2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex
);
86 DECLARE_RWSEM(css_set_rwsem
);
87 EXPORT_SYMBOL_GPL(cgroup_mutex
);
88 EXPORT_SYMBOL_GPL(css_set_rwsem
);
90 static DEFINE_MUTEX(cgroup_mutex
);
91 static DECLARE_RWSEM(css_set_rwsem
);
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock
);
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 static DEFINE_SPINLOCK(release_agent_path_lock
);
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct
*cgroup_destroy_wq
;
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
123 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys
*cgroup_subsys
[] = {
128 #include <linux/cgroup_subsys.h>
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name
[] = {
135 #include <linux/cgroup_subsys.h>
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
144 struct cgroup_root cgrp_dfl_root
;
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
150 static bool cgrp_dfl_root_visible
;
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
156 static bool cgroup_legacy_files_on_dfl
;
158 /* some controllers are not supported in the default hierarchy */
159 static unsigned int cgrp_dfl_root_inhibit_ss_mask
;
161 /* The list of hierarchy roots */
163 static LIST_HEAD(cgroup_roots
);
164 static int cgroup_root_count
;
166 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
167 static DEFINE_IDR(cgroup_hierarchy_idr
);
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
176 static u64 css_serial_nr_next
= 1;
178 /* This flag indicates whether tasks in the fork and exit paths should
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
183 static int need_forkexit_callback __read_mostly
;
185 static struct cftype cgroup_dfl_base_files
[];
186 static struct cftype cgroup_legacy_base_files
[];
188 static int rebind_subsystems(struct cgroup_root
*dst_root
,
189 unsigned int ss_mask
);
190 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
191 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
193 static void css_release(struct percpu_ref
*ref
);
194 static void kill_css(struct cgroup_subsys_state
*css
);
195 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
198 /* IDR wrappers which synchronize using cgroup_idr_lock */
199 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
204 idr_preload(gfp_mask
);
205 spin_lock_bh(&cgroup_idr_lock
);
206 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
);
207 spin_unlock_bh(&cgroup_idr_lock
);
212 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
216 spin_lock_bh(&cgroup_idr_lock
);
217 ret
= idr_replace(idr
, ptr
, id
);
218 spin_unlock_bh(&cgroup_idr_lock
);
222 static void cgroup_idr_remove(struct idr
*idr
, int id
)
224 spin_lock_bh(&cgroup_idr_lock
);
226 spin_unlock_bh(&cgroup_idr_lock
);
229 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
231 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
234 return container_of(parent_css
, struct cgroup
, self
);
239 * cgroup_css - obtain a cgroup's css for the specified subsystem
240 * @cgrp: the cgroup of interest
241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
244 * function must be called either under cgroup_mutex or rcu_read_lock() and
245 * the caller is responsible for pinning the returned css if it wants to
246 * keep accessing it outside the said locks. This function may return
247 * %NULL if @cgrp doesn't have @subsys_id enabled.
249 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
250 struct cgroup_subsys
*ss
)
253 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
254 lockdep_is_held(&cgroup_mutex
));
260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
261 * @cgrp: the cgroup of interest
262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
264 * Similar to cgroup_css() but returns the effctive css, which is defined
265 * as the matching css of the nearest ancestor including self which has @ss
266 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
267 * function is guaranteed to return non-NULL css.
269 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
270 struct cgroup_subsys
*ss
)
272 lockdep_assert_held(&cgroup_mutex
);
277 if (!(cgrp
->root
->subsys_mask
& (1 << ss
->id
)))
280 while (cgroup_parent(cgrp
) &&
281 !(cgroup_parent(cgrp
)->child_subsys_mask
& (1 << ss
->id
)))
282 cgrp
= cgroup_parent(cgrp
);
284 return cgroup_css(cgrp
, ss
);
287 /* convenient tests for these bits */
288 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
290 return !(cgrp
->self
.flags
& CSS_ONLINE
);
293 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
295 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
296 struct cftype
*cft
= of_cft(of
);
299 * This is open and unprotected implementation of cgroup_css().
300 * seq_css() is only called from a kernfs file operation which has
301 * an active reference on the file. Because all the subsystem
302 * files are drained before a css is disassociated with a cgroup,
303 * the matching css from the cgroup's subsys table is guaranteed to
304 * be and stay valid until the enclosing operation is complete.
307 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
311 EXPORT_SYMBOL_GPL(of_css
);
314 * cgroup_is_descendant - test ancestry
315 * @cgrp: the cgroup to be tested
316 * @ancestor: possible ancestor of @cgrp
318 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
319 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
320 * and @ancestor are accessible.
322 bool cgroup_is_descendant(struct cgroup
*cgrp
, struct cgroup
*ancestor
)
325 if (cgrp
== ancestor
)
327 cgrp
= cgroup_parent(cgrp
);
332 static int notify_on_release(const struct cgroup
*cgrp
)
334 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
338 * for_each_css - iterate all css's of a cgroup
339 * @css: the iteration cursor
340 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
341 * @cgrp: the target cgroup to iterate css's of
343 * Should be called under cgroup_[tree_]mutex.
345 #define for_each_css(css, ssid, cgrp) \
346 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
347 if (!((css) = rcu_dereference_check( \
348 (cgrp)->subsys[(ssid)], \
349 lockdep_is_held(&cgroup_mutex)))) { } \
353 * for_each_e_css - iterate all effective css's of a cgroup
354 * @css: the iteration cursor
355 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
356 * @cgrp: the target cgroup to iterate css's of
358 * Should be called under cgroup_[tree_]mutex.
360 #define for_each_e_css(css, ssid, cgrp) \
361 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
362 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
367 * for_each_subsys - iterate all enabled cgroup subsystems
368 * @ss: the iteration cursor
369 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
371 #define for_each_subsys(ss, ssid) \
372 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
373 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
375 /* iterate across the hierarchies */
376 #define for_each_root(root) \
377 list_for_each_entry((root), &cgroup_roots, root_list)
379 /* iterate over child cgrps, lock should be held throughout iteration */
380 #define cgroup_for_each_live_child(child, cgrp) \
381 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
382 if (({ lockdep_assert_held(&cgroup_mutex); \
383 cgroup_is_dead(child); })) \
387 static void cgroup_release_agent(struct work_struct
*work
);
388 static void check_for_release(struct cgroup
*cgrp
);
391 * A cgroup can be associated with multiple css_sets as different tasks may
392 * belong to different cgroups on different hierarchies. In the other
393 * direction, a css_set is naturally associated with multiple cgroups.
394 * This M:N relationship is represented by the following link structure
395 * which exists for each association and allows traversing the associations
398 struct cgrp_cset_link
{
399 /* the cgroup and css_set this link associates */
401 struct css_set
*cset
;
403 /* list of cgrp_cset_links anchored at cgrp->cset_links */
404 struct list_head cset_link
;
406 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
407 struct list_head cgrp_link
;
411 * The default css_set - used by init and its children prior to any
412 * hierarchies being mounted. It contains a pointer to the root state
413 * for each subsystem. Also used to anchor the list of css_sets. Not
414 * reference-counted, to improve performance when child cgroups
415 * haven't been created.
417 struct css_set init_css_set
= {
418 .refcount
= ATOMIC_INIT(1),
419 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
420 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
421 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
422 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
423 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
426 static int css_set_count
= 1; /* 1 for init_css_set */
429 * cgroup_update_populated - updated populated count of a cgroup
430 * @cgrp: the target cgroup
431 * @populated: inc or dec populated count
433 * @cgrp is either getting the first task (css_set) or losing the last.
434 * Update @cgrp->populated_cnt accordingly. The count is propagated
435 * towards root so that a given cgroup's populated_cnt is zero iff the
436 * cgroup and all its descendants are empty.
438 * @cgrp's interface file "cgroup.populated" is zero if
439 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
440 * changes from or to zero, userland is notified that the content of the
441 * interface file has changed. This can be used to detect when @cgrp and
442 * its descendants become populated or empty.
444 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
446 lockdep_assert_held(&css_set_rwsem
);
452 trigger
= !cgrp
->populated_cnt
++;
454 trigger
= !--cgrp
->populated_cnt
;
459 if (cgrp
->populated_kn
)
460 kernfs_notify(cgrp
->populated_kn
);
461 cgrp
= cgroup_parent(cgrp
);
466 * hash table for cgroup groups. This improves the performance to find
467 * an existing css_set. This hash doesn't (currently) take into
468 * account cgroups in empty hierarchies.
470 #define CSS_SET_HASH_BITS 7
471 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
473 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
475 unsigned long key
= 0UL;
476 struct cgroup_subsys
*ss
;
479 for_each_subsys(ss
, i
)
480 key
+= (unsigned long)css
[i
];
481 key
= (key
>> 16) ^ key
;
486 static void put_css_set_locked(struct css_set
*cset
)
488 struct cgrp_cset_link
*link
, *tmp_link
;
489 struct cgroup_subsys
*ss
;
492 lockdep_assert_held(&css_set_rwsem
);
494 if (!atomic_dec_and_test(&cset
->refcount
))
497 /* This css_set is dead. unlink it and release cgroup refcounts */
498 for_each_subsys(ss
, ssid
)
499 list_del(&cset
->e_cset_node
[ssid
]);
500 hash_del(&cset
->hlist
);
503 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
504 struct cgroup
*cgrp
= link
->cgrp
;
506 list_del(&link
->cset_link
);
507 list_del(&link
->cgrp_link
);
509 /* @cgrp can't go away while we're holding css_set_rwsem */
510 if (list_empty(&cgrp
->cset_links
)) {
511 cgroup_update_populated(cgrp
, false);
512 check_for_release(cgrp
);
518 kfree_rcu(cset
, rcu_head
);
521 static void put_css_set(struct css_set
*cset
)
524 * Ensure that the refcount doesn't hit zero while any readers
525 * can see it. Similar to atomic_dec_and_lock(), but for an
528 if (atomic_add_unless(&cset
->refcount
, -1, 1))
531 down_write(&css_set_rwsem
);
532 put_css_set_locked(cset
);
533 up_write(&css_set_rwsem
);
537 * refcounted get/put for css_set objects
539 static inline void get_css_set(struct css_set
*cset
)
541 atomic_inc(&cset
->refcount
);
545 * compare_css_sets - helper function for find_existing_css_set().
546 * @cset: candidate css_set being tested
547 * @old_cset: existing css_set for a task
548 * @new_cgrp: cgroup that's being entered by the task
549 * @template: desired set of css pointers in css_set (pre-calculated)
551 * Returns true if "cset" matches "old_cset" except for the hierarchy
552 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
554 static bool compare_css_sets(struct css_set
*cset
,
555 struct css_set
*old_cset
,
556 struct cgroup
*new_cgrp
,
557 struct cgroup_subsys_state
*template[])
559 struct list_head
*l1
, *l2
;
562 * On the default hierarchy, there can be csets which are
563 * associated with the same set of cgroups but different csses.
564 * Let's first ensure that csses match.
566 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
570 * Compare cgroup pointers in order to distinguish between
571 * different cgroups in hierarchies. As different cgroups may
572 * share the same effective css, this comparison is always
575 l1
= &cset
->cgrp_links
;
576 l2
= &old_cset
->cgrp_links
;
578 struct cgrp_cset_link
*link1
, *link2
;
579 struct cgroup
*cgrp1
, *cgrp2
;
583 /* See if we reached the end - both lists are equal length. */
584 if (l1
== &cset
->cgrp_links
) {
585 BUG_ON(l2
!= &old_cset
->cgrp_links
);
588 BUG_ON(l2
== &old_cset
->cgrp_links
);
590 /* Locate the cgroups associated with these links. */
591 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
592 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
595 /* Hierarchies should be linked in the same order. */
596 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
599 * If this hierarchy is the hierarchy of the cgroup
600 * that's changing, then we need to check that this
601 * css_set points to the new cgroup; if it's any other
602 * hierarchy, then this css_set should point to the
603 * same cgroup as the old css_set.
605 if (cgrp1
->root
== new_cgrp
->root
) {
606 if (cgrp1
!= new_cgrp
)
617 * find_existing_css_set - init css array and find the matching css_set
618 * @old_cset: the css_set that we're using before the cgroup transition
619 * @cgrp: the cgroup that we're moving into
620 * @template: out param for the new set of csses, should be clear on entry
622 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
624 struct cgroup_subsys_state
*template[])
626 struct cgroup_root
*root
= cgrp
->root
;
627 struct cgroup_subsys
*ss
;
628 struct css_set
*cset
;
633 * Build the set of subsystem state objects that we want to see in the
634 * new css_set. while subsystems can change globally, the entries here
635 * won't change, so no need for locking.
637 for_each_subsys(ss
, i
) {
638 if (root
->subsys_mask
& (1UL << i
)) {
640 * @ss is in this hierarchy, so we want the
641 * effective css from @cgrp.
643 template[i
] = cgroup_e_css(cgrp
, ss
);
646 * @ss is not in this hierarchy, so we don't want
649 template[i
] = old_cset
->subsys
[i
];
653 key
= css_set_hash(template);
654 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
655 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
658 /* This css_set matches what we need */
662 /* No existing cgroup group matched */
666 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
668 struct cgrp_cset_link
*link
, *tmp_link
;
670 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
671 list_del(&link
->cset_link
);
677 * allocate_cgrp_cset_links - allocate cgrp_cset_links
678 * @count: the number of links to allocate
679 * @tmp_links: list_head the allocated links are put on
681 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
682 * through ->cset_link. Returns 0 on success or -errno.
684 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
686 struct cgrp_cset_link
*link
;
689 INIT_LIST_HEAD(tmp_links
);
691 for (i
= 0; i
< count
; i
++) {
692 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
694 free_cgrp_cset_links(tmp_links
);
697 list_add(&link
->cset_link
, tmp_links
);
703 * link_css_set - a helper function to link a css_set to a cgroup
704 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
705 * @cset: the css_set to be linked
706 * @cgrp: the destination cgroup
708 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
711 struct cgrp_cset_link
*link
;
713 BUG_ON(list_empty(tmp_links
));
715 if (cgroup_on_dfl(cgrp
))
716 cset
->dfl_cgrp
= cgrp
;
718 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
722 if (list_empty(&cgrp
->cset_links
))
723 cgroup_update_populated(cgrp
, true);
724 list_move(&link
->cset_link
, &cgrp
->cset_links
);
727 * Always add links to the tail of the list so that the list
728 * is sorted by order of hierarchy creation
730 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
734 * find_css_set - return a new css_set with one cgroup updated
735 * @old_cset: the baseline css_set
736 * @cgrp: the cgroup to be updated
738 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
739 * substituted into the appropriate hierarchy.
741 static struct css_set
*find_css_set(struct css_set
*old_cset
,
744 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
745 struct css_set
*cset
;
746 struct list_head tmp_links
;
747 struct cgrp_cset_link
*link
;
748 struct cgroup_subsys
*ss
;
752 lockdep_assert_held(&cgroup_mutex
);
754 /* First see if we already have a cgroup group that matches
756 down_read(&css_set_rwsem
);
757 cset
= find_existing_css_set(old_cset
, cgrp
, template);
760 up_read(&css_set_rwsem
);
765 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
769 /* Allocate all the cgrp_cset_link objects that we'll need */
770 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
775 atomic_set(&cset
->refcount
, 1);
776 INIT_LIST_HEAD(&cset
->cgrp_links
);
777 INIT_LIST_HEAD(&cset
->tasks
);
778 INIT_LIST_HEAD(&cset
->mg_tasks
);
779 INIT_LIST_HEAD(&cset
->mg_preload_node
);
780 INIT_LIST_HEAD(&cset
->mg_node
);
781 INIT_HLIST_NODE(&cset
->hlist
);
783 /* Copy the set of subsystem state objects generated in
784 * find_existing_css_set() */
785 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
787 down_write(&css_set_rwsem
);
788 /* Add reference counts and links from the new css_set. */
789 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
790 struct cgroup
*c
= link
->cgrp
;
792 if (c
->root
== cgrp
->root
)
794 link_css_set(&tmp_links
, cset
, c
);
797 BUG_ON(!list_empty(&tmp_links
));
801 /* Add @cset to the hash table */
802 key
= css_set_hash(cset
->subsys
);
803 hash_add(css_set_table
, &cset
->hlist
, key
);
805 for_each_subsys(ss
, ssid
)
806 list_add_tail(&cset
->e_cset_node
[ssid
],
807 &cset
->subsys
[ssid
]->cgroup
->e_csets
[ssid
]);
809 up_write(&css_set_rwsem
);
814 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
816 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
818 return root_cgrp
->root
;
821 static int cgroup_init_root_id(struct cgroup_root
*root
)
825 lockdep_assert_held(&cgroup_mutex
);
827 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
831 root
->hierarchy_id
= id
;
835 static void cgroup_exit_root_id(struct cgroup_root
*root
)
837 lockdep_assert_held(&cgroup_mutex
);
839 if (root
->hierarchy_id
) {
840 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
841 root
->hierarchy_id
= 0;
845 static void cgroup_free_root(struct cgroup_root
*root
)
848 /* hierarhcy ID shoulid already have been released */
849 WARN_ON_ONCE(root
->hierarchy_id
);
851 idr_destroy(&root
->cgroup_idr
);
856 static void cgroup_destroy_root(struct cgroup_root
*root
)
858 struct cgroup
*cgrp
= &root
->cgrp
;
859 struct cgrp_cset_link
*link
, *tmp_link
;
861 mutex_lock(&cgroup_mutex
);
863 BUG_ON(atomic_read(&root
->nr_cgrps
));
864 BUG_ON(!list_empty(&cgrp
->self
.children
));
866 /* Rebind all subsystems back to the default hierarchy */
867 rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
);
870 * Release all the links from cset_links to this hierarchy's
873 down_write(&css_set_rwsem
);
875 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
876 list_del(&link
->cset_link
);
877 list_del(&link
->cgrp_link
);
880 up_write(&css_set_rwsem
);
882 if (!list_empty(&root
->root_list
)) {
883 list_del(&root
->root_list
);
887 cgroup_exit_root_id(root
);
889 mutex_unlock(&cgroup_mutex
);
891 kernfs_destroy_root(root
->kf_root
);
892 cgroup_free_root(root
);
895 /* look up cgroup associated with given css_set on the specified hierarchy */
896 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
897 struct cgroup_root
*root
)
899 struct cgroup
*res
= NULL
;
901 lockdep_assert_held(&cgroup_mutex
);
902 lockdep_assert_held(&css_set_rwsem
);
904 if (cset
== &init_css_set
) {
907 struct cgrp_cset_link
*link
;
909 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
910 struct cgroup
*c
= link
->cgrp
;
912 if (c
->root
== root
) {
924 * Return the cgroup for "task" from the given hierarchy. Must be
925 * called with cgroup_mutex and css_set_rwsem held.
927 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
928 struct cgroup_root
*root
)
931 * No need to lock the task - since we hold cgroup_mutex the
932 * task can't change groups, so the only thing that can happen
933 * is that it exits and its css is set back to init_css_set.
935 return cset_cgroup_from_root(task_css_set(task
), root
);
939 * A task must hold cgroup_mutex to modify cgroups.
941 * Any task can increment and decrement the count field without lock.
942 * So in general, code holding cgroup_mutex can't rely on the count
943 * field not changing. However, if the count goes to zero, then only
944 * cgroup_attach_task() can increment it again. Because a count of zero
945 * means that no tasks are currently attached, therefore there is no
946 * way a task attached to that cgroup can fork (the other way to
947 * increment the count). So code holding cgroup_mutex can safely
948 * assume that if the count is zero, it will stay zero. Similarly, if
949 * a task holds cgroup_mutex on a cgroup with zero count, it
950 * knows that the cgroup won't be removed, as cgroup_rmdir()
953 * A cgroup can only be deleted if both its 'count' of using tasks
954 * is zero, and its list of 'children' cgroups is empty. Since all
955 * tasks in the system use _some_ cgroup, and since there is always at
956 * least one task in the system (init, pid == 1), therefore, root cgroup
957 * always has either children cgroups and/or using tasks. So we don't
958 * need a special hack to ensure that root cgroup cannot be deleted.
960 * P.S. One more locking exception. RCU is used to guard the
961 * update of a tasks cgroup pointer by cgroup_attach_task()
964 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned int subsys_mask
);
965 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
966 static const struct file_operations proc_cgroupstats_operations
;
968 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
971 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
972 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
973 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
974 cft
->ss
->name
, cft
->name
);
976 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
981 * cgroup_file_mode - deduce file mode of a control file
982 * @cft: the control file in question
984 * returns cft->mode if ->mode is not 0
985 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
986 * returns S_IRUGO if it has only a read handler
987 * returns S_IWUSR if it has only a write hander
989 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
996 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
999 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
)
1005 static void cgroup_get(struct cgroup
*cgrp
)
1007 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
1008 css_get(&cgrp
->self
);
1011 static bool cgroup_tryget(struct cgroup
*cgrp
)
1013 return css_tryget(&cgrp
->self
);
1016 static void cgroup_put(struct cgroup
*cgrp
)
1018 css_put(&cgrp
->self
);
1022 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1023 * @cgrp: the target cgroup
1025 * On the default hierarchy, a subsystem may request other subsystems to be
1026 * enabled together through its ->depends_on mask. In such cases, more
1027 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1029 * This function determines which subsystems need to be enabled given the
1030 * current @cgrp->subtree_control and records it in
1031 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1032 * @cgrp->subtree_control and follows the usual hierarchy rules.
1034 static void cgroup_refresh_child_subsys_mask(struct cgroup
*cgrp
)
1036 struct cgroup
*parent
= cgroup_parent(cgrp
);
1037 unsigned int cur_ss_mask
= cgrp
->subtree_control
;
1038 struct cgroup_subsys
*ss
;
1041 lockdep_assert_held(&cgroup_mutex
);
1043 if (!cgroup_on_dfl(cgrp
)) {
1044 cgrp
->child_subsys_mask
= cur_ss_mask
;
1049 unsigned int new_ss_mask
= cur_ss_mask
;
1051 for_each_subsys(ss
, ssid
)
1052 if (cur_ss_mask
& (1 << ssid
))
1053 new_ss_mask
|= ss
->depends_on
;
1056 * Mask out subsystems which aren't available. This can
1057 * happen only if some depended-upon subsystems were bound
1058 * to non-default hierarchies.
1061 new_ss_mask
&= parent
->child_subsys_mask
;
1063 new_ss_mask
&= cgrp
->root
->subsys_mask
;
1065 if (new_ss_mask
== cur_ss_mask
)
1067 cur_ss_mask
= new_ss_mask
;
1070 cgrp
->child_subsys_mask
= cur_ss_mask
;
1074 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1075 * @kn: the kernfs_node being serviced
1077 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1078 * the method finishes if locking succeeded. Note that once this function
1079 * returns the cgroup returned by cgroup_kn_lock_live() may become
1080 * inaccessible any time. If the caller intends to continue to access the
1081 * cgroup, it should pin it before invoking this function.
1083 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1085 struct cgroup
*cgrp
;
1087 if (kernfs_type(kn
) == KERNFS_DIR
)
1090 cgrp
= kn
->parent
->priv
;
1092 mutex_unlock(&cgroup_mutex
);
1094 kernfs_unbreak_active_protection(kn
);
1099 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1100 * @kn: the kernfs_node being serviced
1102 * This helper is to be used by a cgroup kernfs method currently servicing
1103 * @kn. It breaks the active protection, performs cgroup locking and
1104 * verifies that the associated cgroup is alive. Returns the cgroup if
1105 * alive; otherwise, %NULL. A successful return should be undone by a
1106 * matching cgroup_kn_unlock() invocation.
1108 * Any cgroup kernfs method implementation which requires locking the
1109 * associated cgroup should use this helper. It avoids nesting cgroup
1110 * locking under kernfs active protection and allows all kernfs operations
1111 * including self-removal.
1113 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
)
1115 struct cgroup
*cgrp
;
1117 if (kernfs_type(kn
) == KERNFS_DIR
)
1120 cgrp
= kn
->parent
->priv
;
1123 * We're gonna grab cgroup_mutex which nests outside kernfs
1124 * active_ref. cgroup liveliness check alone provides enough
1125 * protection against removal. Ensure @cgrp stays accessible and
1126 * break the active_ref protection.
1128 if (!cgroup_tryget(cgrp
))
1130 kernfs_break_active_protection(kn
);
1132 mutex_lock(&cgroup_mutex
);
1134 if (!cgroup_is_dead(cgrp
))
1137 cgroup_kn_unlock(kn
);
1141 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1143 char name
[CGROUP_FILE_NAME_MAX
];
1145 lockdep_assert_held(&cgroup_mutex
);
1146 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1150 * cgroup_clear_dir - remove subsys files in a cgroup directory
1151 * @cgrp: target cgroup
1152 * @subsys_mask: mask of the subsystem ids whose files should be removed
1154 static void cgroup_clear_dir(struct cgroup
*cgrp
, unsigned int subsys_mask
)
1156 struct cgroup_subsys
*ss
;
1159 for_each_subsys(ss
, i
) {
1160 struct cftype
*cfts
;
1162 if (!(subsys_mask
& (1 << i
)))
1164 list_for_each_entry(cfts
, &ss
->cfts
, node
)
1165 cgroup_addrm_files(cgrp
, cfts
, false);
1169 static int rebind_subsystems(struct cgroup_root
*dst_root
, unsigned int ss_mask
)
1171 struct cgroup_subsys
*ss
;
1172 unsigned int tmp_ss_mask
;
1175 lockdep_assert_held(&cgroup_mutex
);
1177 for_each_subsys(ss
, ssid
) {
1178 if (!(ss_mask
& (1 << ssid
)))
1181 /* if @ss has non-root csses attached to it, can't move */
1182 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)))
1185 /* can't move between two non-dummy roots either */
1186 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1190 /* skip creating root files on dfl_root for inhibited subsystems */
1191 tmp_ss_mask
= ss_mask
;
1192 if (dst_root
== &cgrp_dfl_root
)
1193 tmp_ss_mask
&= ~cgrp_dfl_root_inhibit_ss_mask
;
1195 ret
= cgroup_populate_dir(&dst_root
->cgrp
, tmp_ss_mask
);
1197 if (dst_root
!= &cgrp_dfl_root
)
1201 * Rebinding back to the default root is not allowed to
1202 * fail. Using both default and non-default roots should
1203 * be rare. Moving subsystems back and forth even more so.
1204 * Just warn about it and continue.
1206 if (cgrp_dfl_root_visible
) {
1207 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1209 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1214 * Nothing can fail from this point on. Remove files for the
1215 * removed subsystems and rebind each subsystem.
1217 for_each_subsys(ss
, ssid
)
1218 if (ss_mask
& (1 << ssid
))
1219 cgroup_clear_dir(&ss
->root
->cgrp
, 1 << ssid
);
1221 for_each_subsys(ss
, ssid
) {
1222 struct cgroup_root
*src_root
;
1223 struct cgroup_subsys_state
*css
;
1224 struct css_set
*cset
;
1226 if (!(ss_mask
& (1 << ssid
)))
1229 src_root
= ss
->root
;
1230 css
= cgroup_css(&src_root
->cgrp
, ss
);
1232 WARN_ON(!css
|| cgroup_css(&dst_root
->cgrp
, ss
));
1234 RCU_INIT_POINTER(src_root
->cgrp
.subsys
[ssid
], NULL
);
1235 rcu_assign_pointer(dst_root
->cgrp
.subsys
[ssid
], css
);
1236 ss
->root
= dst_root
;
1237 css
->cgroup
= &dst_root
->cgrp
;
1239 down_write(&css_set_rwsem
);
1240 hash_for_each(css_set_table
, i
, cset
, hlist
)
1241 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1242 &dst_root
->cgrp
.e_csets
[ss
->id
]);
1243 up_write(&css_set_rwsem
);
1245 src_root
->subsys_mask
&= ~(1 << ssid
);
1246 src_root
->cgrp
.subtree_control
&= ~(1 << ssid
);
1247 cgroup_refresh_child_subsys_mask(&src_root
->cgrp
);
1249 /* default hierarchy doesn't enable controllers by default */
1250 dst_root
->subsys_mask
|= 1 << ssid
;
1251 if (dst_root
!= &cgrp_dfl_root
) {
1252 dst_root
->cgrp
.subtree_control
|= 1 << ssid
;
1253 cgroup_refresh_child_subsys_mask(&dst_root
->cgrp
);
1260 kernfs_activate(dst_root
->cgrp
.kn
);
1264 static int cgroup_show_options(struct seq_file
*seq
,
1265 struct kernfs_root
*kf_root
)
1267 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1268 struct cgroup_subsys
*ss
;
1271 for_each_subsys(ss
, ssid
)
1272 if (root
->subsys_mask
& (1 << ssid
))
1273 seq_printf(seq
, ",%s", ss
->name
);
1274 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1275 seq_puts(seq
, ",noprefix");
1276 if (root
->flags
& CGRP_ROOT_XATTR
)
1277 seq_puts(seq
, ",xattr");
1279 spin_lock(&release_agent_path_lock
);
1280 if (strlen(root
->release_agent_path
))
1281 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1282 spin_unlock(&release_agent_path_lock
);
1284 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1285 seq_puts(seq
, ",clone_children");
1286 if (strlen(root
->name
))
1287 seq_printf(seq
, ",name=%s", root
->name
);
1291 struct cgroup_sb_opts
{
1292 unsigned int subsys_mask
;
1294 char *release_agent
;
1295 bool cpuset_clone_children
;
1297 /* User explicitly requested empty subsystem */
1301 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1303 char *token
, *o
= data
;
1304 bool all_ss
= false, one_ss
= false;
1305 unsigned int mask
= -1U;
1306 struct cgroup_subsys
*ss
;
1310 #ifdef CONFIG_CPUSETS
1311 mask
= ~(1U << cpuset_cgrp_id
);
1314 memset(opts
, 0, sizeof(*opts
));
1316 while ((token
= strsep(&o
, ",")) != NULL
) {
1321 if (!strcmp(token
, "none")) {
1322 /* Explicitly have no subsystems */
1326 if (!strcmp(token
, "all")) {
1327 /* Mutually exclusive option 'all' + subsystem name */
1333 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1334 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1337 if (!strcmp(token
, "noprefix")) {
1338 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1341 if (!strcmp(token
, "clone_children")) {
1342 opts
->cpuset_clone_children
= true;
1345 if (!strcmp(token
, "xattr")) {
1346 opts
->flags
|= CGRP_ROOT_XATTR
;
1349 if (!strncmp(token
, "release_agent=", 14)) {
1350 /* Specifying two release agents is forbidden */
1351 if (opts
->release_agent
)
1353 opts
->release_agent
=
1354 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1355 if (!opts
->release_agent
)
1359 if (!strncmp(token
, "name=", 5)) {
1360 const char *name
= token
+ 5;
1361 /* Can't specify an empty name */
1364 /* Must match [\w.-]+ */
1365 for (i
= 0; i
< strlen(name
); i
++) {
1369 if ((c
== '.') || (c
== '-') || (c
== '_'))
1373 /* Specifying two names is forbidden */
1376 opts
->name
= kstrndup(name
,
1377 MAX_CGROUP_ROOT_NAMELEN
- 1,
1385 for_each_subsys(ss
, i
) {
1386 if (strcmp(token
, ss
->name
))
1391 /* Mutually exclusive option 'all' + subsystem name */
1394 opts
->subsys_mask
|= (1 << i
);
1399 if (i
== CGROUP_SUBSYS_COUNT
)
1403 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1404 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1406 pr_err("sane_behavior: no other mount options allowed\n");
1413 * If the 'all' option was specified select all the subsystems,
1414 * otherwise if 'none', 'name=' and a subsystem name options were
1415 * not specified, let's default to 'all'
1417 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1418 for_each_subsys(ss
, i
)
1420 opts
->subsys_mask
|= (1 << i
);
1423 * We either have to specify by name or by subsystems. (So all
1424 * empty hierarchies must have a name).
1426 if (!opts
->subsys_mask
&& !opts
->name
)
1430 * Option noprefix was introduced just for backward compatibility
1431 * with the old cpuset, so we allow noprefix only if mounting just
1432 * the cpuset subsystem.
1434 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1437 /* Can't specify "none" and some subsystems */
1438 if (opts
->subsys_mask
&& opts
->none
)
1444 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1447 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1448 struct cgroup_sb_opts opts
;
1449 unsigned int added_mask
, removed_mask
;
1451 if (root
== &cgrp_dfl_root
) {
1452 pr_err("remount is not allowed\n");
1456 mutex_lock(&cgroup_mutex
);
1458 /* See what subsystems are wanted */
1459 ret
= parse_cgroupfs_options(data
, &opts
);
1463 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1464 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1465 task_tgid_nr(current
), current
->comm
);
1467 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1468 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1470 /* Don't allow flags or name to change at remount */
1471 if ((opts
.flags
^ root
->flags
) ||
1472 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1473 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1474 opts
.flags
, opts
.name
?: "", root
->flags
, root
->name
);
1479 /* remounting is not allowed for populated hierarchies */
1480 if (!list_empty(&root
->cgrp
.self
.children
)) {
1485 ret
= rebind_subsystems(root
, added_mask
);
1489 rebind_subsystems(&cgrp_dfl_root
, removed_mask
);
1491 if (opts
.release_agent
) {
1492 spin_lock(&release_agent_path_lock
);
1493 strcpy(root
->release_agent_path
, opts
.release_agent
);
1494 spin_unlock(&release_agent_path_lock
);
1497 kfree(opts
.release_agent
);
1499 mutex_unlock(&cgroup_mutex
);
1504 * To reduce the fork() overhead for systems that are not actually using
1505 * their cgroups capability, we don't maintain the lists running through
1506 * each css_set to its tasks until we see the list actually used - in other
1507 * words after the first mount.
1509 static bool use_task_css_set_links __read_mostly
;
1511 static void cgroup_enable_task_cg_lists(void)
1513 struct task_struct
*p
, *g
;
1515 down_write(&css_set_rwsem
);
1517 if (use_task_css_set_links
)
1520 use_task_css_set_links
= true;
1523 * We need tasklist_lock because RCU is not safe against
1524 * while_each_thread(). Besides, a forking task that has passed
1525 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1526 * is not guaranteed to have its child immediately visible in the
1527 * tasklist if we walk through it with RCU.
1529 read_lock(&tasklist_lock
);
1530 do_each_thread(g
, p
) {
1531 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1532 task_css_set(p
) != &init_css_set
);
1535 * We should check if the process is exiting, otherwise
1536 * it will race with cgroup_exit() in that the list
1537 * entry won't be deleted though the process has exited.
1538 * Do it while holding siglock so that we don't end up
1539 * racing against cgroup_exit().
1541 spin_lock_irq(&p
->sighand
->siglock
);
1542 if (!(p
->flags
& PF_EXITING
)) {
1543 struct css_set
*cset
= task_css_set(p
);
1545 list_add(&p
->cg_list
, &cset
->tasks
);
1548 spin_unlock_irq(&p
->sighand
->siglock
);
1549 } while_each_thread(g
, p
);
1550 read_unlock(&tasklist_lock
);
1552 up_write(&css_set_rwsem
);
1555 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1557 struct cgroup_subsys
*ss
;
1560 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1561 INIT_LIST_HEAD(&cgrp
->self
.children
);
1562 INIT_LIST_HEAD(&cgrp
->cset_links
);
1563 INIT_LIST_HEAD(&cgrp
->pidlists
);
1564 mutex_init(&cgrp
->pidlist_mutex
);
1565 cgrp
->self
.cgroup
= cgrp
;
1566 cgrp
->self
.flags
|= CSS_ONLINE
;
1568 for_each_subsys(ss
, ssid
)
1569 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1571 init_waitqueue_head(&cgrp
->offline_waitq
);
1572 INIT_WORK(&cgrp
->release_agent_work
, cgroup_release_agent
);
1575 static void init_cgroup_root(struct cgroup_root
*root
,
1576 struct cgroup_sb_opts
*opts
)
1578 struct cgroup
*cgrp
= &root
->cgrp
;
1580 INIT_LIST_HEAD(&root
->root_list
);
1581 atomic_set(&root
->nr_cgrps
, 1);
1583 init_cgroup_housekeeping(cgrp
);
1584 idr_init(&root
->cgroup_idr
);
1586 root
->flags
= opts
->flags
;
1587 if (opts
->release_agent
)
1588 strcpy(root
->release_agent_path
, opts
->release_agent
);
1590 strcpy(root
->name
, opts
->name
);
1591 if (opts
->cpuset_clone_children
)
1592 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1595 static int cgroup_setup_root(struct cgroup_root
*root
, unsigned int ss_mask
)
1597 LIST_HEAD(tmp_links
);
1598 struct cgroup
*root_cgrp
= &root
->cgrp
;
1599 struct cftype
*base_files
;
1600 struct css_set
*cset
;
1603 lockdep_assert_held(&cgroup_mutex
);
1605 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_NOWAIT
);
1608 root_cgrp
->id
= ret
;
1610 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
, 0,
1616 * We're accessing css_set_count without locking css_set_rwsem here,
1617 * but that's OK - it can only be increased by someone holding
1618 * cgroup_lock, and that's us. The worst that can happen is that we
1619 * have some link structures left over
1621 ret
= allocate_cgrp_cset_links(css_set_count
, &tmp_links
);
1625 ret
= cgroup_init_root_id(root
);
1629 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
1630 KERNFS_ROOT_CREATE_DEACTIVATED
,
1632 if (IS_ERR(root
->kf_root
)) {
1633 ret
= PTR_ERR(root
->kf_root
);
1636 root_cgrp
->kn
= root
->kf_root
->kn
;
1638 if (root
== &cgrp_dfl_root
)
1639 base_files
= cgroup_dfl_base_files
;
1641 base_files
= cgroup_legacy_base_files
;
1643 ret
= cgroup_addrm_files(root_cgrp
, base_files
, true);
1647 ret
= rebind_subsystems(root
, ss_mask
);
1652 * There must be no failure case after here, since rebinding takes
1653 * care of subsystems' refcounts, which are explicitly dropped in
1654 * the failure exit path.
1656 list_add(&root
->root_list
, &cgroup_roots
);
1657 cgroup_root_count
++;
1660 * Link the root cgroup in this hierarchy into all the css_set
1663 down_write(&css_set_rwsem
);
1664 hash_for_each(css_set_table
, i
, cset
, hlist
)
1665 link_css_set(&tmp_links
, cset
, root_cgrp
);
1666 up_write(&css_set_rwsem
);
1668 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1669 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1671 kernfs_activate(root_cgrp
->kn
);
1676 kernfs_destroy_root(root
->kf_root
);
1677 root
->kf_root
= NULL
;
1679 cgroup_exit_root_id(root
);
1681 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
1683 free_cgrp_cset_links(&tmp_links
);
1687 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1688 int flags
, const char *unused_dev_name
,
1691 struct super_block
*pinned_sb
= NULL
;
1692 struct cgroup_subsys
*ss
;
1693 struct cgroup_root
*root
;
1694 struct cgroup_sb_opts opts
;
1695 struct dentry
*dentry
;
1701 * The first time anyone tries to mount a cgroup, enable the list
1702 * linking each css_set to its tasks and fix up all existing tasks.
1704 if (!use_task_css_set_links
)
1705 cgroup_enable_task_cg_lists();
1707 mutex_lock(&cgroup_mutex
);
1709 /* First find the desired set of subsystems */
1710 ret
= parse_cgroupfs_options(data
, &opts
);
1714 /* look for a matching existing root */
1715 if (opts
.flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1716 cgrp_dfl_root_visible
= true;
1717 root
= &cgrp_dfl_root
;
1718 cgroup_get(&root
->cgrp
);
1724 * Destruction of cgroup root is asynchronous, so subsystems may
1725 * still be dying after the previous unmount. Let's drain the
1726 * dying subsystems. We just need to ensure that the ones
1727 * unmounted previously finish dying and don't care about new ones
1728 * starting. Testing ref liveliness is good enough.
1730 for_each_subsys(ss
, i
) {
1731 if (!(opts
.subsys_mask
& (1 << i
)) ||
1732 ss
->root
== &cgrp_dfl_root
)
1735 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
1736 mutex_unlock(&cgroup_mutex
);
1738 ret
= restart_syscall();
1741 cgroup_put(&ss
->root
->cgrp
);
1744 for_each_root(root
) {
1745 bool name_match
= false;
1747 if (root
== &cgrp_dfl_root
)
1751 * If we asked for a name then it must match. Also, if
1752 * name matches but sybsys_mask doesn't, we should fail.
1753 * Remember whether name matched.
1756 if (strcmp(opts
.name
, root
->name
))
1762 * If we asked for subsystems (or explicitly for no
1763 * subsystems) then they must match.
1765 if ((opts
.subsys_mask
|| opts
.none
) &&
1766 (opts
.subsys_mask
!= root
->subsys_mask
)) {
1773 if (root
->flags
^ opts
.flags
)
1774 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1777 * We want to reuse @root whose lifetime is governed by its
1778 * ->cgrp. Let's check whether @root is alive and keep it
1779 * that way. As cgroup_kill_sb() can happen anytime, we
1780 * want to block it by pinning the sb so that @root doesn't
1781 * get killed before mount is complete.
1783 * With the sb pinned, tryget_live can reliably indicate
1784 * whether @root can be reused. If it's being killed,
1785 * drain it. We can use wait_queue for the wait but this
1786 * path is super cold. Let's just sleep a bit and retry.
1788 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
1789 if (IS_ERR(pinned_sb
) ||
1790 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
1791 mutex_unlock(&cgroup_mutex
);
1792 if (!IS_ERR_OR_NULL(pinned_sb
))
1793 deactivate_super(pinned_sb
);
1795 ret
= restart_syscall();
1804 * No such thing, create a new one. name= matching without subsys
1805 * specification is allowed for already existing hierarchies but we
1806 * can't create new one without subsys specification.
1808 if (!opts
.subsys_mask
&& !opts
.none
) {
1813 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1819 init_cgroup_root(root
, &opts
);
1821 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
1823 cgroup_free_root(root
);
1826 mutex_unlock(&cgroup_mutex
);
1828 kfree(opts
.release_agent
);
1832 return ERR_PTR(ret
);
1834 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
1835 CGROUP_SUPER_MAGIC
, &new_sb
);
1836 if (IS_ERR(dentry
) || !new_sb
)
1837 cgroup_put(&root
->cgrp
);
1840 * If @pinned_sb, we're reusing an existing root and holding an
1841 * extra ref on its sb. Mount is complete. Put the extra ref.
1845 deactivate_super(pinned_sb
);
1851 static void cgroup_kill_sb(struct super_block
*sb
)
1853 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
1854 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1857 * If @root doesn't have any mounts or children, start killing it.
1858 * This prevents new mounts by disabling percpu_ref_tryget_live().
1859 * cgroup_mount() may wait for @root's release.
1861 * And don't kill the default root.
1863 if (css_has_online_children(&root
->cgrp
.self
) ||
1864 root
== &cgrp_dfl_root
)
1865 cgroup_put(&root
->cgrp
);
1867 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
1872 static struct file_system_type cgroup_fs_type
= {
1874 .mount
= cgroup_mount
,
1875 .kill_sb
= cgroup_kill_sb
,
1878 static struct kobject
*cgroup_kobj
;
1881 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1882 * @task: target task
1883 * @buf: the buffer to write the path into
1884 * @buflen: the length of the buffer
1886 * Determine @task's cgroup on the first (the one with the lowest non-zero
1887 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1888 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1889 * cgroup controller callbacks.
1891 * Return value is the same as kernfs_path().
1893 char *task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
1895 struct cgroup_root
*root
;
1896 struct cgroup
*cgrp
;
1897 int hierarchy_id
= 1;
1900 mutex_lock(&cgroup_mutex
);
1901 down_read(&css_set_rwsem
);
1903 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
1906 cgrp
= task_cgroup_from_root(task
, root
);
1907 path
= cgroup_path(cgrp
, buf
, buflen
);
1909 /* if no hierarchy exists, everyone is in "/" */
1910 if (strlcpy(buf
, "/", buflen
) < buflen
)
1914 up_read(&css_set_rwsem
);
1915 mutex_unlock(&cgroup_mutex
);
1918 EXPORT_SYMBOL_GPL(task_cgroup_path
);
1920 /* used to track tasks and other necessary states during migration */
1921 struct cgroup_taskset
{
1922 /* the src and dst cset list running through cset->mg_node */
1923 struct list_head src_csets
;
1924 struct list_head dst_csets
;
1927 * Fields for cgroup_taskset_*() iteration.
1929 * Before migration is committed, the target migration tasks are on
1930 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1931 * the csets on ->dst_csets. ->csets point to either ->src_csets
1932 * or ->dst_csets depending on whether migration is committed.
1934 * ->cur_csets and ->cur_task point to the current task position
1937 struct list_head
*csets
;
1938 struct css_set
*cur_cset
;
1939 struct task_struct
*cur_task
;
1943 * cgroup_taskset_first - reset taskset and return the first task
1944 * @tset: taskset of interest
1946 * @tset iteration is initialized and the first task is returned.
1948 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
1950 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
1951 tset
->cur_task
= NULL
;
1953 return cgroup_taskset_next(tset
);
1957 * cgroup_taskset_next - iterate to the next task in taskset
1958 * @tset: taskset of interest
1960 * Return the next task in @tset. Iteration must have been initialized
1961 * with cgroup_taskset_first().
1963 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
1965 struct css_set
*cset
= tset
->cur_cset
;
1966 struct task_struct
*task
= tset
->cur_task
;
1968 while (&cset
->mg_node
!= tset
->csets
) {
1970 task
= list_first_entry(&cset
->mg_tasks
,
1971 struct task_struct
, cg_list
);
1973 task
= list_next_entry(task
, cg_list
);
1975 if (&task
->cg_list
!= &cset
->mg_tasks
) {
1976 tset
->cur_cset
= cset
;
1977 tset
->cur_task
= task
;
1981 cset
= list_next_entry(cset
, mg_node
);
1989 * cgroup_task_migrate - move a task from one cgroup to another.
1990 * @old_cgrp: the cgroup @tsk is being migrated from
1991 * @tsk: the task being migrated
1992 * @new_cset: the new css_set @tsk is being attached to
1994 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
1996 static void cgroup_task_migrate(struct cgroup
*old_cgrp
,
1997 struct task_struct
*tsk
,
1998 struct css_set
*new_cset
)
2000 struct css_set
*old_cset
;
2002 lockdep_assert_held(&cgroup_mutex
);
2003 lockdep_assert_held(&css_set_rwsem
);
2006 * We are synchronized through threadgroup_lock() against PF_EXITING
2007 * setting such that we can't race against cgroup_exit() changing the
2008 * css_set to init_css_set and dropping the old one.
2010 WARN_ON_ONCE(tsk
->flags
& PF_EXITING
);
2011 old_cset
= task_css_set(tsk
);
2013 get_css_set(new_cset
);
2014 rcu_assign_pointer(tsk
->cgroups
, new_cset
);
2017 * Use move_tail so that cgroup_taskset_first() still returns the
2018 * leader after migration. This works because cgroup_migrate()
2019 * ensures that the dst_cset of the leader is the first on the
2020 * tset's dst_csets list.
2022 list_move_tail(&tsk
->cg_list
, &new_cset
->mg_tasks
);
2025 * We just gained a reference on old_cset by taking it from the
2026 * task. As trading it for new_cset is protected by cgroup_mutex,
2027 * we're safe to drop it here; it will be freed under RCU.
2029 put_css_set_locked(old_cset
);
2033 * cgroup_migrate_finish - cleanup after attach
2034 * @preloaded_csets: list of preloaded css_sets
2036 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2037 * those functions for details.
2039 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2041 struct css_set
*cset
, *tmp_cset
;
2043 lockdep_assert_held(&cgroup_mutex
);
2045 down_write(&css_set_rwsem
);
2046 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2047 cset
->mg_src_cgrp
= NULL
;
2048 cset
->mg_dst_cset
= NULL
;
2049 list_del_init(&cset
->mg_preload_node
);
2050 put_css_set_locked(cset
);
2052 up_write(&css_set_rwsem
);
2056 * cgroup_migrate_add_src - add a migration source css_set
2057 * @src_cset: the source css_set to add
2058 * @dst_cgrp: the destination cgroup
2059 * @preloaded_csets: list of preloaded css_sets
2061 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2062 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2063 * up by cgroup_migrate_finish().
2065 * This function may be called without holding threadgroup_lock even if the
2066 * target is a process. Threads may be created and destroyed but as long
2067 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2068 * the preloaded css_sets are guaranteed to cover all migrations.
2070 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2071 struct cgroup
*dst_cgrp
,
2072 struct list_head
*preloaded_csets
)
2074 struct cgroup
*src_cgrp
;
2076 lockdep_assert_held(&cgroup_mutex
);
2077 lockdep_assert_held(&css_set_rwsem
);
2079 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2081 if (!list_empty(&src_cset
->mg_preload_node
))
2084 WARN_ON(src_cset
->mg_src_cgrp
);
2085 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2086 WARN_ON(!list_empty(&src_cset
->mg_node
));
2088 src_cset
->mg_src_cgrp
= src_cgrp
;
2089 get_css_set(src_cset
);
2090 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2094 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2095 * @dst_cgrp: the destination cgroup (may be %NULL)
2096 * @preloaded_csets: list of preloaded source css_sets
2098 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2099 * have been preloaded to @preloaded_csets. This function looks up and
2100 * pins all destination css_sets, links each to its source, and append them
2101 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2102 * source css_set is assumed to be its cgroup on the default hierarchy.
2104 * This function must be called after cgroup_migrate_add_src() has been
2105 * called on each migration source css_set. After migration is performed
2106 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2109 static int cgroup_migrate_prepare_dst(struct cgroup
*dst_cgrp
,
2110 struct list_head
*preloaded_csets
)
2113 struct css_set
*src_cset
, *tmp_cset
;
2115 lockdep_assert_held(&cgroup_mutex
);
2118 * Except for the root, child_subsys_mask must be zero for a cgroup
2119 * with tasks so that child cgroups don't compete against tasks.
2121 if (dst_cgrp
&& cgroup_on_dfl(dst_cgrp
) && cgroup_parent(dst_cgrp
) &&
2122 dst_cgrp
->child_subsys_mask
)
2125 /* look up the dst cset for each src cset and link it to src */
2126 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2127 struct css_set
*dst_cset
;
2129 dst_cset
= find_css_set(src_cset
,
2130 dst_cgrp
?: src_cset
->dfl_cgrp
);
2134 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2137 * If src cset equals dst, it's noop. Drop the src.
2138 * cgroup_migrate() will skip the cset too. Note that we
2139 * can't handle src == dst as some nodes are used by both.
2141 if (src_cset
== dst_cset
) {
2142 src_cset
->mg_src_cgrp
= NULL
;
2143 list_del_init(&src_cset
->mg_preload_node
);
2144 put_css_set(src_cset
);
2145 put_css_set(dst_cset
);
2149 src_cset
->mg_dst_cset
= dst_cset
;
2151 if (list_empty(&dst_cset
->mg_preload_node
))
2152 list_add(&dst_cset
->mg_preload_node
, &csets
);
2154 put_css_set(dst_cset
);
2157 list_splice_tail(&csets
, preloaded_csets
);
2160 cgroup_migrate_finish(&csets
);
2165 * cgroup_migrate - migrate a process or task to a cgroup
2166 * @cgrp: the destination cgroup
2167 * @leader: the leader of the process or the task to migrate
2168 * @threadgroup: whether @leader points to the whole process or a single task
2170 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2171 * process, the caller must be holding threadgroup_lock of @leader. The
2172 * caller is also responsible for invoking cgroup_migrate_add_src() and
2173 * cgroup_migrate_prepare_dst() on the targets before invoking this
2174 * function and following up with cgroup_migrate_finish().
2176 * As long as a controller's ->can_attach() doesn't fail, this function is
2177 * guaranteed to succeed. This means that, excluding ->can_attach()
2178 * failure, when migrating multiple targets, the success or failure can be
2179 * decided for all targets by invoking group_migrate_prepare_dst() before
2180 * actually starting migrating.
2182 static int cgroup_migrate(struct cgroup
*cgrp
, struct task_struct
*leader
,
2185 struct cgroup_taskset tset
= {
2186 .src_csets
= LIST_HEAD_INIT(tset
.src_csets
),
2187 .dst_csets
= LIST_HEAD_INIT(tset
.dst_csets
),
2188 .csets
= &tset
.src_csets
,
2190 struct cgroup_subsys_state
*css
, *failed_css
= NULL
;
2191 struct css_set
*cset
, *tmp_cset
;
2192 struct task_struct
*task
, *tmp_task
;
2196 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2197 * already PF_EXITING could be freed from underneath us unless we
2198 * take an rcu_read_lock.
2200 down_write(&css_set_rwsem
);
2204 /* @task either already exited or can't exit until the end */
2205 if (task
->flags
& PF_EXITING
)
2208 /* leave @task alone if post_fork() hasn't linked it yet */
2209 if (list_empty(&task
->cg_list
))
2212 cset
= task_css_set(task
);
2213 if (!cset
->mg_src_cgrp
)
2217 * cgroup_taskset_first() must always return the leader.
2218 * Take care to avoid disturbing the ordering.
2220 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2221 if (list_empty(&cset
->mg_node
))
2222 list_add_tail(&cset
->mg_node
, &tset
.src_csets
);
2223 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2224 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2229 } while_each_thread(leader
, task
);
2231 up_write(&css_set_rwsem
);
2233 /* methods shouldn't be called if no task is actually migrating */
2234 if (list_empty(&tset
.src_csets
))
2237 /* check that we can legitimately attach to the cgroup */
2238 for_each_e_css(css
, i
, cgrp
) {
2239 if (css
->ss
->can_attach
) {
2240 ret
= css
->ss
->can_attach(css
, &tset
);
2243 goto out_cancel_attach
;
2249 * Now that we're guaranteed success, proceed to move all tasks to
2250 * the new cgroup. There are no failure cases after here, so this
2251 * is the commit point.
2253 down_write(&css_set_rwsem
);
2254 list_for_each_entry(cset
, &tset
.src_csets
, mg_node
) {
2255 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
)
2256 cgroup_task_migrate(cset
->mg_src_cgrp
, task
,
2259 up_write(&css_set_rwsem
);
2262 * Migration is committed, all target tasks are now on dst_csets.
2263 * Nothing is sensitive to fork() after this point. Notify
2264 * controllers that migration is complete.
2266 tset
.csets
= &tset
.dst_csets
;
2268 for_each_e_css(css
, i
, cgrp
)
2269 if (css
->ss
->attach
)
2270 css
->ss
->attach(css
, &tset
);
2273 goto out_release_tset
;
2276 for_each_e_css(css
, i
, cgrp
) {
2277 if (css
== failed_css
)
2279 if (css
->ss
->cancel_attach
)
2280 css
->ss
->cancel_attach(css
, &tset
);
2283 down_write(&css_set_rwsem
);
2284 list_splice_init(&tset
.dst_csets
, &tset
.src_csets
);
2285 list_for_each_entry_safe(cset
, tmp_cset
, &tset
.src_csets
, mg_node
) {
2286 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2287 list_del_init(&cset
->mg_node
);
2289 up_write(&css_set_rwsem
);
2294 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2295 * @dst_cgrp: the cgroup to attach to
2296 * @leader: the task or the leader of the threadgroup to be attached
2297 * @threadgroup: attach the whole threadgroup?
2299 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2301 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2302 struct task_struct
*leader
, bool threadgroup
)
2304 LIST_HEAD(preloaded_csets
);
2305 struct task_struct
*task
;
2308 /* look up all src csets */
2309 down_read(&css_set_rwsem
);
2313 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2317 } while_each_thread(leader
, task
);
2319 up_read(&css_set_rwsem
);
2321 /* prepare dst csets and commit */
2322 ret
= cgroup_migrate_prepare_dst(dst_cgrp
, &preloaded_csets
);
2324 ret
= cgroup_migrate(dst_cgrp
, leader
, threadgroup
);
2326 cgroup_migrate_finish(&preloaded_csets
);
2331 * Find the task_struct of the task to attach by vpid and pass it along to the
2332 * function to attach either it or all tasks in its threadgroup. Will lock
2333 * cgroup_mutex and threadgroup.
2335 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2336 size_t nbytes
, loff_t off
, bool threadgroup
)
2338 struct task_struct
*tsk
;
2339 const struct cred
*cred
= current_cred(), *tcred
;
2340 struct cgroup
*cgrp
;
2344 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2347 cgrp
= cgroup_kn_lock_live(of
->kn
);
2354 tsk
= find_task_by_vpid(pid
);
2358 goto out_unlock_cgroup
;
2361 * even if we're attaching all tasks in the thread group, we
2362 * only need to check permissions on one of them.
2364 tcred
= __task_cred(tsk
);
2365 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2366 !uid_eq(cred
->euid
, tcred
->uid
) &&
2367 !uid_eq(cred
->euid
, tcred
->suid
)) {
2370 goto out_unlock_cgroup
;
2376 tsk
= tsk
->group_leader
;
2379 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2380 * trapped in a cpuset, or RT worker may be born in a cgroup
2381 * with no rt_runtime allocated. Just say no.
2383 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2386 goto out_unlock_cgroup
;
2389 get_task_struct(tsk
);
2392 threadgroup_lock(tsk
);
2394 if (!thread_group_leader(tsk
)) {
2396 * a race with de_thread from another thread's exec()
2397 * may strip us of our leadership, if this happens,
2398 * there is no choice but to throw this task away and
2399 * try again; this is
2400 * "double-double-toil-and-trouble-check locking".
2402 threadgroup_unlock(tsk
);
2403 put_task_struct(tsk
);
2404 goto retry_find_task
;
2408 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2410 threadgroup_unlock(tsk
);
2412 put_task_struct(tsk
);
2414 cgroup_kn_unlock(of
->kn
);
2415 return ret
?: nbytes
;
2419 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2420 * @from: attach to all cgroups of a given task
2421 * @tsk: the task to be attached
2423 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2425 struct cgroup_root
*root
;
2428 mutex_lock(&cgroup_mutex
);
2429 for_each_root(root
) {
2430 struct cgroup
*from_cgrp
;
2432 if (root
== &cgrp_dfl_root
)
2435 down_read(&css_set_rwsem
);
2436 from_cgrp
= task_cgroup_from_root(from
, root
);
2437 up_read(&css_set_rwsem
);
2439 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2443 mutex_unlock(&cgroup_mutex
);
2447 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2449 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2450 char *buf
, size_t nbytes
, loff_t off
)
2452 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2455 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2456 char *buf
, size_t nbytes
, loff_t off
)
2458 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2461 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
2462 char *buf
, size_t nbytes
, loff_t off
)
2464 struct cgroup
*cgrp
;
2466 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2468 cgrp
= cgroup_kn_lock_live(of
->kn
);
2471 spin_lock(&release_agent_path_lock
);
2472 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
2473 sizeof(cgrp
->root
->release_agent_path
));
2474 spin_unlock(&release_agent_path_lock
);
2475 cgroup_kn_unlock(of
->kn
);
2479 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
2481 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2483 spin_lock(&release_agent_path_lock
);
2484 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2485 spin_unlock(&release_agent_path_lock
);
2486 seq_putc(seq
, '\n');
2490 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
2492 seq_puts(seq
, "0\n");
2496 static void cgroup_print_ss_mask(struct seq_file
*seq
, unsigned int ss_mask
)
2498 struct cgroup_subsys
*ss
;
2499 bool printed
= false;
2502 for_each_subsys(ss
, ssid
) {
2503 if (ss_mask
& (1 << ssid
)) {
2506 seq_printf(seq
, "%s", ss
->name
);
2511 seq_putc(seq
, '\n');
2514 /* show controllers which are currently attached to the default hierarchy */
2515 static int cgroup_root_controllers_show(struct seq_file
*seq
, void *v
)
2517 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2519 cgroup_print_ss_mask(seq
, cgrp
->root
->subsys_mask
&
2520 ~cgrp_dfl_root_inhibit_ss_mask
);
2524 /* show controllers which are enabled from the parent */
2525 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2527 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2529 cgroup_print_ss_mask(seq
, cgroup_parent(cgrp
)->subtree_control
);
2533 /* show controllers which are enabled for a given cgroup's children */
2534 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2536 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2538 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2543 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2544 * @cgrp: root of the subtree to update csses for
2546 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2547 * css associations need to be updated accordingly. This function looks up
2548 * all css_sets which are attached to the subtree, creates the matching
2549 * updated css_sets and migrates the tasks to the new ones.
2551 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2553 LIST_HEAD(preloaded_csets
);
2554 struct cgroup_subsys_state
*css
;
2555 struct css_set
*src_cset
;
2558 lockdep_assert_held(&cgroup_mutex
);
2560 /* look up all csses currently attached to @cgrp's subtree */
2561 down_read(&css_set_rwsem
);
2562 css_for_each_descendant_pre(css
, cgroup_css(cgrp
, NULL
)) {
2563 struct cgrp_cset_link
*link
;
2565 /* self is not affected by child_subsys_mask change */
2566 if (css
->cgroup
== cgrp
)
2569 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
)
2570 cgroup_migrate_add_src(link
->cset
, cgrp
,
2573 up_read(&css_set_rwsem
);
2575 /* NULL dst indicates self on default hierarchy */
2576 ret
= cgroup_migrate_prepare_dst(NULL
, &preloaded_csets
);
2580 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
2581 struct task_struct
*last_task
= NULL
, *task
;
2583 /* src_csets precede dst_csets, break on the first dst_cset */
2584 if (!src_cset
->mg_src_cgrp
)
2588 * All tasks in src_cset need to be migrated to the
2589 * matching dst_cset. Empty it process by process. We
2590 * walk tasks but migrate processes. The leader might even
2591 * belong to a different cset but such src_cset would also
2592 * be among the target src_csets because the default
2593 * hierarchy enforces per-process membership.
2596 down_read(&css_set_rwsem
);
2597 task
= list_first_entry_or_null(&src_cset
->tasks
,
2598 struct task_struct
, cg_list
);
2600 task
= task
->group_leader
;
2601 WARN_ON_ONCE(!task_css_set(task
)->mg_src_cgrp
);
2602 get_task_struct(task
);
2604 up_read(&css_set_rwsem
);
2609 /* guard against possible infinite loop */
2610 if (WARN(last_task
== task
,
2611 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2615 threadgroup_lock(task
);
2616 /* raced against de_thread() from another thread? */
2617 if (!thread_group_leader(task
)) {
2618 threadgroup_unlock(task
);
2619 put_task_struct(task
);
2623 ret
= cgroup_migrate(src_cset
->dfl_cgrp
, task
, true);
2625 threadgroup_unlock(task
);
2626 put_task_struct(task
);
2628 if (WARN(ret
, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret
))
2634 cgroup_migrate_finish(&preloaded_csets
);
2638 /* change the enabled child controllers for a cgroup in the default hierarchy */
2639 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
2640 char *buf
, size_t nbytes
,
2643 unsigned int enable
= 0, disable
= 0;
2644 unsigned int css_enable
, css_disable
, old_ctrl
, new_ctrl
;
2645 struct cgroup
*cgrp
, *child
;
2646 struct cgroup_subsys
*ss
;
2651 * Parse input - space separated list of subsystem names prefixed
2652 * with either + or -.
2654 buf
= strstrip(buf
);
2655 while ((tok
= strsep(&buf
, " "))) {
2658 for_each_subsys(ss
, ssid
) {
2659 if (ss
->disabled
|| strcmp(tok
+ 1, ss
->name
) ||
2660 ((1 << ss
->id
) & cgrp_dfl_root_inhibit_ss_mask
))
2664 enable
|= 1 << ssid
;
2665 disable
&= ~(1 << ssid
);
2666 } else if (*tok
== '-') {
2667 disable
|= 1 << ssid
;
2668 enable
&= ~(1 << ssid
);
2674 if (ssid
== CGROUP_SUBSYS_COUNT
)
2678 cgrp
= cgroup_kn_lock_live(of
->kn
);
2682 for_each_subsys(ss
, ssid
) {
2683 if (enable
& (1 << ssid
)) {
2684 if (cgrp
->subtree_control
& (1 << ssid
)) {
2685 enable
&= ~(1 << ssid
);
2689 /* unavailable or not enabled on the parent? */
2690 if (!(cgrp_dfl_root
.subsys_mask
& (1 << ssid
)) ||
2691 (cgroup_parent(cgrp
) &&
2692 !(cgroup_parent(cgrp
)->subtree_control
& (1 << ssid
)))) {
2698 * @ss is already enabled through dependency and
2699 * we'll just make it visible. Skip draining.
2701 if (cgrp
->child_subsys_mask
& (1 << ssid
))
2705 * Because css offlining is asynchronous, userland
2706 * might try to re-enable the same controller while
2707 * the previous instance is still around. In such
2708 * cases, wait till it's gone using offline_waitq.
2710 cgroup_for_each_live_child(child
, cgrp
) {
2713 if (!cgroup_css(child
, ss
))
2717 prepare_to_wait(&child
->offline_waitq
, &wait
,
2718 TASK_UNINTERRUPTIBLE
);
2719 cgroup_kn_unlock(of
->kn
);
2721 finish_wait(&child
->offline_waitq
, &wait
);
2724 return restart_syscall();
2726 } else if (disable
& (1 << ssid
)) {
2727 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
2728 disable
&= ~(1 << ssid
);
2732 /* a child has it enabled? */
2733 cgroup_for_each_live_child(child
, cgrp
) {
2734 if (child
->subtree_control
& (1 << ssid
)) {
2742 if (!enable
&& !disable
) {
2748 * Except for the root, subtree_control must be zero for a cgroup
2749 * with tasks so that child cgroups don't compete against tasks.
2751 if (enable
&& cgroup_parent(cgrp
) && !list_empty(&cgrp
->cset_links
)) {
2757 * Update subsys masks and calculate what needs to be done. More
2758 * subsystems than specified may need to be enabled or disabled
2759 * depending on subsystem dependencies.
2761 cgrp
->subtree_control
|= enable
;
2762 cgrp
->subtree_control
&= ~disable
;
2764 old_ctrl
= cgrp
->child_subsys_mask
;
2765 cgroup_refresh_child_subsys_mask(cgrp
);
2766 new_ctrl
= cgrp
->child_subsys_mask
;
2768 css_enable
= ~old_ctrl
& new_ctrl
;
2769 css_disable
= old_ctrl
& ~new_ctrl
;
2770 enable
|= css_enable
;
2771 disable
|= css_disable
;
2774 * Create new csses or make the existing ones visible. A css is
2775 * created invisible if it's being implicitly enabled through
2776 * dependency. An invisible css is made visible when the userland
2777 * explicitly enables it.
2779 for_each_subsys(ss
, ssid
) {
2780 if (!(enable
& (1 << ssid
)))
2783 cgroup_for_each_live_child(child
, cgrp
) {
2784 if (css_enable
& (1 << ssid
))
2785 ret
= create_css(child
, ss
,
2786 cgrp
->subtree_control
& (1 << ssid
));
2788 ret
= cgroup_populate_dir(child
, 1 << ssid
);
2795 * At this point, cgroup_e_css() results reflect the new csses
2796 * making the following cgroup_update_dfl_csses() properly update
2797 * css associations of all tasks in the subtree.
2799 ret
= cgroup_update_dfl_csses(cgrp
);
2804 * All tasks are migrated out of disabled csses. Kill or hide
2805 * them. A css is hidden when the userland requests it to be
2806 * disabled while other subsystems are still depending on it. The
2807 * css must not actively control resources and be in the vanilla
2808 * state if it's made visible again later. Controllers which may
2809 * be depended upon should provide ->css_reset() for this purpose.
2811 for_each_subsys(ss
, ssid
) {
2812 if (!(disable
& (1 << ssid
)))
2815 cgroup_for_each_live_child(child
, cgrp
) {
2816 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
2818 if (css_disable
& (1 << ssid
)) {
2821 cgroup_clear_dir(child
, 1 << ssid
);
2828 kernfs_activate(cgrp
->kn
);
2831 cgroup_kn_unlock(of
->kn
);
2832 return ret
?: nbytes
;
2835 cgrp
->subtree_control
&= ~enable
;
2836 cgrp
->subtree_control
|= disable
;
2837 cgroup_refresh_child_subsys_mask(cgrp
);
2839 for_each_subsys(ss
, ssid
) {
2840 if (!(enable
& (1 << ssid
)))
2843 cgroup_for_each_live_child(child
, cgrp
) {
2844 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
2849 if (css_enable
& (1 << ssid
))
2852 cgroup_clear_dir(child
, 1 << ssid
);
2858 static int cgroup_populated_show(struct seq_file
*seq
, void *v
)
2860 seq_printf(seq
, "%d\n", (bool)seq_css(seq
)->cgroup
->populated_cnt
);
2864 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
2865 size_t nbytes
, loff_t off
)
2867 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
2868 struct cftype
*cft
= of
->kn
->priv
;
2869 struct cgroup_subsys_state
*css
;
2873 return cft
->write(of
, buf
, nbytes
, off
);
2876 * kernfs guarantees that a file isn't deleted with operations in
2877 * flight, which means that the matching css is and stays alive and
2878 * doesn't need to be pinned. The RCU locking is not necessary
2879 * either. It's just for the convenience of using cgroup_css().
2882 css
= cgroup_css(cgrp
, cft
->ss
);
2885 if (cft
->write_u64
) {
2886 unsigned long long v
;
2887 ret
= kstrtoull(buf
, 0, &v
);
2889 ret
= cft
->write_u64(css
, cft
, v
);
2890 } else if (cft
->write_s64
) {
2892 ret
= kstrtoll(buf
, 0, &v
);
2894 ret
= cft
->write_s64(css
, cft
, v
);
2899 return ret
?: nbytes
;
2902 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
2904 return seq_cft(seq
)->seq_start(seq
, ppos
);
2907 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
2909 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
2912 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
2914 seq_cft(seq
)->seq_stop(seq
, v
);
2917 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2919 struct cftype
*cft
= seq_cft(m
);
2920 struct cgroup_subsys_state
*css
= seq_css(m
);
2923 return cft
->seq_show(m
, arg
);
2926 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
2927 else if (cft
->read_s64
)
2928 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
2934 static struct kernfs_ops cgroup_kf_single_ops
= {
2935 .atomic_write_len
= PAGE_SIZE
,
2936 .write
= cgroup_file_write
,
2937 .seq_show
= cgroup_seqfile_show
,
2940 static struct kernfs_ops cgroup_kf_ops
= {
2941 .atomic_write_len
= PAGE_SIZE
,
2942 .write
= cgroup_file_write
,
2943 .seq_start
= cgroup_seqfile_start
,
2944 .seq_next
= cgroup_seqfile_next
,
2945 .seq_stop
= cgroup_seqfile_stop
,
2946 .seq_show
= cgroup_seqfile_show
,
2950 * cgroup_rename - Only allow simple rename of directories in place.
2952 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
2953 const char *new_name_str
)
2955 struct cgroup
*cgrp
= kn
->priv
;
2958 if (kernfs_type(kn
) != KERNFS_DIR
)
2960 if (kn
->parent
!= new_parent
)
2964 * This isn't a proper migration and its usefulness is very
2965 * limited. Disallow on the default hierarchy.
2967 if (cgroup_on_dfl(cgrp
))
2971 * We're gonna grab cgroup_mutex which nests outside kernfs
2972 * active_ref. kernfs_rename() doesn't require active_ref
2973 * protection. Break them before grabbing cgroup_mutex.
2975 kernfs_break_active_protection(new_parent
);
2976 kernfs_break_active_protection(kn
);
2978 mutex_lock(&cgroup_mutex
);
2980 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
2982 mutex_unlock(&cgroup_mutex
);
2984 kernfs_unbreak_active_protection(kn
);
2985 kernfs_unbreak_active_protection(new_parent
);
2989 /* set uid and gid of cgroup dirs and files to that of the creator */
2990 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
2992 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
2993 .ia_uid
= current_fsuid(),
2994 .ia_gid
= current_fsgid(), };
2996 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
2997 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3000 return kernfs_setattr(kn
, &iattr
);
3003 static int cgroup_add_file(struct cgroup
*cgrp
, struct cftype
*cft
)
3005 char name
[CGROUP_FILE_NAME_MAX
];
3006 struct kernfs_node
*kn
;
3007 struct lock_class_key
*key
= NULL
;
3010 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3011 key
= &cft
->lockdep_key
;
3013 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3014 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3019 ret
= cgroup_kn_set_ugid(kn
);
3025 if (cft
->seq_show
== cgroup_populated_show
)
3026 cgrp
->populated_kn
= kn
;
3031 * cgroup_addrm_files - add or remove files to a cgroup directory
3032 * @cgrp: the target cgroup
3033 * @cfts: array of cftypes to be added
3034 * @is_add: whether to add or remove
3036 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3037 * For removals, this function never fails. If addition fails, this
3038 * function doesn't remove files already added. The caller is responsible
3041 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
3047 lockdep_assert_held(&cgroup_mutex
);
3049 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3050 /* does cft->flags tell us to skip this file on @cgrp? */
3051 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3053 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3055 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3057 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3061 ret
= cgroup_add_file(cgrp
, cft
);
3063 pr_warn("%s: failed to add %s, err=%d\n",
3064 __func__
, cft
->name
, ret
);
3068 cgroup_rm_file(cgrp
, cft
);
3074 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3077 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3078 struct cgroup
*root
= &ss
->root
->cgrp
;
3079 struct cgroup_subsys_state
*css
;
3082 lockdep_assert_held(&cgroup_mutex
);
3084 /* add/rm files for all cgroups created before */
3085 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3086 struct cgroup
*cgrp
= css
->cgroup
;
3088 if (cgroup_is_dead(cgrp
))
3091 ret
= cgroup_addrm_files(cgrp
, cfts
, is_add
);
3097 kernfs_activate(root
->kn
);
3101 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3105 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3106 /* free copy for custom atomic_write_len, see init_cftypes() */
3107 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3112 /* revert flags set by cgroup core while adding @cfts */
3113 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3117 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3121 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3122 struct kernfs_ops
*kf_ops
;
3124 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3127 kf_ops
= &cgroup_kf_ops
;
3129 kf_ops
= &cgroup_kf_single_ops
;
3132 * Ugh... if @cft wants a custom max_write_len, we need to
3133 * make a copy of kf_ops to set its atomic_write_len.
3135 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3136 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3138 cgroup_exit_cftypes(cfts
);
3141 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3144 cft
->kf_ops
= kf_ops
;
3151 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3153 lockdep_assert_held(&cgroup_mutex
);
3155 if (!cfts
|| !cfts
[0].ss
)
3158 list_del(&cfts
->node
);
3159 cgroup_apply_cftypes(cfts
, false);
3160 cgroup_exit_cftypes(cfts
);
3165 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3166 * @cfts: zero-length name terminated array of cftypes
3168 * Unregister @cfts. Files described by @cfts are removed from all
3169 * existing cgroups and all future cgroups won't have them either. This
3170 * function can be called anytime whether @cfts' subsys is attached or not.
3172 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3175 int cgroup_rm_cftypes(struct cftype
*cfts
)
3179 mutex_lock(&cgroup_mutex
);
3180 ret
= cgroup_rm_cftypes_locked(cfts
);
3181 mutex_unlock(&cgroup_mutex
);
3186 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3187 * @ss: target cgroup subsystem
3188 * @cfts: zero-length name terminated array of cftypes
3190 * Register @cfts to @ss. Files described by @cfts are created for all
3191 * existing cgroups to which @ss is attached and all future cgroups will
3192 * have them too. This function can be called anytime whether @ss is
3195 * Returns 0 on successful registration, -errno on failure. Note that this
3196 * function currently returns 0 as long as @cfts registration is successful
3197 * even if some file creation attempts on existing cgroups fail.
3199 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3206 if (!cfts
|| cfts
[0].name
[0] == '\0')
3209 ret
= cgroup_init_cftypes(ss
, cfts
);
3213 mutex_lock(&cgroup_mutex
);
3215 list_add_tail(&cfts
->node
, &ss
->cfts
);
3216 ret
= cgroup_apply_cftypes(cfts
, true);
3218 cgroup_rm_cftypes_locked(cfts
);
3220 mutex_unlock(&cgroup_mutex
);
3225 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3226 * @ss: target cgroup subsystem
3227 * @cfts: zero-length name terminated array of cftypes
3229 * Similar to cgroup_add_cftypes() but the added files are only used for
3230 * the default hierarchy.
3232 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3236 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3237 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3238 return cgroup_add_cftypes(ss
, cfts
);
3242 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3243 * @ss: target cgroup subsystem
3244 * @cfts: zero-length name terminated array of cftypes
3246 * Similar to cgroup_add_cftypes() but the added files are only used for
3247 * the legacy hierarchies.
3249 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3254 * If legacy_flies_on_dfl, we want to show the legacy files on the
3255 * dfl hierarchy but iff the target subsystem hasn't been updated
3256 * for the dfl hierarchy yet.
3258 if (!cgroup_legacy_files_on_dfl
||
3259 ss
->dfl_cftypes
!= ss
->legacy_cftypes
) {
3260 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3261 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3264 return cgroup_add_cftypes(ss
, cfts
);
3268 * cgroup_task_count - count the number of tasks in a cgroup.
3269 * @cgrp: the cgroup in question
3271 * Return the number of tasks in the cgroup.
3273 static int cgroup_task_count(const struct cgroup
*cgrp
)
3276 struct cgrp_cset_link
*link
;
3278 down_read(&css_set_rwsem
);
3279 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3280 count
+= atomic_read(&link
->cset
->refcount
);
3281 up_read(&css_set_rwsem
);
3286 * css_next_child - find the next child of a given css
3287 * @pos: the current position (%NULL to initiate traversal)
3288 * @parent: css whose children to walk
3290 * This function returns the next child of @parent and should be called
3291 * under either cgroup_mutex or RCU read lock. The only requirement is
3292 * that @parent and @pos are accessible. The next sibling is guaranteed to
3293 * be returned regardless of their states.
3295 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3296 * css which finished ->css_online() is guaranteed to be visible in the
3297 * future iterations and will stay visible until the last reference is put.
3298 * A css which hasn't finished ->css_online() or already finished
3299 * ->css_offline() may show up during traversal. It's each subsystem's
3300 * responsibility to synchronize against on/offlining.
3302 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3303 struct cgroup_subsys_state
*parent
)
3305 struct cgroup_subsys_state
*next
;
3307 cgroup_assert_mutex_or_rcu_locked();
3310 * @pos could already have been unlinked from the sibling list.
3311 * Once a cgroup is removed, its ->sibling.next is no longer
3312 * updated when its next sibling changes. CSS_RELEASED is set when
3313 * @pos is taken off list, at which time its next pointer is valid,
3314 * and, as releases are serialized, the one pointed to by the next
3315 * pointer is guaranteed to not have started release yet. This
3316 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3317 * critical section, the one pointed to by its next pointer is
3318 * guaranteed to not have finished its RCU grace period even if we
3319 * have dropped rcu_read_lock() inbetween iterations.
3321 * If @pos has CSS_RELEASED set, its next pointer can't be
3322 * dereferenced; however, as each css is given a monotonically
3323 * increasing unique serial number and always appended to the
3324 * sibling list, the next one can be found by walking the parent's
3325 * children until the first css with higher serial number than
3326 * @pos's. While this path can be slower, it happens iff iteration
3327 * races against release and the race window is very small.
3330 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3331 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3332 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3334 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3335 if (next
->serial_nr
> pos
->serial_nr
)
3340 * @next, if not pointing to the head, can be dereferenced and is
3343 if (&next
->sibling
!= &parent
->children
)
3349 * css_next_descendant_pre - find the next descendant for pre-order walk
3350 * @pos: the current position (%NULL to initiate traversal)
3351 * @root: css whose descendants to walk
3353 * To be used by css_for_each_descendant_pre(). Find the next descendant
3354 * to visit for pre-order traversal of @root's descendants. @root is
3355 * included in the iteration and the first node to be visited.
3357 * While this function requires cgroup_mutex or RCU read locking, it
3358 * doesn't require the whole traversal to be contained in a single critical
3359 * section. This function will return the correct next descendant as long
3360 * as both @pos and @root are accessible and @pos is a descendant of @root.
3362 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3363 * css which finished ->css_online() is guaranteed to be visible in the
3364 * future iterations and will stay visible until the last reference is put.
3365 * A css which hasn't finished ->css_online() or already finished
3366 * ->css_offline() may show up during traversal. It's each subsystem's
3367 * responsibility to synchronize against on/offlining.
3369 struct cgroup_subsys_state
*
3370 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3371 struct cgroup_subsys_state
*root
)
3373 struct cgroup_subsys_state
*next
;
3375 cgroup_assert_mutex_or_rcu_locked();
3377 /* if first iteration, visit @root */
3381 /* visit the first child if exists */
3382 next
= css_next_child(NULL
, pos
);
3386 /* no child, visit my or the closest ancestor's next sibling */
3387 while (pos
!= root
) {
3388 next
= css_next_child(pos
, pos
->parent
);
3398 * css_rightmost_descendant - return the rightmost descendant of a css
3399 * @pos: css of interest
3401 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3402 * is returned. This can be used during pre-order traversal to skip
3405 * While this function requires cgroup_mutex or RCU read locking, it
3406 * doesn't require the whole traversal to be contained in a single critical
3407 * section. This function will return the correct rightmost descendant as
3408 * long as @pos is accessible.
3410 struct cgroup_subsys_state
*
3411 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3413 struct cgroup_subsys_state
*last
, *tmp
;
3415 cgroup_assert_mutex_or_rcu_locked();
3419 /* ->prev isn't RCU safe, walk ->next till the end */
3421 css_for_each_child(tmp
, last
)
3428 static struct cgroup_subsys_state
*
3429 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3431 struct cgroup_subsys_state
*last
;
3435 pos
= css_next_child(NULL
, pos
);
3442 * css_next_descendant_post - find the next descendant for post-order walk
3443 * @pos: the current position (%NULL to initiate traversal)
3444 * @root: css whose descendants to walk
3446 * To be used by css_for_each_descendant_post(). Find the next descendant
3447 * to visit for post-order traversal of @root's descendants. @root is
3448 * included in the iteration and the last node to be visited.
3450 * While this function requires cgroup_mutex or RCU read locking, it
3451 * doesn't require the whole traversal to be contained in a single critical
3452 * section. This function will return the correct next descendant as long
3453 * as both @pos and @cgroup are accessible and @pos is a descendant of
3456 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3457 * css which finished ->css_online() is guaranteed to be visible in the
3458 * future iterations and will stay visible until the last reference is put.
3459 * A css which hasn't finished ->css_online() or already finished
3460 * ->css_offline() may show up during traversal. It's each subsystem's
3461 * responsibility to synchronize against on/offlining.
3463 struct cgroup_subsys_state
*
3464 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3465 struct cgroup_subsys_state
*root
)
3467 struct cgroup_subsys_state
*next
;
3469 cgroup_assert_mutex_or_rcu_locked();
3471 /* if first iteration, visit leftmost descendant which may be @root */
3473 return css_leftmost_descendant(root
);
3475 /* if we visited @root, we're done */
3479 /* if there's an unvisited sibling, visit its leftmost descendant */
3480 next
= css_next_child(pos
, pos
->parent
);
3482 return css_leftmost_descendant(next
);
3484 /* no sibling left, visit parent */
3489 * css_has_online_children - does a css have online children
3490 * @css: the target css
3492 * Returns %true if @css has any online children; otherwise, %false. This
3493 * function can be called from any context but the caller is responsible
3494 * for synchronizing against on/offlining as necessary.
3496 bool css_has_online_children(struct cgroup_subsys_state
*css
)
3498 struct cgroup_subsys_state
*child
;
3502 css_for_each_child(child
, css
) {
3503 if (child
->flags
& CSS_ONLINE
) {
3513 * css_advance_task_iter - advance a task itererator to the next css_set
3514 * @it: the iterator to advance
3516 * Advance @it to the next css_set to walk.
3518 static void css_advance_task_iter(struct css_task_iter
*it
)
3520 struct list_head
*l
= it
->cset_pos
;
3521 struct cgrp_cset_link
*link
;
3522 struct css_set
*cset
;
3524 /* Advance to the next non-empty css_set */
3527 if (l
== it
->cset_head
) {
3528 it
->cset_pos
= NULL
;
3533 cset
= container_of(l
, struct css_set
,
3534 e_cset_node
[it
->ss
->id
]);
3536 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3539 } while (list_empty(&cset
->tasks
) && list_empty(&cset
->mg_tasks
));
3543 if (!list_empty(&cset
->tasks
))
3544 it
->task_pos
= cset
->tasks
.next
;
3546 it
->task_pos
= cset
->mg_tasks
.next
;
3548 it
->tasks_head
= &cset
->tasks
;
3549 it
->mg_tasks_head
= &cset
->mg_tasks
;
3553 * css_task_iter_start - initiate task iteration
3554 * @css: the css to walk tasks of
3555 * @it: the task iterator to use
3557 * Initiate iteration through the tasks of @css. The caller can call
3558 * css_task_iter_next() to walk through the tasks until the function
3559 * returns NULL. On completion of iteration, css_task_iter_end() must be
3562 * Note that this function acquires a lock which is released when the
3563 * iteration finishes. The caller can't sleep while iteration is in
3566 void css_task_iter_start(struct cgroup_subsys_state
*css
,
3567 struct css_task_iter
*it
)
3568 __acquires(css_set_rwsem
)
3570 /* no one should try to iterate before mounting cgroups */
3571 WARN_ON_ONCE(!use_task_css_set_links
);
3573 down_read(&css_set_rwsem
);
3578 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
3580 it
->cset_pos
= &css
->cgroup
->cset_links
;
3582 it
->cset_head
= it
->cset_pos
;
3584 css_advance_task_iter(it
);
3588 * css_task_iter_next - return the next task for the iterator
3589 * @it: the task iterator being iterated
3591 * The "next" function for task iteration. @it should have been
3592 * initialized via css_task_iter_start(). Returns NULL when the iteration
3595 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
3597 struct task_struct
*res
;
3598 struct list_head
*l
= it
->task_pos
;
3600 /* If the iterator cg is NULL, we have no tasks */
3603 res
= list_entry(l
, struct task_struct
, cg_list
);
3606 * Advance iterator to find next entry. cset->tasks is consumed
3607 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3612 if (l
== it
->tasks_head
)
3613 l
= it
->mg_tasks_head
->next
;
3615 if (l
== it
->mg_tasks_head
)
3616 css_advance_task_iter(it
);
3624 * css_task_iter_end - finish task iteration
3625 * @it: the task iterator to finish
3627 * Finish task iteration started by css_task_iter_start().
3629 void css_task_iter_end(struct css_task_iter
*it
)
3630 __releases(css_set_rwsem
)
3632 up_read(&css_set_rwsem
);
3636 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3637 * @to: cgroup to which the tasks will be moved
3638 * @from: cgroup in which the tasks currently reside
3640 * Locking rules between cgroup_post_fork() and the migration path
3641 * guarantee that, if a task is forking while being migrated, the new child
3642 * is guaranteed to be either visible in the source cgroup after the
3643 * parent's migration is complete or put into the target cgroup. No task
3644 * can slip out of migration through forking.
3646 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
3648 LIST_HEAD(preloaded_csets
);
3649 struct cgrp_cset_link
*link
;
3650 struct css_task_iter it
;
3651 struct task_struct
*task
;
3654 mutex_lock(&cgroup_mutex
);
3656 /* all tasks in @from are being moved, all csets are source */
3657 down_read(&css_set_rwsem
);
3658 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
3659 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
3660 up_read(&css_set_rwsem
);
3662 ret
= cgroup_migrate_prepare_dst(to
, &preloaded_csets
);
3667 * Migrate tasks one-by-one until @form is empty. This fails iff
3668 * ->can_attach() fails.
3671 css_task_iter_start(&from
->self
, &it
);
3672 task
= css_task_iter_next(&it
);
3674 get_task_struct(task
);
3675 css_task_iter_end(&it
);
3678 ret
= cgroup_migrate(to
, task
, false);
3679 put_task_struct(task
);
3681 } while (task
&& !ret
);
3683 cgroup_migrate_finish(&preloaded_csets
);
3684 mutex_unlock(&cgroup_mutex
);
3689 * Stuff for reading the 'tasks'/'procs' files.
3691 * Reading this file can return large amounts of data if a cgroup has
3692 * *lots* of attached tasks. So it may need several calls to read(),
3693 * but we cannot guarantee that the information we produce is correct
3694 * unless we produce it entirely atomically.
3698 /* which pidlist file are we talking about? */
3699 enum cgroup_filetype
{
3705 * A pidlist is a list of pids that virtually represents the contents of one
3706 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3707 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3710 struct cgroup_pidlist
{
3712 * used to find which pidlist is wanted. doesn't change as long as
3713 * this particular list stays in the list.
3715 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
3718 /* how many elements the above list has */
3720 /* each of these stored in a list by its cgroup */
3721 struct list_head links
;
3722 /* pointer to the cgroup we belong to, for list removal purposes */
3723 struct cgroup
*owner
;
3724 /* for delayed destruction */
3725 struct delayed_work destroy_dwork
;
3729 * The following two functions "fix" the issue where there are more pids
3730 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3731 * TODO: replace with a kernel-wide solution to this problem
3733 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3734 static void *pidlist_allocate(int count
)
3736 if (PIDLIST_TOO_LARGE(count
))
3737 return vmalloc(count
* sizeof(pid_t
));
3739 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3742 static void pidlist_free(void *p
)
3744 if (is_vmalloc_addr(p
))
3751 * Used to destroy all pidlists lingering waiting for destroy timer. None
3752 * should be left afterwards.
3754 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
3756 struct cgroup_pidlist
*l
, *tmp_l
;
3758 mutex_lock(&cgrp
->pidlist_mutex
);
3759 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
3760 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
3761 mutex_unlock(&cgrp
->pidlist_mutex
);
3763 flush_workqueue(cgroup_pidlist_destroy_wq
);
3764 BUG_ON(!list_empty(&cgrp
->pidlists
));
3767 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
3769 struct delayed_work
*dwork
= to_delayed_work(work
);
3770 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
3772 struct cgroup_pidlist
*tofree
= NULL
;
3774 mutex_lock(&l
->owner
->pidlist_mutex
);
3777 * Destroy iff we didn't get queued again. The state won't change
3778 * as destroy_dwork can only be queued while locked.
3780 if (!delayed_work_pending(dwork
)) {
3781 list_del(&l
->links
);
3782 pidlist_free(l
->list
);
3783 put_pid_ns(l
->key
.ns
);
3787 mutex_unlock(&l
->owner
->pidlist_mutex
);
3792 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3793 * Returns the number of unique elements.
3795 static int pidlist_uniq(pid_t
*list
, int length
)
3800 * we presume the 0th element is unique, so i starts at 1. trivial
3801 * edge cases first; no work needs to be done for either
3803 if (length
== 0 || length
== 1)
3805 /* src and dest walk down the list; dest counts unique elements */
3806 for (src
= 1; src
< length
; src
++) {
3807 /* find next unique element */
3808 while (list
[src
] == list
[src
-1]) {
3813 /* dest always points to where the next unique element goes */
3814 list
[dest
] = list
[src
];
3822 * The two pid files - task and cgroup.procs - guaranteed that the result
3823 * is sorted, which forced this whole pidlist fiasco. As pid order is
3824 * different per namespace, each namespace needs differently sorted list,
3825 * making it impossible to use, for example, single rbtree of member tasks
3826 * sorted by task pointer. As pidlists can be fairly large, allocating one
3827 * per open file is dangerous, so cgroup had to implement shared pool of
3828 * pidlists keyed by cgroup and namespace.
3830 * All this extra complexity was caused by the original implementation
3831 * committing to an entirely unnecessary property. In the long term, we
3832 * want to do away with it. Explicitly scramble sort order if on the
3833 * default hierarchy so that no such expectation exists in the new
3836 * Scrambling is done by swapping every two consecutive bits, which is
3837 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3839 static pid_t
pid_fry(pid_t pid
)
3841 unsigned a
= pid
& 0x55555555;
3842 unsigned b
= pid
& 0xAAAAAAAA;
3844 return (a
<< 1) | (b
>> 1);
3847 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
3849 if (cgroup_on_dfl(cgrp
))
3850 return pid_fry(pid
);
3855 static int cmppid(const void *a
, const void *b
)
3857 return *(pid_t
*)a
- *(pid_t
*)b
;
3860 static int fried_cmppid(const void *a
, const void *b
)
3862 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
3865 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
3866 enum cgroup_filetype type
)
3868 struct cgroup_pidlist
*l
;
3869 /* don't need task_nsproxy() if we're looking at ourself */
3870 struct pid_namespace
*ns
= task_active_pid_ns(current
);
3872 lockdep_assert_held(&cgrp
->pidlist_mutex
);
3874 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
3875 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
3881 * find the appropriate pidlist for our purpose (given procs vs tasks)
3882 * returns with the lock on that pidlist already held, and takes care
3883 * of the use count, or returns NULL with no locks held if we're out of
3886 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
3887 enum cgroup_filetype type
)
3889 struct cgroup_pidlist
*l
;
3891 lockdep_assert_held(&cgrp
->pidlist_mutex
);
3893 l
= cgroup_pidlist_find(cgrp
, type
);
3897 /* entry not found; create a new one */
3898 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
3902 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
3904 /* don't need task_nsproxy() if we're looking at ourself */
3905 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
3907 list_add(&l
->links
, &cgrp
->pidlists
);
3912 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3914 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
3915 struct cgroup_pidlist
**lp
)
3919 int pid
, n
= 0; /* used for populating the array */
3920 struct css_task_iter it
;
3921 struct task_struct
*tsk
;
3922 struct cgroup_pidlist
*l
;
3924 lockdep_assert_held(&cgrp
->pidlist_mutex
);
3927 * If cgroup gets more users after we read count, we won't have
3928 * enough space - tough. This race is indistinguishable to the
3929 * caller from the case that the additional cgroup users didn't
3930 * show up until sometime later on.
3932 length
= cgroup_task_count(cgrp
);
3933 array
= pidlist_allocate(length
);
3936 /* now, populate the array */
3937 css_task_iter_start(&cgrp
->self
, &it
);
3938 while ((tsk
= css_task_iter_next(&it
))) {
3939 if (unlikely(n
== length
))
3941 /* get tgid or pid for procs or tasks file respectively */
3942 if (type
== CGROUP_FILE_PROCS
)
3943 pid
= task_tgid_vnr(tsk
);
3945 pid
= task_pid_vnr(tsk
);
3946 if (pid
> 0) /* make sure to only use valid results */
3949 css_task_iter_end(&it
);
3951 /* now sort & (if procs) strip out duplicates */
3952 if (cgroup_on_dfl(cgrp
))
3953 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
3955 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
3956 if (type
== CGROUP_FILE_PROCS
)
3957 length
= pidlist_uniq(array
, length
);
3959 l
= cgroup_pidlist_find_create(cgrp
, type
);
3961 pidlist_free(array
);
3965 /* store array, freeing old if necessary */
3966 pidlist_free(l
->list
);
3974 * cgroupstats_build - build and fill cgroupstats
3975 * @stats: cgroupstats to fill information into
3976 * @dentry: A dentry entry belonging to the cgroup for which stats have
3979 * Build and fill cgroupstats so that taskstats can export it to user
3982 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
3984 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
3985 struct cgroup
*cgrp
;
3986 struct css_task_iter it
;
3987 struct task_struct
*tsk
;
3989 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3990 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
3991 kernfs_type(kn
) != KERNFS_DIR
)
3994 mutex_lock(&cgroup_mutex
);
3997 * We aren't being called from kernfs and there's no guarantee on
3998 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
3999 * @kn->priv is RCU safe. Let's do the RCU dancing.
4002 cgrp
= rcu_dereference(kn
->priv
);
4003 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
4005 mutex_unlock(&cgroup_mutex
);
4010 css_task_iter_start(&cgrp
->self
, &it
);
4011 while ((tsk
= css_task_iter_next(&it
))) {
4012 switch (tsk
->state
) {
4014 stats
->nr_running
++;
4016 case TASK_INTERRUPTIBLE
:
4017 stats
->nr_sleeping
++;
4019 case TASK_UNINTERRUPTIBLE
:
4020 stats
->nr_uninterruptible
++;
4023 stats
->nr_stopped
++;
4026 if (delayacct_is_task_waiting_on_io(tsk
))
4027 stats
->nr_io_wait
++;
4031 css_task_iter_end(&it
);
4033 mutex_unlock(&cgroup_mutex
);
4039 * seq_file methods for the tasks/procs files. The seq_file position is the
4040 * next pid to display; the seq_file iterator is a pointer to the pid
4041 * in the cgroup->l->list array.
4044 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
4047 * Initially we receive a position value that corresponds to
4048 * one more than the last pid shown (or 0 on the first call or
4049 * after a seek to the start). Use a binary-search to find the
4050 * next pid to display, if any
4052 struct kernfs_open_file
*of
= s
->private;
4053 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4054 struct cgroup_pidlist
*l
;
4055 enum cgroup_filetype type
= seq_cft(s
)->private;
4056 int index
= 0, pid
= *pos
;
4059 mutex_lock(&cgrp
->pidlist_mutex
);
4062 * !NULL @of->priv indicates that this isn't the first start()
4063 * after open. If the matching pidlist is around, we can use that.
4064 * Look for it. Note that @of->priv can't be used directly. It
4065 * could already have been destroyed.
4068 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
4071 * Either this is the first start() after open or the matching
4072 * pidlist has been destroyed inbetween. Create a new one.
4075 ret
= pidlist_array_load(cgrp
, type
,
4076 (struct cgroup_pidlist
**)&of
->priv
);
4078 return ERR_PTR(ret
);
4083 int end
= l
->length
;
4085 while (index
< end
) {
4086 int mid
= (index
+ end
) / 2;
4087 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
4090 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
4096 /* If we're off the end of the array, we're done */
4097 if (index
>= l
->length
)
4099 /* Update the abstract position to be the actual pid that we found */
4100 iter
= l
->list
+ index
;
4101 *pos
= cgroup_pid_fry(cgrp
, *iter
);
4105 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
4107 struct kernfs_open_file
*of
= s
->private;
4108 struct cgroup_pidlist
*l
= of
->priv
;
4111 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
4112 CGROUP_PIDLIST_DESTROY_DELAY
);
4113 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
4116 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4118 struct kernfs_open_file
*of
= s
->private;
4119 struct cgroup_pidlist
*l
= of
->priv
;
4121 pid_t
*end
= l
->list
+ l
->length
;
4123 * Advance to the next pid in the array. If this goes off the
4130 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4135 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4137 return seq_printf(s
, "%d\n", *(int *)v
);
4140 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4143 return notify_on_release(css
->cgroup
);
4146 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4147 struct cftype
*cft
, u64 val
)
4150 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4152 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4156 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4159 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4162 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4163 struct cftype
*cft
, u64 val
)
4166 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4168 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4172 /* cgroup core interface files for the default hierarchy */
4173 static struct cftype cgroup_dfl_base_files
[] = {
4175 .name
= "cgroup.procs",
4176 .seq_start
= cgroup_pidlist_start
,
4177 .seq_next
= cgroup_pidlist_next
,
4178 .seq_stop
= cgroup_pidlist_stop
,
4179 .seq_show
= cgroup_pidlist_show
,
4180 .private = CGROUP_FILE_PROCS
,
4181 .write
= cgroup_procs_write
,
4182 .mode
= S_IRUGO
| S_IWUSR
,
4185 .name
= "cgroup.controllers",
4186 .flags
= CFTYPE_ONLY_ON_ROOT
,
4187 .seq_show
= cgroup_root_controllers_show
,
4190 .name
= "cgroup.controllers",
4191 .flags
= CFTYPE_NOT_ON_ROOT
,
4192 .seq_show
= cgroup_controllers_show
,
4195 .name
= "cgroup.subtree_control",
4196 .seq_show
= cgroup_subtree_control_show
,
4197 .write
= cgroup_subtree_control_write
,
4200 .name
= "cgroup.populated",
4201 .flags
= CFTYPE_NOT_ON_ROOT
,
4202 .seq_show
= cgroup_populated_show
,
4207 /* cgroup core interface files for the legacy hierarchies */
4208 static struct cftype cgroup_legacy_base_files
[] = {
4210 .name
= "cgroup.procs",
4211 .seq_start
= cgroup_pidlist_start
,
4212 .seq_next
= cgroup_pidlist_next
,
4213 .seq_stop
= cgroup_pidlist_stop
,
4214 .seq_show
= cgroup_pidlist_show
,
4215 .private = CGROUP_FILE_PROCS
,
4216 .write
= cgroup_procs_write
,
4217 .mode
= S_IRUGO
| S_IWUSR
,
4220 .name
= "cgroup.clone_children",
4221 .read_u64
= cgroup_clone_children_read
,
4222 .write_u64
= cgroup_clone_children_write
,
4225 .name
= "cgroup.sane_behavior",
4226 .flags
= CFTYPE_ONLY_ON_ROOT
,
4227 .seq_show
= cgroup_sane_behavior_show
,
4231 .seq_start
= cgroup_pidlist_start
,
4232 .seq_next
= cgroup_pidlist_next
,
4233 .seq_stop
= cgroup_pidlist_stop
,
4234 .seq_show
= cgroup_pidlist_show
,
4235 .private = CGROUP_FILE_TASKS
,
4236 .write
= cgroup_tasks_write
,
4237 .mode
= S_IRUGO
| S_IWUSR
,
4240 .name
= "notify_on_release",
4241 .read_u64
= cgroup_read_notify_on_release
,
4242 .write_u64
= cgroup_write_notify_on_release
,
4245 .name
= "release_agent",
4246 .flags
= CFTYPE_ONLY_ON_ROOT
,
4247 .seq_show
= cgroup_release_agent_show
,
4248 .write
= cgroup_release_agent_write
,
4249 .max_write_len
= PATH_MAX
- 1,
4255 * cgroup_populate_dir - create subsys files in a cgroup directory
4256 * @cgrp: target cgroup
4257 * @subsys_mask: mask of the subsystem ids whose files should be added
4259 * On failure, no file is added.
4261 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned int subsys_mask
)
4263 struct cgroup_subsys
*ss
;
4266 /* process cftsets of each subsystem */
4267 for_each_subsys(ss
, i
) {
4268 struct cftype
*cfts
;
4270 if (!(subsys_mask
& (1 << i
)))
4273 list_for_each_entry(cfts
, &ss
->cfts
, node
) {
4274 ret
= cgroup_addrm_files(cgrp
, cfts
, true);
4281 cgroup_clear_dir(cgrp
, subsys_mask
);
4286 * css destruction is four-stage process.
4288 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4289 * Implemented in kill_css().
4291 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4292 * and thus css_tryget_online() is guaranteed to fail, the css can be
4293 * offlined by invoking offline_css(). After offlining, the base ref is
4294 * put. Implemented in css_killed_work_fn().
4296 * 3. When the percpu_ref reaches zero, the only possible remaining
4297 * accessors are inside RCU read sections. css_release() schedules the
4300 * 4. After the grace period, the css can be freed. Implemented in
4301 * css_free_work_fn().
4303 * It is actually hairier because both step 2 and 4 require process context
4304 * and thus involve punting to css->destroy_work adding two additional
4305 * steps to the already complex sequence.
4307 static void css_free_work_fn(struct work_struct
*work
)
4309 struct cgroup_subsys_state
*css
=
4310 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4311 struct cgroup
*cgrp
= css
->cgroup
;
4313 percpu_ref_exit(&css
->refcnt
);
4318 css_put(css
->parent
);
4320 css
->ss
->css_free(css
);
4323 /* cgroup free path */
4324 atomic_dec(&cgrp
->root
->nr_cgrps
);
4325 cgroup_pidlist_destroy_all(cgrp
);
4326 cancel_work_sync(&cgrp
->release_agent_work
);
4328 if (cgroup_parent(cgrp
)) {
4330 * We get a ref to the parent, and put the ref when
4331 * this cgroup is being freed, so it's guaranteed
4332 * that the parent won't be destroyed before its
4335 cgroup_put(cgroup_parent(cgrp
));
4336 kernfs_put(cgrp
->kn
);
4340 * This is root cgroup's refcnt reaching zero,
4341 * which indicates that the root should be
4344 cgroup_destroy_root(cgrp
->root
);
4349 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4351 struct cgroup_subsys_state
*css
=
4352 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4354 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4355 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4358 static void css_release_work_fn(struct work_struct
*work
)
4360 struct cgroup_subsys_state
*css
=
4361 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4362 struct cgroup_subsys
*ss
= css
->ss
;
4363 struct cgroup
*cgrp
= css
->cgroup
;
4365 mutex_lock(&cgroup_mutex
);
4367 css
->flags
|= CSS_RELEASED
;
4368 list_del_rcu(&css
->sibling
);
4371 /* css release path */
4372 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
4374 /* cgroup release path */
4375 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4379 * There are two control paths which try to determine
4380 * cgroup from dentry without going through kernfs -
4381 * cgroupstats_build() and css_tryget_online_from_dir().
4382 * Those are supported by RCU protecting clearing of
4383 * cgrp->kn->priv backpointer.
4385 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
, NULL
);
4388 mutex_unlock(&cgroup_mutex
);
4390 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4393 static void css_release(struct percpu_ref
*ref
)
4395 struct cgroup_subsys_state
*css
=
4396 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4398 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4399 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4402 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4403 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4405 lockdep_assert_held(&cgroup_mutex
);
4409 memset(css
, 0, sizeof(*css
));
4412 INIT_LIST_HEAD(&css
->sibling
);
4413 INIT_LIST_HEAD(&css
->children
);
4414 css
->serial_nr
= css_serial_nr_next
++;
4416 if (cgroup_parent(cgrp
)) {
4417 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4418 css_get(css
->parent
);
4421 BUG_ON(cgroup_css(cgrp
, ss
));
4424 /* invoke ->css_online() on a new CSS and mark it online if successful */
4425 static int online_css(struct cgroup_subsys_state
*css
)
4427 struct cgroup_subsys
*ss
= css
->ss
;
4430 lockdep_assert_held(&cgroup_mutex
);
4433 ret
= ss
->css_online(css
);
4435 css
->flags
|= CSS_ONLINE
;
4436 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4441 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4442 static void offline_css(struct cgroup_subsys_state
*css
)
4444 struct cgroup_subsys
*ss
= css
->ss
;
4446 lockdep_assert_held(&cgroup_mutex
);
4448 if (!(css
->flags
& CSS_ONLINE
))
4451 if (ss
->css_offline
)
4452 ss
->css_offline(css
);
4454 css
->flags
&= ~CSS_ONLINE
;
4455 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4457 wake_up_all(&css
->cgroup
->offline_waitq
);
4461 * create_css - create a cgroup_subsys_state
4462 * @cgrp: the cgroup new css will be associated with
4463 * @ss: the subsys of new css
4464 * @visible: whether to create control knobs for the new css or not
4466 * Create a new css associated with @cgrp - @ss pair. On success, the new
4467 * css is online and installed in @cgrp with all interface files created if
4468 * @visible. Returns 0 on success, -errno on failure.
4470 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
4473 struct cgroup
*parent
= cgroup_parent(cgrp
);
4474 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4475 struct cgroup_subsys_state
*css
;
4478 lockdep_assert_held(&cgroup_mutex
);
4480 css
= ss
->css_alloc(parent_css
);
4482 return PTR_ERR(css
);
4484 init_and_link_css(css
, ss
, cgrp
);
4486 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4490 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_NOWAIT
);
4492 goto err_free_percpu_ref
;
4496 err
= cgroup_populate_dir(cgrp
, 1 << ss
->id
);
4501 /* @css is ready to be brought online now, make it visible */
4502 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4503 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4505 err
= online_css(css
);
4509 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4510 cgroup_parent(parent
)) {
4511 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4512 current
->comm
, current
->pid
, ss
->name
);
4513 if (!strcmp(ss
->name
, "memory"))
4514 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4515 ss
->warned_broken_hierarchy
= true;
4521 list_del_rcu(&css
->sibling
);
4522 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->id
);
4524 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
4525 err_free_percpu_ref
:
4526 percpu_ref_exit(&css
->refcnt
);
4528 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4532 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
4535 struct cgroup
*parent
, *cgrp
;
4536 struct cgroup_root
*root
;
4537 struct cgroup_subsys
*ss
;
4538 struct kernfs_node
*kn
;
4539 struct cftype
*base_files
;
4542 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4544 if (strchr(name
, '\n'))
4547 parent
= cgroup_kn_lock_live(parent_kn
);
4550 root
= parent
->root
;
4552 /* allocate the cgroup and its ID, 0 is reserved for the root */
4553 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4559 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4564 * Temporarily set the pointer to NULL, so idr_find() won't return
4565 * a half-baked cgroup.
4567 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_NOWAIT
);
4570 goto out_cancel_ref
;
4573 init_cgroup_housekeeping(cgrp
);
4575 cgrp
->self
.parent
= &parent
->self
;
4578 if (notify_on_release(parent
))
4579 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4581 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4582 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4584 /* create the directory */
4585 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4593 * This extra ref will be put in cgroup_free_fn() and guarantees
4594 * that @cgrp->kn is always accessible.
4598 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4600 /* allocation complete, commit to creation */
4601 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4602 atomic_inc(&root
->nr_cgrps
);
4606 * @cgrp is now fully operational. If something fails after this
4607 * point, it'll be released via the normal destruction path.
4609 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4611 ret
= cgroup_kn_set_ugid(kn
);
4615 if (cgroup_on_dfl(cgrp
))
4616 base_files
= cgroup_dfl_base_files
;
4618 base_files
= cgroup_legacy_base_files
;
4620 ret
= cgroup_addrm_files(cgrp
, base_files
, true);
4624 /* let's create and online css's */
4625 for_each_subsys(ss
, ssid
) {
4626 if (parent
->child_subsys_mask
& (1 << ssid
)) {
4627 ret
= create_css(cgrp
, ss
,
4628 parent
->subtree_control
& (1 << ssid
));
4635 * On the default hierarchy, a child doesn't automatically inherit
4636 * subtree_control from the parent. Each is configured manually.
4638 if (!cgroup_on_dfl(cgrp
)) {
4639 cgrp
->subtree_control
= parent
->subtree_control
;
4640 cgroup_refresh_child_subsys_mask(cgrp
);
4643 kernfs_activate(kn
);
4649 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4651 percpu_ref_exit(&cgrp
->self
.refcnt
);
4655 cgroup_kn_unlock(parent_kn
);
4659 cgroup_destroy_locked(cgrp
);
4664 * This is called when the refcnt of a css is confirmed to be killed.
4665 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4666 * initate destruction and put the css ref from kill_css().
4668 static void css_killed_work_fn(struct work_struct
*work
)
4670 struct cgroup_subsys_state
*css
=
4671 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4673 mutex_lock(&cgroup_mutex
);
4675 mutex_unlock(&cgroup_mutex
);
4680 /* css kill confirmation processing requires process context, bounce */
4681 static void css_killed_ref_fn(struct percpu_ref
*ref
)
4683 struct cgroup_subsys_state
*css
=
4684 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4686 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
4687 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4691 * kill_css - destroy a css
4692 * @css: css to destroy
4694 * This function initiates destruction of @css by removing cgroup interface
4695 * files and putting its base reference. ->css_offline() will be invoked
4696 * asynchronously once css_tryget_online() is guaranteed to fail and when
4697 * the reference count reaches zero, @css will be released.
4699 static void kill_css(struct cgroup_subsys_state
*css
)
4701 lockdep_assert_held(&cgroup_mutex
);
4704 * This must happen before css is disassociated with its cgroup.
4705 * See seq_css() for details.
4707 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->id
);
4710 * Killing would put the base ref, but we need to keep it alive
4711 * until after ->css_offline().
4716 * cgroup core guarantees that, by the time ->css_offline() is
4717 * invoked, no new css reference will be given out via
4718 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4719 * proceed to offlining css's because percpu_ref_kill() doesn't
4720 * guarantee that the ref is seen as killed on all CPUs on return.
4722 * Use percpu_ref_kill_and_confirm() to get notifications as each
4723 * css is confirmed to be seen as killed on all CPUs.
4725 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
4729 * cgroup_destroy_locked - the first stage of cgroup destruction
4730 * @cgrp: cgroup to be destroyed
4732 * css's make use of percpu refcnts whose killing latency shouldn't be
4733 * exposed to userland and are RCU protected. Also, cgroup core needs to
4734 * guarantee that css_tryget_online() won't succeed by the time
4735 * ->css_offline() is invoked. To satisfy all the requirements,
4736 * destruction is implemented in the following two steps.
4738 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4739 * userland visible parts and start killing the percpu refcnts of
4740 * css's. Set up so that the next stage will be kicked off once all
4741 * the percpu refcnts are confirmed to be killed.
4743 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4744 * rest of destruction. Once all cgroup references are gone, the
4745 * cgroup is RCU-freed.
4747 * This function implements s1. After this step, @cgrp is gone as far as
4748 * the userland is concerned and a new cgroup with the same name may be
4749 * created. As cgroup doesn't care about the names internally, this
4750 * doesn't cause any problem.
4752 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
4753 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
4755 struct cgroup_subsys_state
*css
;
4759 lockdep_assert_held(&cgroup_mutex
);
4762 * css_set_rwsem synchronizes access to ->cset_links and prevents
4763 * @cgrp from being removed while put_css_set() is in progress.
4765 down_read(&css_set_rwsem
);
4766 empty
= list_empty(&cgrp
->cset_links
);
4767 up_read(&css_set_rwsem
);
4772 * Make sure there's no live children. We can't test emptiness of
4773 * ->self.children as dead children linger on it while being
4774 * drained; otherwise, "rmdir parent/child parent" may fail.
4776 if (css_has_online_children(&cgrp
->self
))
4780 * Mark @cgrp dead. This prevents further task migration and child
4781 * creation by disabling cgroup_lock_live_group().
4783 cgrp
->self
.flags
&= ~CSS_ONLINE
;
4785 /* initiate massacre of all css's */
4786 for_each_css(css
, ssid
, cgrp
)
4790 * Remove @cgrp directory along with the base files. @cgrp has an
4791 * extra ref on its kn.
4793 kernfs_remove(cgrp
->kn
);
4795 check_for_release(cgroup_parent(cgrp
));
4797 /* put the base reference */
4798 percpu_ref_kill(&cgrp
->self
.refcnt
);
4803 static int cgroup_rmdir(struct kernfs_node
*kn
)
4805 struct cgroup
*cgrp
;
4808 cgrp
= cgroup_kn_lock_live(kn
);
4812 ret
= cgroup_destroy_locked(cgrp
);
4814 cgroup_kn_unlock(kn
);
4818 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
4819 .remount_fs
= cgroup_remount
,
4820 .show_options
= cgroup_show_options
,
4821 .mkdir
= cgroup_mkdir
,
4822 .rmdir
= cgroup_rmdir
,
4823 .rename
= cgroup_rename
,
4826 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
4828 struct cgroup_subsys_state
*css
;
4830 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4832 mutex_lock(&cgroup_mutex
);
4834 idr_init(&ss
->css_idr
);
4835 INIT_LIST_HEAD(&ss
->cfts
);
4837 /* Create the root cgroup state for this subsystem */
4838 ss
->root
= &cgrp_dfl_root
;
4839 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
4840 /* We don't handle early failures gracefully */
4841 BUG_ON(IS_ERR(css
));
4842 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
4845 * Root csses are never destroyed and we can't initialize
4846 * percpu_ref during early init. Disable refcnting.
4848 css
->flags
|= CSS_NO_REF
;
4851 /* allocation can't be done safely during early init */
4854 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
4855 BUG_ON(css
->id
< 0);
4858 /* Update the init_css_set to contain a subsys
4859 * pointer to this state - since the subsystem is
4860 * newly registered, all tasks and hence the
4861 * init_css_set is in the subsystem's root cgroup. */
4862 init_css_set
.subsys
[ss
->id
] = css
;
4864 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
4866 /* At system boot, before all subsystems have been
4867 * registered, no tasks have been forked, so we don't
4868 * need to invoke fork callbacks here. */
4869 BUG_ON(!list_empty(&init_task
.tasks
));
4871 BUG_ON(online_css(css
));
4873 mutex_unlock(&cgroup_mutex
);
4877 * cgroup_init_early - cgroup initialization at system boot
4879 * Initialize cgroups at system boot, and initialize any
4880 * subsystems that request early init.
4882 int __init
cgroup_init_early(void)
4884 static struct cgroup_sb_opts __initdata opts
;
4885 struct cgroup_subsys
*ss
;
4888 init_cgroup_root(&cgrp_dfl_root
, &opts
);
4889 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
4891 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
4893 for_each_subsys(ss
, i
) {
4894 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
4895 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4896 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
4898 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
4899 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
4902 ss
->name
= cgroup_subsys_name
[i
];
4905 cgroup_init_subsys(ss
, true);
4911 * cgroup_init - cgroup initialization
4913 * Register cgroup filesystem and /proc file, and initialize
4914 * any subsystems that didn't request early init.
4916 int __init
cgroup_init(void)
4918 struct cgroup_subsys
*ss
;
4922 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_dfl_base_files
));
4923 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_legacy_base_files
));
4925 mutex_lock(&cgroup_mutex
);
4927 /* Add init_css_set to the hash table */
4928 key
= css_set_hash(init_css_set
.subsys
);
4929 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
4931 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
4933 mutex_unlock(&cgroup_mutex
);
4935 for_each_subsys(ss
, ssid
) {
4936 if (ss
->early_init
) {
4937 struct cgroup_subsys_state
*css
=
4938 init_css_set
.subsys
[ss
->id
];
4940 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
4942 BUG_ON(css
->id
< 0);
4944 cgroup_init_subsys(ss
, false);
4947 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
4948 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
4951 * Setting dfl_root subsys_mask needs to consider the
4952 * disabled flag and cftype registration needs kmalloc,
4953 * both of which aren't available during early_init.
4958 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
4960 if (cgroup_legacy_files_on_dfl
&& !ss
->dfl_cftypes
)
4961 ss
->dfl_cftypes
= ss
->legacy_cftypes
;
4963 if (!ss
->dfl_cftypes
)
4964 cgrp_dfl_root_inhibit_ss_mask
|= 1 << ss
->id
;
4966 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
4967 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
4969 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
4970 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
4974 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
4978 err
= register_filesystem(&cgroup_fs_type
);
4980 kobject_put(cgroup_kobj
);
4984 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
4988 static int __init
cgroup_wq_init(void)
4991 * There isn't much point in executing destruction path in
4992 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4993 * Use 1 for @max_active.
4995 * We would prefer to do this in cgroup_init() above, but that
4996 * is called before init_workqueues(): so leave this until after.
4998 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
4999 BUG_ON(!cgroup_destroy_wq
);
5002 * Used to destroy pidlists and separate to serve as flush domain.
5003 * Cap @max_active to 1 too.
5005 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
5007 BUG_ON(!cgroup_pidlist_destroy_wq
);
5011 core_initcall(cgroup_wq_init
);
5014 * proc_cgroup_show()
5015 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5016 * - Used for /proc/<pid>/cgroup.
5018 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5019 struct pid
*pid
, struct task_struct
*tsk
)
5023 struct cgroup_root
*root
;
5026 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5030 mutex_lock(&cgroup_mutex
);
5031 down_read(&css_set_rwsem
);
5033 for_each_root(root
) {
5034 struct cgroup_subsys
*ss
;
5035 struct cgroup
*cgrp
;
5036 int ssid
, count
= 0;
5038 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_root_visible
)
5041 seq_printf(m
, "%d:", root
->hierarchy_id
);
5042 for_each_subsys(ss
, ssid
)
5043 if (root
->subsys_mask
& (1 << ssid
))
5044 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
5045 if (strlen(root
->name
))
5046 seq_printf(m
, "%sname=%s", count
? "," : "",
5049 cgrp
= task_cgroup_from_root(tsk
, root
);
5050 path
= cgroup_path(cgrp
, buf
, PATH_MAX
);
5052 retval
= -ENAMETOOLONG
;
5061 up_read(&css_set_rwsem
);
5062 mutex_unlock(&cgroup_mutex
);
5068 /* Display information about each subsystem and each hierarchy */
5069 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5071 struct cgroup_subsys
*ss
;
5074 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5076 * ideally we don't want subsystems moving around while we do this.
5077 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5078 * subsys/hierarchy state.
5080 mutex_lock(&cgroup_mutex
);
5082 for_each_subsys(ss
, i
)
5083 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5084 ss
->name
, ss
->root
->hierarchy_id
,
5085 atomic_read(&ss
->root
->nr_cgrps
), !ss
->disabled
);
5087 mutex_unlock(&cgroup_mutex
);
5091 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5093 return single_open(file
, proc_cgroupstats_show
, NULL
);
5096 static const struct file_operations proc_cgroupstats_operations
= {
5097 .open
= cgroupstats_open
,
5099 .llseek
= seq_lseek
,
5100 .release
= single_release
,
5104 * cgroup_fork - initialize cgroup related fields during copy_process()
5105 * @child: pointer to task_struct of forking parent process.
5107 * A task is associated with the init_css_set until cgroup_post_fork()
5108 * attaches it to the parent's css_set. Empty cg_list indicates that
5109 * @child isn't holding reference to its css_set.
5111 void cgroup_fork(struct task_struct
*child
)
5113 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5114 INIT_LIST_HEAD(&child
->cg_list
);
5118 * cgroup_post_fork - called on a new task after adding it to the task list
5119 * @child: the task in question
5121 * Adds the task to the list running through its css_set if necessary and
5122 * call the subsystem fork() callbacks. Has to be after the task is
5123 * visible on the task list in case we race with the first call to
5124 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5127 void cgroup_post_fork(struct task_struct
*child
)
5129 struct cgroup_subsys
*ss
;
5133 * This may race against cgroup_enable_task_cg_lists(). As that
5134 * function sets use_task_css_set_links before grabbing
5135 * tasklist_lock and we just went through tasklist_lock to add
5136 * @child, it's guaranteed that either we see the set
5137 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5138 * @child during its iteration.
5140 * If we won the race, @child is associated with %current's
5141 * css_set. Grabbing css_set_rwsem guarantees both that the
5142 * association is stable, and, on completion of the parent's
5143 * migration, @child is visible in the source of migration or
5144 * already in the destination cgroup. This guarantee is necessary
5145 * when implementing operations which need to migrate all tasks of
5146 * a cgroup to another.
5148 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5149 * will remain in init_css_set. This is safe because all tasks are
5150 * in the init_css_set before cg_links is enabled and there's no
5151 * operation which transfers all tasks out of init_css_set.
5153 if (use_task_css_set_links
) {
5154 struct css_set
*cset
;
5156 down_write(&css_set_rwsem
);
5157 cset
= task_css_set(current
);
5158 if (list_empty(&child
->cg_list
)) {
5159 rcu_assign_pointer(child
->cgroups
, cset
);
5160 list_add(&child
->cg_list
, &cset
->tasks
);
5163 up_write(&css_set_rwsem
);
5167 * Call ss->fork(). This must happen after @child is linked on
5168 * css_set; otherwise, @child might change state between ->fork()
5169 * and addition to css_set.
5171 if (need_forkexit_callback
) {
5172 for_each_subsys(ss
, i
)
5179 * cgroup_exit - detach cgroup from exiting task
5180 * @tsk: pointer to task_struct of exiting process
5182 * Description: Detach cgroup from @tsk and release it.
5184 * Note that cgroups marked notify_on_release force every task in
5185 * them to take the global cgroup_mutex mutex when exiting.
5186 * This could impact scaling on very large systems. Be reluctant to
5187 * use notify_on_release cgroups where very high task exit scaling
5188 * is required on large systems.
5190 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5191 * call cgroup_exit() while the task is still competent to handle
5192 * notify_on_release(), then leave the task attached to the root cgroup in
5193 * each hierarchy for the remainder of its exit. No need to bother with
5194 * init_css_set refcnting. init_css_set never goes away and we can't race
5195 * with migration path - PF_EXITING is visible to migration path.
5197 void cgroup_exit(struct task_struct
*tsk
)
5199 struct cgroup_subsys
*ss
;
5200 struct css_set
*cset
;
5201 bool put_cset
= false;
5205 * Unlink from @tsk from its css_set. As migration path can't race
5206 * with us, we can check cg_list without grabbing css_set_rwsem.
5208 if (!list_empty(&tsk
->cg_list
)) {
5209 down_write(&css_set_rwsem
);
5210 list_del_init(&tsk
->cg_list
);
5211 up_write(&css_set_rwsem
);
5215 /* Reassign the task to the init_css_set. */
5216 cset
= task_css_set(tsk
);
5217 RCU_INIT_POINTER(tsk
->cgroups
, &init_css_set
);
5219 if (need_forkexit_callback
) {
5220 /* see cgroup_post_fork() for details */
5221 for_each_subsys(ss
, i
) {
5223 struct cgroup_subsys_state
*old_css
= cset
->subsys
[i
];
5224 struct cgroup_subsys_state
*css
= task_css(tsk
, i
);
5226 ss
->exit(css
, old_css
, tsk
);
5235 static void check_for_release(struct cgroup
*cgrp
)
5237 if (notify_on_release(cgrp
) && !cgroup_has_tasks(cgrp
) &&
5238 !css_has_online_children(&cgrp
->self
) && !cgroup_is_dead(cgrp
))
5239 schedule_work(&cgrp
->release_agent_work
);
5243 * Notify userspace when a cgroup is released, by running the
5244 * configured release agent with the name of the cgroup (path
5245 * relative to the root of cgroup file system) as the argument.
5247 * Most likely, this user command will try to rmdir this cgroup.
5249 * This races with the possibility that some other task will be
5250 * attached to this cgroup before it is removed, or that some other
5251 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5252 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5253 * unused, and this cgroup will be reprieved from its death sentence,
5254 * to continue to serve a useful existence. Next time it's released,
5255 * we will get notified again, if it still has 'notify_on_release' set.
5257 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5258 * means only wait until the task is successfully execve()'d. The
5259 * separate release agent task is forked by call_usermodehelper(),
5260 * then control in this thread returns here, without waiting for the
5261 * release agent task. We don't bother to wait because the caller of
5262 * this routine has no use for the exit status of the release agent
5263 * task, so no sense holding our caller up for that.
5265 static void cgroup_release_agent(struct work_struct
*work
)
5267 struct cgroup
*cgrp
=
5268 container_of(work
, struct cgroup
, release_agent_work
);
5269 char *pathbuf
= NULL
, *agentbuf
= NULL
, *path
;
5270 char *argv
[3], *envp
[3];
5272 mutex_lock(&cgroup_mutex
);
5274 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5275 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5276 if (!pathbuf
|| !agentbuf
)
5279 path
= cgroup_path(cgrp
, pathbuf
, PATH_MAX
);
5287 /* minimal command environment */
5289 envp
[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5292 mutex_unlock(&cgroup_mutex
);
5293 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5296 mutex_unlock(&cgroup_mutex
);
5302 static int __init
cgroup_disable(char *str
)
5304 struct cgroup_subsys
*ss
;
5308 while ((token
= strsep(&str
, ",")) != NULL
) {
5312 for_each_subsys(ss
, i
) {
5313 if (!strcmp(token
, ss
->name
)) {
5315 printk(KERN_INFO
"Disabling %s control group"
5316 " subsystem\n", ss
->name
);
5323 __setup("cgroup_disable=", cgroup_disable
);
5325 static int __init
cgroup_set_legacy_files_on_dfl(char *str
)
5327 printk("cgroup: using legacy files on the default hierarchy\n");
5328 cgroup_legacy_files_on_dfl
= true;
5331 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl
);
5334 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5335 * @dentry: directory dentry of interest
5336 * @ss: subsystem of interest
5338 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5339 * to get the corresponding css and return it. If such css doesn't exist
5340 * or can't be pinned, an ERR_PTR value is returned.
5342 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5343 struct cgroup_subsys
*ss
)
5345 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5346 struct cgroup_subsys_state
*css
= NULL
;
5347 struct cgroup
*cgrp
;
5349 /* is @dentry a cgroup dir? */
5350 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
5351 kernfs_type(kn
) != KERNFS_DIR
)
5352 return ERR_PTR(-EBADF
);
5357 * This path doesn't originate from kernfs and @kn could already
5358 * have been or be removed at any point. @kn->priv is RCU
5359 * protected for this access. See css_release_work_fn() for details.
5361 cgrp
= rcu_dereference(kn
->priv
);
5363 css
= cgroup_css(cgrp
, ss
);
5365 if (!css
|| !css_tryget_online(css
))
5366 css
= ERR_PTR(-ENOENT
);
5373 * css_from_id - lookup css by id
5374 * @id: the cgroup id
5375 * @ss: cgroup subsys to be looked into
5377 * Returns the css if there's valid one with @id, otherwise returns NULL.
5378 * Should be called under rcu_read_lock().
5380 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5382 WARN_ON_ONCE(!rcu_read_lock_held());
5383 return idr_find(&ss
->css_idr
, id
);
5386 #ifdef CONFIG_CGROUP_DEBUG
5387 static struct cgroup_subsys_state
*
5388 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
5390 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5393 return ERR_PTR(-ENOMEM
);
5398 static void debug_css_free(struct cgroup_subsys_state
*css
)
5403 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
5406 return cgroup_task_count(css
->cgroup
);
5409 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
5412 return (u64
)(unsigned long)current
->cgroups
;
5415 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
5421 count
= atomic_read(&task_css_set(current
)->refcount
);
5426 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
5428 struct cgrp_cset_link
*link
;
5429 struct css_set
*cset
;
5432 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
5436 down_read(&css_set_rwsem
);
5438 cset
= rcu_dereference(current
->cgroups
);
5439 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
5440 struct cgroup
*c
= link
->cgrp
;
5442 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
5443 seq_printf(seq
, "Root %d group %s\n",
5444 c
->root
->hierarchy_id
, name_buf
);
5447 up_read(&css_set_rwsem
);
5452 #define MAX_TASKS_SHOWN_PER_CSS 25
5453 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
5455 struct cgroup_subsys_state
*css
= seq_css(seq
);
5456 struct cgrp_cset_link
*link
;
5458 down_read(&css_set_rwsem
);
5459 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
5460 struct css_set
*cset
= link
->cset
;
5461 struct task_struct
*task
;
5464 seq_printf(seq
, "css_set %p\n", cset
);
5466 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
5467 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5469 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5472 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
5473 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5475 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5479 seq_puts(seq
, " ...\n");
5481 up_read(&css_set_rwsem
);
5485 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
5487 return (!cgroup_has_tasks(css
->cgroup
) &&
5488 !css_has_online_children(&css
->cgroup
->self
));
5491 static struct cftype debug_files
[] = {
5493 .name
= "taskcount",
5494 .read_u64
= debug_taskcount_read
,
5498 .name
= "current_css_set",
5499 .read_u64
= current_css_set_read
,
5503 .name
= "current_css_set_refcount",
5504 .read_u64
= current_css_set_refcount_read
,
5508 .name
= "current_css_set_cg_links",
5509 .seq_show
= current_css_set_cg_links_read
,
5513 .name
= "cgroup_css_links",
5514 .seq_show
= cgroup_css_links_read
,
5518 .name
= "releasable",
5519 .read_u64
= releasable_read
,
5525 struct cgroup_subsys debug_cgrp_subsys
= {
5526 .css_alloc
= debug_css_alloc
,
5527 .css_free
= debug_css_free
,
5528 .legacy_cftypes
= debug_files
,
5530 #endif /* CONFIG_CGROUP_DEBUG */