Linux 4.2.6
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blob34b610ea503053674b3b87ffd3503d6c641c573d
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
40 * MUSTDO:
41 * - test ext4_ext_search_left() and ext4_ext_search_right()
42 * - search for metadata in few groups
44 * TODO v4:
45 * - normalization should take into account whether file is still open
46 * - discard preallocations if no free space left (policy?)
47 * - don't normalize tails
48 * - quota
49 * - reservation for superuser
51 * TODO v3:
52 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 * - track min/max extents in each group for better group selection
54 * - mb_mark_used() may allocate chunk right after splitting buddy
55 * - tree of groups sorted by number of free blocks
56 * - error handling
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
79 * represented as:
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len -> length for this prealloc space (in clusters)
84 * pa_free -> free space available in this prealloc space (in clusters)
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
93 * pa_free.
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy. The information involve
114 * block bitmap and buddy information. The information are stored in the
115 * inode as:
117 * { page }
118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
121 * one block each for bitmap and buddy information. So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
123 * blocksize) blocks. So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
148 * The regular allocator (using the buddy cache) supports a few tunables.
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 * checked.
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
177 * mballoc operates on the following data:
178 * - on-disk bitmap
179 * - in-core buddy (actually includes buddy and bitmap)
180 * - preallocation descriptors (PAs)
182 * there are two types of preallocations:
183 * - inode
184 * assiged to specific inode and can be used for this inode only.
185 * it describes part of inode's space preallocated to specific
186 * physical blocks. any block from that preallocated can be used
187 * independent. the descriptor just tracks number of blocks left
188 * unused. so, before taking some block from descriptor, one must
189 * make sure corresponded logical block isn't allocated yet. this
190 * also means that freeing any block within descriptor's range
191 * must discard all preallocated blocks.
192 * - locality group
193 * assigned to specific locality group which does not translate to
194 * permanent set of inodes: inode can join and leave group. space
195 * from this type of preallocation can be used for any inode. thus
196 * it's consumed from the beginning to the end.
198 * relation between them can be expressed as:
199 * in-core buddy = on-disk bitmap + preallocation descriptors
201 * this mean blocks mballoc considers used are:
202 * - allocated blocks (persistent)
203 * - preallocated blocks (non-persistent)
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
209 * to keep it simple, we don't use block numbers, instead we count number of
210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
212 * all operations can be expressed as:
213 * - init buddy: buddy = on-disk + PAs
214 * - new PA: buddy += N; PA = N
215 * - use inode PA: on-disk += N; PA -= N
216 * - discard inode PA buddy -= on-disk - PA; PA = 0
217 * - use locality group PA on-disk += N; PA -= N
218 * - discard locality group PA buddy -= PA; PA = 0
219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 * is used in real operation because we can't know actual used
221 * bits from PA, only from on-disk bitmap
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 * 1) if buddy is referenced, it's already initialized
228 * 2) while block is used in buddy and the buddy is referenced,
229 * nobody can re-allocate that block
230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 * bit set and PA claims same block, it's OK. IOW, one can set bit in
232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233 * block
235 * so, now we're building a concurrency table:
236 * - init buddy vs.
237 * - new PA
238 * blocks for PA are allocated in the buddy, buddy must be referenced
239 * until PA is linked to allocation group to avoid concurrent buddy init
240 * - use inode PA
241 * we need to make sure that either on-disk bitmap or PA has uptodate data
242 * given (3) we care that PA-=N operation doesn't interfere with init
243 * - discard inode PA
244 * the simplest way would be to have buddy initialized by the discard
245 * - use locality group PA
246 * again PA-=N must be serialized with init
247 * - discard locality group PA
248 * the simplest way would be to have buddy initialized by the discard
249 * - new PA vs.
250 * - use inode PA
251 * i_data_sem serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * some mutex should serialize them
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 * - use inode PA
259 * - use inode PA
260 * i_data_sem or another mutex should serializes them
261 * - discard inode PA
262 * discard process must wait until PA isn't used by another process
263 * - use locality group PA
264 * nothing wrong here -- they're different PAs covering different blocks
265 * - discard locality group PA
266 * discard process must wait until PA isn't used by another process
268 * now we're ready to make few consequences:
269 * - PA is referenced and while it is no discard is possible
270 * - PA is referenced until block isn't marked in on-disk bitmap
271 * - PA changes only after on-disk bitmap
272 * - discard must not compete with init. either init is done before
273 * any discard or they're serialized somehow
274 * - buddy init as sum of on-disk bitmap and PAs is done atomically
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
282 * Logic in few words:
284 * - allocation:
285 * load group
286 * find blocks
287 * mark bits in on-disk bitmap
288 * release group
290 * - use preallocation:
291 * find proper PA (per-inode or group)
292 * load group
293 * mark bits in on-disk bitmap
294 * release group
295 * release PA
297 * - free:
298 * load group
299 * mark bits in on-disk bitmap
300 * release group
302 * - discard preallocations in group:
303 * mark PAs deleted
304 * move them onto local list
305 * load on-disk bitmap
306 * load group
307 * remove PA from object (inode or locality group)
308 * mark free blocks in-core
310 * - discard inode's preallocations:
314 * Locking rules
316 * Locks:
317 * - bitlock on a group (group)
318 * - object (inode/locality) (object)
319 * - per-pa lock (pa)
321 * Paths:
322 * - new pa
323 * object
324 * group
326 * - find and use pa:
327 * pa
329 * - release consumed pa:
330 * pa
331 * group
332 * object
334 * - generate in-core bitmap:
335 * group
336 * pa
338 * - discard all for given object (inode, locality group):
339 * object
340 * pa
341 * group
343 * - discard all for given group:
344 * group
345 * pa
346 * group
347 * object
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
354 /* We create slab caches for groupinfo data structures based on the
355 * superblock block size. There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 ext4_group_t group);
370 static void ext4_free_data_callback(struct super_block *sb,
371 struct ext4_journal_cb_entry *jce, int rc);
373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
375 #if BITS_PER_LONG == 64
376 *bit += ((unsigned long) addr & 7UL) << 3;
377 addr = (void *) ((unsigned long) addr & ~7UL);
378 #elif BITS_PER_LONG == 32
379 *bit += ((unsigned long) addr & 3UL) << 3;
380 addr = (void *) ((unsigned long) addr & ~3UL);
381 #else
382 #error "how many bits you are?!"
383 #endif
384 return addr;
387 static inline int mb_test_bit(int bit, void *addr)
390 * ext4_test_bit on architecture like powerpc
391 * needs unsigned long aligned address
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 return ext4_test_bit(bit, addr);
397 static inline void mb_set_bit(int bit, void *addr)
399 addr = mb_correct_addr_and_bit(&bit, addr);
400 ext4_set_bit(bit, addr);
403 static inline void mb_clear_bit(int bit, void *addr)
405 addr = mb_correct_addr_and_bit(&bit, addr);
406 ext4_clear_bit(bit, addr);
409 static inline int mb_test_and_clear_bit(int bit, void *addr)
411 addr = mb_correct_addr_and_bit(&bit, addr);
412 return ext4_test_and_clear_bit(bit, addr);
415 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
419 tmpmax = max + fix;
420 start += fix;
422 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 if (ret > max)
424 return max;
425 return ret;
428 static inline int mb_find_next_bit(void *addr, int max, int start)
430 int fix = 0, ret, tmpmax;
431 addr = mb_correct_addr_and_bit(&fix, addr);
432 tmpmax = max + fix;
433 start += fix;
435 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 if (ret > max)
437 return max;
438 return ret;
441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
443 char *bb;
445 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 BUG_ON(max == NULL);
448 if (order > e4b->bd_blkbits + 1) {
449 *max = 0;
450 return NULL;
453 /* at order 0 we see each particular block */
454 if (order == 0) {
455 *max = 1 << (e4b->bd_blkbits + 3);
456 return e4b->bd_bitmap;
459 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
462 return bb;
465 #ifdef DOUBLE_CHECK
466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 int first, int count)
469 int i;
470 struct super_block *sb = e4b->bd_sb;
472 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 return;
474 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 for (i = 0; i < count; i++) {
476 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 ext4_fsblk_t blocknr;
479 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 ext4_grp_locked_error(sb, e4b->bd_group,
482 inode ? inode->i_ino : 0,
483 blocknr,
484 "freeing block already freed "
485 "(bit %u)",
486 first + i);
488 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
494 int i;
496 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 return;
498 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 for (i = 0; i < count; i++) {
500 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
507 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 unsigned char *b1, *b2;
509 int i;
510 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 b2 = (unsigned char *) bitmap;
512 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 if (b1[i] != b2[i]) {
514 ext4_msg(e4b->bd_sb, KERN_ERR,
515 "corruption in group %u "
516 "at byte %u(%u): %x in copy != %x "
517 "on disk/prealloc",
518 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 BUG();
525 #else
526 static inline void mb_free_blocks_double(struct inode *inode,
527 struct ext4_buddy *e4b, int first, int count)
529 return;
531 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 int first, int count)
534 return;
536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
538 return;
540 #endif
542 #ifdef AGGRESSIVE_CHECK
544 #define MB_CHECK_ASSERT(assert) \
545 do { \
546 if (!(assert)) { \
547 printk(KERN_EMERG \
548 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
549 function, file, line, # assert); \
550 BUG(); \
552 } while (0)
554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 const char *function, int line)
557 struct super_block *sb = e4b->bd_sb;
558 int order = e4b->bd_blkbits + 1;
559 int max;
560 int max2;
561 int i;
562 int j;
563 int k;
564 int count;
565 struct ext4_group_info *grp;
566 int fragments = 0;
567 int fstart;
568 struct list_head *cur;
569 void *buddy;
570 void *buddy2;
573 static int mb_check_counter;
574 if (mb_check_counter++ % 100 != 0)
575 return 0;
578 while (order > 1) {
579 buddy = mb_find_buddy(e4b, order, &max);
580 MB_CHECK_ASSERT(buddy);
581 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 MB_CHECK_ASSERT(buddy2);
583 MB_CHECK_ASSERT(buddy != buddy2);
584 MB_CHECK_ASSERT(max * 2 == max2);
586 count = 0;
587 for (i = 0; i < max; i++) {
589 if (mb_test_bit(i, buddy)) {
590 /* only single bit in buddy2 may be 1 */
591 if (!mb_test_bit(i << 1, buddy2)) {
592 MB_CHECK_ASSERT(
593 mb_test_bit((i<<1)+1, buddy2));
594 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 MB_CHECK_ASSERT(
596 mb_test_bit(i << 1, buddy2));
598 continue;
601 /* both bits in buddy2 must be 1 */
602 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
605 for (j = 0; j < (1 << order); j++) {
606 k = (i * (1 << order)) + j;
607 MB_CHECK_ASSERT(
608 !mb_test_bit(k, e4b->bd_bitmap));
610 count++;
612 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 order--;
616 fstart = -1;
617 buddy = mb_find_buddy(e4b, 0, &max);
618 for (i = 0; i < max; i++) {
619 if (!mb_test_bit(i, buddy)) {
620 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 if (fstart == -1) {
622 fragments++;
623 fstart = i;
625 continue;
627 fstart = -1;
628 /* check used bits only */
629 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 buddy2 = mb_find_buddy(e4b, j, &max2);
631 k = i >> j;
632 MB_CHECK_ASSERT(k < max2);
633 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
636 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
639 grp = ext4_get_group_info(sb, e4b->bd_group);
640 list_for_each(cur, &grp->bb_prealloc_list) {
641 ext4_group_t groupnr;
642 struct ext4_prealloc_space *pa;
643 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 for (i = 0; i < pa->pa_len; i++)
647 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
649 return 0;
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
653 __FILE__, __func__, __LINE__)
654 #else
655 #define mb_check_buddy(e4b)
656 #endif
659 * Divide blocks started from @first with length @len into
660 * smaller chunks with power of 2 blocks.
661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662 * then increase bb_counters[] for corresponded chunk size.
664 static void ext4_mb_mark_free_simple(struct super_block *sb,
665 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 struct ext4_group_info *grp)
668 struct ext4_sb_info *sbi = EXT4_SB(sb);
669 ext4_grpblk_t min;
670 ext4_grpblk_t max;
671 ext4_grpblk_t chunk;
672 unsigned short border;
674 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
676 border = 2 << sb->s_blocksize_bits;
678 while (len > 0) {
679 /* find how many blocks can be covered since this position */
680 max = ffs(first | border) - 1;
682 /* find how many blocks of power 2 we need to mark */
683 min = fls(len) - 1;
685 if (max < min)
686 min = max;
687 chunk = 1 << min;
689 /* mark multiblock chunks only */
690 grp->bb_counters[min]++;
691 if (min > 0)
692 mb_clear_bit(first >> min,
693 buddy + sbi->s_mb_offsets[min]);
695 len -= chunk;
696 first += chunk;
701 * Cache the order of the largest free extent we have available in this block
702 * group.
704 static void
705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
707 int i;
708 int bits;
710 grp->bb_largest_free_order = -1; /* uninit */
712 bits = sb->s_blocksize_bits + 1;
713 for (i = bits; i >= 0; i--) {
714 if (grp->bb_counters[i] > 0) {
715 grp->bb_largest_free_order = i;
716 break;
721 static noinline_for_stack
722 void ext4_mb_generate_buddy(struct super_block *sb,
723 void *buddy, void *bitmap, ext4_group_t group)
725 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 struct ext4_sb_info *sbi = EXT4_SB(sb);
727 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 ext4_grpblk_t i = 0;
729 ext4_grpblk_t first;
730 ext4_grpblk_t len;
731 unsigned free = 0;
732 unsigned fragments = 0;
733 unsigned long long period = get_cycles();
735 /* initialize buddy from bitmap which is aggregation
736 * of on-disk bitmap and preallocations */
737 i = mb_find_next_zero_bit(bitmap, max, 0);
738 grp->bb_first_free = i;
739 while (i < max) {
740 fragments++;
741 first = i;
742 i = mb_find_next_bit(bitmap, max, i);
743 len = i - first;
744 free += len;
745 if (len > 1)
746 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 else
748 grp->bb_counters[0]++;
749 if (i < max)
750 i = mb_find_next_zero_bit(bitmap, max, i);
752 grp->bb_fragments = fragments;
754 if (free != grp->bb_free) {
755 ext4_grp_locked_error(sb, group, 0, 0,
756 "block bitmap and bg descriptor "
757 "inconsistent: %u vs %u free clusters",
758 free, grp->bb_free);
760 * If we intend to continue, we consider group descriptor
761 * corrupt and update bb_free using bitmap value
763 grp->bb_free = free;
764 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 percpu_counter_sub(&sbi->s_freeclusters_counter,
766 grp->bb_free);
767 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
769 mb_set_largest_free_order(sb, grp);
771 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
773 period = get_cycles() - period;
774 spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 EXT4_SB(sb)->s_mb_buddies_generated++;
776 EXT4_SB(sb)->s_mb_generation_time += period;
777 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
780 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
782 int count;
783 int order = 1;
784 void *buddy;
786 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 ext4_set_bits(buddy, 0, count);
789 e4b->bd_info->bb_fragments = 0;
790 memset(e4b->bd_info->bb_counters, 0,
791 sizeof(*e4b->bd_info->bb_counters) *
792 (e4b->bd_sb->s_blocksize_bits + 2));
794 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 e4b->bd_bitmap, e4b->bd_group);
798 /* The buddy information is attached the buddy cache inode
799 * for convenience. The information regarding each group
800 * is loaded via ext4_mb_load_buddy. The information involve
801 * block bitmap and buddy information. The information are
802 * stored in the inode as
804 * { page }
805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
808 * one block each for bitmap and buddy information.
809 * So for each group we take up 2 blocks. A page can
810 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
811 * So it can have information regarding groups_per_page which
812 * is blocks_per_page/2
814 * Locking note: This routine takes the block group lock of all groups
815 * for this page; do not hold this lock when calling this routine!
818 static int ext4_mb_init_cache(struct page *page, char *incore)
820 ext4_group_t ngroups;
821 int blocksize;
822 int blocks_per_page;
823 int groups_per_page;
824 int err = 0;
825 int i;
826 ext4_group_t first_group, group;
827 int first_block;
828 struct super_block *sb;
829 struct buffer_head *bhs;
830 struct buffer_head **bh = NULL;
831 struct inode *inode;
832 char *data;
833 char *bitmap;
834 struct ext4_group_info *grinfo;
836 mb_debug(1, "init page %lu\n", page->index);
838 inode = page->mapping->host;
839 sb = inode->i_sb;
840 ngroups = ext4_get_groups_count(sb);
841 blocksize = 1 << inode->i_blkbits;
842 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
844 groups_per_page = blocks_per_page >> 1;
845 if (groups_per_page == 0)
846 groups_per_page = 1;
848 /* allocate buffer_heads to read bitmaps */
849 if (groups_per_page > 1) {
850 i = sizeof(struct buffer_head *) * groups_per_page;
851 bh = kzalloc(i, GFP_NOFS);
852 if (bh == NULL) {
853 err = -ENOMEM;
854 goto out;
856 } else
857 bh = &bhs;
859 first_group = page->index * blocks_per_page / 2;
861 /* read all groups the page covers into the cache */
862 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 if (group >= ngroups)
864 break;
866 grinfo = ext4_get_group_info(sb, group);
868 * If page is uptodate then we came here after online resize
869 * which added some new uninitialized group info structs, so
870 * we must skip all initialized uptodate buddies on the page,
871 * which may be currently in use by an allocating task.
873 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 bh[i] = NULL;
875 continue;
877 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
878 err = -ENOMEM;
879 goto out;
881 mb_debug(1, "read bitmap for group %u\n", group);
884 /* wait for I/O completion */
885 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
886 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i]))
887 err = -EIO;
890 first_block = page->index * blocks_per_page;
891 for (i = 0; i < blocks_per_page; i++) {
892 group = (first_block + i) >> 1;
893 if (group >= ngroups)
894 break;
896 if (!bh[group - first_group])
897 /* skip initialized uptodate buddy */
898 continue;
900 if (!buffer_verified(bh[group - first_group]))
901 /* Skip faulty bitmaps */
902 continue;
903 err = 0;
906 * data carry information regarding this
907 * particular group in the format specified
908 * above
911 data = page_address(page) + (i * blocksize);
912 bitmap = bh[group - first_group]->b_data;
915 * We place the buddy block and bitmap block
916 * close together
918 if ((first_block + i) & 1) {
919 /* this is block of buddy */
920 BUG_ON(incore == NULL);
921 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
922 group, page->index, i * blocksize);
923 trace_ext4_mb_buddy_bitmap_load(sb, group);
924 grinfo = ext4_get_group_info(sb, group);
925 grinfo->bb_fragments = 0;
926 memset(grinfo->bb_counters, 0,
927 sizeof(*grinfo->bb_counters) *
928 (sb->s_blocksize_bits+2));
930 * incore got set to the group block bitmap below
932 ext4_lock_group(sb, group);
933 /* init the buddy */
934 memset(data, 0xff, blocksize);
935 ext4_mb_generate_buddy(sb, data, incore, group);
936 ext4_unlock_group(sb, group);
937 incore = NULL;
938 } else {
939 /* this is block of bitmap */
940 BUG_ON(incore != NULL);
941 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
942 group, page->index, i * blocksize);
943 trace_ext4_mb_bitmap_load(sb, group);
945 /* see comments in ext4_mb_put_pa() */
946 ext4_lock_group(sb, group);
947 memcpy(data, bitmap, blocksize);
949 /* mark all preallocated blks used in in-core bitmap */
950 ext4_mb_generate_from_pa(sb, data, group);
951 ext4_mb_generate_from_freelist(sb, data, group);
952 ext4_unlock_group(sb, group);
954 /* set incore so that the buddy information can be
955 * generated using this
957 incore = data;
960 SetPageUptodate(page);
962 out:
963 if (bh) {
964 for (i = 0; i < groups_per_page; i++)
965 brelse(bh[i]);
966 if (bh != &bhs)
967 kfree(bh);
969 return err;
973 * Lock the buddy and bitmap pages. This make sure other parallel init_group
974 * on the same buddy page doesn't happen whild holding the buddy page lock.
975 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
976 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
978 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
979 ext4_group_t group, struct ext4_buddy *e4b)
981 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
982 int block, pnum, poff;
983 int blocks_per_page;
984 struct page *page;
986 e4b->bd_buddy_page = NULL;
987 e4b->bd_bitmap_page = NULL;
989 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
991 * the buddy cache inode stores the block bitmap
992 * and buddy information in consecutive blocks.
993 * So for each group we need two blocks.
995 block = group * 2;
996 pnum = block / blocks_per_page;
997 poff = block % blocks_per_page;
998 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
999 if (!page)
1000 return -ENOMEM;
1001 BUG_ON(page->mapping != inode->i_mapping);
1002 e4b->bd_bitmap_page = page;
1003 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1005 if (blocks_per_page >= 2) {
1006 /* buddy and bitmap are on the same page */
1007 return 0;
1010 block++;
1011 pnum = block / blocks_per_page;
1012 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1013 if (!page)
1014 return -ENOMEM;
1015 BUG_ON(page->mapping != inode->i_mapping);
1016 e4b->bd_buddy_page = page;
1017 return 0;
1020 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1022 if (e4b->bd_bitmap_page) {
1023 unlock_page(e4b->bd_bitmap_page);
1024 page_cache_release(e4b->bd_bitmap_page);
1026 if (e4b->bd_buddy_page) {
1027 unlock_page(e4b->bd_buddy_page);
1028 page_cache_release(e4b->bd_buddy_page);
1033 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1034 * block group lock of all groups for this page; do not hold the BG lock when
1035 * calling this routine!
1037 static noinline_for_stack
1038 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1041 struct ext4_group_info *this_grp;
1042 struct ext4_buddy e4b;
1043 struct page *page;
1044 int ret = 0;
1046 might_sleep();
1047 mb_debug(1, "init group %u\n", group);
1048 this_grp = ext4_get_group_info(sb, group);
1050 * This ensures that we don't reinit the buddy cache
1051 * page which map to the group from which we are already
1052 * allocating. If we are looking at the buddy cache we would
1053 * have taken a reference using ext4_mb_load_buddy and that
1054 * would have pinned buddy page to page cache.
1055 * The call to ext4_mb_get_buddy_page_lock will mark the
1056 * page accessed.
1058 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1059 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1061 * somebody initialized the group
1062 * return without doing anything
1064 goto err;
1067 page = e4b.bd_bitmap_page;
1068 ret = ext4_mb_init_cache(page, NULL);
1069 if (ret)
1070 goto err;
1071 if (!PageUptodate(page)) {
1072 ret = -EIO;
1073 goto err;
1076 if (e4b.bd_buddy_page == NULL) {
1078 * If both the bitmap and buddy are in
1079 * the same page we don't need to force
1080 * init the buddy
1082 ret = 0;
1083 goto err;
1085 /* init buddy cache */
1086 page = e4b.bd_buddy_page;
1087 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1088 if (ret)
1089 goto err;
1090 if (!PageUptodate(page)) {
1091 ret = -EIO;
1092 goto err;
1094 err:
1095 ext4_mb_put_buddy_page_lock(&e4b);
1096 return ret;
1100 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1101 * block group lock of all groups for this page; do not hold the BG lock when
1102 * calling this routine!
1104 static noinline_for_stack int
1105 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1106 struct ext4_buddy *e4b)
1108 int blocks_per_page;
1109 int block;
1110 int pnum;
1111 int poff;
1112 struct page *page;
1113 int ret;
1114 struct ext4_group_info *grp;
1115 struct ext4_sb_info *sbi = EXT4_SB(sb);
1116 struct inode *inode = sbi->s_buddy_cache;
1118 might_sleep();
1119 mb_debug(1, "load group %u\n", group);
1121 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1122 grp = ext4_get_group_info(sb, group);
1124 e4b->bd_blkbits = sb->s_blocksize_bits;
1125 e4b->bd_info = grp;
1126 e4b->bd_sb = sb;
1127 e4b->bd_group = group;
1128 e4b->bd_buddy_page = NULL;
1129 e4b->bd_bitmap_page = NULL;
1131 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1133 * we need full data about the group
1134 * to make a good selection
1136 ret = ext4_mb_init_group(sb, group);
1137 if (ret)
1138 return ret;
1142 * the buddy cache inode stores the block bitmap
1143 * and buddy information in consecutive blocks.
1144 * So for each group we need two blocks.
1146 block = group * 2;
1147 pnum = block / blocks_per_page;
1148 poff = block % blocks_per_page;
1150 /* we could use find_or_create_page(), but it locks page
1151 * what we'd like to avoid in fast path ... */
1152 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1153 if (page == NULL || !PageUptodate(page)) {
1154 if (page)
1156 * drop the page reference and try
1157 * to get the page with lock. If we
1158 * are not uptodate that implies
1159 * somebody just created the page but
1160 * is yet to initialize the same. So
1161 * wait for it to initialize.
1163 page_cache_release(page);
1164 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1165 if (page) {
1166 BUG_ON(page->mapping != inode->i_mapping);
1167 if (!PageUptodate(page)) {
1168 ret = ext4_mb_init_cache(page, NULL);
1169 if (ret) {
1170 unlock_page(page);
1171 goto err;
1173 mb_cmp_bitmaps(e4b, page_address(page) +
1174 (poff * sb->s_blocksize));
1176 unlock_page(page);
1179 if (page == NULL) {
1180 ret = -ENOMEM;
1181 goto err;
1183 if (!PageUptodate(page)) {
1184 ret = -EIO;
1185 goto err;
1188 /* Pages marked accessed already */
1189 e4b->bd_bitmap_page = page;
1190 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1192 block++;
1193 pnum = block / blocks_per_page;
1194 poff = block % blocks_per_page;
1196 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1197 if (page == NULL || !PageUptodate(page)) {
1198 if (page)
1199 page_cache_release(page);
1200 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1201 if (page) {
1202 BUG_ON(page->mapping != inode->i_mapping);
1203 if (!PageUptodate(page)) {
1204 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1205 if (ret) {
1206 unlock_page(page);
1207 goto err;
1210 unlock_page(page);
1213 if (page == NULL) {
1214 ret = -ENOMEM;
1215 goto err;
1217 if (!PageUptodate(page)) {
1218 ret = -EIO;
1219 goto err;
1222 /* Pages marked accessed already */
1223 e4b->bd_buddy_page = page;
1224 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1226 BUG_ON(e4b->bd_bitmap_page == NULL);
1227 BUG_ON(e4b->bd_buddy_page == NULL);
1229 return 0;
1231 err:
1232 if (page)
1233 page_cache_release(page);
1234 if (e4b->bd_bitmap_page)
1235 page_cache_release(e4b->bd_bitmap_page);
1236 if (e4b->bd_buddy_page)
1237 page_cache_release(e4b->bd_buddy_page);
1238 e4b->bd_buddy = NULL;
1239 e4b->bd_bitmap = NULL;
1240 return ret;
1243 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1245 if (e4b->bd_bitmap_page)
1246 page_cache_release(e4b->bd_bitmap_page);
1247 if (e4b->bd_buddy_page)
1248 page_cache_release(e4b->bd_buddy_page);
1252 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1254 int order = 1;
1255 void *bb;
1257 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1258 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1260 bb = e4b->bd_buddy;
1261 while (order <= e4b->bd_blkbits + 1) {
1262 block = block >> 1;
1263 if (!mb_test_bit(block, bb)) {
1264 /* this block is part of buddy of order 'order' */
1265 return order;
1267 bb += 1 << (e4b->bd_blkbits - order);
1268 order++;
1270 return 0;
1273 static void mb_clear_bits(void *bm, int cur, int len)
1275 __u32 *addr;
1277 len = cur + len;
1278 while (cur < len) {
1279 if ((cur & 31) == 0 && (len - cur) >= 32) {
1280 /* fast path: clear whole word at once */
1281 addr = bm + (cur >> 3);
1282 *addr = 0;
1283 cur += 32;
1284 continue;
1286 mb_clear_bit(cur, bm);
1287 cur++;
1291 /* clear bits in given range
1292 * will return first found zero bit if any, -1 otherwise
1294 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1296 __u32 *addr;
1297 int zero_bit = -1;
1299 len = cur + len;
1300 while (cur < len) {
1301 if ((cur & 31) == 0 && (len - cur) >= 32) {
1302 /* fast path: clear whole word at once */
1303 addr = bm + (cur >> 3);
1304 if (*addr != (__u32)(-1) && zero_bit == -1)
1305 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1306 *addr = 0;
1307 cur += 32;
1308 continue;
1310 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1311 zero_bit = cur;
1312 cur++;
1315 return zero_bit;
1318 void ext4_set_bits(void *bm, int cur, int len)
1320 __u32 *addr;
1322 len = cur + len;
1323 while (cur < len) {
1324 if ((cur & 31) == 0 && (len - cur) >= 32) {
1325 /* fast path: set whole word at once */
1326 addr = bm + (cur >> 3);
1327 *addr = 0xffffffff;
1328 cur += 32;
1329 continue;
1331 mb_set_bit(cur, bm);
1332 cur++;
1337 * _________________________________________________________________ */
1339 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1341 if (mb_test_bit(*bit + side, bitmap)) {
1342 mb_clear_bit(*bit, bitmap);
1343 (*bit) -= side;
1344 return 1;
1346 else {
1347 (*bit) += side;
1348 mb_set_bit(*bit, bitmap);
1349 return -1;
1353 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1355 int max;
1356 int order = 1;
1357 void *buddy = mb_find_buddy(e4b, order, &max);
1359 while (buddy) {
1360 void *buddy2;
1362 /* Bits in range [first; last] are known to be set since
1363 * corresponding blocks were allocated. Bits in range
1364 * (first; last) will stay set because they form buddies on
1365 * upper layer. We just deal with borders if they don't
1366 * align with upper layer and then go up.
1367 * Releasing entire group is all about clearing
1368 * single bit of highest order buddy.
1371 /* Example:
1372 * ---------------------------------
1373 * | 1 | 1 | 1 | 1 |
1374 * ---------------------------------
1375 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1376 * ---------------------------------
1377 * 0 1 2 3 4 5 6 7
1378 * \_____________________/
1380 * Neither [1] nor [6] is aligned to above layer.
1381 * Left neighbour [0] is free, so mark it busy,
1382 * decrease bb_counters and extend range to
1383 * [0; 6]
1384 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1385 * mark [6] free, increase bb_counters and shrink range to
1386 * [0; 5].
1387 * Then shift range to [0; 2], go up and do the same.
1391 if (first & 1)
1392 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1393 if (!(last & 1))
1394 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1395 if (first > last)
1396 break;
1397 order++;
1399 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1400 mb_clear_bits(buddy, first, last - first + 1);
1401 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1402 break;
1404 first >>= 1;
1405 last >>= 1;
1406 buddy = buddy2;
1410 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1411 int first, int count)
1413 int left_is_free = 0;
1414 int right_is_free = 0;
1415 int block;
1416 int last = first + count - 1;
1417 struct super_block *sb = e4b->bd_sb;
1419 if (WARN_ON(count == 0))
1420 return;
1421 BUG_ON(last >= (sb->s_blocksize << 3));
1422 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1423 /* Don't bother if the block group is corrupt. */
1424 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1425 return;
1427 mb_check_buddy(e4b);
1428 mb_free_blocks_double(inode, e4b, first, count);
1430 e4b->bd_info->bb_free += count;
1431 if (first < e4b->bd_info->bb_first_free)
1432 e4b->bd_info->bb_first_free = first;
1434 /* access memory sequentially: check left neighbour,
1435 * clear range and then check right neighbour
1437 if (first != 0)
1438 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1439 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1440 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1441 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1443 if (unlikely(block != -1)) {
1444 struct ext4_sb_info *sbi = EXT4_SB(sb);
1445 ext4_fsblk_t blocknr;
1447 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1448 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1449 ext4_grp_locked_error(sb, e4b->bd_group,
1450 inode ? inode->i_ino : 0,
1451 blocknr,
1452 "freeing already freed block "
1453 "(bit %u); block bitmap corrupt.",
1454 block);
1455 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1456 percpu_counter_sub(&sbi->s_freeclusters_counter,
1457 e4b->bd_info->bb_free);
1458 /* Mark the block group as corrupt. */
1459 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1460 &e4b->bd_info->bb_state);
1461 mb_regenerate_buddy(e4b);
1462 goto done;
1465 /* let's maintain fragments counter */
1466 if (left_is_free && right_is_free)
1467 e4b->bd_info->bb_fragments--;
1468 else if (!left_is_free && !right_is_free)
1469 e4b->bd_info->bb_fragments++;
1471 /* buddy[0] == bd_bitmap is a special case, so handle
1472 * it right away and let mb_buddy_mark_free stay free of
1473 * zero order checks.
1474 * Check if neighbours are to be coaleasced,
1475 * adjust bitmap bb_counters and borders appropriately.
1477 if (first & 1) {
1478 first += !left_is_free;
1479 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1481 if (!(last & 1)) {
1482 last -= !right_is_free;
1483 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1486 if (first <= last)
1487 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1489 done:
1490 mb_set_largest_free_order(sb, e4b->bd_info);
1491 mb_check_buddy(e4b);
1494 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1495 int needed, struct ext4_free_extent *ex)
1497 int next = block;
1498 int max, order;
1499 void *buddy;
1501 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1502 BUG_ON(ex == NULL);
1504 buddy = mb_find_buddy(e4b, 0, &max);
1505 BUG_ON(buddy == NULL);
1506 BUG_ON(block >= max);
1507 if (mb_test_bit(block, buddy)) {
1508 ex->fe_len = 0;
1509 ex->fe_start = 0;
1510 ex->fe_group = 0;
1511 return 0;
1514 /* find actual order */
1515 order = mb_find_order_for_block(e4b, block);
1516 block = block >> order;
1518 ex->fe_len = 1 << order;
1519 ex->fe_start = block << order;
1520 ex->fe_group = e4b->bd_group;
1522 /* calc difference from given start */
1523 next = next - ex->fe_start;
1524 ex->fe_len -= next;
1525 ex->fe_start += next;
1527 while (needed > ex->fe_len &&
1528 mb_find_buddy(e4b, order, &max)) {
1530 if (block + 1 >= max)
1531 break;
1533 next = (block + 1) * (1 << order);
1534 if (mb_test_bit(next, e4b->bd_bitmap))
1535 break;
1537 order = mb_find_order_for_block(e4b, next);
1539 block = next >> order;
1540 ex->fe_len += 1 << order;
1543 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1544 return ex->fe_len;
1547 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1549 int ord;
1550 int mlen = 0;
1551 int max = 0;
1552 int cur;
1553 int start = ex->fe_start;
1554 int len = ex->fe_len;
1555 unsigned ret = 0;
1556 int len0 = len;
1557 void *buddy;
1559 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1560 BUG_ON(e4b->bd_group != ex->fe_group);
1561 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1562 mb_check_buddy(e4b);
1563 mb_mark_used_double(e4b, start, len);
1565 e4b->bd_info->bb_free -= len;
1566 if (e4b->bd_info->bb_first_free == start)
1567 e4b->bd_info->bb_first_free += len;
1569 /* let's maintain fragments counter */
1570 if (start != 0)
1571 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1572 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1573 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1574 if (mlen && max)
1575 e4b->bd_info->bb_fragments++;
1576 else if (!mlen && !max)
1577 e4b->bd_info->bb_fragments--;
1579 /* let's maintain buddy itself */
1580 while (len) {
1581 ord = mb_find_order_for_block(e4b, start);
1583 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1584 /* the whole chunk may be allocated at once! */
1585 mlen = 1 << ord;
1586 buddy = mb_find_buddy(e4b, ord, &max);
1587 BUG_ON((start >> ord) >= max);
1588 mb_set_bit(start >> ord, buddy);
1589 e4b->bd_info->bb_counters[ord]--;
1590 start += mlen;
1591 len -= mlen;
1592 BUG_ON(len < 0);
1593 continue;
1596 /* store for history */
1597 if (ret == 0)
1598 ret = len | (ord << 16);
1600 /* we have to split large buddy */
1601 BUG_ON(ord <= 0);
1602 buddy = mb_find_buddy(e4b, ord, &max);
1603 mb_set_bit(start >> ord, buddy);
1604 e4b->bd_info->bb_counters[ord]--;
1606 ord--;
1607 cur = (start >> ord) & ~1U;
1608 buddy = mb_find_buddy(e4b, ord, &max);
1609 mb_clear_bit(cur, buddy);
1610 mb_clear_bit(cur + 1, buddy);
1611 e4b->bd_info->bb_counters[ord]++;
1612 e4b->bd_info->bb_counters[ord]++;
1614 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1616 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1617 mb_check_buddy(e4b);
1619 return ret;
1623 * Must be called under group lock!
1625 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1626 struct ext4_buddy *e4b)
1628 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1629 int ret;
1631 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1632 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1634 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1635 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1636 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1638 /* preallocation can change ac_b_ex, thus we store actually
1639 * allocated blocks for history */
1640 ac->ac_f_ex = ac->ac_b_ex;
1642 ac->ac_status = AC_STATUS_FOUND;
1643 ac->ac_tail = ret & 0xffff;
1644 ac->ac_buddy = ret >> 16;
1647 * take the page reference. We want the page to be pinned
1648 * so that we don't get a ext4_mb_init_cache_call for this
1649 * group until we update the bitmap. That would mean we
1650 * double allocate blocks. The reference is dropped
1651 * in ext4_mb_release_context
1653 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1654 get_page(ac->ac_bitmap_page);
1655 ac->ac_buddy_page = e4b->bd_buddy_page;
1656 get_page(ac->ac_buddy_page);
1657 /* store last allocated for subsequent stream allocation */
1658 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1659 spin_lock(&sbi->s_md_lock);
1660 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1661 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1662 spin_unlock(&sbi->s_md_lock);
1667 * regular allocator, for general purposes allocation
1670 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1671 struct ext4_buddy *e4b,
1672 int finish_group)
1674 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1675 struct ext4_free_extent *bex = &ac->ac_b_ex;
1676 struct ext4_free_extent *gex = &ac->ac_g_ex;
1677 struct ext4_free_extent ex;
1678 int max;
1680 if (ac->ac_status == AC_STATUS_FOUND)
1681 return;
1683 * We don't want to scan for a whole year
1685 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1686 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1687 ac->ac_status = AC_STATUS_BREAK;
1688 return;
1692 * Haven't found good chunk so far, let's continue
1694 if (bex->fe_len < gex->fe_len)
1695 return;
1697 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1698 && bex->fe_group == e4b->bd_group) {
1699 /* recheck chunk's availability - we don't know
1700 * when it was found (within this lock-unlock
1701 * period or not) */
1702 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1703 if (max >= gex->fe_len) {
1704 ext4_mb_use_best_found(ac, e4b);
1705 return;
1711 * The routine checks whether found extent is good enough. If it is,
1712 * then the extent gets marked used and flag is set to the context
1713 * to stop scanning. Otherwise, the extent is compared with the
1714 * previous found extent and if new one is better, then it's stored
1715 * in the context. Later, the best found extent will be used, if
1716 * mballoc can't find good enough extent.
1718 * FIXME: real allocation policy is to be designed yet!
1720 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1721 struct ext4_free_extent *ex,
1722 struct ext4_buddy *e4b)
1724 struct ext4_free_extent *bex = &ac->ac_b_ex;
1725 struct ext4_free_extent *gex = &ac->ac_g_ex;
1727 BUG_ON(ex->fe_len <= 0);
1728 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1729 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1730 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1732 ac->ac_found++;
1735 * The special case - take what you catch first
1737 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1738 *bex = *ex;
1739 ext4_mb_use_best_found(ac, e4b);
1740 return;
1744 * Let's check whether the chuck is good enough
1746 if (ex->fe_len == gex->fe_len) {
1747 *bex = *ex;
1748 ext4_mb_use_best_found(ac, e4b);
1749 return;
1753 * If this is first found extent, just store it in the context
1755 if (bex->fe_len == 0) {
1756 *bex = *ex;
1757 return;
1761 * If new found extent is better, store it in the context
1763 if (bex->fe_len < gex->fe_len) {
1764 /* if the request isn't satisfied, any found extent
1765 * larger than previous best one is better */
1766 if (ex->fe_len > bex->fe_len)
1767 *bex = *ex;
1768 } else if (ex->fe_len > gex->fe_len) {
1769 /* if the request is satisfied, then we try to find
1770 * an extent that still satisfy the request, but is
1771 * smaller than previous one */
1772 if (ex->fe_len < bex->fe_len)
1773 *bex = *ex;
1776 ext4_mb_check_limits(ac, e4b, 0);
1779 static noinline_for_stack
1780 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1781 struct ext4_buddy *e4b)
1783 struct ext4_free_extent ex = ac->ac_b_ex;
1784 ext4_group_t group = ex.fe_group;
1785 int max;
1786 int err;
1788 BUG_ON(ex.fe_len <= 0);
1789 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1790 if (err)
1791 return err;
1793 ext4_lock_group(ac->ac_sb, group);
1794 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1796 if (max > 0) {
1797 ac->ac_b_ex = ex;
1798 ext4_mb_use_best_found(ac, e4b);
1801 ext4_unlock_group(ac->ac_sb, group);
1802 ext4_mb_unload_buddy(e4b);
1804 return 0;
1807 static noinline_for_stack
1808 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1809 struct ext4_buddy *e4b)
1811 ext4_group_t group = ac->ac_g_ex.fe_group;
1812 int max;
1813 int err;
1814 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1815 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1816 struct ext4_free_extent ex;
1818 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1819 return 0;
1820 if (grp->bb_free == 0)
1821 return 0;
1823 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1824 if (err)
1825 return err;
1827 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1828 ext4_mb_unload_buddy(e4b);
1829 return 0;
1832 ext4_lock_group(ac->ac_sb, group);
1833 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1834 ac->ac_g_ex.fe_len, &ex);
1835 ex.fe_logical = 0xDEADFA11; /* debug value */
1837 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1838 ext4_fsblk_t start;
1840 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1841 ex.fe_start;
1842 /* use do_div to get remainder (would be 64-bit modulo) */
1843 if (do_div(start, sbi->s_stripe) == 0) {
1844 ac->ac_found++;
1845 ac->ac_b_ex = ex;
1846 ext4_mb_use_best_found(ac, e4b);
1848 } else if (max >= ac->ac_g_ex.fe_len) {
1849 BUG_ON(ex.fe_len <= 0);
1850 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1851 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1852 ac->ac_found++;
1853 ac->ac_b_ex = ex;
1854 ext4_mb_use_best_found(ac, e4b);
1855 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1856 /* Sometimes, caller may want to merge even small
1857 * number of blocks to an existing extent */
1858 BUG_ON(ex.fe_len <= 0);
1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1861 ac->ac_found++;
1862 ac->ac_b_ex = ex;
1863 ext4_mb_use_best_found(ac, e4b);
1865 ext4_unlock_group(ac->ac_sb, group);
1866 ext4_mb_unload_buddy(e4b);
1868 return 0;
1872 * The routine scans buddy structures (not bitmap!) from given order
1873 * to max order and tries to find big enough chunk to satisfy the req
1875 static noinline_for_stack
1876 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1877 struct ext4_buddy *e4b)
1879 struct super_block *sb = ac->ac_sb;
1880 struct ext4_group_info *grp = e4b->bd_info;
1881 void *buddy;
1882 int i;
1883 int k;
1884 int max;
1886 BUG_ON(ac->ac_2order <= 0);
1887 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1888 if (grp->bb_counters[i] == 0)
1889 continue;
1891 buddy = mb_find_buddy(e4b, i, &max);
1892 BUG_ON(buddy == NULL);
1894 k = mb_find_next_zero_bit(buddy, max, 0);
1895 BUG_ON(k >= max);
1897 ac->ac_found++;
1899 ac->ac_b_ex.fe_len = 1 << i;
1900 ac->ac_b_ex.fe_start = k << i;
1901 ac->ac_b_ex.fe_group = e4b->bd_group;
1903 ext4_mb_use_best_found(ac, e4b);
1905 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1907 if (EXT4_SB(sb)->s_mb_stats)
1908 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1910 break;
1915 * The routine scans the group and measures all found extents.
1916 * In order to optimize scanning, caller must pass number of
1917 * free blocks in the group, so the routine can know upper limit.
1919 static noinline_for_stack
1920 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1921 struct ext4_buddy *e4b)
1923 struct super_block *sb = ac->ac_sb;
1924 void *bitmap = e4b->bd_bitmap;
1925 struct ext4_free_extent ex;
1926 int i;
1927 int free;
1929 free = e4b->bd_info->bb_free;
1930 BUG_ON(free <= 0);
1932 i = e4b->bd_info->bb_first_free;
1934 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1935 i = mb_find_next_zero_bit(bitmap,
1936 EXT4_CLUSTERS_PER_GROUP(sb), i);
1937 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1939 * IF we have corrupt bitmap, we won't find any
1940 * free blocks even though group info says we
1941 * we have free blocks
1943 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1944 "%d free clusters as per "
1945 "group info. But bitmap says 0",
1946 free);
1947 break;
1950 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1951 BUG_ON(ex.fe_len <= 0);
1952 if (free < ex.fe_len) {
1953 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1954 "%d free clusters as per "
1955 "group info. But got %d blocks",
1956 free, ex.fe_len);
1958 * The number of free blocks differs. This mostly
1959 * indicate that the bitmap is corrupt. So exit
1960 * without claiming the space.
1962 break;
1964 ex.fe_logical = 0xDEADC0DE; /* debug value */
1965 ext4_mb_measure_extent(ac, &ex, e4b);
1967 i += ex.fe_len;
1968 free -= ex.fe_len;
1971 ext4_mb_check_limits(ac, e4b, 1);
1975 * This is a special case for storages like raid5
1976 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1978 static noinline_for_stack
1979 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1980 struct ext4_buddy *e4b)
1982 struct super_block *sb = ac->ac_sb;
1983 struct ext4_sb_info *sbi = EXT4_SB(sb);
1984 void *bitmap = e4b->bd_bitmap;
1985 struct ext4_free_extent ex;
1986 ext4_fsblk_t first_group_block;
1987 ext4_fsblk_t a;
1988 ext4_grpblk_t i;
1989 int max;
1991 BUG_ON(sbi->s_stripe == 0);
1993 /* find first stripe-aligned block in group */
1994 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1996 a = first_group_block + sbi->s_stripe - 1;
1997 do_div(a, sbi->s_stripe);
1998 i = (a * sbi->s_stripe) - first_group_block;
2000 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2001 if (!mb_test_bit(i, bitmap)) {
2002 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2003 if (max >= sbi->s_stripe) {
2004 ac->ac_found++;
2005 ex.fe_logical = 0xDEADF00D; /* debug value */
2006 ac->ac_b_ex = ex;
2007 ext4_mb_use_best_found(ac, e4b);
2008 break;
2011 i += sbi->s_stripe;
2016 * This is now called BEFORE we load the buddy bitmap.
2017 * Returns either 1 or 0 indicating that the group is either suitable
2018 * for the allocation or not. In addition it can also return negative
2019 * error code when something goes wrong.
2021 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2022 ext4_group_t group, int cr)
2024 unsigned free, fragments;
2025 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2026 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2028 BUG_ON(cr < 0 || cr >= 4);
2030 free = grp->bb_free;
2031 if (free == 0)
2032 return 0;
2033 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2034 return 0;
2036 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2037 return 0;
2039 /* We only do this if the grp has never been initialized */
2040 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2041 int ret = ext4_mb_init_group(ac->ac_sb, group);
2042 if (ret)
2043 return ret;
2046 fragments = grp->bb_fragments;
2047 if (fragments == 0)
2048 return 0;
2050 switch (cr) {
2051 case 0:
2052 BUG_ON(ac->ac_2order == 0);
2054 /* Avoid using the first bg of a flexgroup for data files */
2055 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2056 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2057 ((group % flex_size) == 0))
2058 return 0;
2060 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2061 (free / fragments) >= ac->ac_g_ex.fe_len)
2062 return 1;
2064 if (grp->bb_largest_free_order < ac->ac_2order)
2065 return 0;
2067 return 1;
2068 case 1:
2069 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2070 return 1;
2071 break;
2072 case 2:
2073 if (free >= ac->ac_g_ex.fe_len)
2074 return 1;
2075 break;
2076 case 3:
2077 return 1;
2078 default:
2079 BUG();
2082 return 0;
2085 static noinline_for_stack int
2086 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2088 ext4_group_t ngroups, group, i;
2089 int cr;
2090 int err = 0, first_err = 0;
2091 struct ext4_sb_info *sbi;
2092 struct super_block *sb;
2093 struct ext4_buddy e4b;
2095 sb = ac->ac_sb;
2096 sbi = EXT4_SB(sb);
2097 ngroups = ext4_get_groups_count(sb);
2098 /* non-extent files are limited to low blocks/groups */
2099 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2100 ngroups = sbi->s_blockfile_groups;
2102 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2104 /* first, try the goal */
2105 err = ext4_mb_find_by_goal(ac, &e4b);
2106 if (err || ac->ac_status == AC_STATUS_FOUND)
2107 goto out;
2109 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2110 goto out;
2113 * ac->ac2_order is set only if the fe_len is a power of 2
2114 * if ac2_order is set we also set criteria to 0 so that we
2115 * try exact allocation using buddy.
2117 i = fls(ac->ac_g_ex.fe_len);
2118 ac->ac_2order = 0;
2120 * We search using buddy data only if the order of the request
2121 * is greater than equal to the sbi_s_mb_order2_reqs
2122 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2124 if (i >= sbi->s_mb_order2_reqs) {
2126 * This should tell if fe_len is exactly power of 2
2128 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2129 ac->ac_2order = i - 1;
2132 /* if stream allocation is enabled, use global goal */
2133 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2134 /* TBD: may be hot point */
2135 spin_lock(&sbi->s_md_lock);
2136 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2137 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2138 spin_unlock(&sbi->s_md_lock);
2141 /* Let's just scan groups to find more-less suitable blocks */
2142 cr = ac->ac_2order ? 0 : 1;
2144 * cr == 0 try to get exact allocation,
2145 * cr == 3 try to get anything
2147 repeat:
2148 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2149 ac->ac_criteria = cr;
2151 * searching for the right group start
2152 * from the goal value specified
2154 group = ac->ac_g_ex.fe_group;
2156 for (i = 0; i < ngroups; group++, i++) {
2157 int ret = 0;
2158 cond_resched();
2160 * Artificially restricted ngroups for non-extent
2161 * files makes group > ngroups possible on first loop.
2163 if (group >= ngroups)
2164 group = 0;
2166 /* This now checks without needing the buddy page */
2167 ret = ext4_mb_good_group(ac, group, cr);
2168 if (ret <= 0) {
2169 if (!first_err)
2170 first_err = ret;
2171 continue;
2174 err = ext4_mb_load_buddy(sb, group, &e4b);
2175 if (err)
2176 goto out;
2178 ext4_lock_group(sb, group);
2181 * We need to check again after locking the
2182 * block group
2184 ret = ext4_mb_good_group(ac, group, cr);
2185 if (ret <= 0) {
2186 ext4_unlock_group(sb, group);
2187 ext4_mb_unload_buddy(&e4b);
2188 if (!first_err)
2189 first_err = ret;
2190 continue;
2193 ac->ac_groups_scanned++;
2194 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2195 ext4_mb_simple_scan_group(ac, &e4b);
2196 else if (cr == 1 && sbi->s_stripe &&
2197 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2198 ext4_mb_scan_aligned(ac, &e4b);
2199 else
2200 ext4_mb_complex_scan_group(ac, &e4b);
2202 ext4_unlock_group(sb, group);
2203 ext4_mb_unload_buddy(&e4b);
2205 if (ac->ac_status != AC_STATUS_CONTINUE)
2206 break;
2210 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2211 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2213 * We've been searching too long. Let's try to allocate
2214 * the best chunk we've found so far
2217 ext4_mb_try_best_found(ac, &e4b);
2218 if (ac->ac_status != AC_STATUS_FOUND) {
2220 * Someone more lucky has already allocated it.
2221 * The only thing we can do is just take first
2222 * found block(s)
2223 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2225 ac->ac_b_ex.fe_group = 0;
2226 ac->ac_b_ex.fe_start = 0;
2227 ac->ac_b_ex.fe_len = 0;
2228 ac->ac_status = AC_STATUS_CONTINUE;
2229 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2230 cr = 3;
2231 atomic_inc(&sbi->s_mb_lost_chunks);
2232 goto repeat;
2235 out:
2236 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2237 err = first_err;
2238 return err;
2241 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2243 struct super_block *sb = seq->private;
2244 ext4_group_t group;
2246 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2247 return NULL;
2248 group = *pos + 1;
2249 return (void *) ((unsigned long) group);
2252 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2254 struct super_block *sb = seq->private;
2255 ext4_group_t group;
2257 ++*pos;
2258 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2259 return NULL;
2260 group = *pos + 1;
2261 return (void *) ((unsigned long) group);
2264 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2266 struct super_block *sb = seq->private;
2267 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2268 int i;
2269 int err, buddy_loaded = 0;
2270 struct ext4_buddy e4b;
2271 struct ext4_group_info *grinfo;
2272 struct sg {
2273 struct ext4_group_info info;
2274 ext4_grpblk_t counters[16];
2275 } sg;
2277 group--;
2278 if (group == 0)
2279 seq_puts(seq, "#group: free frags first ["
2280 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2281 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]");
2283 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2284 sizeof(struct ext4_group_info);
2285 grinfo = ext4_get_group_info(sb, group);
2286 /* Load the group info in memory only if not already loaded. */
2287 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2288 err = ext4_mb_load_buddy(sb, group, &e4b);
2289 if (err) {
2290 seq_printf(seq, "#%-5u: I/O error\n", group);
2291 return 0;
2293 buddy_loaded = 1;
2296 memcpy(&sg, ext4_get_group_info(sb, group), i);
2298 if (buddy_loaded)
2299 ext4_mb_unload_buddy(&e4b);
2301 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2302 sg.info.bb_fragments, sg.info.bb_first_free);
2303 for (i = 0; i <= 13; i++)
2304 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2305 sg.info.bb_counters[i] : 0);
2306 seq_printf(seq, " ]\n");
2308 return 0;
2311 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2315 static const struct seq_operations ext4_mb_seq_groups_ops = {
2316 .start = ext4_mb_seq_groups_start,
2317 .next = ext4_mb_seq_groups_next,
2318 .stop = ext4_mb_seq_groups_stop,
2319 .show = ext4_mb_seq_groups_show,
2322 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2324 struct super_block *sb = PDE_DATA(inode);
2325 int rc;
2327 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2328 if (rc == 0) {
2329 struct seq_file *m = file->private_data;
2330 m->private = sb;
2332 return rc;
2336 static const struct file_operations ext4_mb_seq_groups_fops = {
2337 .owner = THIS_MODULE,
2338 .open = ext4_mb_seq_groups_open,
2339 .read = seq_read,
2340 .llseek = seq_lseek,
2341 .release = seq_release,
2344 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2346 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2347 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2349 BUG_ON(!cachep);
2350 return cachep;
2354 * Allocate the top-level s_group_info array for the specified number
2355 * of groups
2357 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2359 struct ext4_sb_info *sbi = EXT4_SB(sb);
2360 unsigned size;
2361 struct ext4_group_info ***new_groupinfo;
2363 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2364 EXT4_DESC_PER_BLOCK_BITS(sb);
2365 if (size <= sbi->s_group_info_size)
2366 return 0;
2368 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2369 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2370 if (!new_groupinfo) {
2371 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2372 return -ENOMEM;
2374 if (sbi->s_group_info) {
2375 memcpy(new_groupinfo, sbi->s_group_info,
2376 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2377 kvfree(sbi->s_group_info);
2379 sbi->s_group_info = new_groupinfo;
2380 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2381 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2382 sbi->s_group_info_size);
2383 return 0;
2386 /* Create and initialize ext4_group_info data for the given group. */
2387 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2388 struct ext4_group_desc *desc)
2390 int i;
2391 int metalen = 0;
2392 struct ext4_sb_info *sbi = EXT4_SB(sb);
2393 struct ext4_group_info **meta_group_info;
2394 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2397 * First check if this group is the first of a reserved block.
2398 * If it's true, we have to allocate a new table of pointers
2399 * to ext4_group_info structures
2401 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2402 metalen = sizeof(*meta_group_info) <<
2403 EXT4_DESC_PER_BLOCK_BITS(sb);
2404 meta_group_info = kmalloc(metalen, GFP_NOFS);
2405 if (meta_group_info == NULL) {
2406 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2407 "for a buddy group");
2408 goto exit_meta_group_info;
2410 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2411 meta_group_info;
2414 meta_group_info =
2415 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2416 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2418 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2419 if (meta_group_info[i] == NULL) {
2420 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2421 goto exit_group_info;
2423 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2424 &(meta_group_info[i]->bb_state));
2427 * initialize bb_free to be able to skip
2428 * empty groups without initialization
2430 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2431 meta_group_info[i]->bb_free =
2432 ext4_free_clusters_after_init(sb, group, desc);
2433 } else {
2434 meta_group_info[i]->bb_free =
2435 ext4_free_group_clusters(sb, desc);
2438 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2439 init_rwsem(&meta_group_info[i]->alloc_sem);
2440 meta_group_info[i]->bb_free_root = RB_ROOT;
2441 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2443 #ifdef DOUBLE_CHECK
2445 struct buffer_head *bh;
2446 meta_group_info[i]->bb_bitmap =
2447 kmalloc(sb->s_blocksize, GFP_NOFS);
2448 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2449 bh = ext4_read_block_bitmap(sb, group);
2450 BUG_ON(bh == NULL);
2451 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2452 sb->s_blocksize);
2453 put_bh(bh);
2455 #endif
2457 return 0;
2459 exit_group_info:
2460 /* If a meta_group_info table has been allocated, release it now */
2461 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2462 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2463 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2465 exit_meta_group_info:
2466 return -ENOMEM;
2467 } /* ext4_mb_add_groupinfo */
2469 static int ext4_mb_init_backend(struct super_block *sb)
2471 ext4_group_t ngroups = ext4_get_groups_count(sb);
2472 ext4_group_t i;
2473 struct ext4_sb_info *sbi = EXT4_SB(sb);
2474 int err;
2475 struct ext4_group_desc *desc;
2476 struct kmem_cache *cachep;
2478 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2479 if (err)
2480 return err;
2482 sbi->s_buddy_cache = new_inode(sb);
2483 if (sbi->s_buddy_cache == NULL) {
2484 ext4_msg(sb, KERN_ERR, "can't get new inode");
2485 goto err_freesgi;
2487 /* To avoid potentially colliding with an valid on-disk inode number,
2488 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2489 * not in the inode hash, so it should never be found by iget(), but
2490 * this will avoid confusion if it ever shows up during debugging. */
2491 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2492 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2493 for (i = 0; i < ngroups; i++) {
2494 desc = ext4_get_group_desc(sb, i, NULL);
2495 if (desc == NULL) {
2496 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2497 goto err_freebuddy;
2499 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2500 goto err_freebuddy;
2503 return 0;
2505 err_freebuddy:
2506 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2507 while (i-- > 0)
2508 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2509 i = sbi->s_group_info_size;
2510 while (i-- > 0)
2511 kfree(sbi->s_group_info[i]);
2512 iput(sbi->s_buddy_cache);
2513 err_freesgi:
2514 kvfree(sbi->s_group_info);
2515 return -ENOMEM;
2518 static void ext4_groupinfo_destroy_slabs(void)
2520 int i;
2522 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2523 if (ext4_groupinfo_caches[i])
2524 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2525 ext4_groupinfo_caches[i] = NULL;
2529 static int ext4_groupinfo_create_slab(size_t size)
2531 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2532 int slab_size;
2533 int blocksize_bits = order_base_2(size);
2534 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2535 struct kmem_cache *cachep;
2537 if (cache_index >= NR_GRPINFO_CACHES)
2538 return -EINVAL;
2540 if (unlikely(cache_index < 0))
2541 cache_index = 0;
2543 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2544 if (ext4_groupinfo_caches[cache_index]) {
2545 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2546 return 0; /* Already created */
2549 slab_size = offsetof(struct ext4_group_info,
2550 bb_counters[blocksize_bits + 2]);
2552 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2553 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2554 NULL);
2556 ext4_groupinfo_caches[cache_index] = cachep;
2558 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2559 if (!cachep) {
2560 printk(KERN_EMERG
2561 "EXT4-fs: no memory for groupinfo slab cache\n");
2562 return -ENOMEM;
2565 return 0;
2568 int ext4_mb_init(struct super_block *sb)
2570 struct ext4_sb_info *sbi = EXT4_SB(sb);
2571 unsigned i, j;
2572 unsigned offset;
2573 unsigned max;
2574 int ret;
2576 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2578 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2579 if (sbi->s_mb_offsets == NULL) {
2580 ret = -ENOMEM;
2581 goto out;
2584 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2585 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2586 if (sbi->s_mb_maxs == NULL) {
2587 ret = -ENOMEM;
2588 goto out;
2591 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2592 if (ret < 0)
2593 goto out;
2595 /* order 0 is regular bitmap */
2596 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2597 sbi->s_mb_offsets[0] = 0;
2599 i = 1;
2600 offset = 0;
2601 max = sb->s_blocksize << 2;
2602 do {
2603 sbi->s_mb_offsets[i] = offset;
2604 sbi->s_mb_maxs[i] = max;
2605 offset += 1 << (sb->s_blocksize_bits - i);
2606 max = max >> 1;
2607 i++;
2608 } while (i <= sb->s_blocksize_bits + 1);
2610 spin_lock_init(&sbi->s_md_lock);
2611 spin_lock_init(&sbi->s_bal_lock);
2613 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2614 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2615 sbi->s_mb_stats = MB_DEFAULT_STATS;
2616 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2617 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2619 * The default group preallocation is 512, which for 4k block
2620 * sizes translates to 2 megabytes. However for bigalloc file
2621 * systems, this is probably too big (i.e, if the cluster size
2622 * is 1 megabyte, then group preallocation size becomes half a
2623 * gigabyte!). As a default, we will keep a two megabyte
2624 * group pralloc size for cluster sizes up to 64k, and after
2625 * that, we will force a minimum group preallocation size of
2626 * 32 clusters. This translates to 8 megs when the cluster
2627 * size is 256k, and 32 megs when the cluster size is 1 meg,
2628 * which seems reasonable as a default.
2630 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2631 sbi->s_cluster_bits, 32);
2633 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2634 * to the lowest multiple of s_stripe which is bigger than
2635 * the s_mb_group_prealloc as determined above. We want
2636 * the preallocation size to be an exact multiple of the
2637 * RAID stripe size so that preallocations don't fragment
2638 * the stripes.
2640 if (sbi->s_stripe > 1) {
2641 sbi->s_mb_group_prealloc = roundup(
2642 sbi->s_mb_group_prealloc, sbi->s_stripe);
2645 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2646 if (sbi->s_locality_groups == NULL) {
2647 ret = -ENOMEM;
2648 goto out;
2650 for_each_possible_cpu(i) {
2651 struct ext4_locality_group *lg;
2652 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2653 mutex_init(&lg->lg_mutex);
2654 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2655 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2656 spin_lock_init(&lg->lg_prealloc_lock);
2659 /* init file for buddy data */
2660 ret = ext4_mb_init_backend(sb);
2661 if (ret != 0)
2662 goto out_free_locality_groups;
2664 if (sbi->s_proc)
2665 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2666 &ext4_mb_seq_groups_fops, sb);
2668 return 0;
2670 out_free_locality_groups:
2671 free_percpu(sbi->s_locality_groups);
2672 sbi->s_locality_groups = NULL;
2673 out:
2674 kfree(sbi->s_mb_offsets);
2675 sbi->s_mb_offsets = NULL;
2676 kfree(sbi->s_mb_maxs);
2677 sbi->s_mb_maxs = NULL;
2678 return ret;
2681 /* need to called with the ext4 group lock held */
2682 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2684 struct ext4_prealloc_space *pa;
2685 struct list_head *cur, *tmp;
2686 int count = 0;
2688 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2689 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2690 list_del(&pa->pa_group_list);
2691 count++;
2692 kmem_cache_free(ext4_pspace_cachep, pa);
2694 if (count)
2695 mb_debug(1, "mballoc: %u PAs left\n", count);
2699 int ext4_mb_release(struct super_block *sb)
2701 ext4_group_t ngroups = ext4_get_groups_count(sb);
2702 ext4_group_t i;
2703 int num_meta_group_infos;
2704 struct ext4_group_info *grinfo;
2705 struct ext4_sb_info *sbi = EXT4_SB(sb);
2706 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2708 if (sbi->s_proc)
2709 remove_proc_entry("mb_groups", sbi->s_proc);
2711 if (sbi->s_group_info) {
2712 for (i = 0; i < ngroups; i++) {
2713 grinfo = ext4_get_group_info(sb, i);
2714 #ifdef DOUBLE_CHECK
2715 kfree(grinfo->bb_bitmap);
2716 #endif
2717 ext4_lock_group(sb, i);
2718 ext4_mb_cleanup_pa(grinfo);
2719 ext4_unlock_group(sb, i);
2720 kmem_cache_free(cachep, grinfo);
2722 num_meta_group_infos = (ngroups +
2723 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2724 EXT4_DESC_PER_BLOCK_BITS(sb);
2725 for (i = 0; i < num_meta_group_infos; i++)
2726 kfree(sbi->s_group_info[i]);
2727 kvfree(sbi->s_group_info);
2729 kfree(sbi->s_mb_offsets);
2730 kfree(sbi->s_mb_maxs);
2731 iput(sbi->s_buddy_cache);
2732 if (sbi->s_mb_stats) {
2733 ext4_msg(sb, KERN_INFO,
2734 "mballoc: %u blocks %u reqs (%u success)",
2735 atomic_read(&sbi->s_bal_allocated),
2736 atomic_read(&sbi->s_bal_reqs),
2737 atomic_read(&sbi->s_bal_success));
2738 ext4_msg(sb, KERN_INFO,
2739 "mballoc: %u extents scanned, %u goal hits, "
2740 "%u 2^N hits, %u breaks, %u lost",
2741 atomic_read(&sbi->s_bal_ex_scanned),
2742 atomic_read(&sbi->s_bal_goals),
2743 atomic_read(&sbi->s_bal_2orders),
2744 atomic_read(&sbi->s_bal_breaks),
2745 atomic_read(&sbi->s_mb_lost_chunks));
2746 ext4_msg(sb, KERN_INFO,
2747 "mballoc: %lu generated and it took %Lu",
2748 sbi->s_mb_buddies_generated,
2749 sbi->s_mb_generation_time);
2750 ext4_msg(sb, KERN_INFO,
2751 "mballoc: %u preallocated, %u discarded",
2752 atomic_read(&sbi->s_mb_preallocated),
2753 atomic_read(&sbi->s_mb_discarded));
2756 free_percpu(sbi->s_locality_groups);
2758 return 0;
2761 static inline int ext4_issue_discard(struct super_block *sb,
2762 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2764 ext4_fsblk_t discard_block;
2766 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2767 ext4_group_first_block_no(sb, block_group));
2768 count = EXT4_C2B(EXT4_SB(sb), count);
2769 trace_ext4_discard_blocks(sb,
2770 (unsigned long long) discard_block, count);
2771 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2775 * This function is called by the jbd2 layer once the commit has finished,
2776 * so we know we can free the blocks that were released with that commit.
2778 static void ext4_free_data_callback(struct super_block *sb,
2779 struct ext4_journal_cb_entry *jce,
2780 int rc)
2782 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2783 struct ext4_buddy e4b;
2784 struct ext4_group_info *db;
2785 int err, count = 0, count2 = 0;
2787 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2788 entry->efd_count, entry->efd_group, entry);
2790 if (test_opt(sb, DISCARD)) {
2791 err = ext4_issue_discard(sb, entry->efd_group,
2792 entry->efd_start_cluster,
2793 entry->efd_count);
2794 if (err && err != -EOPNOTSUPP)
2795 ext4_msg(sb, KERN_WARNING, "discard request in"
2796 " group:%d block:%d count:%d failed"
2797 " with %d", entry->efd_group,
2798 entry->efd_start_cluster,
2799 entry->efd_count, err);
2802 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2803 /* we expect to find existing buddy because it's pinned */
2804 BUG_ON(err != 0);
2807 db = e4b.bd_info;
2808 /* there are blocks to put in buddy to make them really free */
2809 count += entry->efd_count;
2810 count2++;
2811 ext4_lock_group(sb, entry->efd_group);
2812 /* Take it out of per group rb tree */
2813 rb_erase(&entry->efd_node, &(db->bb_free_root));
2814 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2817 * Clear the trimmed flag for the group so that the next
2818 * ext4_trim_fs can trim it.
2819 * If the volume is mounted with -o discard, online discard
2820 * is supported and the free blocks will be trimmed online.
2822 if (!test_opt(sb, DISCARD))
2823 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2825 if (!db->bb_free_root.rb_node) {
2826 /* No more items in the per group rb tree
2827 * balance refcounts from ext4_mb_free_metadata()
2829 page_cache_release(e4b.bd_buddy_page);
2830 page_cache_release(e4b.bd_bitmap_page);
2832 ext4_unlock_group(sb, entry->efd_group);
2833 kmem_cache_free(ext4_free_data_cachep, entry);
2834 ext4_mb_unload_buddy(&e4b);
2836 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2839 int __init ext4_init_mballoc(void)
2841 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2842 SLAB_RECLAIM_ACCOUNT);
2843 if (ext4_pspace_cachep == NULL)
2844 return -ENOMEM;
2846 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2847 SLAB_RECLAIM_ACCOUNT);
2848 if (ext4_ac_cachep == NULL) {
2849 kmem_cache_destroy(ext4_pspace_cachep);
2850 return -ENOMEM;
2853 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2854 SLAB_RECLAIM_ACCOUNT);
2855 if (ext4_free_data_cachep == NULL) {
2856 kmem_cache_destroy(ext4_pspace_cachep);
2857 kmem_cache_destroy(ext4_ac_cachep);
2858 return -ENOMEM;
2860 return 0;
2863 void ext4_exit_mballoc(void)
2866 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2867 * before destroying the slab cache.
2869 rcu_barrier();
2870 kmem_cache_destroy(ext4_pspace_cachep);
2871 kmem_cache_destroy(ext4_ac_cachep);
2872 kmem_cache_destroy(ext4_free_data_cachep);
2873 ext4_groupinfo_destroy_slabs();
2878 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2879 * Returns 0 if success or error code
2881 static noinline_for_stack int
2882 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2883 handle_t *handle, unsigned int reserv_clstrs)
2885 struct buffer_head *bitmap_bh = NULL;
2886 struct ext4_group_desc *gdp;
2887 struct buffer_head *gdp_bh;
2888 struct ext4_sb_info *sbi;
2889 struct super_block *sb;
2890 ext4_fsblk_t block;
2891 int err, len;
2893 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2894 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2896 sb = ac->ac_sb;
2897 sbi = EXT4_SB(sb);
2899 err = -EIO;
2900 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2901 if (!bitmap_bh)
2902 goto out_err;
2904 BUFFER_TRACE(bitmap_bh, "getting write access");
2905 err = ext4_journal_get_write_access(handle, bitmap_bh);
2906 if (err)
2907 goto out_err;
2909 err = -EIO;
2910 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2911 if (!gdp)
2912 goto out_err;
2914 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2915 ext4_free_group_clusters(sb, gdp));
2917 BUFFER_TRACE(gdp_bh, "get_write_access");
2918 err = ext4_journal_get_write_access(handle, gdp_bh);
2919 if (err)
2920 goto out_err;
2922 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2924 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2925 if (!ext4_data_block_valid(sbi, block, len)) {
2926 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2927 "fs metadata", block, block+len);
2928 /* File system mounted not to panic on error
2929 * Fix the bitmap and repeat the block allocation
2930 * We leak some of the blocks here.
2932 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2933 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2934 ac->ac_b_ex.fe_len);
2935 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2936 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2937 if (!err)
2938 err = -EAGAIN;
2939 goto out_err;
2942 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2943 #ifdef AGGRESSIVE_CHECK
2945 int i;
2946 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2947 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2948 bitmap_bh->b_data));
2951 #endif
2952 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2953 ac->ac_b_ex.fe_len);
2954 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2955 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2956 ext4_free_group_clusters_set(sb, gdp,
2957 ext4_free_clusters_after_init(sb,
2958 ac->ac_b_ex.fe_group, gdp));
2960 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2961 ext4_free_group_clusters_set(sb, gdp, len);
2962 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2963 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2965 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2966 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2968 * Now reduce the dirty block count also. Should not go negative
2970 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2971 /* release all the reserved blocks if non delalloc */
2972 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2973 reserv_clstrs);
2975 if (sbi->s_log_groups_per_flex) {
2976 ext4_group_t flex_group = ext4_flex_group(sbi,
2977 ac->ac_b_ex.fe_group);
2978 atomic64_sub(ac->ac_b_ex.fe_len,
2979 &sbi->s_flex_groups[flex_group].free_clusters);
2982 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2983 if (err)
2984 goto out_err;
2985 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2987 out_err:
2988 brelse(bitmap_bh);
2989 return err;
2993 * here we normalize request for locality group
2994 * Group request are normalized to s_mb_group_prealloc, which goes to
2995 * s_strip if we set the same via mount option.
2996 * s_mb_group_prealloc can be configured via
2997 * /sys/fs/ext4/<partition>/mb_group_prealloc
2999 * XXX: should we try to preallocate more than the group has now?
3001 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3003 struct super_block *sb = ac->ac_sb;
3004 struct ext4_locality_group *lg = ac->ac_lg;
3006 BUG_ON(lg == NULL);
3007 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3008 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3009 current->pid, ac->ac_g_ex.fe_len);
3013 * Normalization means making request better in terms of
3014 * size and alignment
3016 static noinline_for_stack void
3017 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3018 struct ext4_allocation_request *ar)
3020 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3021 int bsbits, max;
3022 ext4_lblk_t end;
3023 loff_t size, start_off;
3024 loff_t orig_size __maybe_unused;
3025 ext4_lblk_t start;
3026 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3027 struct ext4_prealloc_space *pa;
3029 /* do normalize only data requests, metadata requests
3030 do not need preallocation */
3031 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3032 return;
3034 /* sometime caller may want exact blocks */
3035 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3036 return;
3038 /* caller may indicate that preallocation isn't
3039 * required (it's a tail, for example) */
3040 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3041 return;
3043 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3044 ext4_mb_normalize_group_request(ac);
3045 return ;
3048 bsbits = ac->ac_sb->s_blocksize_bits;
3050 /* first, let's learn actual file size
3051 * given current request is allocated */
3052 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3053 size = size << bsbits;
3054 if (size < i_size_read(ac->ac_inode))
3055 size = i_size_read(ac->ac_inode);
3056 orig_size = size;
3058 /* max size of free chunks */
3059 max = 2 << bsbits;
3061 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3062 (req <= (size) || max <= (chunk_size))
3064 /* first, try to predict filesize */
3065 /* XXX: should this table be tunable? */
3066 start_off = 0;
3067 if (size <= 16 * 1024) {
3068 size = 16 * 1024;
3069 } else if (size <= 32 * 1024) {
3070 size = 32 * 1024;
3071 } else if (size <= 64 * 1024) {
3072 size = 64 * 1024;
3073 } else if (size <= 128 * 1024) {
3074 size = 128 * 1024;
3075 } else if (size <= 256 * 1024) {
3076 size = 256 * 1024;
3077 } else if (size <= 512 * 1024) {
3078 size = 512 * 1024;
3079 } else if (size <= 1024 * 1024) {
3080 size = 1024 * 1024;
3081 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3082 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3083 (21 - bsbits)) << 21;
3084 size = 2 * 1024 * 1024;
3085 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3086 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3087 (22 - bsbits)) << 22;
3088 size = 4 * 1024 * 1024;
3089 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3090 (8<<20)>>bsbits, max, 8 * 1024)) {
3091 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3092 (23 - bsbits)) << 23;
3093 size = 8 * 1024 * 1024;
3094 } else {
3095 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3096 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3097 ac->ac_o_ex.fe_len) << bsbits;
3099 size = size >> bsbits;
3100 start = start_off >> bsbits;
3102 /* don't cover already allocated blocks in selected range */
3103 if (ar->pleft && start <= ar->lleft) {
3104 size -= ar->lleft + 1 - start;
3105 start = ar->lleft + 1;
3107 if (ar->pright && start + size - 1 >= ar->lright)
3108 size -= start + size - ar->lright;
3110 end = start + size;
3112 /* check we don't cross already preallocated blocks */
3113 rcu_read_lock();
3114 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3115 ext4_lblk_t pa_end;
3117 if (pa->pa_deleted)
3118 continue;
3119 spin_lock(&pa->pa_lock);
3120 if (pa->pa_deleted) {
3121 spin_unlock(&pa->pa_lock);
3122 continue;
3125 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3126 pa->pa_len);
3128 /* PA must not overlap original request */
3129 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3130 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3132 /* skip PAs this normalized request doesn't overlap with */
3133 if (pa->pa_lstart >= end || pa_end <= start) {
3134 spin_unlock(&pa->pa_lock);
3135 continue;
3137 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3139 /* adjust start or end to be adjacent to this pa */
3140 if (pa_end <= ac->ac_o_ex.fe_logical) {
3141 BUG_ON(pa_end < start);
3142 start = pa_end;
3143 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3144 BUG_ON(pa->pa_lstart > end);
3145 end = pa->pa_lstart;
3147 spin_unlock(&pa->pa_lock);
3149 rcu_read_unlock();
3150 size = end - start;
3152 /* XXX: extra loop to check we really don't overlap preallocations */
3153 rcu_read_lock();
3154 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3155 ext4_lblk_t pa_end;
3157 spin_lock(&pa->pa_lock);
3158 if (pa->pa_deleted == 0) {
3159 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3160 pa->pa_len);
3161 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3163 spin_unlock(&pa->pa_lock);
3165 rcu_read_unlock();
3167 if (start + size <= ac->ac_o_ex.fe_logical &&
3168 start > ac->ac_o_ex.fe_logical) {
3169 ext4_msg(ac->ac_sb, KERN_ERR,
3170 "start %lu, size %lu, fe_logical %lu",
3171 (unsigned long) start, (unsigned long) size,
3172 (unsigned long) ac->ac_o_ex.fe_logical);
3173 BUG();
3175 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3177 /* now prepare goal request */
3179 /* XXX: is it better to align blocks WRT to logical
3180 * placement or satisfy big request as is */
3181 ac->ac_g_ex.fe_logical = start;
3182 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3184 /* define goal start in order to merge */
3185 if (ar->pright && (ar->lright == (start + size))) {
3186 /* merge to the right */
3187 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3188 &ac->ac_f_ex.fe_group,
3189 &ac->ac_f_ex.fe_start);
3190 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3192 if (ar->pleft && (ar->lleft + 1 == start)) {
3193 /* merge to the left */
3194 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3195 &ac->ac_f_ex.fe_group,
3196 &ac->ac_f_ex.fe_start);
3197 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3200 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3201 (unsigned) orig_size, (unsigned) start);
3204 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3206 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3208 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3209 atomic_inc(&sbi->s_bal_reqs);
3210 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3211 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3212 atomic_inc(&sbi->s_bal_success);
3213 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3214 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3215 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3216 atomic_inc(&sbi->s_bal_goals);
3217 if (ac->ac_found > sbi->s_mb_max_to_scan)
3218 atomic_inc(&sbi->s_bal_breaks);
3221 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3222 trace_ext4_mballoc_alloc(ac);
3223 else
3224 trace_ext4_mballoc_prealloc(ac);
3228 * Called on failure; free up any blocks from the inode PA for this
3229 * context. We don't need this for MB_GROUP_PA because we only change
3230 * pa_free in ext4_mb_release_context(), but on failure, we've already
3231 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3233 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3235 struct ext4_prealloc_space *pa = ac->ac_pa;
3236 struct ext4_buddy e4b;
3237 int err;
3239 if (pa == NULL) {
3240 if (ac->ac_f_ex.fe_len == 0)
3241 return;
3242 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3243 if (err) {
3245 * This should never happen since we pin the
3246 * pages in the ext4_allocation_context so
3247 * ext4_mb_load_buddy() should never fail.
3249 WARN(1, "mb_load_buddy failed (%d)", err);
3250 return;
3252 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3253 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3254 ac->ac_f_ex.fe_len);
3255 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3256 ext4_mb_unload_buddy(&e4b);
3257 return;
3259 if (pa->pa_type == MB_INODE_PA)
3260 pa->pa_free += ac->ac_b_ex.fe_len;
3264 * use blocks preallocated to inode
3266 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3267 struct ext4_prealloc_space *pa)
3269 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3270 ext4_fsblk_t start;
3271 ext4_fsblk_t end;
3272 int len;
3274 /* found preallocated blocks, use them */
3275 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3276 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3277 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3278 len = EXT4_NUM_B2C(sbi, end - start);
3279 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3280 &ac->ac_b_ex.fe_start);
3281 ac->ac_b_ex.fe_len = len;
3282 ac->ac_status = AC_STATUS_FOUND;
3283 ac->ac_pa = pa;
3285 BUG_ON(start < pa->pa_pstart);
3286 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3287 BUG_ON(pa->pa_free < len);
3288 pa->pa_free -= len;
3290 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3294 * use blocks preallocated to locality group
3296 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3297 struct ext4_prealloc_space *pa)
3299 unsigned int len = ac->ac_o_ex.fe_len;
3301 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3302 &ac->ac_b_ex.fe_group,
3303 &ac->ac_b_ex.fe_start);
3304 ac->ac_b_ex.fe_len = len;
3305 ac->ac_status = AC_STATUS_FOUND;
3306 ac->ac_pa = pa;
3308 /* we don't correct pa_pstart or pa_plen here to avoid
3309 * possible race when the group is being loaded concurrently
3310 * instead we correct pa later, after blocks are marked
3311 * in on-disk bitmap -- see ext4_mb_release_context()
3312 * Other CPUs are prevented from allocating from this pa by lg_mutex
3314 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3318 * Return the prealloc space that have minimal distance
3319 * from the goal block. @cpa is the prealloc
3320 * space that is having currently known minimal distance
3321 * from the goal block.
3323 static struct ext4_prealloc_space *
3324 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3325 struct ext4_prealloc_space *pa,
3326 struct ext4_prealloc_space *cpa)
3328 ext4_fsblk_t cur_distance, new_distance;
3330 if (cpa == NULL) {
3331 atomic_inc(&pa->pa_count);
3332 return pa;
3334 cur_distance = abs(goal_block - cpa->pa_pstart);
3335 new_distance = abs(goal_block - pa->pa_pstart);
3337 if (cur_distance <= new_distance)
3338 return cpa;
3340 /* drop the previous reference */
3341 atomic_dec(&cpa->pa_count);
3342 atomic_inc(&pa->pa_count);
3343 return pa;
3347 * search goal blocks in preallocated space
3349 static noinline_for_stack int
3350 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3352 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3353 int order, i;
3354 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3355 struct ext4_locality_group *lg;
3356 struct ext4_prealloc_space *pa, *cpa = NULL;
3357 ext4_fsblk_t goal_block;
3359 /* only data can be preallocated */
3360 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3361 return 0;
3363 /* first, try per-file preallocation */
3364 rcu_read_lock();
3365 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3367 /* all fields in this condition don't change,
3368 * so we can skip locking for them */
3369 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3370 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3371 EXT4_C2B(sbi, pa->pa_len)))
3372 continue;
3374 /* non-extent files can't have physical blocks past 2^32 */
3375 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3376 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3377 EXT4_MAX_BLOCK_FILE_PHYS))
3378 continue;
3380 /* found preallocated blocks, use them */
3381 spin_lock(&pa->pa_lock);
3382 if (pa->pa_deleted == 0 && pa->pa_free) {
3383 atomic_inc(&pa->pa_count);
3384 ext4_mb_use_inode_pa(ac, pa);
3385 spin_unlock(&pa->pa_lock);
3386 ac->ac_criteria = 10;
3387 rcu_read_unlock();
3388 return 1;
3390 spin_unlock(&pa->pa_lock);
3392 rcu_read_unlock();
3394 /* can we use group allocation? */
3395 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3396 return 0;
3398 /* inode may have no locality group for some reason */
3399 lg = ac->ac_lg;
3400 if (lg == NULL)
3401 return 0;
3402 order = fls(ac->ac_o_ex.fe_len) - 1;
3403 if (order > PREALLOC_TB_SIZE - 1)
3404 /* The max size of hash table is PREALLOC_TB_SIZE */
3405 order = PREALLOC_TB_SIZE - 1;
3407 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3409 * search for the prealloc space that is having
3410 * minimal distance from the goal block.
3412 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3413 rcu_read_lock();
3414 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3415 pa_inode_list) {
3416 spin_lock(&pa->pa_lock);
3417 if (pa->pa_deleted == 0 &&
3418 pa->pa_free >= ac->ac_o_ex.fe_len) {
3420 cpa = ext4_mb_check_group_pa(goal_block,
3421 pa, cpa);
3423 spin_unlock(&pa->pa_lock);
3425 rcu_read_unlock();
3427 if (cpa) {
3428 ext4_mb_use_group_pa(ac, cpa);
3429 ac->ac_criteria = 20;
3430 return 1;
3432 return 0;
3436 * the function goes through all block freed in the group
3437 * but not yet committed and marks them used in in-core bitmap.
3438 * buddy must be generated from this bitmap
3439 * Need to be called with the ext4 group lock held
3441 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3442 ext4_group_t group)
3444 struct rb_node *n;
3445 struct ext4_group_info *grp;
3446 struct ext4_free_data *entry;
3448 grp = ext4_get_group_info(sb, group);
3449 n = rb_first(&(grp->bb_free_root));
3451 while (n) {
3452 entry = rb_entry(n, struct ext4_free_data, efd_node);
3453 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3454 n = rb_next(n);
3456 return;
3460 * the function goes through all preallocation in this group and marks them
3461 * used in in-core bitmap. buddy must be generated from this bitmap
3462 * Need to be called with ext4 group lock held
3464 static noinline_for_stack
3465 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3466 ext4_group_t group)
3468 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3469 struct ext4_prealloc_space *pa;
3470 struct list_head *cur;
3471 ext4_group_t groupnr;
3472 ext4_grpblk_t start;
3473 int preallocated = 0;
3474 int len;
3476 /* all form of preallocation discards first load group,
3477 * so the only competing code is preallocation use.
3478 * we don't need any locking here
3479 * notice we do NOT ignore preallocations with pa_deleted
3480 * otherwise we could leave used blocks available for
3481 * allocation in buddy when concurrent ext4_mb_put_pa()
3482 * is dropping preallocation
3484 list_for_each(cur, &grp->bb_prealloc_list) {
3485 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3486 spin_lock(&pa->pa_lock);
3487 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3488 &groupnr, &start);
3489 len = pa->pa_len;
3490 spin_unlock(&pa->pa_lock);
3491 if (unlikely(len == 0))
3492 continue;
3493 BUG_ON(groupnr != group);
3494 ext4_set_bits(bitmap, start, len);
3495 preallocated += len;
3497 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3500 static void ext4_mb_pa_callback(struct rcu_head *head)
3502 struct ext4_prealloc_space *pa;
3503 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3505 BUG_ON(atomic_read(&pa->pa_count));
3506 BUG_ON(pa->pa_deleted == 0);
3507 kmem_cache_free(ext4_pspace_cachep, pa);
3511 * drops a reference to preallocated space descriptor
3512 * if this was the last reference and the space is consumed
3514 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3515 struct super_block *sb, struct ext4_prealloc_space *pa)
3517 ext4_group_t grp;
3518 ext4_fsblk_t grp_blk;
3520 /* in this short window concurrent discard can set pa_deleted */
3521 spin_lock(&pa->pa_lock);
3522 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3523 spin_unlock(&pa->pa_lock);
3524 return;
3527 if (pa->pa_deleted == 1) {
3528 spin_unlock(&pa->pa_lock);
3529 return;
3532 pa->pa_deleted = 1;
3533 spin_unlock(&pa->pa_lock);
3535 grp_blk = pa->pa_pstart;
3537 * If doing group-based preallocation, pa_pstart may be in the
3538 * next group when pa is used up
3540 if (pa->pa_type == MB_GROUP_PA)
3541 grp_blk--;
3543 grp = ext4_get_group_number(sb, grp_blk);
3546 * possible race:
3548 * P1 (buddy init) P2 (regular allocation)
3549 * find block B in PA
3550 * copy on-disk bitmap to buddy
3551 * mark B in on-disk bitmap
3552 * drop PA from group
3553 * mark all PAs in buddy
3555 * thus, P1 initializes buddy with B available. to prevent this
3556 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3557 * against that pair
3559 ext4_lock_group(sb, grp);
3560 list_del(&pa->pa_group_list);
3561 ext4_unlock_group(sb, grp);
3563 spin_lock(pa->pa_obj_lock);
3564 list_del_rcu(&pa->pa_inode_list);
3565 spin_unlock(pa->pa_obj_lock);
3567 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3571 * creates new preallocated space for given inode
3573 static noinline_for_stack int
3574 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3576 struct super_block *sb = ac->ac_sb;
3577 struct ext4_sb_info *sbi = EXT4_SB(sb);
3578 struct ext4_prealloc_space *pa;
3579 struct ext4_group_info *grp;
3580 struct ext4_inode_info *ei;
3582 /* preallocate only when found space is larger then requested */
3583 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3584 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3585 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3587 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3588 if (pa == NULL)
3589 return -ENOMEM;
3591 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3592 int winl;
3593 int wins;
3594 int win;
3595 int offs;
3597 /* we can't allocate as much as normalizer wants.
3598 * so, found space must get proper lstart
3599 * to cover original request */
3600 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3601 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3603 /* we're limited by original request in that
3604 * logical block must be covered any way
3605 * winl is window we can move our chunk within */
3606 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3608 /* also, we should cover whole original request */
3609 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3611 /* the smallest one defines real window */
3612 win = min(winl, wins);
3614 offs = ac->ac_o_ex.fe_logical %
3615 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3616 if (offs && offs < win)
3617 win = offs;
3619 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3620 EXT4_NUM_B2C(sbi, win);
3621 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3622 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3625 /* preallocation can change ac_b_ex, thus we store actually
3626 * allocated blocks for history */
3627 ac->ac_f_ex = ac->ac_b_ex;
3629 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3630 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3631 pa->pa_len = ac->ac_b_ex.fe_len;
3632 pa->pa_free = pa->pa_len;
3633 atomic_set(&pa->pa_count, 1);
3634 spin_lock_init(&pa->pa_lock);
3635 INIT_LIST_HEAD(&pa->pa_inode_list);
3636 INIT_LIST_HEAD(&pa->pa_group_list);
3637 pa->pa_deleted = 0;
3638 pa->pa_type = MB_INODE_PA;
3640 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3641 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3642 trace_ext4_mb_new_inode_pa(ac, pa);
3644 ext4_mb_use_inode_pa(ac, pa);
3645 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3647 ei = EXT4_I(ac->ac_inode);
3648 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3650 pa->pa_obj_lock = &ei->i_prealloc_lock;
3651 pa->pa_inode = ac->ac_inode;
3653 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3654 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3655 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3657 spin_lock(pa->pa_obj_lock);
3658 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3659 spin_unlock(pa->pa_obj_lock);
3661 return 0;
3665 * creates new preallocated space for locality group inodes belongs to
3667 static noinline_for_stack int
3668 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3670 struct super_block *sb = ac->ac_sb;
3671 struct ext4_locality_group *lg;
3672 struct ext4_prealloc_space *pa;
3673 struct ext4_group_info *grp;
3675 /* preallocate only when found space is larger then requested */
3676 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3677 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3678 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3680 BUG_ON(ext4_pspace_cachep == NULL);
3681 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3682 if (pa == NULL)
3683 return -ENOMEM;
3685 /* preallocation can change ac_b_ex, thus we store actually
3686 * allocated blocks for history */
3687 ac->ac_f_ex = ac->ac_b_ex;
3689 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3690 pa->pa_lstart = pa->pa_pstart;
3691 pa->pa_len = ac->ac_b_ex.fe_len;
3692 pa->pa_free = pa->pa_len;
3693 atomic_set(&pa->pa_count, 1);
3694 spin_lock_init(&pa->pa_lock);
3695 INIT_LIST_HEAD(&pa->pa_inode_list);
3696 INIT_LIST_HEAD(&pa->pa_group_list);
3697 pa->pa_deleted = 0;
3698 pa->pa_type = MB_GROUP_PA;
3700 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3701 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3702 trace_ext4_mb_new_group_pa(ac, pa);
3704 ext4_mb_use_group_pa(ac, pa);
3705 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3707 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3708 lg = ac->ac_lg;
3709 BUG_ON(lg == NULL);
3711 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3712 pa->pa_inode = NULL;
3714 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3715 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3716 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3719 * We will later add the new pa to the right bucket
3720 * after updating the pa_free in ext4_mb_release_context
3722 return 0;
3725 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3727 int err;
3729 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3730 err = ext4_mb_new_group_pa(ac);
3731 else
3732 err = ext4_mb_new_inode_pa(ac);
3733 return err;
3737 * finds all unused blocks in on-disk bitmap, frees them in
3738 * in-core bitmap and buddy.
3739 * @pa must be unlinked from inode and group lists, so that
3740 * nobody else can find/use it.
3741 * the caller MUST hold group/inode locks.
3742 * TODO: optimize the case when there are no in-core structures yet
3744 static noinline_for_stack int
3745 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3746 struct ext4_prealloc_space *pa)
3748 struct super_block *sb = e4b->bd_sb;
3749 struct ext4_sb_info *sbi = EXT4_SB(sb);
3750 unsigned int end;
3751 unsigned int next;
3752 ext4_group_t group;
3753 ext4_grpblk_t bit;
3754 unsigned long long grp_blk_start;
3755 int err = 0;
3756 int free = 0;
3758 BUG_ON(pa->pa_deleted == 0);
3759 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3760 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3761 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3762 end = bit + pa->pa_len;
3764 while (bit < end) {
3765 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3766 if (bit >= end)
3767 break;
3768 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3769 mb_debug(1, " free preallocated %u/%u in group %u\n",
3770 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3771 (unsigned) next - bit, (unsigned) group);
3772 free += next - bit;
3774 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3775 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3776 EXT4_C2B(sbi, bit)),
3777 next - bit);
3778 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3779 bit = next + 1;
3781 if (free != pa->pa_free) {
3782 ext4_msg(e4b->bd_sb, KERN_CRIT,
3783 "pa %p: logic %lu, phys. %lu, len %lu",
3784 pa, (unsigned long) pa->pa_lstart,
3785 (unsigned long) pa->pa_pstart,
3786 (unsigned long) pa->pa_len);
3787 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3788 free, pa->pa_free);
3790 * pa is already deleted so we use the value obtained
3791 * from the bitmap and continue.
3794 atomic_add(free, &sbi->s_mb_discarded);
3796 return err;
3799 static noinline_for_stack int
3800 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3801 struct ext4_prealloc_space *pa)
3803 struct super_block *sb = e4b->bd_sb;
3804 ext4_group_t group;
3805 ext4_grpblk_t bit;
3807 trace_ext4_mb_release_group_pa(sb, pa);
3808 BUG_ON(pa->pa_deleted == 0);
3809 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3810 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3811 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3812 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3813 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3815 return 0;
3819 * releases all preallocations in given group
3821 * first, we need to decide discard policy:
3822 * - when do we discard
3823 * 1) ENOSPC
3824 * - how many do we discard
3825 * 1) how many requested
3827 static noinline_for_stack int
3828 ext4_mb_discard_group_preallocations(struct super_block *sb,
3829 ext4_group_t group, int needed)
3831 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3832 struct buffer_head *bitmap_bh = NULL;
3833 struct ext4_prealloc_space *pa, *tmp;
3834 struct list_head list;
3835 struct ext4_buddy e4b;
3836 int err;
3837 int busy = 0;
3838 int free = 0;
3840 mb_debug(1, "discard preallocation for group %u\n", group);
3842 if (list_empty(&grp->bb_prealloc_list))
3843 return 0;
3845 bitmap_bh = ext4_read_block_bitmap(sb, group);
3846 if (bitmap_bh == NULL) {
3847 ext4_error(sb, "Error reading block bitmap for %u", group);
3848 return 0;
3851 err = ext4_mb_load_buddy(sb, group, &e4b);
3852 if (err) {
3853 ext4_error(sb, "Error loading buddy information for %u", group);
3854 put_bh(bitmap_bh);
3855 return 0;
3858 if (needed == 0)
3859 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3861 INIT_LIST_HEAD(&list);
3862 repeat:
3863 ext4_lock_group(sb, group);
3864 list_for_each_entry_safe(pa, tmp,
3865 &grp->bb_prealloc_list, pa_group_list) {
3866 spin_lock(&pa->pa_lock);
3867 if (atomic_read(&pa->pa_count)) {
3868 spin_unlock(&pa->pa_lock);
3869 busy = 1;
3870 continue;
3872 if (pa->pa_deleted) {
3873 spin_unlock(&pa->pa_lock);
3874 continue;
3877 /* seems this one can be freed ... */
3878 pa->pa_deleted = 1;
3880 /* we can trust pa_free ... */
3881 free += pa->pa_free;
3883 spin_unlock(&pa->pa_lock);
3885 list_del(&pa->pa_group_list);
3886 list_add(&pa->u.pa_tmp_list, &list);
3889 /* if we still need more blocks and some PAs were used, try again */
3890 if (free < needed && busy) {
3891 busy = 0;
3892 ext4_unlock_group(sb, group);
3893 cond_resched();
3894 goto repeat;
3897 /* found anything to free? */
3898 if (list_empty(&list)) {
3899 BUG_ON(free != 0);
3900 goto out;
3903 /* now free all selected PAs */
3904 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3906 /* remove from object (inode or locality group) */
3907 spin_lock(pa->pa_obj_lock);
3908 list_del_rcu(&pa->pa_inode_list);
3909 spin_unlock(pa->pa_obj_lock);
3911 if (pa->pa_type == MB_GROUP_PA)
3912 ext4_mb_release_group_pa(&e4b, pa);
3913 else
3914 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3916 list_del(&pa->u.pa_tmp_list);
3917 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3920 out:
3921 ext4_unlock_group(sb, group);
3922 ext4_mb_unload_buddy(&e4b);
3923 put_bh(bitmap_bh);
3924 return free;
3928 * releases all non-used preallocated blocks for given inode
3930 * It's important to discard preallocations under i_data_sem
3931 * We don't want another block to be served from the prealloc
3932 * space when we are discarding the inode prealloc space.
3934 * FIXME!! Make sure it is valid at all the call sites
3936 void ext4_discard_preallocations(struct inode *inode)
3938 struct ext4_inode_info *ei = EXT4_I(inode);
3939 struct super_block *sb = inode->i_sb;
3940 struct buffer_head *bitmap_bh = NULL;
3941 struct ext4_prealloc_space *pa, *tmp;
3942 ext4_group_t group = 0;
3943 struct list_head list;
3944 struct ext4_buddy e4b;
3945 int err;
3947 if (!S_ISREG(inode->i_mode)) {
3948 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3949 return;
3952 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3953 trace_ext4_discard_preallocations(inode);
3955 INIT_LIST_HEAD(&list);
3957 repeat:
3958 /* first, collect all pa's in the inode */
3959 spin_lock(&ei->i_prealloc_lock);
3960 while (!list_empty(&ei->i_prealloc_list)) {
3961 pa = list_entry(ei->i_prealloc_list.next,
3962 struct ext4_prealloc_space, pa_inode_list);
3963 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3964 spin_lock(&pa->pa_lock);
3965 if (atomic_read(&pa->pa_count)) {
3966 /* this shouldn't happen often - nobody should
3967 * use preallocation while we're discarding it */
3968 spin_unlock(&pa->pa_lock);
3969 spin_unlock(&ei->i_prealloc_lock);
3970 ext4_msg(sb, KERN_ERR,
3971 "uh-oh! used pa while discarding");
3972 WARN_ON(1);
3973 schedule_timeout_uninterruptible(HZ);
3974 goto repeat;
3977 if (pa->pa_deleted == 0) {
3978 pa->pa_deleted = 1;
3979 spin_unlock(&pa->pa_lock);
3980 list_del_rcu(&pa->pa_inode_list);
3981 list_add(&pa->u.pa_tmp_list, &list);
3982 continue;
3985 /* someone is deleting pa right now */
3986 spin_unlock(&pa->pa_lock);
3987 spin_unlock(&ei->i_prealloc_lock);
3989 /* we have to wait here because pa_deleted
3990 * doesn't mean pa is already unlinked from
3991 * the list. as we might be called from
3992 * ->clear_inode() the inode will get freed
3993 * and concurrent thread which is unlinking
3994 * pa from inode's list may access already
3995 * freed memory, bad-bad-bad */
3997 /* XXX: if this happens too often, we can
3998 * add a flag to force wait only in case
3999 * of ->clear_inode(), but not in case of
4000 * regular truncate */
4001 schedule_timeout_uninterruptible(HZ);
4002 goto repeat;
4004 spin_unlock(&ei->i_prealloc_lock);
4006 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4007 BUG_ON(pa->pa_type != MB_INODE_PA);
4008 group = ext4_get_group_number(sb, pa->pa_pstart);
4010 err = ext4_mb_load_buddy(sb, group, &e4b);
4011 if (err) {
4012 ext4_error(sb, "Error loading buddy information for %u",
4013 group);
4014 continue;
4017 bitmap_bh = ext4_read_block_bitmap(sb, group);
4018 if (bitmap_bh == NULL) {
4019 ext4_error(sb, "Error reading block bitmap for %u",
4020 group);
4021 ext4_mb_unload_buddy(&e4b);
4022 continue;
4025 ext4_lock_group(sb, group);
4026 list_del(&pa->pa_group_list);
4027 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4028 ext4_unlock_group(sb, group);
4030 ext4_mb_unload_buddy(&e4b);
4031 put_bh(bitmap_bh);
4033 list_del(&pa->u.pa_tmp_list);
4034 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4038 #ifdef CONFIG_EXT4_DEBUG
4039 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4041 struct super_block *sb = ac->ac_sb;
4042 ext4_group_t ngroups, i;
4044 if (!ext4_mballoc_debug ||
4045 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4046 return;
4048 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4049 " Allocation context details:");
4050 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4051 ac->ac_status, ac->ac_flags);
4052 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4053 "goal %lu/%lu/%lu@%lu, "
4054 "best %lu/%lu/%lu@%lu cr %d",
4055 (unsigned long)ac->ac_o_ex.fe_group,
4056 (unsigned long)ac->ac_o_ex.fe_start,
4057 (unsigned long)ac->ac_o_ex.fe_len,
4058 (unsigned long)ac->ac_o_ex.fe_logical,
4059 (unsigned long)ac->ac_g_ex.fe_group,
4060 (unsigned long)ac->ac_g_ex.fe_start,
4061 (unsigned long)ac->ac_g_ex.fe_len,
4062 (unsigned long)ac->ac_g_ex.fe_logical,
4063 (unsigned long)ac->ac_b_ex.fe_group,
4064 (unsigned long)ac->ac_b_ex.fe_start,
4065 (unsigned long)ac->ac_b_ex.fe_len,
4066 (unsigned long)ac->ac_b_ex.fe_logical,
4067 (int)ac->ac_criteria);
4068 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4069 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4070 ngroups = ext4_get_groups_count(sb);
4071 for (i = 0; i < ngroups; i++) {
4072 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4073 struct ext4_prealloc_space *pa;
4074 ext4_grpblk_t start;
4075 struct list_head *cur;
4076 ext4_lock_group(sb, i);
4077 list_for_each(cur, &grp->bb_prealloc_list) {
4078 pa = list_entry(cur, struct ext4_prealloc_space,
4079 pa_group_list);
4080 spin_lock(&pa->pa_lock);
4081 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4082 NULL, &start);
4083 spin_unlock(&pa->pa_lock);
4084 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4085 start, pa->pa_len);
4087 ext4_unlock_group(sb, i);
4089 if (grp->bb_free == 0)
4090 continue;
4091 printk(KERN_ERR "%u: %d/%d \n",
4092 i, grp->bb_free, grp->bb_fragments);
4094 printk(KERN_ERR "\n");
4096 #else
4097 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4099 return;
4101 #endif
4104 * We use locality group preallocation for small size file. The size of the
4105 * file is determined by the current size or the resulting size after
4106 * allocation which ever is larger
4108 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4110 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4112 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4113 int bsbits = ac->ac_sb->s_blocksize_bits;
4114 loff_t size, isize;
4116 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4117 return;
4119 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4120 return;
4122 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4123 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4124 >> bsbits;
4126 if ((size == isize) &&
4127 !ext4_fs_is_busy(sbi) &&
4128 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4129 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4130 return;
4133 if (sbi->s_mb_group_prealloc <= 0) {
4134 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4135 return;
4138 /* don't use group allocation for large files */
4139 size = max(size, isize);
4140 if (size > sbi->s_mb_stream_request) {
4141 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4142 return;
4145 BUG_ON(ac->ac_lg != NULL);
4147 * locality group prealloc space are per cpu. The reason for having
4148 * per cpu locality group is to reduce the contention between block
4149 * request from multiple CPUs.
4151 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4153 /* we're going to use group allocation */
4154 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4156 /* serialize all allocations in the group */
4157 mutex_lock(&ac->ac_lg->lg_mutex);
4160 static noinline_for_stack int
4161 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4162 struct ext4_allocation_request *ar)
4164 struct super_block *sb = ar->inode->i_sb;
4165 struct ext4_sb_info *sbi = EXT4_SB(sb);
4166 struct ext4_super_block *es = sbi->s_es;
4167 ext4_group_t group;
4168 unsigned int len;
4169 ext4_fsblk_t goal;
4170 ext4_grpblk_t block;
4172 /* we can't allocate > group size */
4173 len = ar->len;
4175 /* just a dirty hack to filter too big requests */
4176 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4177 len = EXT4_CLUSTERS_PER_GROUP(sb);
4179 /* start searching from the goal */
4180 goal = ar->goal;
4181 if (goal < le32_to_cpu(es->s_first_data_block) ||
4182 goal >= ext4_blocks_count(es))
4183 goal = le32_to_cpu(es->s_first_data_block);
4184 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4186 /* set up allocation goals */
4187 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4188 ac->ac_status = AC_STATUS_CONTINUE;
4189 ac->ac_sb = sb;
4190 ac->ac_inode = ar->inode;
4191 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4192 ac->ac_o_ex.fe_group = group;
4193 ac->ac_o_ex.fe_start = block;
4194 ac->ac_o_ex.fe_len = len;
4195 ac->ac_g_ex = ac->ac_o_ex;
4196 ac->ac_flags = ar->flags;
4198 /* we have to define context: we'll we work with a file or
4199 * locality group. this is a policy, actually */
4200 ext4_mb_group_or_file(ac);
4202 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4203 "left: %u/%u, right %u/%u to %swritable\n",
4204 (unsigned) ar->len, (unsigned) ar->logical,
4205 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4206 (unsigned) ar->lleft, (unsigned) ar->pleft,
4207 (unsigned) ar->lright, (unsigned) ar->pright,
4208 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4209 return 0;
4213 static noinline_for_stack void
4214 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4215 struct ext4_locality_group *lg,
4216 int order, int total_entries)
4218 ext4_group_t group = 0;
4219 struct ext4_buddy e4b;
4220 struct list_head discard_list;
4221 struct ext4_prealloc_space *pa, *tmp;
4223 mb_debug(1, "discard locality group preallocation\n");
4225 INIT_LIST_HEAD(&discard_list);
4227 spin_lock(&lg->lg_prealloc_lock);
4228 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4229 pa_inode_list) {
4230 spin_lock(&pa->pa_lock);
4231 if (atomic_read(&pa->pa_count)) {
4233 * This is the pa that we just used
4234 * for block allocation. So don't
4235 * free that
4237 spin_unlock(&pa->pa_lock);
4238 continue;
4240 if (pa->pa_deleted) {
4241 spin_unlock(&pa->pa_lock);
4242 continue;
4244 /* only lg prealloc space */
4245 BUG_ON(pa->pa_type != MB_GROUP_PA);
4247 /* seems this one can be freed ... */
4248 pa->pa_deleted = 1;
4249 spin_unlock(&pa->pa_lock);
4251 list_del_rcu(&pa->pa_inode_list);
4252 list_add(&pa->u.pa_tmp_list, &discard_list);
4254 total_entries--;
4255 if (total_entries <= 5) {
4257 * we want to keep only 5 entries
4258 * allowing it to grow to 8. This
4259 * mak sure we don't call discard
4260 * soon for this list.
4262 break;
4265 spin_unlock(&lg->lg_prealloc_lock);
4267 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4269 group = ext4_get_group_number(sb, pa->pa_pstart);
4270 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4271 ext4_error(sb, "Error loading buddy information for %u",
4272 group);
4273 continue;
4275 ext4_lock_group(sb, group);
4276 list_del(&pa->pa_group_list);
4277 ext4_mb_release_group_pa(&e4b, pa);
4278 ext4_unlock_group(sb, group);
4280 ext4_mb_unload_buddy(&e4b);
4281 list_del(&pa->u.pa_tmp_list);
4282 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4287 * We have incremented pa_count. So it cannot be freed at this
4288 * point. Also we hold lg_mutex. So no parallel allocation is
4289 * possible from this lg. That means pa_free cannot be updated.
4291 * A parallel ext4_mb_discard_group_preallocations is possible.
4292 * which can cause the lg_prealloc_list to be updated.
4295 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4297 int order, added = 0, lg_prealloc_count = 1;
4298 struct super_block *sb = ac->ac_sb;
4299 struct ext4_locality_group *lg = ac->ac_lg;
4300 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4302 order = fls(pa->pa_free) - 1;
4303 if (order > PREALLOC_TB_SIZE - 1)
4304 /* The max size of hash table is PREALLOC_TB_SIZE */
4305 order = PREALLOC_TB_SIZE - 1;
4306 /* Add the prealloc space to lg */
4307 spin_lock(&lg->lg_prealloc_lock);
4308 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4309 pa_inode_list) {
4310 spin_lock(&tmp_pa->pa_lock);
4311 if (tmp_pa->pa_deleted) {
4312 spin_unlock(&tmp_pa->pa_lock);
4313 continue;
4315 if (!added && pa->pa_free < tmp_pa->pa_free) {
4316 /* Add to the tail of the previous entry */
4317 list_add_tail_rcu(&pa->pa_inode_list,
4318 &tmp_pa->pa_inode_list);
4319 added = 1;
4321 * we want to count the total
4322 * number of entries in the list
4325 spin_unlock(&tmp_pa->pa_lock);
4326 lg_prealloc_count++;
4328 if (!added)
4329 list_add_tail_rcu(&pa->pa_inode_list,
4330 &lg->lg_prealloc_list[order]);
4331 spin_unlock(&lg->lg_prealloc_lock);
4333 /* Now trim the list to be not more than 8 elements */
4334 if (lg_prealloc_count > 8) {
4335 ext4_mb_discard_lg_preallocations(sb, lg,
4336 order, lg_prealloc_count);
4337 return;
4339 return ;
4343 * release all resource we used in allocation
4345 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4347 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4348 struct ext4_prealloc_space *pa = ac->ac_pa;
4349 if (pa) {
4350 if (pa->pa_type == MB_GROUP_PA) {
4351 /* see comment in ext4_mb_use_group_pa() */
4352 spin_lock(&pa->pa_lock);
4353 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4354 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4355 pa->pa_free -= ac->ac_b_ex.fe_len;
4356 pa->pa_len -= ac->ac_b_ex.fe_len;
4357 spin_unlock(&pa->pa_lock);
4360 if (pa) {
4362 * We want to add the pa to the right bucket.
4363 * Remove it from the list and while adding
4364 * make sure the list to which we are adding
4365 * doesn't grow big.
4367 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4368 spin_lock(pa->pa_obj_lock);
4369 list_del_rcu(&pa->pa_inode_list);
4370 spin_unlock(pa->pa_obj_lock);
4371 ext4_mb_add_n_trim(ac);
4373 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4375 if (ac->ac_bitmap_page)
4376 page_cache_release(ac->ac_bitmap_page);
4377 if (ac->ac_buddy_page)
4378 page_cache_release(ac->ac_buddy_page);
4379 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4380 mutex_unlock(&ac->ac_lg->lg_mutex);
4381 ext4_mb_collect_stats(ac);
4382 return 0;
4385 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4387 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4388 int ret;
4389 int freed = 0;
4391 trace_ext4_mb_discard_preallocations(sb, needed);
4392 for (i = 0; i < ngroups && needed > 0; i++) {
4393 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4394 freed += ret;
4395 needed -= ret;
4398 return freed;
4402 * Main entry point into mballoc to allocate blocks
4403 * it tries to use preallocation first, then falls back
4404 * to usual allocation
4406 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4407 struct ext4_allocation_request *ar, int *errp)
4409 int freed;
4410 struct ext4_allocation_context *ac = NULL;
4411 struct ext4_sb_info *sbi;
4412 struct super_block *sb;
4413 ext4_fsblk_t block = 0;
4414 unsigned int inquota = 0;
4415 unsigned int reserv_clstrs = 0;
4417 might_sleep();
4418 sb = ar->inode->i_sb;
4419 sbi = EXT4_SB(sb);
4421 trace_ext4_request_blocks(ar);
4423 /* Allow to use superuser reservation for quota file */
4424 if (IS_NOQUOTA(ar->inode))
4425 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4427 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4428 /* Without delayed allocation we need to verify
4429 * there is enough free blocks to do block allocation
4430 * and verify allocation doesn't exceed the quota limits.
4432 while (ar->len &&
4433 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4435 /* let others to free the space */
4436 cond_resched();
4437 ar->len = ar->len >> 1;
4439 if (!ar->len) {
4440 *errp = -ENOSPC;
4441 return 0;
4443 reserv_clstrs = ar->len;
4444 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4445 dquot_alloc_block_nofail(ar->inode,
4446 EXT4_C2B(sbi, ar->len));
4447 } else {
4448 while (ar->len &&
4449 dquot_alloc_block(ar->inode,
4450 EXT4_C2B(sbi, ar->len))) {
4452 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4453 ar->len--;
4456 inquota = ar->len;
4457 if (ar->len == 0) {
4458 *errp = -EDQUOT;
4459 goto out;
4463 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4464 if (!ac) {
4465 ar->len = 0;
4466 *errp = -ENOMEM;
4467 goto out;
4470 *errp = ext4_mb_initialize_context(ac, ar);
4471 if (*errp) {
4472 ar->len = 0;
4473 goto out;
4476 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4477 if (!ext4_mb_use_preallocated(ac)) {
4478 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4479 ext4_mb_normalize_request(ac, ar);
4480 repeat:
4481 /* allocate space in core */
4482 *errp = ext4_mb_regular_allocator(ac);
4483 if (*errp)
4484 goto discard_and_exit;
4486 /* as we've just preallocated more space than
4487 * user requested originally, we store allocated
4488 * space in a special descriptor */
4489 if (ac->ac_status == AC_STATUS_FOUND &&
4490 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4491 *errp = ext4_mb_new_preallocation(ac);
4492 if (*errp) {
4493 discard_and_exit:
4494 ext4_discard_allocated_blocks(ac);
4495 goto errout;
4498 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4499 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4500 if (*errp == -EAGAIN) {
4502 * drop the reference that we took
4503 * in ext4_mb_use_best_found
4505 ext4_mb_release_context(ac);
4506 ac->ac_b_ex.fe_group = 0;
4507 ac->ac_b_ex.fe_start = 0;
4508 ac->ac_b_ex.fe_len = 0;
4509 ac->ac_status = AC_STATUS_CONTINUE;
4510 goto repeat;
4511 } else if (*errp) {
4512 ext4_discard_allocated_blocks(ac);
4513 goto errout;
4514 } else {
4515 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4516 ar->len = ac->ac_b_ex.fe_len;
4518 } else {
4519 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4520 if (freed)
4521 goto repeat;
4522 *errp = -ENOSPC;
4525 errout:
4526 if (*errp) {
4527 ac->ac_b_ex.fe_len = 0;
4528 ar->len = 0;
4529 ext4_mb_show_ac(ac);
4531 ext4_mb_release_context(ac);
4532 out:
4533 if (ac)
4534 kmem_cache_free(ext4_ac_cachep, ac);
4535 if (inquota && ar->len < inquota)
4536 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4537 if (!ar->len) {
4538 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4539 /* release all the reserved blocks if non delalloc */
4540 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4541 reserv_clstrs);
4544 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4546 return block;
4550 * We can merge two free data extents only if the physical blocks
4551 * are contiguous, AND the extents were freed by the same transaction,
4552 * AND the blocks are associated with the same group.
4554 static int can_merge(struct ext4_free_data *entry1,
4555 struct ext4_free_data *entry2)
4557 if ((entry1->efd_tid == entry2->efd_tid) &&
4558 (entry1->efd_group == entry2->efd_group) &&
4559 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4560 return 1;
4561 return 0;
4564 static noinline_for_stack int
4565 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4566 struct ext4_free_data *new_entry)
4568 ext4_group_t group = e4b->bd_group;
4569 ext4_grpblk_t cluster;
4570 struct ext4_free_data *entry;
4571 struct ext4_group_info *db = e4b->bd_info;
4572 struct super_block *sb = e4b->bd_sb;
4573 struct ext4_sb_info *sbi = EXT4_SB(sb);
4574 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4575 struct rb_node *parent = NULL, *new_node;
4577 BUG_ON(!ext4_handle_valid(handle));
4578 BUG_ON(e4b->bd_bitmap_page == NULL);
4579 BUG_ON(e4b->bd_buddy_page == NULL);
4581 new_node = &new_entry->efd_node;
4582 cluster = new_entry->efd_start_cluster;
4584 if (!*n) {
4585 /* first free block exent. We need to
4586 protect buddy cache from being freed,
4587 * otherwise we'll refresh it from
4588 * on-disk bitmap and lose not-yet-available
4589 * blocks */
4590 page_cache_get(e4b->bd_buddy_page);
4591 page_cache_get(e4b->bd_bitmap_page);
4593 while (*n) {
4594 parent = *n;
4595 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4596 if (cluster < entry->efd_start_cluster)
4597 n = &(*n)->rb_left;
4598 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4599 n = &(*n)->rb_right;
4600 else {
4601 ext4_grp_locked_error(sb, group, 0,
4602 ext4_group_first_block_no(sb, group) +
4603 EXT4_C2B(sbi, cluster),
4604 "Block already on to-be-freed list");
4605 return 0;
4609 rb_link_node(new_node, parent, n);
4610 rb_insert_color(new_node, &db->bb_free_root);
4612 /* Now try to see the extent can be merged to left and right */
4613 node = rb_prev(new_node);
4614 if (node) {
4615 entry = rb_entry(node, struct ext4_free_data, efd_node);
4616 if (can_merge(entry, new_entry) &&
4617 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4618 new_entry->efd_start_cluster = entry->efd_start_cluster;
4619 new_entry->efd_count += entry->efd_count;
4620 rb_erase(node, &(db->bb_free_root));
4621 kmem_cache_free(ext4_free_data_cachep, entry);
4625 node = rb_next(new_node);
4626 if (node) {
4627 entry = rb_entry(node, struct ext4_free_data, efd_node);
4628 if (can_merge(new_entry, entry) &&
4629 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4630 new_entry->efd_count += entry->efd_count;
4631 rb_erase(node, &(db->bb_free_root));
4632 kmem_cache_free(ext4_free_data_cachep, entry);
4635 /* Add the extent to transaction's private list */
4636 ext4_journal_callback_add(handle, ext4_free_data_callback,
4637 &new_entry->efd_jce);
4638 return 0;
4642 * ext4_free_blocks() -- Free given blocks and update quota
4643 * @handle: handle for this transaction
4644 * @inode: inode
4645 * @block: start physical block to free
4646 * @count: number of blocks to count
4647 * @flags: flags used by ext4_free_blocks
4649 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4650 struct buffer_head *bh, ext4_fsblk_t block,
4651 unsigned long count, int flags)
4653 struct buffer_head *bitmap_bh = NULL;
4654 struct super_block *sb = inode->i_sb;
4655 struct ext4_group_desc *gdp;
4656 unsigned int overflow;
4657 ext4_grpblk_t bit;
4658 struct buffer_head *gd_bh;
4659 ext4_group_t block_group;
4660 struct ext4_sb_info *sbi;
4661 struct ext4_buddy e4b;
4662 unsigned int count_clusters;
4663 int err = 0;
4664 int ret;
4666 might_sleep();
4667 if (bh) {
4668 if (block)
4669 BUG_ON(block != bh->b_blocknr);
4670 else
4671 block = bh->b_blocknr;
4674 sbi = EXT4_SB(sb);
4675 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4676 !ext4_data_block_valid(sbi, block, count)) {
4677 ext4_error(sb, "Freeing blocks not in datazone - "
4678 "block = %llu, count = %lu", block, count);
4679 goto error_return;
4682 ext4_debug("freeing block %llu\n", block);
4683 trace_ext4_free_blocks(inode, block, count, flags);
4685 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4686 struct buffer_head *tbh = bh;
4687 int i;
4689 BUG_ON(bh && (count > 1));
4691 for (i = 0; i < count; i++) {
4692 cond_resched();
4693 if (!bh)
4694 tbh = sb_find_get_block(inode->i_sb,
4695 block + i);
4696 if (!tbh)
4697 continue;
4698 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4699 inode, tbh, block + i);
4704 * We need to make sure we don't reuse the freed block until
4705 * after the transaction is committed, which we can do by
4706 * treating the block as metadata, below. We make an
4707 * exception if the inode is to be written in writeback mode
4708 * since writeback mode has weak data consistency guarantees.
4710 if (!ext4_should_writeback_data(inode))
4711 flags |= EXT4_FREE_BLOCKS_METADATA;
4714 * If the extent to be freed does not begin on a cluster
4715 * boundary, we need to deal with partial clusters at the
4716 * beginning and end of the extent. Normally we will free
4717 * blocks at the beginning or the end unless we are explicitly
4718 * requested to avoid doing so.
4720 overflow = EXT4_PBLK_COFF(sbi, block);
4721 if (overflow) {
4722 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4723 overflow = sbi->s_cluster_ratio - overflow;
4724 block += overflow;
4725 if (count > overflow)
4726 count -= overflow;
4727 else
4728 return;
4729 } else {
4730 block -= overflow;
4731 count += overflow;
4734 overflow = EXT4_LBLK_COFF(sbi, count);
4735 if (overflow) {
4736 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4737 if (count > overflow)
4738 count -= overflow;
4739 else
4740 return;
4741 } else
4742 count += sbi->s_cluster_ratio - overflow;
4745 do_more:
4746 overflow = 0;
4747 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4749 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4750 ext4_get_group_info(sb, block_group))))
4751 return;
4754 * Check to see if we are freeing blocks across a group
4755 * boundary.
4757 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4758 overflow = EXT4_C2B(sbi, bit) + count -
4759 EXT4_BLOCKS_PER_GROUP(sb);
4760 count -= overflow;
4762 count_clusters = EXT4_NUM_B2C(sbi, count);
4763 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4764 if (!bitmap_bh) {
4765 err = -EIO;
4766 goto error_return;
4768 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4769 if (!gdp) {
4770 err = -EIO;
4771 goto error_return;
4774 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4775 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4776 in_range(block, ext4_inode_table(sb, gdp),
4777 EXT4_SB(sb)->s_itb_per_group) ||
4778 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4779 EXT4_SB(sb)->s_itb_per_group)) {
4781 ext4_error(sb, "Freeing blocks in system zone - "
4782 "Block = %llu, count = %lu", block, count);
4783 /* err = 0. ext4_std_error should be a no op */
4784 goto error_return;
4787 BUFFER_TRACE(bitmap_bh, "getting write access");
4788 err = ext4_journal_get_write_access(handle, bitmap_bh);
4789 if (err)
4790 goto error_return;
4793 * We are about to modify some metadata. Call the journal APIs
4794 * to unshare ->b_data if a currently-committing transaction is
4795 * using it
4797 BUFFER_TRACE(gd_bh, "get_write_access");
4798 err = ext4_journal_get_write_access(handle, gd_bh);
4799 if (err)
4800 goto error_return;
4801 #ifdef AGGRESSIVE_CHECK
4803 int i;
4804 for (i = 0; i < count_clusters; i++)
4805 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4807 #endif
4808 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4810 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4811 if (err)
4812 goto error_return;
4814 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4815 struct ext4_free_data *new_entry;
4817 * blocks being freed are metadata. these blocks shouldn't
4818 * be used until this transaction is committed
4820 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4821 * to fail.
4823 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4824 GFP_NOFS|__GFP_NOFAIL);
4825 new_entry->efd_start_cluster = bit;
4826 new_entry->efd_group = block_group;
4827 new_entry->efd_count = count_clusters;
4828 new_entry->efd_tid = handle->h_transaction->t_tid;
4830 ext4_lock_group(sb, block_group);
4831 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4832 ext4_mb_free_metadata(handle, &e4b, new_entry);
4833 } else {
4834 /* need to update group_info->bb_free and bitmap
4835 * with group lock held. generate_buddy look at
4836 * them with group lock_held
4838 if (test_opt(sb, DISCARD)) {
4839 err = ext4_issue_discard(sb, block_group, bit, count);
4840 if (err && err != -EOPNOTSUPP)
4841 ext4_msg(sb, KERN_WARNING, "discard request in"
4842 " group:%d block:%d count:%lu failed"
4843 " with %d", block_group, bit, count,
4844 err);
4845 } else
4846 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4848 ext4_lock_group(sb, block_group);
4849 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4850 mb_free_blocks(inode, &e4b, bit, count_clusters);
4853 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4854 ext4_free_group_clusters_set(sb, gdp, ret);
4855 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4856 ext4_group_desc_csum_set(sb, block_group, gdp);
4857 ext4_unlock_group(sb, block_group);
4859 if (sbi->s_log_groups_per_flex) {
4860 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4861 atomic64_add(count_clusters,
4862 &sbi->s_flex_groups[flex_group].free_clusters);
4865 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4866 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4867 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4869 ext4_mb_unload_buddy(&e4b);
4871 /* We dirtied the bitmap block */
4872 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4873 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4875 /* And the group descriptor block */
4876 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4877 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4878 if (!err)
4879 err = ret;
4881 if (overflow && !err) {
4882 block += count;
4883 count = overflow;
4884 put_bh(bitmap_bh);
4885 goto do_more;
4887 error_return:
4888 brelse(bitmap_bh);
4889 ext4_std_error(sb, err);
4890 return;
4894 * ext4_group_add_blocks() -- Add given blocks to an existing group
4895 * @handle: handle to this transaction
4896 * @sb: super block
4897 * @block: start physical block to add to the block group
4898 * @count: number of blocks to free
4900 * This marks the blocks as free in the bitmap and buddy.
4902 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4903 ext4_fsblk_t block, unsigned long count)
4905 struct buffer_head *bitmap_bh = NULL;
4906 struct buffer_head *gd_bh;
4907 ext4_group_t block_group;
4908 ext4_grpblk_t bit;
4909 unsigned int i;
4910 struct ext4_group_desc *desc;
4911 struct ext4_sb_info *sbi = EXT4_SB(sb);
4912 struct ext4_buddy e4b;
4913 int err = 0, ret, blk_free_count;
4914 ext4_grpblk_t blocks_freed;
4916 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4918 if (count == 0)
4919 return 0;
4921 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4923 * Check to see if we are freeing blocks across a group
4924 * boundary.
4926 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4927 ext4_warning(sb, "too much blocks added to group %u\n",
4928 block_group);
4929 err = -EINVAL;
4930 goto error_return;
4933 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4934 if (!bitmap_bh) {
4935 err = -EIO;
4936 goto error_return;
4939 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4940 if (!desc) {
4941 err = -EIO;
4942 goto error_return;
4945 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4946 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4947 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4948 in_range(block + count - 1, ext4_inode_table(sb, desc),
4949 sbi->s_itb_per_group)) {
4950 ext4_error(sb, "Adding blocks in system zones - "
4951 "Block = %llu, count = %lu",
4952 block, count);
4953 err = -EINVAL;
4954 goto error_return;
4957 BUFFER_TRACE(bitmap_bh, "getting write access");
4958 err = ext4_journal_get_write_access(handle, bitmap_bh);
4959 if (err)
4960 goto error_return;
4963 * We are about to modify some metadata. Call the journal APIs
4964 * to unshare ->b_data if a currently-committing transaction is
4965 * using it
4967 BUFFER_TRACE(gd_bh, "get_write_access");
4968 err = ext4_journal_get_write_access(handle, gd_bh);
4969 if (err)
4970 goto error_return;
4972 for (i = 0, blocks_freed = 0; i < count; i++) {
4973 BUFFER_TRACE(bitmap_bh, "clear bit");
4974 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4975 ext4_error(sb, "bit already cleared for block %llu",
4976 (ext4_fsblk_t)(block + i));
4977 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4978 } else {
4979 blocks_freed++;
4983 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4984 if (err)
4985 goto error_return;
4988 * need to update group_info->bb_free and bitmap
4989 * with group lock held. generate_buddy look at
4990 * them with group lock_held
4992 ext4_lock_group(sb, block_group);
4993 mb_clear_bits(bitmap_bh->b_data, bit, count);
4994 mb_free_blocks(NULL, &e4b, bit, count);
4995 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4996 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4997 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4998 ext4_group_desc_csum_set(sb, block_group, desc);
4999 ext4_unlock_group(sb, block_group);
5000 percpu_counter_add(&sbi->s_freeclusters_counter,
5001 EXT4_NUM_B2C(sbi, blocks_freed));
5003 if (sbi->s_log_groups_per_flex) {
5004 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5005 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5006 &sbi->s_flex_groups[flex_group].free_clusters);
5009 ext4_mb_unload_buddy(&e4b);
5011 /* We dirtied the bitmap block */
5012 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5013 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5015 /* And the group descriptor block */
5016 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5017 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5018 if (!err)
5019 err = ret;
5021 error_return:
5022 brelse(bitmap_bh);
5023 ext4_std_error(sb, err);
5024 return err;
5028 * ext4_trim_extent -- function to TRIM one single free extent in the group
5029 * @sb: super block for the file system
5030 * @start: starting block of the free extent in the alloc. group
5031 * @count: number of blocks to TRIM
5032 * @group: alloc. group we are working with
5033 * @e4b: ext4 buddy for the group
5035 * Trim "count" blocks starting at "start" in the "group". To assure that no
5036 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5037 * be called with under the group lock.
5039 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5040 ext4_group_t group, struct ext4_buddy *e4b)
5041 __releases(bitlock)
5042 __acquires(bitlock)
5044 struct ext4_free_extent ex;
5045 int ret = 0;
5047 trace_ext4_trim_extent(sb, group, start, count);
5049 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5051 ex.fe_start = start;
5052 ex.fe_group = group;
5053 ex.fe_len = count;
5056 * Mark blocks used, so no one can reuse them while
5057 * being trimmed.
5059 mb_mark_used(e4b, &ex);
5060 ext4_unlock_group(sb, group);
5061 ret = ext4_issue_discard(sb, group, start, count);
5062 ext4_lock_group(sb, group);
5063 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5064 return ret;
5068 * ext4_trim_all_free -- function to trim all free space in alloc. group
5069 * @sb: super block for file system
5070 * @group: group to be trimmed
5071 * @start: first group block to examine
5072 * @max: last group block to examine
5073 * @minblocks: minimum extent block count
5075 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5076 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5077 * the extent.
5080 * ext4_trim_all_free walks through group's block bitmap searching for free
5081 * extents. When the free extent is found, mark it as used in group buddy
5082 * bitmap. Then issue a TRIM command on this extent and free the extent in
5083 * the group buddy bitmap. This is done until whole group is scanned.
5085 static ext4_grpblk_t
5086 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5087 ext4_grpblk_t start, ext4_grpblk_t max,
5088 ext4_grpblk_t minblocks)
5090 void *bitmap;
5091 ext4_grpblk_t next, count = 0, free_count = 0;
5092 struct ext4_buddy e4b;
5093 int ret = 0;
5095 trace_ext4_trim_all_free(sb, group, start, max);
5097 ret = ext4_mb_load_buddy(sb, group, &e4b);
5098 if (ret) {
5099 ext4_error(sb, "Error in loading buddy "
5100 "information for %u", group);
5101 return ret;
5103 bitmap = e4b.bd_bitmap;
5105 ext4_lock_group(sb, group);
5106 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5107 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5108 goto out;
5110 start = (e4b.bd_info->bb_first_free > start) ?
5111 e4b.bd_info->bb_first_free : start;
5113 while (start <= max) {
5114 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5115 if (start > max)
5116 break;
5117 next = mb_find_next_bit(bitmap, max + 1, start);
5119 if ((next - start) >= minblocks) {
5120 ret = ext4_trim_extent(sb, start,
5121 next - start, group, &e4b);
5122 if (ret && ret != -EOPNOTSUPP)
5123 break;
5124 ret = 0;
5125 count += next - start;
5127 free_count += next - start;
5128 start = next + 1;
5130 if (fatal_signal_pending(current)) {
5131 count = -ERESTARTSYS;
5132 break;
5135 if (need_resched()) {
5136 ext4_unlock_group(sb, group);
5137 cond_resched();
5138 ext4_lock_group(sb, group);
5141 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5142 break;
5145 if (!ret) {
5146 ret = count;
5147 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5149 out:
5150 ext4_unlock_group(sb, group);
5151 ext4_mb_unload_buddy(&e4b);
5153 ext4_debug("trimmed %d blocks in the group %d\n",
5154 count, group);
5156 return ret;
5160 * ext4_trim_fs() -- trim ioctl handle function
5161 * @sb: superblock for filesystem
5162 * @range: fstrim_range structure
5164 * start: First Byte to trim
5165 * len: number of Bytes to trim from start
5166 * minlen: minimum extent length in Bytes
5167 * ext4_trim_fs goes through all allocation groups containing Bytes from
5168 * start to start+len. For each such a group ext4_trim_all_free function
5169 * is invoked to trim all free space.
5171 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5173 struct ext4_group_info *grp;
5174 ext4_group_t group, first_group, last_group;
5175 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5176 uint64_t start, end, minlen, trimmed = 0;
5177 ext4_fsblk_t first_data_blk =
5178 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5179 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5180 int ret = 0;
5182 start = range->start >> sb->s_blocksize_bits;
5183 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5184 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5185 range->minlen >> sb->s_blocksize_bits);
5187 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5188 start >= max_blks ||
5189 range->len < sb->s_blocksize)
5190 return -EINVAL;
5191 if (end >= max_blks)
5192 end = max_blks - 1;
5193 if (end <= first_data_blk)
5194 goto out;
5195 if (start < first_data_blk)
5196 start = first_data_blk;
5198 /* Determine first and last group to examine based on start and end */
5199 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5200 &first_group, &first_cluster);
5201 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5202 &last_group, &last_cluster);
5204 /* end now represents the last cluster to discard in this group */
5205 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5207 for (group = first_group; group <= last_group; group++) {
5208 grp = ext4_get_group_info(sb, group);
5209 /* We only do this if the grp has never been initialized */
5210 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5211 ret = ext4_mb_init_group(sb, group);
5212 if (ret)
5213 break;
5217 * For all the groups except the last one, last cluster will
5218 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5219 * change it for the last group, note that last_cluster is
5220 * already computed earlier by ext4_get_group_no_and_offset()
5222 if (group == last_group)
5223 end = last_cluster;
5225 if (grp->bb_free >= minlen) {
5226 cnt = ext4_trim_all_free(sb, group, first_cluster,
5227 end, minlen);
5228 if (cnt < 0) {
5229 ret = cnt;
5230 break;
5232 trimmed += cnt;
5236 * For every group except the first one, we are sure
5237 * that the first cluster to discard will be cluster #0.
5239 first_cluster = 0;
5242 if (!ret)
5243 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5245 out:
5246 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5247 return ret;