_HEADER_TYPE
, &header_type
);
1072 if ((header_type
& 0x7F) == PCI_HEADER_TYPE_BRIDGE
) {
1073 /* In order to continue checking, we must program the
1074 * bus registers in the bridge to respond to accesses
1075 * for its subordinate bus(es)
1078 temp_register
= func
->config_space
[0x18 >> 2];
1079 pci_bus_write_config_dword (pci_bus
, devfn
, PCI_PRIMARY_BUS
, temp_register
);
1081 secondary_bus
= (temp_register
>> 8) & 0xFF;
1083 next
= cpqhp_slot_list
[secondary_bus
];
1085 while (next
!= NULL
) {
1086 rc
= cpqhp_valid_replace(ctrl
, next
);
1094 /* Check to see if it is a standard config header */
1095 else if ((header_type
& 0x7F) == PCI_HEADER_TYPE_NORMAL
) {
1096 /* Check subsystem vendor and ID */
1097 pci_bus_read_config_dword (pci_bus
, devfn
, PCI_SUBSYSTEM_VENDOR_ID
, &temp_register
);
1099 if (temp_register
!= func
->config_space
[0x2C >> 2]) {
1100 /* If it's a SMART-2 and the register isn't
1101 * filled in, ignore the difference because
1102 * they just have an old rev of the firmware
1104 if (!((func
->config_space
[0] == 0xAE100E11)
1105 && (temp_register
== 0x00L
)))
1106 return(ADAPTER_NOT_SAME
);
1108 /* Figure out IO and memory base lengths */
1109 for (cloop
= 0x10; cloop
<= 0x24; cloop
+= 4) {
1110 temp_register
= 0xFFFFFFFF;
1111 pci_bus_write_config_dword (pci_bus
, devfn
, cloop
, temp_register
);
1112 pci_bus_read_config_dword (pci_bus
, devfn
, cloop
, &base
);
1114 /* If this register is implemented */
1118 * set base = amount of IO
1121 base
= base
& 0xFFFFFFFE;
1127 base
= base
& 0xFFFFFFF0;
1137 /* Check information in slot structure */
1138 if (func
->base_length
[(cloop
- 0x10) >> 2] != base
)
1139 return(ADAPTER_NOT_SAME
);
1141 if (func
->base_type
[(cloop
- 0x10) >> 2] != type
)
1142 return(ADAPTER_NOT_SAME
);
1144 } /* End of base register loop */
1146 } /* End of (type 0 config space) else */
1148 /* this is not a type 0 or 1 config space header so
1149 * we don't know how to do it
1151 return(DEVICE_TYPE_NOT_SUPPORTED
);
1154 /* Get the next function */
1155 func
= cpqhp_slot_find(func
->bus
, func
->device
, index
++);
1164 * cpqhp_find_available_resources
1166 * Finds available memory, IO, and IRQ resources for programming
1167 * devices which may be added to the system
1168 * this function is for hot plug ADD!
1170 * returns 0 if success
1172 int cpqhp_find_available_resources(struct controller
*ctrl
, void __iomem
*rom_start
)
1177 void __iomem
*one_slot
;
1178 void __iomem
*rom_resource_table
;
1179 struct pci_func
*func
= NULL
;
1182 struct pci_resource
*mem_node
;
1183 struct pci_resource
*p_mem_node
;
1184 struct pci_resource
*io_node
;
1185 struct pci_resource
*bus_node
;
1187 rom_resource_table
= detect_HRT_floating_pointer(rom_start
, rom_start
+0xffff);
1188 dbg("rom_resource_table = %p\n", rom_resource_table
);
1190 if (rom_resource_table
== NULL
)
1193 /* Sum all resources and setup resource maps */
1194 unused_IRQ
= readl(rom_resource_table
+ UNUSED_IRQ
);
1195 dbg("unused_IRQ = %x\n", unused_IRQ
);
1198 while (unused_IRQ
) {
1199 if (unused_IRQ
& 1) {
1200 cpqhp_disk_irq
= temp
;
1203 unused_IRQ
= unused_IRQ
>> 1;
1207 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq
);
1208 unused_IRQ
= unused_IRQ
>> 1;
1211 while (unused_IRQ
) {
1212 if (unused_IRQ
& 1) {
1213 cpqhp_nic_irq
= temp
;
1216 unused_IRQ
= unused_IRQ
>> 1;
1220 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq
);
1221 unused_IRQ
= readl(rom_resource_table
+ PCIIRQ
);
1226 cpqhp_nic_irq
= ctrl
->cfgspc_irq
;
1228 if (!cpqhp_disk_irq
)
1229 cpqhp_disk_irq
= ctrl
->cfgspc_irq
;
1231 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq
, cpqhp_nic_irq
);
1233 rc
= compaq_nvram_load(rom_start
, ctrl
);
1237 one_slot
= rom_resource_table
+ sizeof (struct hrt
);
1239 i
= readb(rom_resource_table
+ NUMBER_OF_ENTRIES
);
1240 dbg("number_of_entries = %d\n", i
);
1242 if (!readb(one_slot
+ SECONDARY_BUS
))
1245 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1247 while (i
&& readb(one_slot
+ SECONDARY_BUS
)) {
1248 u8 dev_func
= readb(one_slot
+ DEV_FUNC
);
1249 u8 primary_bus
= readb(one_slot
+ PRIMARY_BUS
);
1250 u8 secondary_bus
= readb(one_slot
+ SECONDARY_BUS
);
1251 u8 max_bus
= readb(one_slot
+ MAX_BUS
);
1252 u16 io_base
= readw(one_slot
+ IO_BASE
);
1253 u16 io_length
= readw(one_slot
+ IO_LENGTH
);
1254 u16 mem_base
= readw(one_slot
+ MEM_BASE
);
1255 u16 mem_length
= readw(one_slot
+ MEM_LENGTH
);
1256 u16 pre_mem_base
= readw(one_slot
+ PRE_MEM_BASE
);
1257 u16 pre_mem_length
= readw(one_slot
+ PRE_MEM_LENGTH
);
1259 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n",
1260 dev_func
, io_base
, io_length
, mem_base
, mem_length
, pre_mem_base
, pre_mem_length
,
1261 primary_bus
, secondary_bus
, max_bus
);
1263 /* If this entry isn't for our controller's bus, ignore it */
1264 if (primary_bus
!= ctrl
->bus
) {
1266 one_slot
+= sizeof (struct slot_rt
);
1269 /* find out if this entry is for an occupied slot */
1270 ctrl
->pci_bus
->number
= primary_bus
;
1271 pci_bus_read_config_dword (ctrl
->pci_bus
, dev_func
, PCI_VENDOR_ID
, &temp_dword
);
1272 dbg("temp_D_word = %x\n", temp_dword
);
1274 if (temp_dword
!= 0xFFFFFFFF) {
1276 func
= cpqhp_slot_find(primary_bus
, dev_func
>> 3, 0);
1278 while (func
&& (func
->function
!= (dev_func
& 0x07))) {
1279 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func
, primary_bus
, dev_func
>> 3, index
);
1280 func
= cpqhp_slot_find(primary_bus
, dev_func
>> 3, index
++);
1283 /* If we can't find a match, skip this table entry */
1286 one_slot
+= sizeof (struct slot_rt
);
1289 /* this may not work and shouldn't be used */
1290 if (secondary_bus
!= primary_bus
)
1302 /* If we've got a valid IO base, use it */
1304 temp_dword
= io_base
+ io_length
;
1306 if ((io_base
) && (temp_dword
< 0x10000)) {
1307 io_node
= kmalloc(sizeof(*io_node
), GFP_KERNEL
);
1311 io_node
->base
= io_base
;
1312 io_node
->length
= io_length
;
1314 dbg("found io_node(base, length) = %x, %x\n",
1315 io_node
->base
, io_node
->length
);
1316 dbg("populated slot =%d \n", populated_slot
);
1317 if (!populated_slot
) {
1318 io_node
->next
= ctrl
->io_head
;
1319 ctrl
->io_head
= io_node
;
1321 io_node
->next
= func
->io_head
;
1322 func
->io_head
= io_node
;
1326 /* If we've got a valid memory base, use it */
1327 temp_dword
= mem_base
+ mem_length
;
1328 if ((mem_base
) && (temp_dword
< 0x10000)) {
1329 mem_node
= kmalloc(sizeof(*mem_node
), GFP_KERNEL
);
1333 mem_node
->base
= mem_base
<< 16;
1335 mem_node
->length
= mem_length
<< 16;
1337 dbg("found mem_node(base, length) = %x, %x\n",
1338 mem_node
->base
, mem_node
->length
);
1339 dbg("populated slot =%d \n", populated_slot
);
1340 if (!populated_slot
) {
1341 mem_node
->next
= ctrl
->mem_head
;
1342 ctrl
->mem_head
= mem_node
;
1344 mem_node
->next
= func
->mem_head
;
1345 func
->mem_head
= mem_node
;
1349 /* If we've got a valid prefetchable memory base, and
1350 * the base + length isn't greater than 0xFFFF
1352 temp_dword
= pre_mem_base
+ pre_mem_length
;
1353 if ((pre_mem_base
) && (temp_dword
< 0x10000)) {
1354 p_mem_node
= kmalloc(sizeof(*p_mem_node
), GFP_KERNEL
);
1358 p_mem_node
->base
= pre_mem_base
<< 16;
1360 p_mem_node
->length
= pre_mem_length
<< 16;
1361 dbg("found p_mem_node(base, length) = %x, %x\n",
1362 p_mem_node
->base
, p_mem_node
->length
);
1363 dbg("populated slot =%d \n", populated_slot
);
1365 if (!populated_slot
) {
1366 p_mem_node
->next
= ctrl
->p_mem_head
;
1367 ctrl
->p_mem_head
= p_mem_node
;
1369 p_mem_node
->next
= func
->p_mem_head
;
1370 func
->p_mem_head
= p_mem_node
;
1374 /* If we've got a valid bus number, use it
1375 * The second condition is to ignore bus numbers on
1376 * populated slots that don't have PCI-PCI bridges
1378 if (secondary_bus
&& (secondary_bus
!= primary_bus
)) {
1379 bus_node
= kmalloc(sizeof(*bus_node
), GFP_KERNEL
);
1383 bus_node
->base
= secondary_bus
;
1384 bus_node
->length
= max_bus
- secondary_bus
+ 1;
1385 dbg("found bus_node(base, length) = %x, %x\n",
1386 bus_node
->base
, bus_node
->length
);
1387 dbg("populated slot =%d \n", populated_slot
);
1388 if (!populated_slot
) {
1389 bus_node
->next
= ctrl
->bus_head
;
1390 ctrl
->bus_head
= bus_node
;
1392 bus_node
->next
= func
->bus_head
;
1393 func
->bus_head
= bus_node
;
1398 one_slot
+= sizeof (struct slot_rt
);
1401 /* If all of the following fail, we don't have any resources for
1405 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->mem_head
));
1406 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->p_mem_head
));
1407 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->io_head
));
1408 rc
&= cpqhp_resource_sort_and_combine(&(ctrl
->bus_head
));
1415 * cpqhp_return_board_resources
1417 * this routine returns all resources allocated to a board to
1418 * the available pool.
1420 * returns 0 if success
1422 int cpqhp_return_board_resources(struct pci_func
*func
, struct resource_lists
*resources
)
1425 struct pci_resource
*node
;
1426 struct pci_resource
*t_node
;
1427 dbg("%s\n", __func__
);
1432 node
= func
->io_head
;
1433 func
->io_head
= NULL
;
1435 t_node
= node
->next
;
1436 return_resource(&(resources
->io_head
), node
);
1440 node
= func
->mem_head
;
1441 func
->mem_head
= NULL
;
1443 t_node
= node
->next
;
1444 return_resource(&(resources
->mem_head
), node
);
1448 node
= func
->p_mem_head
;
1449 func
->p_mem_head
= NULL
;
1451 t_node
= node
->next
;
1452 return_resource(&(resources
->p_mem_head
), node
);
1456 node
= func
->bus_head
;
1457 func
->bus_head
= NULL
;
1459 t_node
= node
->next
;
1460 return_resource(&(resources
->bus_head
), node
);
1464 rc
|= cpqhp_resource_sort_and_combine(&(resources
->mem_head
));
1465 rc
|= cpqhp_resource_sort_and_combine(&(resources
->p_mem_head
));
1466 rc
|= cpqhp_resource_sort_and_combine(&(resources
->io_head
));
1467 rc
|= cpqhp_resource_sort_and_combine(&(resources
->bus_head
));
1474 * cpqhp_destroy_resource_list
1476 * Puts node back in the resource list pointed to by head
1478 void cpqhp_destroy_resource_list (struct resource_lists
*resources
)
1480 struct pci_resource
*res
, *tres
;
1482 res
= resources
->io_head
;
1483 resources
->io_head
= NULL
;
1491 res
= resources
->mem_head
;
1492 resources
->mem_head
= NULL
;
1500 res
= resources
->p_mem_head
;
1501 resources
->p_mem_head
= NULL
;
1509 res
= resources
->bus_head
;
1510 resources
->bus_head
= NULL
;
1521 * cpqhp_destroy_board_resources
1523 * Puts node back in the resource list pointed to by head
1525 void cpqhp_destroy_board_resources (struct pci_func
*func
)
1527 struct pci_resource
*res
, *tres
;
1529 res
= func
->io_head
;
1530 func
->io_head
= NULL
;
1538 res
= func
->mem_head
;
1539 func
->mem_head
= NULL
;
1547 res
= func
->p_mem_head
;
1548 func
->p_mem_head
= NULL
;
1556 res
= func
->bus_head
;
1557 func
->bus_head
= NULL
;