2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly
;
35 module_param_named(mballoc_debug
, ext4_mballoc_debug
, ushort
, 0644);
36 MODULE_PARM_DESC(mballoc_debug
, "Debugging level for ext4's mballoc");
41 * - test ext4_ext_search_left() and ext4_ext_search_right()
42 * - search for metadata in few groups
45 * - normalization should take into account whether file is still open
46 * - discard preallocations if no free space left (policy?)
47 * - don't normalize tails
49 * - reservation for superuser
52 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 * - track min/max extents in each group for better group selection
54 * - mb_mark_used() may allocate chunk right after splitting buddy
55 * - tree of groups sorted by number of free blocks
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len -> length for this prealloc space (in clusters)
84 * pa_free -> free space available in this prealloc space (in clusters)
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy. The information involve
114 * block bitmap and buddy information. The information are stored in the
118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
121 * one block each for bitmap and buddy information. So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
123 * blocksize) blocks. So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
148 * The regular allocator (using the buddy cache) supports a few tunables.
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
177 * mballoc operates on the following data:
179 * - in-core buddy (actually includes buddy and bitmap)
180 * - preallocation descriptors (PAs)
182 * there are two types of preallocations:
184 * assiged to specific inode and can be used for this inode only.
185 * it describes part of inode's space preallocated to specific
186 * physical blocks. any block from that preallocated can be used
187 * independent. the descriptor just tracks number of blocks left
188 * unused. so, before taking some block from descriptor, one must
189 * make sure corresponded logical block isn't allocated yet. this
190 * also means that freeing any block within descriptor's range
191 * must discard all preallocated blocks.
193 * assigned to specific locality group which does not translate to
194 * permanent set of inodes: inode can join and leave group. space
195 * from this type of preallocation can be used for any inode. thus
196 * it's consumed from the beginning to the end.
198 * relation between them can be expressed as:
199 * in-core buddy = on-disk bitmap + preallocation descriptors
201 * this mean blocks mballoc considers used are:
202 * - allocated blocks (persistent)
203 * - preallocated blocks (non-persistent)
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
209 * to keep it simple, we don't use block numbers, instead we count number of
210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
212 * all operations can be expressed as:
213 * - init buddy: buddy = on-disk + PAs
214 * - new PA: buddy += N; PA = N
215 * - use inode PA: on-disk += N; PA -= N
216 * - discard inode PA buddy -= on-disk - PA; PA = 0
217 * - use locality group PA on-disk += N; PA -= N
218 * - discard locality group PA buddy -= PA; PA = 0
219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 * is used in real operation because we can't know actual used
221 * bits from PA, only from on-disk bitmap
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 * 1) if buddy is referenced, it's already initialized
228 * 2) while block is used in buddy and the buddy is referenced,
229 * nobody can re-allocate that block
230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 * bit set and PA claims same block, it's OK. IOW, one can set bit in
232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
235 * so, now we're building a concurrency table:
238 * blocks for PA are allocated in the buddy, buddy must be referenced
239 * until PA is linked to allocation group to avoid concurrent buddy init
241 * we need to make sure that either on-disk bitmap or PA has uptodate data
242 * given (3) we care that PA-=N operation doesn't interfere with init
244 * the simplest way would be to have buddy initialized by the discard
245 * - use locality group PA
246 * again PA-=N must be serialized with init
247 * - discard locality group PA
248 * the simplest way would be to have buddy initialized by the discard
251 * i_data_sem serializes them
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * some mutex should serialize them
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
260 * i_data_sem or another mutex should serializes them
262 * discard process must wait until PA isn't used by another process
263 * - use locality group PA
264 * nothing wrong here -- they're different PAs covering different blocks
265 * - discard locality group PA
266 * discard process must wait until PA isn't used by another process
268 * now we're ready to make few consequences:
269 * - PA is referenced and while it is no discard is possible
270 * - PA is referenced until block isn't marked in on-disk bitmap
271 * - PA changes only after on-disk bitmap
272 * - discard must not compete with init. either init is done before
273 * any discard or they're serialized somehow
274 * - buddy init as sum of on-disk bitmap and PAs is done atomically
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
282 * Logic in few words:
287 * mark bits in on-disk bitmap
290 * - use preallocation:
291 * find proper PA (per-inode or group)
293 * mark bits in on-disk bitmap
299 * mark bits in on-disk bitmap
302 * - discard preallocations in group:
304 * move them onto local list
305 * load on-disk bitmap
307 * remove PA from object (inode or locality group)
308 * mark free blocks in-core
310 * - discard inode's preallocations:
317 * - bitlock on a group (group)
318 * - object (inode/locality) (object)
329 * - release consumed pa:
334 * - generate in-core bitmap:
338 * - discard all for given object (inode, locality group):
343 * - discard all for given group:
350 static struct kmem_cache
*ext4_pspace_cachep
;
351 static struct kmem_cache
*ext4_ac_cachep
;
352 static struct kmem_cache
*ext4_free_data_cachep
;
354 /* We create slab caches for groupinfo data structures based on the
355 * superblock block size. There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
360 static const char *ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
366 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
368 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
370 static void ext4_free_data_callback(struct super_block
*sb
,
371 struct ext4_journal_cb_entry
*jce
, int rc
);
373 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
375 #if BITS_PER_LONG == 64
376 *bit
+= ((unsigned long) addr
& 7UL) << 3;
377 addr
= (void *) ((unsigned long) addr
& ~7UL);
378 #elif BITS_PER_LONG == 32
379 *bit
+= ((unsigned long) addr
& 3UL) << 3;
380 addr
= (void *) ((unsigned long) addr
& ~3UL);
382 #error "how many bits you are?!"
387 static inline int mb_test_bit(int bit
, void *addr
)
390 * ext4_test_bit on architecture like powerpc
391 * needs unsigned long aligned address
393 addr
= mb_correct_addr_and_bit(&bit
, addr
);
394 return ext4_test_bit(bit
, addr
);
397 static inline void mb_set_bit(int bit
, void *addr
)
399 addr
= mb_correct_addr_and_bit(&bit
, addr
);
400 ext4_set_bit(bit
, addr
);
403 static inline void mb_clear_bit(int bit
, void *addr
)
405 addr
= mb_correct_addr_and_bit(&bit
, addr
);
406 ext4_clear_bit(bit
, addr
);
409 static inline int mb_test_and_clear_bit(int bit
, void *addr
)
411 addr
= mb_correct_addr_and_bit(&bit
, addr
);
412 return ext4_test_and_clear_bit(bit
, addr
);
415 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
417 int fix
= 0, ret
, tmpmax
;
418 addr
= mb_correct_addr_and_bit(&fix
, addr
);
422 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
428 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
430 int fix
= 0, ret
, tmpmax
;
431 addr
= mb_correct_addr_and_bit(&fix
, addr
);
435 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
441 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
445 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
448 if (order
> e4b
->bd_blkbits
+ 1) {
453 /* at order 0 we see each particular block */
455 *max
= 1 << (e4b
->bd_blkbits
+ 3);
456 return e4b
->bd_bitmap
;
459 bb
= e4b
->bd_buddy
+ EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
460 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
466 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
467 int first
, int count
)
470 struct super_block
*sb
= e4b
->bd_sb
;
472 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
474 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
475 for (i
= 0; i
< count
; i
++) {
476 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
477 ext4_fsblk_t blocknr
;
479 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
480 blocknr
+= EXT4_C2B(EXT4_SB(sb
), first
+ i
);
481 ext4_grp_locked_error(sb
, e4b
->bd_group
,
482 inode
? inode
->i_ino
: 0,
484 "freeing block already freed "
488 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
492 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
496 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
498 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
499 for (i
= 0; i
< count
; i
++) {
500 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
501 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
505 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
507 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
508 unsigned char *b1
, *b2
;
510 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
511 b2
= (unsigned char *) bitmap
;
512 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
513 if (b1
[i
] != b2
[i
]) {
514 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
515 "corruption in group %u "
516 "at byte %u(%u): %x in copy != %x "
518 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
526 static inline void mb_free_blocks_double(struct inode
*inode
,
527 struct ext4_buddy
*e4b
, int first
, int count
)
531 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
532 int first
, int count
)
536 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
542 #ifdef AGGRESSIVE_CHECK
544 #define MB_CHECK_ASSERT(assert) \
548 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
549 function, file, line, # assert); \
554 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
555 const char *function
, int line
)
557 struct super_block
*sb
= e4b
->bd_sb
;
558 int order
= e4b
->bd_blkbits
+ 1;
565 struct ext4_group_info
*grp
;
568 struct list_head
*cur
;
573 static int mb_check_counter
;
574 if (mb_check_counter
++ % 100 != 0)
579 buddy
= mb_find_buddy(e4b
, order
, &max
);
580 MB_CHECK_ASSERT(buddy
);
581 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
582 MB_CHECK_ASSERT(buddy2
);
583 MB_CHECK_ASSERT(buddy
!= buddy2
);
584 MB_CHECK_ASSERT(max
* 2 == max2
);
587 for (i
= 0; i
< max
; i
++) {
589 if (mb_test_bit(i
, buddy
)) {
590 /* only single bit in buddy2 may be 1 */
591 if (!mb_test_bit(i
<< 1, buddy2
)) {
593 mb_test_bit((i
<<1)+1, buddy2
));
594 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
596 mb_test_bit(i
<< 1, buddy2
));
601 /* both bits in buddy2 must be 1 */
602 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
603 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
605 for (j
= 0; j
< (1 << order
); j
++) {
606 k
= (i
* (1 << order
)) + j
;
608 !mb_test_bit(k
, e4b
->bd_bitmap
));
612 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
617 buddy
= mb_find_buddy(e4b
, 0, &max
);
618 for (i
= 0; i
< max
; i
++) {
619 if (!mb_test_bit(i
, buddy
)) {
620 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
628 /* check used bits only */
629 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
630 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
632 MB_CHECK_ASSERT(k
< max2
);
633 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
636 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
637 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
639 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
640 list_for_each(cur
, &grp
->bb_prealloc_list
) {
641 ext4_group_t groupnr
;
642 struct ext4_prealloc_space
*pa
;
643 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
644 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
645 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
646 for (i
= 0; i
< pa
->pa_len
; i
++)
647 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
653 __FILE__, __func__, __LINE__)
655 #define mb_check_buddy(e4b)
659 * Divide blocks started from @first with length @len into
660 * smaller chunks with power of 2 blocks.
661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662 * then increase bb_counters[] for corresponded chunk size.
664 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
665 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
666 struct ext4_group_info
*grp
)
668 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
672 unsigned short border
;
674 BUG_ON(len
> EXT4_CLUSTERS_PER_GROUP(sb
));
676 border
= 2 << sb
->s_blocksize_bits
;
679 /* find how many blocks can be covered since this position */
680 max
= ffs(first
| border
) - 1;
682 /* find how many blocks of power 2 we need to mark */
689 /* mark multiblock chunks only */
690 grp
->bb_counters
[min
]++;
692 mb_clear_bit(first
>> min
,
693 buddy
+ sbi
->s_mb_offsets
[min
]);
701 * Cache the order of the largest free extent we have available in this block
705 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
710 grp
->bb_largest_free_order
= -1; /* uninit */
712 bits
= sb
->s_blocksize_bits
+ 1;
713 for (i
= bits
; i
>= 0; i
--) {
714 if (grp
->bb_counters
[i
] > 0) {
715 grp
->bb_largest_free_order
= i
;
721 static noinline_for_stack
722 void ext4_mb_generate_buddy(struct super_block
*sb
,
723 void *buddy
, void *bitmap
, ext4_group_t group
)
725 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
726 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
727 ext4_grpblk_t max
= EXT4_CLUSTERS_PER_GROUP(sb
);
732 unsigned fragments
= 0;
733 unsigned long long period
= get_cycles();
735 /* initialize buddy from bitmap which is aggregation
736 * of on-disk bitmap and preallocations */
737 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
738 grp
->bb_first_free
= i
;
742 i
= mb_find_next_bit(bitmap
, max
, i
);
746 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
748 grp
->bb_counters
[0]++;
750 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
752 grp
->bb_fragments
= fragments
;
754 if (free
!= grp
->bb_free
) {
755 ext4_grp_locked_error(sb
, group
, 0, 0,
756 "block bitmap and bg descriptor "
757 "inconsistent: %u vs %u free clusters",
760 * If we intend to continue, we consider group descriptor
761 * corrupt and update bb_free using bitmap value
764 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp
))
765 percpu_counter_sub(&sbi
->s_freeclusters_counter
,
767 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
769 mb_set_largest_free_order(sb
, grp
);
771 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
773 period
= get_cycles() - period
;
774 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
775 EXT4_SB(sb
)->s_mb_buddies_generated
++;
776 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
777 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
780 static void mb_regenerate_buddy(struct ext4_buddy
*e4b
)
786 while ((buddy
= mb_find_buddy(e4b
, order
++, &count
))) {
787 ext4_set_bits(buddy
, 0, count
);
789 e4b
->bd_info
->bb_fragments
= 0;
790 memset(e4b
->bd_info
->bb_counters
, 0,
791 sizeof(*e4b
->bd_info
->bb_counters
) *
792 (e4b
->bd_sb
->s_blocksize_bits
+ 2));
794 ext4_mb_generate_buddy(e4b
->bd_sb
, e4b
->bd_buddy
,
795 e4b
->bd_bitmap
, e4b
->bd_group
);
798 /* The buddy information is attached the buddy cache inode
799 * for convenience. The information regarding each group
800 * is loaded via ext4_mb_load_buddy. The information involve
801 * block bitmap and buddy information. The information are
802 * stored in the inode as
805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
808 * one block each for bitmap and buddy information.
809 * So for each group we take up 2 blocks. A page can
810 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
811 * So it can have information regarding groups_per_page which
812 * is blocks_per_page/2
814 * Locking note: This routine takes the block group lock of all groups
815 * for this page; do not hold this lock when calling this routine!
818 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
820 ext4_group_t ngroups
;
826 ext4_group_t first_group
, group
;
828 struct super_block
*sb
;
829 struct buffer_head
*bhs
;
830 struct buffer_head
**bh
= NULL
;
834 struct ext4_group_info
*grinfo
;
836 mb_debug(1, "init page %lu\n", page
->index
);
838 inode
= page
->mapping
->host
;
840 ngroups
= ext4_get_groups_count(sb
);
841 blocksize
= 1 << inode
->i_blkbits
;
842 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
844 groups_per_page
= blocks_per_page
>> 1;
845 if (groups_per_page
== 0)
848 /* allocate buffer_heads to read bitmaps */
849 if (groups_per_page
> 1) {
850 i
= sizeof(struct buffer_head
*) * groups_per_page
;
851 bh
= kzalloc(i
, GFP_NOFS
);
859 first_group
= page
->index
* blocks_per_page
/ 2;
861 /* read all groups the page covers into the cache */
862 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
863 if (group
>= ngroups
)
866 grinfo
= ext4_get_group_info(sb
, group
);
868 * If page is uptodate then we came here after online resize
869 * which added some new uninitialized group info structs, so
870 * we must skip all initialized uptodate buddies on the page,
871 * which may be currently in use by an allocating task.
873 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
877 if (!(bh
[i
] = ext4_read_block_bitmap_nowait(sb
, group
))) {
881 mb_debug(1, "read bitmap for group %u\n", group
);
884 /* wait for I/O completion */
885 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
886 if (bh
[i
] && ext4_wait_block_bitmap(sb
, group
, bh
[i
]))
890 first_block
= page
->index
* blocks_per_page
;
891 for (i
= 0; i
< blocks_per_page
; i
++) {
892 group
= (first_block
+ i
) >> 1;
893 if (group
>= ngroups
)
896 if (!bh
[group
- first_group
])
897 /* skip initialized uptodate buddy */
900 if (!buffer_verified(bh
[group
- first_group
]))
901 /* Skip faulty bitmaps */
906 * data carry information regarding this
907 * particular group in the format specified
911 data
= page_address(page
) + (i
* blocksize
);
912 bitmap
= bh
[group
- first_group
]->b_data
;
915 * We place the buddy block and bitmap block
918 if ((first_block
+ i
) & 1) {
919 /* this is block of buddy */
920 BUG_ON(incore
== NULL
);
921 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
922 group
, page
->index
, i
* blocksize
);
923 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
924 grinfo
= ext4_get_group_info(sb
, group
);
925 grinfo
->bb_fragments
= 0;
926 memset(grinfo
->bb_counters
, 0,
927 sizeof(*grinfo
->bb_counters
) *
928 (sb
->s_blocksize_bits
+2));
930 * incore got set to the group block bitmap below
932 ext4_lock_group(sb
, group
);
934 memset(data
, 0xff, blocksize
);
935 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
936 ext4_unlock_group(sb
, group
);
939 /* this is block of bitmap */
940 BUG_ON(incore
!= NULL
);
941 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
942 group
, page
->index
, i
* blocksize
);
943 trace_ext4_mb_bitmap_load(sb
, group
);
945 /* see comments in ext4_mb_put_pa() */
946 ext4_lock_group(sb
, group
);
947 memcpy(data
, bitmap
, blocksize
);
949 /* mark all preallocated blks used in in-core bitmap */
950 ext4_mb_generate_from_pa(sb
, data
, group
);
951 ext4_mb_generate_from_freelist(sb
, data
, group
);
952 ext4_unlock_group(sb
, group
);
954 /* set incore so that the buddy information can be
955 * generated using this
960 SetPageUptodate(page
);
964 for (i
= 0; i
< groups_per_page
; i
++)
973 * Lock the buddy and bitmap pages. This make sure other parallel init_group
974 * on the same buddy page doesn't happen whild holding the buddy page lock.
975 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
976 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
978 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
979 ext4_group_t group
, struct ext4_buddy
*e4b
)
981 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
982 int block
, pnum
, poff
;
986 e4b
->bd_buddy_page
= NULL
;
987 e4b
->bd_bitmap_page
= NULL
;
989 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
991 * the buddy cache inode stores the block bitmap
992 * and buddy information in consecutive blocks.
993 * So for each group we need two blocks.
996 pnum
= block
/ blocks_per_page
;
997 poff
= block
% blocks_per_page
;
998 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1001 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1002 e4b
->bd_bitmap_page
= page
;
1003 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1005 if (blocks_per_page
>= 2) {
1006 /* buddy and bitmap are on the same page */
1011 pnum
= block
/ blocks_per_page
;
1012 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1015 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1016 e4b
->bd_buddy_page
= page
;
1020 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
1022 if (e4b
->bd_bitmap_page
) {
1023 unlock_page(e4b
->bd_bitmap_page
);
1024 page_cache_release(e4b
->bd_bitmap_page
);
1026 if (e4b
->bd_buddy_page
) {
1027 unlock_page(e4b
->bd_buddy_page
);
1028 page_cache_release(e4b
->bd_buddy_page
);
1033 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1034 * block group lock of all groups for this page; do not hold the BG lock when
1035 * calling this routine!
1037 static noinline_for_stack
1038 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
1041 struct ext4_group_info
*this_grp
;
1042 struct ext4_buddy e4b
;
1047 mb_debug(1, "init group %u\n", group
);
1048 this_grp
= ext4_get_group_info(sb
, group
);
1050 * This ensures that we don't reinit the buddy cache
1051 * page which map to the group from which we are already
1052 * allocating. If we are looking at the buddy cache we would
1053 * have taken a reference using ext4_mb_load_buddy and that
1054 * would have pinned buddy page to page cache.
1055 * The call to ext4_mb_get_buddy_page_lock will mark the
1058 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
);
1059 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1061 * somebody initialized the group
1062 * return without doing anything
1067 page
= e4b
.bd_bitmap_page
;
1068 ret
= ext4_mb_init_cache(page
, NULL
);
1071 if (!PageUptodate(page
)) {
1076 if (e4b
.bd_buddy_page
== NULL
) {
1078 * If both the bitmap and buddy are in
1079 * the same page we don't need to force
1085 /* init buddy cache */
1086 page
= e4b
.bd_buddy_page
;
1087 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
);
1090 if (!PageUptodate(page
)) {
1095 ext4_mb_put_buddy_page_lock(&e4b
);
1100 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1101 * block group lock of all groups for this page; do not hold the BG lock when
1102 * calling this routine!
1104 static noinline_for_stack
int
1105 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1106 struct ext4_buddy
*e4b
)
1108 int blocks_per_page
;
1114 struct ext4_group_info
*grp
;
1115 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1116 struct inode
*inode
= sbi
->s_buddy_cache
;
1119 mb_debug(1, "load group %u\n", group
);
1121 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1122 grp
= ext4_get_group_info(sb
, group
);
1124 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1127 e4b
->bd_group
= group
;
1128 e4b
->bd_buddy_page
= NULL
;
1129 e4b
->bd_bitmap_page
= NULL
;
1131 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1133 * we need full data about the group
1134 * to make a good selection
1136 ret
= ext4_mb_init_group(sb
, group
);
1142 * the buddy cache inode stores the block bitmap
1143 * and buddy information in consecutive blocks.
1144 * So for each group we need two blocks.
1147 pnum
= block
/ blocks_per_page
;
1148 poff
= block
% blocks_per_page
;
1150 /* we could use find_or_create_page(), but it locks page
1151 * what we'd like to avoid in fast path ... */
1152 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1153 if (page
== NULL
|| !PageUptodate(page
)) {
1156 * drop the page reference and try
1157 * to get the page with lock. If we
1158 * are not uptodate that implies
1159 * somebody just created the page but
1160 * is yet to initialize the same. So
1161 * wait for it to initialize.
1163 page_cache_release(page
);
1164 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1166 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1167 if (!PageUptodate(page
)) {
1168 ret
= ext4_mb_init_cache(page
, NULL
);
1173 mb_cmp_bitmaps(e4b
, page_address(page
) +
1174 (poff
* sb
->s_blocksize
));
1183 if (!PageUptodate(page
)) {
1188 /* Pages marked accessed already */
1189 e4b
->bd_bitmap_page
= page
;
1190 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1193 pnum
= block
/ blocks_per_page
;
1194 poff
= block
% blocks_per_page
;
1196 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1197 if (page
== NULL
|| !PageUptodate(page
)) {
1199 page_cache_release(page
);
1200 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1202 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1203 if (!PageUptodate(page
)) {
1204 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1217 if (!PageUptodate(page
)) {
1222 /* Pages marked accessed already */
1223 e4b
->bd_buddy_page
= page
;
1224 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1226 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1227 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1233 page_cache_release(page
);
1234 if (e4b
->bd_bitmap_page
)
1235 page_cache_release(e4b
->bd_bitmap_page
);
1236 if (e4b
->bd_buddy_page
)
1237 page_cache_release(e4b
->bd_buddy_page
);
1238 e4b
->bd_buddy
= NULL
;
1239 e4b
->bd_bitmap
= NULL
;
1243 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1245 if (e4b
->bd_bitmap_page
)
1246 page_cache_release(e4b
->bd_bitmap_page
);
1247 if (e4b
->bd_buddy_page
)
1248 page_cache_release(e4b
->bd_buddy_page
);
1252 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1257 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
1258 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1261 while (order
<= e4b
->bd_blkbits
+ 1) {
1263 if (!mb_test_bit(block
, bb
)) {
1264 /* this block is part of buddy of order 'order' */
1267 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1273 static void mb_clear_bits(void *bm
, int cur
, int len
)
1279 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1280 /* fast path: clear whole word at once */
1281 addr
= bm
+ (cur
>> 3);
1286 mb_clear_bit(cur
, bm
);
1291 /* clear bits in given range
1292 * will return first found zero bit if any, -1 otherwise
1294 static int mb_test_and_clear_bits(void *bm
, int cur
, int len
)
1301 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1302 /* fast path: clear whole word at once */
1303 addr
= bm
+ (cur
>> 3);
1304 if (*addr
!= (__u32
)(-1) && zero_bit
== -1)
1305 zero_bit
= cur
+ mb_find_next_zero_bit(addr
, 32, 0);
1310 if (!mb_test_and_clear_bit(cur
, bm
) && zero_bit
== -1)
1318 void ext4_set_bits(void *bm
, int cur
, int len
)
1324 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1325 /* fast path: set whole word at once */
1326 addr
= bm
+ (cur
>> 3);
1331 mb_set_bit(cur
, bm
);
1337 * _________________________________________________________________ */
1339 static inline int mb_buddy_adjust_border(int* bit
, void* bitmap
, int side
)
1341 if (mb_test_bit(*bit
+ side
, bitmap
)) {
1342 mb_clear_bit(*bit
, bitmap
);
1348 mb_set_bit(*bit
, bitmap
);
1353 static void mb_buddy_mark_free(struct ext4_buddy
*e4b
, int first
, int last
)
1357 void *buddy
= mb_find_buddy(e4b
, order
, &max
);
1362 /* Bits in range [first; last] are known to be set since
1363 * corresponding blocks were allocated. Bits in range
1364 * (first; last) will stay set because they form buddies on
1365 * upper layer. We just deal with borders if they don't
1366 * align with upper layer and then go up.
1367 * Releasing entire group is all about clearing
1368 * single bit of highest order buddy.
1372 * ---------------------------------
1374 * ---------------------------------
1375 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1376 * ---------------------------------
1378 * \_____________________/
1380 * Neither [1] nor [6] is aligned to above layer.
1381 * Left neighbour [0] is free, so mark it busy,
1382 * decrease bb_counters and extend range to
1384 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1385 * mark [6] free, increase bb_counters and shrink range to
1387 * Then shift range to [0; 2], go up and do the same.
1392 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&first
, buddy
, -1);
1394 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&last
, buddy
, 1);
1399 if (first
== last
|| !(buddy2
= mb_find_buddy(e4b
, order
, &max
))) {
1400 mb_clear_bits(buddy
, first
, last
- first
+ 1);
1401 e4b
->bd_info
->bb_counters
[order
- 1] += last
- first
+ 1;
1410 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1411 int first
, int count
)
1413 int left_is_free
= 0;
1414 int right_is_free
= 0;
1416 int last
= first
+ count
- 1;
1417 struct super_block
*sb
= e4b
->bd_sb
;
1419 if (WARN_ON(count
== 0))
1421 BUG_ON(last
>= (sb
->s_blocksize
<< 3));
1422 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1423 /* Don't bother if the block group is corrupt. */
1424 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
)))
1427 mb_check_buddy(e4b
);
1428 mb_free_blocks_double(inode
, e4b
, first
, count
);
1430 e4b
->bd_info
->bb_free
+= count
;
1431 if (first
< e4b
->bd_info
->bb_first_free
)
1432 e4b
->bd_info
->bb_first_free
= first
;
1434 /* access memory sequentially: check left neighbour,
1435 * clear range and then check right neighbour
1438 left_is_free
= !mb_test_bit(first
- 1, e4b
->bd_bitmap
);
1439 block
= mb_test_and_clear_bits(e4b
->bd_bitmap
, first
, count
);
1440 if (last
+ 1 < EXT4_SB(sb
)->s_mb_maxs
[0])
1441 right_is_free
= !mb_test_bit(last
+ 1, e4b
->bd_bitmap
);
1443 if (unlikely(block
!= -1)) {
1444 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1445 ext4_fsblk_t blocknr
;
1447 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1448 blocknr
+= EXT4_C2B(EXT4_SB(sb
), block
);
1449 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1450 inode
? inode
->i_ino
: 0,
1452 "freeing already freed block "
1453 "(bit %u); block bitmap corrupt.",
1455 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))
1456 percpu_counter_sub(&sbi
->s_freeclusters_counter
,
1457 e4b
->bd_info
->bb_free
);
1458 /* Mark the block group as corrupt. */
1459 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT
,
1460 &e4b
->bd_info
->bb_state
);
1461 mb_regenerate_buddy(e4b
);
1465 /* let's maintain fragments counter */
1466 if (left_is_free
&& right_is_free
)
1467 e4b
->bd_info
->bb_fragments
--;
1468 else if (!left_is_free
&& !right_is_free
)
1469 e4b
->bd_info
->bb_fragments
++;
1471 /* buddy[0] == bd_bitmap is a special case, so handle
1472 * it right away and let mb_buddy_mark_free stay free of
1473 * zero order checks.
1474 * Check if neighbours are to be coaleasced,
1475 * adjust bitmap bb_counters and borders appropriately.
1478 first
+= !left_is_free
;
1479 e4b
->bd_info
->bb_counters
[0] += left_is_free
? -1 : 1;
1482 last
-= !right_is_free
;
1483 e4b
->bd_info
->bb_counters
[0] += right_is_free
? -1 : 1;
1487 mb_buddy_mark_free(e4b
, first
>> 1, last
>> 1);
1490 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1491 mb_check_buddy(e4b
);
1494 static int mb_find_extent(struct ext4_buddy
*e4b
, int block
,
1495 int needed
, struct ext4_free_extent
*ex
)
1501 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1504 buddy
= mb_find_buddy(e4b
, 0, &max
);
1505 BUG_ON(buddy
== NULL
);
1506 BUG_ON(block
>= max
);
1507 if (mb_test_bit(block
, buddy
)) {
1514 /* find actual order */
1515 order
= mb_find_order_for_block(e4b
, block
);
1516 block
= block
>> order
;
1518 ex
->fe_len
= 1 << order
;
1519 ex
->fe_start
= block
<< order
;
1520 ex
->fe_group
= e4b
->bd_group
;
1522 /* calc difference from given start */
1523 next
= next
- ex
->fe_start
;
1525 ex
->fe_start
+= next
;
1527 while (needed
> ex
->fe_len
&&
1528 mb_find_buddy(e4b
, order
, &max
)) {
1530 if (block
+ 1 >= max
)
1533 next
= (block
+ 1) * (1 << order
);
1534 if (mb_test_bit(next
, e4b
->bd_bitmap
))
1537 order
= mb_find_order_for_block(e4b
, next
);
1539 block
= next
>> order
;
1540 ex
->fe_len
+= 1 << order
;
1543 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1547 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1553 int start
= ex
->fe_start
;
1554 int len
= ex
->fe_len
;
1559 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1560 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1561 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1562 mb_check_buddy(e4b
);
1563 mb_mark_used_double(e4b
, start
, len
);
1565 e4b
->bd_info
->bb_free
-= len
;
1566 if (e4b
->bd_info
->bb_first_free
== start
)
1567 e4b
->bd_info
->bb_first_free
+= len
;
1569 /* let's maintain fragments counter */
1571 mlen
= !mb_test_bit(start
- 1, e4b
->bd_bitmap
);
1572 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1573 max
= !mb_test_bit(start
+ len
, e4b
->bd_bitmap
);
1575 e4b
->bd_info
->bb_fragments
++;
1576 else if (!mlen
&& !max
)
1577 e4b
->bd_info
->bb_fragments
--;
1579 /* let's maintain buddy itself */
1581 ord
= mb_find_order_for_block(e4b
, start
);
1583 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1584 /* the whole chunk may be allocated at once! */
1586 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1587 BUG_ON((start
>> ord
) >= max
);
1588 mb_set_bit(start
>> ord
, buddy
);
1589 e4b
->bd_info
->bb_counters
[ord
]--;
1596 /* store for history */
1598 ret
= len
| (ord
<< 16);
1600 /* we have to split large buddy */
1602 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1603 mb_set_bit(start
>> ord
, buddy
);
1604 e4b
->bd_info
->bb_counters
[ord
]--;
1607 cur
= (start
>> ord
) & ~1U;
1608 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1609 mb_clear_bit(cur
, buddy
);
1610 mb_clear_bit(cur
+ 1, buddy
);
1611 e4b
->bd_info
->bb_counters
[ord
]++;
1612 e4b
->bd_info
->bb_counters
[ord
]++;
1614 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1616 ext4_set_bits(e4b
->bd_bitmap
, ex
->fe_start
, len0
);
1617 mb_check_buddy(e4b
);
1623 * Must be called under group lock!
1625 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1626 struct ext4_buddy
*e4b
)
1628 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1631 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1632 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1634 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1635 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1636 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1638 /* preallocation can change ac_b_ex, thus we store actually
1639 * allocated blocks for history */
1640 ac
->ac_f_ex
= ac
->ac_b_ex
;
1642 ac
->ac_status
= AC_STATUS_FOUND
;
1643 ac
->ac_tail
= ret
& 0xffff;
1644 ac
->ac_buddy
= ret
>> 16;
1647 * take the page reference. We want the page to be pinned
1648 * so that we don't get a ext4_mb_init_cache_call for this
1649 * group until we update the bitmap. That would mean we
1650 * double allocate blocks. The reference is dropped
1651 * in ext4_mb_release_context
1653 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1654 get_page(ac
->ac_bitmap_page
);
1655 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1656 get_page(ac
->ac_buddy_page
);
1657 /* store last allocated for subsequent stream allocation */
1658 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1659 spin_lock(&sbi
->s_md_lock
);
1660 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1661 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1662 spin_unlock(&sbi
->s_md_lock
);
1667 * regular allocator, for general purposes allocation
1670 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1671 struct ext4_buddy
*e4b
,
1674 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1675 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1676 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1677 struct ext4_free_extent ex
;
1680 if (ac
->ac_status
== AC_STATUS_FOUND
)
1683 * We don't want to scan for a whole year
1685 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1686 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1687 ac
->ac_status
= AC_STATUS_BREAK
;
1692 * Haven't found good chunk so far, let's continue
1694 if (bex
->fe_len
< gex
->fe_len
)
1697 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1698 && bex
->fe_group
== e4b
->bd_group
) {
1699 /* recheck chunk's availability - we don't know
1700 * when it was found (within this lock-unlock
1702 max
= mb_find_extent(e4b
, bex
->fe_start
, gex
->fe_len
, &ex
);
1703 if (max
>= gex
->fe_len
) {
1704 ext4_mb_use_best_found(ac
, e4b
);
1711 * The routine checks whether found extent is good enough. If it is,
1712 * then the extent gets marked used and flag is set to the context
1713 * to stop scanning. Otherwise, the extent is compared with the
1714 * previous found extent and if new one is better, then it's stored
1715 * in the context. Later, the best found extent will be used, if
1716 * mballoc can't find good enough extent.
1718 * FIXME: real allocation policy is to be designed yet!
1720 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1721 struct ext4_free_extent
*ex
,
1722 struct ext4_buddy
*e4b
)
1724 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1725 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1727 BUG_ON(ex
->fe_len
<= 0);
1728 BUG_ON(ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1729 BUG_ON(ex
->fe_start
>= EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1730 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1735 * The special case - take what you catch first
1737 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1739 ext4_mb_use_best_found(ac
, e4b
);
1744 * Let's check whether the chuck is good enough
1746 if (ex
->fe_len
== gex
->fe_len
) {
1748 ext4_mb_use_best_found(ac
, e4b
);
1753 * If this is first found extent, just store it in the context
1755 if (bex
->fe_len
== 0) {
1761 * If new found extent is better, store it in the context
1763 if (bex
->fe_len
< gex
->fe_len
) {
1764 /* if the request isn't satisfied, any found extent
1765 * larger than previous best one is better */
1766 if (ex
->fe_len
> bex
->fe_len
)
1768 } else if (ex
->fe_len
> gex
->fe_len
) {
1769 /* if the request is satisfied, then we try to find
1770 * an extent that still satisfy the request, but is
1771 * smaller than previous one */
1772 if (ex
->fe_len
< bex
->fe_len
)
1776 ext4_mb_check_limits(ac
, e4b
, 0);
1779 static noinline_for_stack
1780 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1781 struct ext4_buddy
*e4b
)
1783 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1784 ext4_group_t group
= ex
.fe_group
;
1788 BUG_ON(ex
.fe_len
<= 0);
1789 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1793 ext4_lock_group(ac
->ac_sb
, group
);
1794 max
= mb_find_extent(e4b
, ex
.fe_start
, ex
.fe_len
, &ex
);
1798 ext4_mb_use_best_found(ac
, e4b
);
1801 ext4_unlock_group(ac
->ac_sb
, group
);
1802 ext4_mb_unload_buddy(e4b
);
1807 static noinline_for_stack
1808 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1809 struct ext4_buddy
*e4b
)
1811 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1814 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1815 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1816 struct ext4_free_extent ex
;
1818 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1820 if (grp
->bb_free
== 0)
1823 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1827 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))) {
1828 ext4_mb_unload_buddy(e4b
);
1832 ext4_lock_group(ac
->ac_sb
, group
);
1833 max
= mb_find_extent(e4b
, ac
->ac_g_ex
.fe_start
,
1834 ac
->ac_g_ex
.fe_len
, &ex
);
1835 ex
.fe_logical
= 0xDEADFA11; /* debug value */
1837 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1840 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1842 /* use do_div to get remainder (would be 64-bit modulo) */
1843 if (do_div(start
, sbi
->s_stripe
) == 0) {
1846 ext4_mb_use_best_found(ac
, e4b
);
1848 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1849 BUG_ON(ex
.fe_len
<= 0);
1850 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1851 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1854 ext4_mb_use_best_found(ac
, e4b
);
1855 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1856 /* Sometimes, caller may want to merge even small
1857 * number of blocks to an existing extent */
1858 BUG_ON(ex
.fe_len
<= 0);
1859 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1860 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1863 ext4_mb_use_best_found(ac
, e4b
);
1865 ext4_unlock_group(ac
->ac_sb
, group
);
1866 ext4_mb_unload_buddy(e4b
);
1872 * The routine scans buddy structures (not bitmap!) from given order
1873 * to max order and tries to find big enough chunk to satisfy the req
1875 static noinline_for_stack
1876 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1877 struct ext4_buddy
*e4b
)
1879 struct super_block
*sb
= ac
->ac_sb
;
1880 struct ext4_group_info
*grp
= e4b
->bd_info
;
1886 BUG_ON(ac
->ac_2order
<= 0);
1887 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1888 if (grp
->bb_counters
[i
] == 0)
1891 buddy
= mb_find_buddy(e4b
, i
, &max
);
1892 BUG_ON(buddy
== NULL
);
1894 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1899 ac
->ac_b_ex
.fe_len
= 1 << i
;
1900 ac
->ac_b_ex
.fe_start
= k
<< i
;
1901 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1903 ext4_mb_use_best_found(ac
, e4b
);
1905 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1907 if (EXT4_SB(sb
)->s_mb_stats
)
1908 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1915 * The routine scans the group and measures all found extents.
1916 * In order to optimize scanning, caller must pass number of
1917 * free blocks in the group, so the routine can know upper limit.
1919 static noinline_for_stack
1920 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1921 struct ext4_buddy
*e4b
)
1923 struct super_block
*sb
= ac
->ac_sb
;
1924 void *bitmap
= e4b
->bd_bitmap
;
1925 struct ext4_free_extent ex
;
1929 free
= e4b
->bd_info
->bb_free
;
1932 i
= e4b
->bd_info
->bb_first_free
;
1934 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1935 i
= mb_find_next_zero_bit(bitmap
,
1936 EXT4_CLUSTERS_PER_GROUP(sb
), i
);
1937 if (i
>= EXT4_CLUSTERS_PER_GROUP(sb
)) {
1939 * IF we have corrupt bitmap, we won't find any
1940 * free blocks even though group info says we
1941 * we have free blocks
1943 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1944 "%d free clusters as per "
1945 "group info. But bitmap says 0",
1950 mb_find_extent(e4b
, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1951 BUG_ON(ex
.fe_len
<= 0);
1952 if (free
< ex
.fe_len
) {
1953 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1954 "%d free clusters as per "
1955 "group info. But got %d blocks",
1958 * The number of free blocks differs. This mostly
1959 * indicate that the bitmap is corrupt. So exit
1960 * without claiming the space.
1964 ex
.fe_logical
= 0xDEADC0DE; /* debug value */
1965 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1971 ext4_mb_check_limits(ac
, e4b
, 1);
1975 * This is a special case for storages like raid5
1976 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1978 static noinline_for_stack
1979 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1980 struct ext4_buddy
*e4b
)
1982 struct super_block
*sb
= ac
->ac_sb
;
1983 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1984 void *bitmap
= e4b
->bd_bitmap
;
1985 struct ext4_free_extent ex
;
1986 ext4_fsblk_t first_group_block
;
1991 BUG_ON(sbi
->s_stripe
== 0);
1993 /* find first stripe-aligned block in group */
1994 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1996 a
= first_group_block
+ sbi
->s_stripe
- 1;
1997 do_div(a
, sbi
->s_stripe
);
1998 i
= (a
* sbi
->s_stripe
) - first_group_block
;
2000 while (i
< EXT4_CLUSTERS_PER_GROUP(sb
)) {
2001 if (!mb_test_bit(i
, bitmap
)) {
2002 max
= mb_find_extent(e4b
, i
, sbi
->s_stripe
, &ex
);
2003 if (max
>= sbi
->s_stripe
) {
2005 ex
.fe_logical
= 0xDEADF00D; /* debug value */
2007 ext4_mb_use_best_found(ac
, e4b
);
2016 * This is now called BEFORE we load the buddy bitmap.
2017 * Returns either 1 or 0 indicating that the group is either suitable
2018 * for the allocation or not. In addition it can also return negative
2019 * error code when something goes wrong.
2021 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
2022 ext4_group_t group
, int cr
)
2024 unsigned free
, fragments
;
2025 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
2026 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
2028 BUG_ON(cr
< 0 || cr
>= 4);
2030 free
= grp
->bb_free
;
2033 if (cr
<= 2 && free
< ac
->ac_g_ex
.fe_len
)
2036 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp
)))
2039 /* We only do this if the grp has never been initialized */
2040 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
2041 int ret
= ext4_mb_init_group(ac
->ac_sb
, group
);
2046 fragments
= grp
->bb_fragments
;
2052 BUG_ON(ac
->ac_2order
== 0);
2054 /* Avoid using the first bg of a flexgroup for data files */
2055 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
2056 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
2057 ((group
% flex_size
) == 0))
2060 if ((ac
->ac_2order
> ac
->ac_sb
->s_blocksize_bits
+1) ||
2061 (free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2064 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
2069 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2073 if (free
>= ac
->ac_g_ex
.fe_len
)
2085 static noinline_for_stack
int
2086 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
2088 ext4_group_t ngroups
, group
, i
;
2090 int err
= 0, first_err
= 0;
2091 struct ext4_sb_info
*sbi
;
2092 struct super_block
*sb
;
2093 struct ext4_buddy e4b
;
2097 ngroups
= ext4_get_groups_count(sb
);
2098 /* non-extent files are limited to low blocks/groups */
2099 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
2100 ngroups
= sbi
->s_blockfile_groups
;
2102 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
2104 /* first, try the goal */
2105 err
= ext4_mb_find_by_goal(ac
, &e4b
);
2106 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
2109 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2113 * ac->ac2_order is set only if the fe_len is a power of 2
2114 * if ac2_order is set we also set criteria to 0 so that we
2115 * try exact allocation using buddy.
2117 i
= fls(ac
->ac_g_ex
.fe_len
);
2120 * We search using buddy data only if the order of the request
2121 * is greater than equal to the sbi_s_mb_order2_reqs
2122 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2124 if (i
>= sbi
->s_mb_order2_reqs
) {
2126 * This should tell if fe_len is exactly power of 2
2128 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2129 ac
->ac_2order
= i
- 1;
2132 /* if stream allocation is enabled, use global goal */
2133 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2134 /* TBD: may be hot point */
2135 spin_lock(&sbi
->s_md_lock
);
2136 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2137 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2138 spin_unlock(&sbi
->s_md_lock
);
2141 /* Let's just scan groups to find more-less suitable blocks */
2142 cr
= ac
->ac_2order
? 0 : 1;
2144 * cr == 0 try to get exact allocation,
2145 * cr == 3 try to get anything
2148 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2149 ac
->ac_criteria
= cr
;
2151 * searching for the right group start
2152 * from the goal value specified
2154 group
= ac
->ac_g_ex
.fe_group
;
2156 for (i
= 0; i
< ngroups
; group
++, i
++) {
2160 * Artificially restricted ngroups for non-extent
2161 * files makes group > ngroups possible on first loop.
2163 if (group
>= ngroups
)
2166 /* This now checks without needing the buddy page */
2167 ret
= ext4_mb_good_group(ac
, group
, cr
);
2174 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2178 ext4_lock_group(sb
, group
);
2181 * We need to check again after locking the
2184 ret
= ext4_mb_good_group(ac
, group
, cr
);
2186 ext4_unlock_group(sb
, group
);
2187 ext4_mb_unload_buddy(&e4b
);
2193 ac
->ac_groups_scanned
++;
2194 if (cr
== 0 && ac
->ac_2order
< sb
->s_blocksize_bits
+2)
2195 ext4_mb_simple_scan_group(ac
, &e4b
);
2196 else if (cr
== 1 && sbi
->s_stripe
&&
2197 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2198 ext4_mb_scan_aligned(ac
, &e4b
);
2200 ext4_mb_complex_scan_group(ac
, &e4b
);
2202 ext4_unlock_group(sb
, group
);
2203 ext4_mb_unload_buddy(&e4b
);
2205 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2210 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2211 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2213 * We've been searching too long. Let's try to allocate
2214 * the best chunk we've found so far
2217 ext4_mb_try_best_found(ac
, &e4b
);
2218 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2220 * Someone more lucky has already allocated it.
2221 * The only thing we can do is just take first
2223 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2225 ac
->ac_b_ex
.fe_group
= 0;
2226 ac
->ac_b_ex
.fe_start
= 0;
2227 ac
->ac_b_ex
.fe_len
= 0;
2228 ac
->ac_status
= AC_STATUS_CONTINUE
;
2229 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2231 atomic_inc(&sbi
->s_mb_lost_chunks
);
2236 if (!err
&& ac
->ac_status
!= AC_STATUS_FOUND
&& first_err
)
2241 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2243 struct super_block
*sb
= seq
->private;
2246 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2249 return (void *) ((unsigned long) group
);
2252 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2254 struct super_block
*sb
= seq
->private;
2258 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2261 return (void *) ((unsigned long) group
);
2264 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2266 struct super_block
*sb
= seq
->private;
2267 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2269 int err
, buddy_loaded
= 0;
2270 struct ext4_buddy e4b
;
2271 struct ext4_group_info
*grinfo
;
2273 struct ext4_group_info info
;
2274 ext4_grpblk_t counters
[16];
2279 seq_puts(seq
, "#group: free frags first ["
2280 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2281 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]");
2283 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2284 sizeof(struct ext4_group_info
);
2285 grinfo
= ext4_get_group_info(sb
, group
);
2286 /* Load the group info in memory only if not already loaded. */
2287 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo
))) {
2288 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2290 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2296 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2299 ext4_mb_unload_buddy(&e4b
);
2301 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2302 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2303 for (i
= 0; i
<= 13; i
++)
2304 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2305 sg
.info
.bb_counters
[i
] : 0);
2306 seq_printf(seq
, " ]\n");
2311 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2315 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2316 .start
= ext4_mb_seq_groups_start
,
2317 .next
= ext4_mb_seq_groups_next
,
2318 .stop
= ext4_mb_seq_groups_stop
,
2319 .show
= ext4_mb_seq_groups_show
,
2322 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2324 struct super_block
*sb
= PDE_DATA(inode
);
2327 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2329 struct seq_file
*m
= file
->private_data
;
2336 static const struct file_operations ext4_mb_seq_groups_fops
= {
2337 .owner
= THIS_MODULE
,
2338 .open
= ext4_mb_seq_groups_open
,
2340 .llseek
= seq_lseek
,
2341 .release
= seq_release
,
2344 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2346 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2347 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2354 * Allocate the top-level s_group_info array for the specified number
2357 int ext4_mb_alloc_groupinfo(struct super_block
*sb
, ext4_group_t ngroups
)
2359 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2361 struct ext4_group_info
***new_groupinfo
;
2363 size
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2364 EXT4_DESC_PER_BLOCK_BITS(sb
);
2365 if (size
<= sbi
->s_group_info_size
)
2368 size
= roundup_pow_of_two(sizeof(*sbi
->s_group_info
) * size
);
2369 new_groupinfo
= ext4_kvzalloc(size
, GFP_KERNEL
);
2370 if (!new_groupinfo
) {
2371 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2374 if (sbi
->s_group_info
) {
2375 memcpy(new_groupinfo
, sbi
->s_group_info
,
2376 sbi
->s_group_info_size
* sizeof(*sbi
->s_group_info
));
2377 kvfree(sbi
->s_group_info
);
2379 sbi
->s_group_info
= new_groupinfo
;
2380 sbi
->s_group_info_size
= size
/ sizeof(*sbi
->s_group_info
);
2381 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2382 sbi
->s_group_info_size
);
2386 /* Create and initialize ext4_group_info data for the given group. */
2387 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2388 struct ext4_group_desc
*desc
)
2392 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2393 struct ext4_group_info
**meta_group_info
;
2394 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2397 * First check if this group is the first of a reserved block.
2398 * If it's true, we have to allocate a new table of pointers
2399 * to ext4_group_info structures
2401 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2402 metalen
= sizeof(*meta_group_info
) <<
2403 EXT4_DESC_PER_BLOCK_BITS(sb
);
2404 meta_group_info
= kmalloc(metalen
, GFP_NOFS
);
2405 if (meta_group_info
== NULL
) {
2406 ext4_msg(sb
, KERN_ERR
, "can't allocate mem "
2407 "for a buddy group");
2408 goto exit_meta_group_info
;
2410 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2415 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2416 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2418 meta_group_info
[i
] = kmem_cache_zalloc(cachep
, GFP_NOFS
);
2419 if (meta_group_info
[i
] == NULL
) {
2420 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy mem");
2421 goto exit_group_info
;
2423 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2424 &(meta_group_info
[i
]->bb_state
));
2427 * initialize bb_free to be able to skip
2428 * empty groups without initialization
2430 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2431 meta_group_info
[i
]->bb_free
=
2432 ext4_free_clusters_after_init(sb
, group
, desc
);
2434 meta_group_info
[i
]->bb_free
=
2435 ext4_free_group_clusters(sb
, desc
);
2438 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2439 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2440 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2441 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2445 struct buffer_head
*bh
;
2446 meta_group_info
[i
]->bb_bitmap
=
2447 kmalloc(sb
->s_blocksize
, GFP_NOFS
);
2448 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2449 bh
= ext4_read_block_bitmap(sb
, group
);
2451 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2460 /* If a meta_group_info table has been allocated, release it now */
2461 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2462 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2463 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] = NULL
;
2465 exit_meta_group_info
:
2467 } /* ext4_mb_add_groupinfo */
2469 static int ext4_mb_init_backend(struct super_block
*sb
)
2471 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2473 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2475 struct ext4_group_desc
*desc
;
2476 struct kmem_cache
*cachep
;
2478 err
= ext4_mb_alloc_groupinfo(sb
, ngroups
);
2482 sbi
->s_buddy_cache
= new_inode(sb
);
2483 if (sbi
->s_buddy_cache
== NULL
) {
2484 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2487 /* To avoid potentially colliding with an valid on-disk inode number,
2488 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2489 * not in the inode hash, so it should never be found by iget(), but
2490 * this will avoid confusion if it ever shows up during debugging. */
2491 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2492 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2493 for (i
= 0; i
< ngroups
; i
++) {
2494 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2496 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2499 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2506 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2508 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2509 i
= sbi
->s_group_info_size
;
2511 kfree(sbi
->s_group_info
[i
]);
2512 iput(sbi
->s_buddy_cache
);
2514 kvfree(sbi
->s_group_info
);
2518 static void ext4_groupinfo_destroy_slabs(void)
2522 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2523 if (ext4_groupinfo_caches
[i
])
2524 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2525 ext4_groupinfo_caches
[i
] = NULL
;
2529 static int ext4_groupinfo_create_slab(size_t size
)
2531 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2533 int blocksize_bits
= order_base_2(size
);
2534 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2535 struct kmem_cache
*cachep
;
2537 if (cache_index
>= NR_GRPINFO_CACHES
)
2540 if (unlikely(cache_index
< 0))
2543 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2544 if (ext4_groupinfo_caches
[cache_index
]) {
2545 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2546 return 0; /* Already created */
2549 slab_size
= offsetof(struct ext4_group_info
,
2550 bb_counters
[blocksize_bits
+ 2]);
2552 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2553 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2556 ext4_groupinfo_caches
[cache_index
] = cachep
;
2558 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2561 "EXT4-fs: no memory for groupinfo slab cache\n");
2568 int ext4_mb_init(struct super_block
*sb
)
2570 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2576 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2578 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2579 if (sbi
->s_mb_offsets
== NULL
) {
2584 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2585 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2586 if (sbi
->s_mb_maxs
== NULL
) {
2591 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2595 /* order 0 is regular bitmap */
2596 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2597 sbi
->s_mb_offsets
[0] = 0;
2601 max
= sb
->s_blocksize
<< 2;
2603 sbi
->s_mb_offsets
[i
] = offset
;
2604 sbi
->s_mb_maxs
[i
] = max
;
2605 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2608 } while (i
<= sb
->s_blocksize_bits
+ 1);
2610 spin_lock_init(&sbi
->s_md_lock
);
2611 spin_lock_init(&sbi
->s_bal_lock
);
2613 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2614 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2615 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2616 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2617 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2619 * The default group preallocation is 512, which for 4k block
2620 * sizes translates to 2 megabytes. However for bigalloc file
2621 * systems, this is probably too big (i.e, if the cluster size
2622 * is 1 megabyte, then group preallocation size becomes half a
2623 * gigabyte!). As a default, we will keep a two megabyte
2624 * group pralloc size for cluster sizes up to 64k, and after
2625 * that, we will force a minimum group preallocation size of
2626 * 32 clusters. This translates to 8 megs when the cluster
2627 * size is 256k, and 32 megs when the cluster size is 1 meg,
2628 * which seems reasonable as a default.
2630 sbi
->s_mb_group_prealloc
= max(MB_DEFAULT_GROUP_PREALLOC
>>
2631 sbi
->s_cluster_bits
, 32);
2633 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2634 * to the lowest multiple of s_stripe which is bigger than
2635 * the s_mb_group_prealloc as determined above. We want
2636 * the preallocation size to be an exact multiple of the
2637 * RAID stripe size so that preallocations don't fragment
2640 if (sbi
->s_stripe
> 1) {
2641 sbi
->s_mb_group_prealloc
= roundup(
2642 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2645 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2646 if (sbi
->s_locality_groups
== NULL
) {
2650 for_each_possible_cpu(i
) {
2651 struct ext4_locality_group
*lg
;
2652 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2653 mutex_init(&lg
->lg_mutex
);
2654 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2655 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2656 spin_lock_init(&lg
->lg_prealloc_lock
);
2659 /* init file for buddy data */
2660 ret
= ext4_mb_init_backend(sb
);
2662 goto out_free_locality_groups
;
2665 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2666 &ext4_mb_seq_groups_fops
, sb
);
2670 out_free_locality_groups
:
2671 free_percpu(sbi
->s_locality_groups
);
2672 sbi
->s_locality_groups
= NULL
;
2674 kfree(sbi
->s_mb_offsets
);
2675 sbi
->s_mb_offsets
= NULL
;
2676 kfree(sbi
->s_mb_maxs
);
2677 sbi
->s_mb_maxs
= NULL
;
2681 /* need to called with the ext4 group lock held */
2682 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2684 struct ext4_prealloc_space
*pa
;
2685 struct list_head
*cur
, *tmp
;
2688 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2689 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2690 list_del(&pa
->pa_group_list
);
2692 kmem_cache_free(ext4_pspace_cachep
, pa
);
2695 mb_debug(1, "mballoc: %u PAs left\n", count
);
2699 int ext4_mb_release(struct super_block
*sb
)
2701 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2703 int num_meta_group_infos
;
2704 struct ext4_group_info
*grinfo
;
2705 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2706 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2709 remove_proc_entry("mb_groups", sbi
->s_proc
);
2711 if (sbi
->s_group_info
) {
2712 for (i
= 0; i
< ngroups
; i
++) {
2713 grinfo
= ext4_get_group_info(sb
, i
);
2715 kfree(grinfo
->bb_bitmap
);
2717 ext4_lock_group(sb
, i
);
2718 ext4_mb_cleanup_pa(grinfo
);
2719 ext4_unlock_group(sb
, i
);
2720 kmem_cache_free(cachep
, grinfo
);
2722 num_meta_group_infos
= (ngroups
+
2723 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2724 EXT4_DESC_PER_BLOCK_BITS(sb
);
2725 for (i
= 0; i
< num_meta_group_infos
; i
++)
2726 kfree(sbi
->s_group_info
[i
]);
2727 kvfree(sbi
->s_group_info
);
2729 kfree(sbi
->s_mb_offsets
);
2730 kfree(sbi
->s_mb_maxs
);
2731 iput(sbi
->s_buddy_cache
);
2732 if (sbi
->s_mb_stats
) {
2733 ext4_msg(sb
, KERN_INFO
,
2734 "mballoc: %u blocks %u reqs (%u success)",
2735 atomic_read(&sbi
->s_bal_allocated
),
2736 atomic_read(&sbi
->s_bal_reqs
),
2737 atomic_read(&sbi
->s_bal_success
));
2738 ext4_msg(sb
, KERN_INFO
,
2739 "mballoc: %u extents scanned, %u goal hits, "
2740 "%u 2^N hits, %u breaks, %u lost",
2741 atomic_read(&sbi
->s_bal_ex_scanned
),
2742 atomic_read(&sbi
->s_bal_goals
),
2743 atomic_read(&sbi
->s_bal_2orders
),
2744 atomic_read(&sbi
->s_bal_breaks
),
2745 atomic_read(&sbi
->s_mb_lost_chunks
));
2746 ext4_msg(sb
, KERN_INFO
,
2747 "mballoc: %lu generated and it took %Lu",
2748 sbi
->s_mb_buddies_generated
,
2749 sbi
->s_mb_generation_time
);
2750 ext4_msg(sb
, KERN_INFO
,
2751 "mballoc: %u preallocated, %u discarded",
2752 atomic_read(&sbi
->s_mb_preallocated
),
2753 atomic_read(&sbi
->s_mb_discarded
));
2756 free_percpu(sbi
->s_locality_groups
);
2761 static inline int ext4_issue_discard(struct super_block
*sb
,
2762 ext4_group_t block_group
, ext4_grpblk_t cluster
, int count
)
2764 ext4_fsblk_t discard_block
;
2766 discard_block
= (EXT4_C2B(EXT4_SB(sb
), cluster
) +
2767 ext4_group_first_block_no(sb
, block_group
));
2768 count
= EXT4_C2B(EXT4_SB(sb
), count
);
2769 trace_ext4_discard_blocks(sb
,
2770 (unsigned long long) discard_block
, count
);
2771 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
2775 * This function is called by the jbd2 layer once the commit has finished,
2776 * so we know we can free the blocks that were released with that commit.
2778 static void ext4_free_data_callback(struct super_block
*sb
,
2779 struct ext4_journal_cb_entry
*jce
,
2782 struct ext4_free_data
*entry
= (struct ext4_free_data
*)jce
;
2783 struct ext4_buddy e4b
;
2784 struct ext4_group_info
*db
;
2785 int err
, count
= 0, count2
= 0;
2787 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2788 entry
->efd_count
, entry
->efd_group
, entry
);
2790 if (test_opt(sb
, DISCARD
)) {
2791 err
= ext4_issue_discard(sb
, entry
->efd_group
,
2792 entry
->efd_start_cluster
,
2794 if (err
&& err
!= -EOPNOTSUPP
)
2795 ext4_msg(sb
, KERN_WARNING
, "discard request in"
2796 " group:%d block:%d count:%d failed"
2797 " with %d", entry
->efd_group
,
2798 entry
->efd_start_cluster
,
2799 entry
->efd_count
, err
);
2802 err
= ext4_mb_load_buddy(sb
, entry
->efd_group
, &e4b
);
2803 /* we expect to find existing buddy because it's pinned */
2808 /* there are blocks to put in buddy to make them really free */
2809 count
+= entry
->efd_count
;
2811 ext4_lock_group(sb
, entry
->efd_group
);
2812 /* Take it out of per group rb tree */
2813 rb_erase(&entry
->efd_node
, &(db
->bb_free_root
));
2814 mb_free_blocks(NULL
, &e4b
, entry
->efd_start_cluster
, entry
->efd_count
);
2817 * Clear the trimmed flag for the group so that the next
2818 * ext4_trim_fs can trim it.
2819 * If the volume is mounted with -o discard, online discard
2820 * is supported and the free blocks will be trimmed online.
2822 if (!test_opt(sb
, DISCARD
))
2823 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
2825 if (!db
->bb_free_root
.rb_node
) {
2826 /* No more items in the per group rb tree
2827 * balance refcounts from ext4_mb_free_metadata()
2829 page_cache_release(e4b
.bd_buddy_page
);
2830 page_cache_release(e4b
.bd_bitmap_page
);
2832 ext4_unlock_group(sb
, entry
->efd_group
);
2833 kmem_cache_free(ext4_free_data_cachep
, entry
);
2834 ext4_mb_unload_buddy(&e4b
);
2836 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2839 int __init
ext4_init_mballoc(void)
2841 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
2842 SLAB_RECLAIM_ACCOUNT
);
2843 if (ext4_pspace_cachep
== NULL
)
2846 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
2847 SLAB_RECLAIM_ACCOUNT
);
2848 if (ext4_ac_cachep
== NULL
) {
2849 kmem_cache_destroy(ext4_pspace_cachep
);
2853 ext4_free_data_cachep
= KMEM_CACHE(ext4_free_data
,
2854 SLAB_RECLAIM_ACCOUNT
);
2855 if (ext4_free_data_cachep
== NULL
) {
2856 kmem_cache_destroy(ext4_pspace_cachep
);
2857 kmem_cache_destroy(ext4_ac_cachep
);
2863 void ext4_exit_mballoc(void)
2866 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2867 * before destroying the slab cache.
2870 kmem_cache_destroy(ext4_pspace_cachep
);
2871 kmem_cache_destroy(ext4_ac_cachep
);
2872 kmem_cache_destroy(ext4_free_data_cachep
);
2873 ext4_groupinfo_destroy_slabs();
2878 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2879 * Returns 0 if success or error code
2881 static noinline_for_stack
int
2882 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2883 handle_t
*handle
, unsigned int reserv_clstrs
)
2885 struct buffer_head
*bitmap_bh
= NULL
;
2886 struct ext4_group_desc
*gdp
;
2887 struct buffer_head
*gdp_bh
;
2888 struct ext4_sb_info
*sbi
;
2889 struct super_block
*sb
;
2893 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2894 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2900 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2904 BUFFER_TRACE(bitmap_bh
, "getting write access");
2905 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2910 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2914 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2915 ext4_free_group_clusters(sb
, gdp
));
2917 BUFFER_TRACE(gdp_bh
, "get_write_access");
2918 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2922 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2924 len
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
2925 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2926 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2927 "fs metadata", block
, block
+len
);
2928 /* File system mounted not to panic on error
2929 * Fix the bitmap and repeat the block allocation
2930 * We leak some of the blocks here.
2932 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2933 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2934 ac
->ac_b_ex
.fe_len
);
2935 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2936 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2942 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2943 #ifdef AGGRESSIVE_CHECK
2946 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2947 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2948 bitmap_bh
->b_data
));
2952 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2953 ac
->ac_b_ex
.fe_len
);
2954 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2955 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2956 ext4_free_group_clusters_set(sb
, gdp
,
2957 ext4_free_clusters_after_init(sb
,
2958 ac
->ac_b_ex
.fe_group
, gdp
));
2960 len
= ext4_free_group_clusters(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2961 ext4_free_group_clusters_set(sb
, gdp
, len
);
2962 ext4_block_bitmap_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
, bitmap_bh
);
2963 ext4_group_desc_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
);
2965 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2966 percpu_counter_sub(&sbi
->s_freeclusters_counter
, ac
->ac_b_ex
.fe_len
);
2968 * Now reduce the dirty block count also. Should not go negative
2970 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2971 /* release all the reserved blocks if non delalloc */
2972 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
2975 if (sbi
->s_log_groups_per_flex
) {
2976 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2977 ac
->ac_b_ex
.fe_group
);
2978 atomic64_sub(ac
->ac_b_ex
.fe_len
,
2979 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
2982 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2985 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2993 * here we normalize request for locality group
2994 * Group request are normalized to s_mb_group_prealloc, which goes to
2995 * s_strip if we set the same via mount option.
2996 * s_mb_group_prealloc can be configured via
2997 * /sys/fs/ext4/<partition>/mb_group_prealloc
2999 * XXX: should we try to preallocate more than the group has now?
3001 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
3003 struct super_block
*sb
= ac
->ac_sb
;
3004 struct ext4_locality_group
*lg
= ac
->ac_lg
;
3007 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
3008 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3009 current
->pid
, ac
->ac_g_ex
.fe_len
);
3013 * Normalization means making request better in terms of
3014 * size and alignment
3016 static noinline_for_stack
void
3017 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
3018 struct ext4_allocation_request
*ar
)
3020 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3023 loff_t size
, start_off
;
3024 loff_t orig_size __maybe_unused
;
3026 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3027 struct ext4_prealloc_space
*pa
;
3029 /* do normalize only data requests, metadata requests
3030 do not need preallocation */
3031 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3034 /* sometime caller may want exact blocks */
3035 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3038 /* caller may indicate that preallocation isn't
3039 * required (it's a tail, for example) */
3040 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
3043 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
3044 ext4_mb_normalize_group_request(ac
);
3048 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3050 /* first, let's learn actual file size
3051 * given current request is allocated */
3052 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
3053 size
= size
<< bsbits
;
3054 if (size
< i_size_read(ac
->ac_inode
))
3055 size
= i_size_read(ac
->ac_inode
);
3058 /* max size of free chunks */
3061 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3062 (req <= (size) || max <= (chunk_size))
3064 /* first, try to predict filesize */
3065 /* XXX: should this table be tunable? */
3067 if (size
<= 16 * 1024) {
3069 } else if (size
<= 32 * 1024) {
3071 } else if (size
<= 64 * 1024) {
3073 } else if (size
<= 128 * 1024) {
3075 } else if (size
<= 256 * 1024) {
3077 } else if (size
<= 512 * 1024) {
3079 } else if (size
<= 1024 * 1024) {
3081 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
3082 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3083 (21 - bsbits
)) << 21;
3084 size
= 2 * 1024 * 1024;
3085 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
3086 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3087 (22 - bsbits
)) << 22;
3088 size
= 4 * 1024 * 1024;
3089 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
3090 (8<<20)>>bsbits
, max
, 8 * 1024)) {
3091 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3092 (23 - bsbits
)) << 23;
3093 size
= 8 * 1024 * 1024;
3095 start_off
= (loff_t
) ac
->ac_o_ex
.fe_logical
<< bsbits
;
3096 size
= (loff_t
) EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3097 ac
->ac_o_ex
.fe_len
) << bsbits
;
3099 size
= size
>> bsbits
;
3100 start
= start_off
>> bsbits
;
3102 /* don't cover already allocated blocks in selected range */
3103 if (ar
->pleft
&& start
<= ar
->lleft
) {
3104 size
-= ar
->lleft
+ 1 - start
;
3105 start
= ar
->lleft
+ 1;
3107 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
3108 size
-= start
+ size
- ar
->lright
;
3112 /* check we don't cross already preallocated blocks */
3114 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3119 spin_lock(&pa
->pa_lock
);
3120 if (pa
->pa_deleted
) {
3121 spin_unlock(&pa
->pa_lock
);
3125 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3128 /* PA must not overlap original request */
3129 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
3130 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
3132 /* skip PAs this normalized request doesn't overlap with */
3133 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
3134 spin_unlock(&pa
->pa_lock
);
3137 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3139 /* adjust start or end to be adjacent to this pa */
3140 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3141 BUG_ON(pa_end
< start
);
3143 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3144 BUG_ON(pa
->pa_lstart
> end
);
3145 end
= pa
->pa_lstart
;
3147 spin_unlock(&pa
->pa_lock
);
3152 /* XXX: extra loop to check we really don't overlap preallocations */
3154 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3157 spin_lock(&pa
->pa_lock
);
3158 if (pa
->pa_deleted
== 0) {
3159 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3161 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3163 spin_unlock(&pa
->pa_lock
);
3167 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3168 start
> ac
->ac_o_ex
.fe_logical
) {
3169 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3170 "start %lu, size %lu, fe_logical %lu",
3171 (unsigned long) start
, (unsigned long) size
,
3172 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3175 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3177 /* now prepare goal request */
3179 /* XXX: is it better to align blocks WRT to logical
3180 * placement or satisfy big request as is */
3181 ac
->ac_g_ex
.fe_logical
= start
;
3182 ac
->ac_g_ex
.fe_len
= EXT4_NUM_B2C(sbi
, size
);
3184 /* define goal start in order to merge */
3185 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3186 /* merge to the right */
3187 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3188 &ac
->ac_f_ex
.fe_group
,
3189 &ac
->ac_f_ex
.fe_start
);
3190 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3192 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3193 /* merge to the left */
3194 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3195 &ac
->ac_f_ex
.fe_group
,
3196 &ac
->ac_f_ex
.fe_start
);
3197 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3200 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3201 (unsigned) orig_size
, (unsigned) start
);
3204 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3206 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3208 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3209 atomic_inc(&sbi
->s_bal_reqs
);
3210 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3211 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3212 atomic_inc(&sbi
->s_bal_success
);
3213 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3214 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3215 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3216 atomic_inc(&sbi
->s_bal_goals
);
3217 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3218 atomic_inc(&sbi
->s_bal_breaks
);
3221 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3222 trace_ext4_mballoc_alloc(ac
);
3224 trace_ext4_mballoc_prealloc(ac
);
3228 * Called on failure; free up any blocks from the inode PA for this
3229 * context. We don't need this for MB_GROUP_PA because we only change
3230 * pa_free in ext4_mb_release_context(), but on failure, we've already
3231 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3233 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3235 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3236 struct ext4_buddy e4b
;
3240 if (ac
->ac_f_ex
.fe_len
== 0)
3242 err
= ext4_mb_load_buddy(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
, &e4b
);
3245 * This should never happen since we pin the
3246 * pages in the ext4_allocation_context so
3247 * ext4_mb_load_buddy() should never fail.
3249 WARN(1, "mb_load_buddy failed (%d)", err
);
3252 ext4_lock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3253 mb_free_blocks(ac
->ac_inode
, &e4b
, ac
->ac_f_ex
.fe_start
,
3254 ac
->ac_f_ex
.fe_len
);
3255 ext4_unlock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3256 ext4_mb_unload_buddy(&e4b
);
3259 if (pa
->pa_type
== MB_INODE_PA
)
3260 pa
->pa_free
+= ac
->ac_b_ex
.fe_len
;
3264 * use blocks preallocated to inode
3266 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3267 struct ext4_prealloc_space
*pa
)
3269 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3274 /* found preallocated blocks, use them */
3275 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3276 end
= min(pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
),
3277 start
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
));
3278 len
= EXT4_NUM_B2C(sbi
, end
- start
);
3279 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3280 &ac
->ac_b_ex
.fe_start
);
3281 ac
->ac_b_ex
.fe_len
= len
;
3282 ac
->ac_status
= AC_STATUS_FOUND
;
3285 BUG_ON(start
< pa
->pa_pstart
);
3286 BUG_ON(end
> pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
));
3287 BUG_ON(pa
->pa_free
< len
);
3290 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3294 * use blocks preallocated to locality group
3296 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3297 struct ext4_prealloc_space
*pa
)
3299 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3301 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3302 &ac
->ac_b_ex
.fe_group
,
3303 &ac
->ac_b_ex
.fe_start
);
3304 ac
->ac_b_ex
.fe_len
= len
;
3305 ac
->ac_status
= AC_STATUS_FOUND
;
3308 /* we don't correct pa_pstart or pa_plen here to avoid
3309 * possible race when the group is being loaded concurrently
3310 * instead we correct pa later, after blocks are marked
3311 * in on-disk bitmap -- see ext4_mb_release_context()
3312 * Other CPUs are prevented from allocating from this pa by lg_mutex
3314 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3318 * Return the prealloc space that have minimal distance
3319 * from the goal block. @cpa is the prealloc
3320 * space that is having currently known minimal distance
3321 * from the goal block.
3323 static struct ext4_prealloc_space
*
3324 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3325 struct ext4_prealloc_space
*pa
,
3326 struct ext4_prealloc_space
*cpa
)
3328 ext4_fsblk_t cur_distance
, new_distance
;
3331 atomic_inc(&pa
->pa_count
);
3334 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3335 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3337 if (cur_distance
<= new_distance
)
3340 /* drop the previous reference */
3341 atomic_dec(&cpa
->pa_count
);
3342 atomic_inc(&pa
->pa_count
);
3347 * search goal blocks in preallocated space
3349 static noinline_for_stack
int
3350 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3352 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3354 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3355 struct ext4_locality_group
*lg
;
3356 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3357 ext4_fsblk_t goal_block
;
3359 /* only data can be preallocated */
3360 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3363 /* first, try per-file preallocation */
3365 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3367 /* all fields in this condition don't change,
3368 * so we can skip locking for them */
3369 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3370 ac
->ac_o_ex
.fe_logical
>= (pa
->pa_lstart
+
3371 EXT4_C2B(sbi
, pa
->pa_len
)))
3374 /* non-extent files can't have physical blocks past 2^32 */
3375 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3376 (pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
) >
3377 EXT4_MAX_BLOCK_FILE_PHYS
))
3380 /* found preallocated blocks, use them */
3381 spin_lock(&pa
->pa_lock
);
3382 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3383 atomic_inc(&pa
->pa_count
);
3384 ext4_mb_use_inode_pa(ac
, pa
);
3385 spin_unlock(&pa
->pa_lock
);
3386 ac
->ac_criteria
= 10;
3390 spin_unlock(&pa
->pa_lock
);
3394 /* can we use group allocation? */
3395 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3398 /* inode may have no locality group for some reason */
3402 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3403 if (order
> PREALLOC_TB_SIZE
- 1)
3404 /* The max size of hash table is PREALLOC_TB_SIZE */
3405 order
= PREALLOC_TB_SIZE
- 1;
3407 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3409 * search for the prealloc space that is having
3410 * minimal distance from the goal block.
3412 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3414 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3416 spin_lock(&pa
->pa_lock
);
3417 if (pa
->pa_deleted
== 0 &&
3418 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3420 cpa
= ext4_mb_check_group_pa(goal_block
,
3423 spin_unlock(&pa
->pa_lock
);
3428 ext4_mb_use_group_pa(ac
, cpa
);
3429 ac
->ac_criteria
= 20;
3436 * the function goes through all block freed in the group
3437 * but not yet committed and marks them used in in-core bitmap.
3438 * buddy must be generated from this bitmap
3439 * Need to be called with the ext4 group lock held
3441 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3445 struct ext4_group_info
*grp
;
3446 struct ext4_free_data
*entry
;
3448 grp
= ext4_get_group_info(sb
, group
);
3449 n
= rb_first(&(grp
->bb_free_root
));
3452 entry
= rb_entry(n
, struct ext4_free_data
, efd_node
);
3453 ext4_set_bits(bitmap
, entry
->efd_start_cluster
, entry
->efd_count
);
3460 * the function goes through all preallocation in this group and marks them
3461 * used in in-core bitmap. buddy must be generated from this bitmap
3462 * Need to be called with ext4 group lock held
3464 static noinline_for_stack
3465 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3468 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3469 struct ext4_prealloc_space
*pa
;
3470 struct list_head
*cur
;
3471 ext4_group_t groupnr
;
3472 ext4_grpblk_t start
;
3473 int preallocated
= 0;
3476 /* all form of preallocation discards first load group,
3477 * so the only competing code is preallocation use.
3478 * we don't need any locking here
3479 * notice we do NOT ignore preallocations with pa_deleted
3480 * otherwise we could leave used blocks available for
3481 * allocation in buddy when concurrent ext4_mb_put_pa()
3482 * is dropping preallocation
3484 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3485 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3486 spin_lock(&pa
->pa_lock
);
3487 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3490 spin_unlock(&pa
->pa_lock
);
3491 if (unlikely(len
== 0))
3493 BUG_ON(groupnr
!= group
);
3494 ext4_set_bits(bitmap
, start
, len
);
3495 preallocated
+= len
;
3497 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3500 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3502 struct ext4_prealloc_space
*pa
;
3503 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3505 BUG_ON(atomic_read(&pa
->pa_count
));
3506 BUG_ON(pa
->pa_deleted
== 0);
3507 kmem_cache_free(ext4_pspace_cachep
, pa
);
3511 * drops a reference to preallocated space descriptor
3512 * if this was the last reference and the space is consumed
3514 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3515 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3518 ext4_fsblk_t grp_blk
;
3520 /* in this short window concurrent discard can set pa_deleted */
3521 spin_lock(&pa
->pa_lock
);
3522 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0) {
3523 spin_unlock(&pa
->pa_lock
);
3527 if (pa
->pa_deleted
== 1) {
3528 spin_unlock(&pa
->pa_lock
);
3533 spin_unlock(&pa
->pa_lock
);
3535 grp_blk
= pa
->pa_pstart
;
3537 * If doing group-based preallocation, pa_pstart may be in the
3538 * next group when pa is used up
3540 if (pa
->pa_type
== MB_GROUP_PA
)
3543 grp
= ext4_get_group_number(sb
, grp_blk
);
3548 * P1 (buddy init) P2 (regular allocation)
3549 * find block B in PA
3550 * copy on-disk bitmap to buddy
3551 * mark B in on-disk bitmap
3552 * drop PA from group
3553 * mark all PAs in buddy
3555 * thus, P1 initializes buddy with B available. to prevent this
3556 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3559 ext4_lock_group(sb
, grp
);
3560 list_del(&pa
->pa_group_list
);
3561 ext4_unlock_group(sb
, grp
);
3563 spin_lock(pa
->pa_obj_lock
);
3564 list_del_rcu(&pa
->pa_inode_list
);
3565 spin_unlock(pa
->pa_obj_lock
);
3567 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3571 * creates new preallocated space for given inode
3573 static noinline_for_stack
int
3574 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3576 struct super_block
*sb
= ac
->ac_sb
;
3577 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3578 struct ext4_prealloc_space
*pa
;
3579 struct ext4_group_info
*grp
;
3580 struct ext4_inode_info
*ei
;
3582 /* preallocate only when found space is larger then requested */
3583 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3584 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3585 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3587 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3591 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3597 /* we can't allocate as much as normalizer wants.
3598 * so, found space must get proper lstart
3599 * to cover original request */
3600 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3601 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3603 /* we're limited by original request in that
3604 * logical block must be covered any way
3605 * winl is window we can move our chunk within */
3606 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3608 /* also, we should cover whole original request */
3609 wins
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
);
3611 /* the smallest one defines real window */
3612 win
= min(winl
, wins
);
3614 offs
= ac
->ac_o_ex
.fe_logical
%
3615 EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3616 if (offs
&& offs
< win
)
3619 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
-
3620 EXT4_NUM_B2C(sbi
, win
);
3621 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3622 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3625 /* preallocation can change ac_b_ex, thus we store actually
3626 * allocated blocks for history */
3627 ac
->ac_f_ex
= ac
->ac_b_ex
;
3629 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3630 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3631 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3632 pa
->pa_free
= pa
->pa_len
;
3633 atomic_set(&pa
->pa_count
, 1);
3634 spin_lock_init(&pa
->pa_lock
);
3635 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3636 INIT_LIST_HEAD(&pa
->pa_group_list
);
3638 pa
->pa_type
= MB_INODE_PA
;
3640 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3641 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3642 trace_ext4_mb_new_inode_pa(ac
, pa
);
3644 ext4_mb_use_inode_pa(ac
, pa
);
3645 atomic_add(pa
->pa_free
, &sbi
->s_mb_preallocated
);
3647 ei
= EXT4_I(ac
->ac_inode
);
3648 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3650 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3651 pa
->pa_inode
= ac
->ac_inode
;
3653 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3654 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3655 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3657 spin_lock(pa
->pa_obj_lock
);
3658 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3659 spin_unlock(pa
->pa_obj_lock
);
3665 * creates new preallocated space for locality group inodes belongs to
3667 static noinline_for_stack
int
3668 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3670 struct super_block
*sb
= ac
->ac_sb
;
3671 struct ext4_locality_group
*lg
;
3672 struct ext4_prealloc_space
*pa
;
3673 struct ext4_group_info
*grp
;
3675 /* preallocate only when found space is larger then requested */
3676 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3677 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3678 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3680 BUG_ON(ext4_pspace_cachep
== NULL
);
3681 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3685 /* preallocation can change ac_b_ex, thus we store actually
3686 * allocated blocks for history */
3687 ac
->ac_f_ex
= ac
->ac_b_ex
;
3689 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3690 pa
->pa_lstart
= pa
->pa_pstart
;
3691 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3692 pa
->pa_free
= pa
->pa_len
;
3693 atomic_set(&pa
->pa_count
, 1);
3694 spin_lock_init(&pa
->pa_lock
);
3695 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3696 INIT_LIST_HEAD(&pa
->pa_group_list
);
3698 pa
->pa_type
= MB_GROUP_PA
;
3700 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3701 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3702 trace_ext4_mb_new_group_pa(ac
, pa
);
3704 ext4_mb_use_group_pa(ac
, pa
);
3705 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3707 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3711 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3712 pa
->pa_inode
= NULL
;
3714 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3715 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3716 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3719 * We will later add the new pa to the right bucket
3720 * after updating the pa_free in ext4_mb_release_context
3725 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3729 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3730 err
= ext4_mb_new_group_pa(ac
);
3732 err
= ext4_mb_new_inode_pa(ac
);
3737 * finds all unused blocks in on-disk bitmap, frees them in
3738 * in-core bitmap and buddy.
3739 * @pa must be unlinked from inode and group lists, so that
3740 * nobody else can find/use it.
3741 * the caller MUST hold group/inode locks.
3742 * TODO: optimize the case when there are no in-core structures yet
3744 static noinline_for_stack
int
3745 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3746 struct ext4_prealloc_space
*pa
)
3748 struct super_block
*sb
= e4b
->bd_sb
;
3749 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3754 unsigned long long grp_blk_start
;
3758 BUG_ON(pa
->pa_deleted
== 0);
3759 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3760 grp_blk_start
= pa
->pa_pstart
- EXT4_C2B(sbi
, bit
);
3761 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3762 end
= bit
+ pa
->pa_len
;
3765 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3768 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3769 mb_debug(1, " free preallocated %u/%u in group %u\n",
3770 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
3771 (unsigned) next
- bit
, (unsigned) group
);
3774 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
3775 trace_ext4_mb_release_inode_pa(pa
, (grp_blk_start
+
3776 EXT4_C2B(sbi
, bit
)),
3778 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3781 if (free
!= pa
->pa_free
) {
3782 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
3783 "pa %p: logic %lu, phys. %lu, len %lu",
3784 pa
, (unsigned long) pa
->pa_lstart
,
3785 (unsigned long) pa
->pa_pstart
,
3786 (unsigned long) pa
->pa_len
);
3787 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
3790 * pa is already deleted so we use the value obtained
3791 * from the bitmap and continue.
3794 atomic_add(free
, &sbi
->s_mb_discarded
);
3799 static noinline_for_stack
int
3800 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3801 struct ext4_prealloc_space
*pa
)
3803 struct super_block
*sb
= e4b
->bd_sb
;
3807 trace_ext4_mb_release_group_pa(sb
, pa
);
3808 BUG_ON(pa
->pa_deleted
== 0);
3809 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3810 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3811 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3812 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3813 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
3819 * releases all preallocations in given group
3821 * first, we need to decide discard policy:
3822 * - when do we discard
3824 * - how many do we discard
3825 * 1) how many requested
3827 static noinline_for_stack
int
3828 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3829 ext4_group_t group
, int needed
)
3831 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3832 struct buffer_head
*bitmap_bh
= NULL
;
3833 struct ext4_prealloc_space
*pa
, *tmp
;
3834 struct list_head list
;
3835 struct ext4_buddy e4b
;
3840 mb_debug(1, "discard preallocation for group %u\n", group
);
3842 if (list_empty(&grp
->bb_prealloc_list
))
3845 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3846 if (bitmap_bh
== NULL
) {
3847 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3851 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3853 ext4_error(sb
, "Error loading buddy information for %u", group
);
3859 needed
= EXT4_CLUSTERS_PER_GROUP(sb
) + 1;
3861 INIT_LIST_HEAD(&list
);
3863 ext4_lock_group(sb
, group
);
3864 list_for_each_entry_safe(pa
, tmp
,
3865 &grp
->bb_prealloc_list
, pa_group_list
) {
3866 spin_lock(&pa
->pa_lock
);
3867 if (atomic_read(&pa
->pa_count
)) {
3868 spin_unlock(&pa
->pa_lock
);
3872 if (pa
->pa_deleted
) {
3873 spin_unlock(&pa
->pa_lock
);
3877 /* seems this one can be freed ... */
3880 /* we can trust pa_free ... */
3881 free
+= pa
->pa_free
;
3883 spin_unlock(&pa
->pa_lock
);
3885 list_del(&pa
->pa_group_list
);
3886 list_add(&pa
->u
.pa_tmp_list
, &list
);
3889 /* if we still need more blocks and some PAs were used, try again */
3890 if (free
< needed
&& busy
) {
3892 ext4_unlock_group(sb
, group
);
3897 /* found anything to free? */
3898 if (list_empty(&list
)) {
3903 /* now free all selected PAs */
3904 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3906 /* remove from object (inode or locality group) */
3907 spin_lock(pa
->pa_obj_lock
);
3908 list_del_rcu(&pa
->pa_inode_list
);
3909 spin_unlock(pa
->pa_obj_lock
);
3911 if (pa
->pa_type
== MB_GROUP_PA
)
3912 ext4_mb_release_group_pa(&e4b
, pa
);
3914 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3916 list_del(&pa
->u
.pa_tmp_list
);
3917 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3921 ext4_unlock_group(sb
, group
);
3922 ext4_mb_unload_buddy(&e4b
);
3928 * releases all non-used preallocated blocks for given inode
3930 * It's important to discard preallocations under i_data_sem
3931 * We don't want another block to be served from the prealloc
3932 * space when we are discarding the inode prealloc space.
3934 * FIXME!! Make sure it is valid at all the call sites
3936 void ext4_discard_preallocations(struct inode
*inode
)
3938 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3939 struct super_block
*sb
= inode
->i_sb
;
3940 struct buffer_head
*bitmap_bh
= NULL
;
3941 struct ext4_prealloc_space
*pa
, *tmp
;
3942 ext4_group_t group
= 0;
3943 struct list_head list
;
3944 struct ext4_buddy e4b
;
3947 if (!S_ISREG(inode
->i_mode
)) {
3948 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3952 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3953 trace_ext4_discard_preallocations(inode
);
3955 INIT_LIST_HEAD(&list
);
3958 /* first, collect all pa's in the inode */
3959 spin_lock(&ei
->i_prealloc_lock
);
3960 while (!list_empty(&ei
->i_prealloc_list
)) {
3961 pa
= list_entry(ei
->i_prealloc_list
.next
,
3962 struct ext4_prealloc_space
, pa_inode_list
);
3963 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3964 spin_lock(&pa
->pa_lock
);
3965 if (atomic_read(&pa
->pa_count
)) {
3966 /* this shouldn't happen often - nobody should
3967 * use preallocation while we're discarding it */
3968 spin_unlock(&pa
->pa_lock
);
3969 spin_unlock(&ei
->i_prealloc_lock
);
3970 ext4_msg(sb
, KERN_ERR
,
3971 "uh-oh! used pa while discarding");
3973 schedule_timeout_uninterruptible(HZ
);
3977 if (pa
->pa_deleted
== 0) {
3979 spin_unlock(&pa
->pa_lock
);
3980 list_del_rcu(&pa
->pa_inode_list
);
3981 list_add(&pa
->u
.pa_tmp_list
, &list
);
3985 /* someone is deleting pa right now */
3986 spin_unlock(&pa
->pa_lock
);
3987 spin_unlock(&ei
->i_prealloc_lock
);
3989 /* we have to wait here because pa_deleted
3990 * doesn't mean pa is already unlinked from
3991 * the list. as we might be called from
3992 * ->clear_inode() the inode will get freed
3993 * and concurrent thread which is unlinking
3994 * pa from inode's list may access already
3995 * freed memory, bad-bad-bad */
3997 /* XXX: if this happens too often, we can
3998 * add a flag to force wait only in case
3999 * of ->clear_inode(), but not in case of
4000 * regular truncate */
4001 schedule_timeout_uninterruptible(HZ
);
4004 spin_unlock(&ei
->i_prealloc_lock
);
4006 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
4007 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
4008 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4010 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
4012 ext4_error(sb
, "Error loading buddy information for %u",
4017 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
4018 if (bitmap_bh
== NULL
) {
4019 ext4_error(sb
, "Error reading block bitmap for %u",
4021 ext4_mb_unload_buddy(&e4b
);
4025 ext4_lock_group(sb
, group
);
4026 list_del(&pa
->pa_group_list
);
4027 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
4028 ext4_unlock_group(sb
, group
);
4030 ext4_mb_unload_buddy(&e4b
);
4033 list_del(&pa
->u
.pa_tmp_list
);
4034 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4038 #ifdef CONFIG_EXT4_DEBUG
4039 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4041 struct super_block
*sb
= ac
->ac_sb
;
4042 ext4_group_t ngroups
, i
;
4044 if (!ext4_mballoc_debug
||
4045 (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
))
4048 ext4_msg(ac
->ac_sb
, KERN_ERR
, "Can't allocate:"
4049 " Allocation context details:");
4050 ext4_msg(ac
->ac_sb
, KERN_ERR
, "status %d flags %d",
4051 ac
->ac_status
, ac
->ac_flags
);
4052 ext4_msg(ac
->ac_sb
, KERN_ERR
, "orig %lu/%lu/%lu@%lu, "
4053 "goal %lu/%lu/%lu@%lu, "
4054 "best %lu/%lu/%lu@%lu cr %d",
4055 (unsigned long)ac
->ac_o_ex
.fe_group
,
4056 (unsigned long)ac
->ac_o_ex
.fe_start
,
4057 (unsigned long)ac
->ac_o_ex
.fe_len
,
4058 (unsigned long)ac
->ac_o_ex
.fe_logical
,
4059 (unsigned long)ac
->ac_g_ex
.fe_group
,
4060 (unsigned long)ac
->ac_g_ex
.fe_start
,
4061 (unsigned long)ac
->ac_g_ex
.fe_len
,
4062 (unsigned long)ac
->ac_g_ex
.fe_logical
,
4063 (unsigned long)ac
->ac_b_ex
.fe_group
,
4064 (unsigned long)ac
->ac_b_ex
.fe_start
,
4065 (unsigned long)ac
->ac_b_ex
.fe_len
,
4066 (unsigned long)ac
->ac_b_ex
.fe_logical
,
4067 (int)ac
->ac_criteria
);
4068 ext4_msg(ac
->ac_sb
, KERN_ERR
, "%d found", ac
->ac_found
);
4069 ext4_msg(ac
->ac_sb
, KERN_ERR
, "groups: ");
4070 ngroups
= ext4_get_groups_count(sb
);
4071 for (i
= 0; i
< ngroups
; i
++) {
4072 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
4073 struct ext4_prealloc_space
*pa
;
4074 ext4_grpblk_t start
;
4075 struct list_head
*cur
;
4076 ext4_lock_group(sb
, i
);
4077 list_for_each(cur
, &grp
->bb_prealloc_list
) {
4078 pa
= list_entry(cur
, struct ext4_prealloc_space
,
4080 spin_lock(&pa
->pa_lock
);
4081 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
4083 spin_unlock(&pa
->pa_lock
);
4084 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
4087 ext4_unlock_group(sb
, i
);
4089 if (grp
->bb_free
== 0)
4091 printk(KERN_ERR
"%u: %d/%d \n",
4092 i
, grp
->bb_free
, grp
->bb_fragments
);
4094 printk(KERN_ERR
"\n");
4097 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4104 * We use locality group preallocation for small size file. The size of the
4105 * file is determined by the current size or the resulting size after
4106 * allocation which ever is larger
4108 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4110 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
4112 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4113 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
4116 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
4119 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
4122 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
4123 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
4126 if ((size
== isize
) &&
4127 !ext4_fs_is_busy(sbi
) &&
4128 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
4129 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
4133 if (sbi
->s_mb_group_prealloc
<= 0) {
4134 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4138 /* don't use group allocation for large files */
4139 size
= max(size
, isize
);
4140 if (size
> sbi
->s_mb_stream_request
) {
4141 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4145 BUG_ON(ac
->ac_lg
!= NULL
);
4147 * locality group prealloc space are per cpu. The reason for having
4148 * per cpu locality group is to reduce the contention between block
4149 * request from multiple CPUs.
4151 ac
->ac_lg
= raw_cpu_ptr(sbi
->s_locality_groups
);
4153 /* we're going to use group allocation */
4154 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4156 /* serialize all allocations in the group */
4157 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4160 static noinline_for_stack
int
4161 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4162 struct ext4_allocation_request
*ar
)
4164 struct super_block
*sb
= ar
->inode
->i_sb
;
4165 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4166 struct ext4_super_block
*es
= sbi
->s_es
;
4170 ext4_grpblk_t block
;
4172 /* we can't allocate > group size */
4175 /* just a dirty hack to filter too big requests */
4176 if (len
>= EXT4_CLUSTERS_PER_GROUP(sb
))
4177 len
= EXT4_CLUSTERS_PER_GROUP(sb
);
4179 /* start searching from the goal */
4181 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4182 goal
>= ext4_blocks_count(es
))
4183 goal
= le32_to_cpu(es
->s_first_data_block
);
4184 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4186 /* set up allocation goals */
4187 ac
->ac_b_ex
.fe_logical
= EXT4_LBLK_CMASK(sbi
, ar
->logical
);
4188 ac
->ac_status
= AC_STATUS_CONTINUE
;
4190 ac
->ac_inode
= ar
->inode
;
4191 ac
->ac_o_ex
.fe_logical
= ac
->ac_b_ex
.fe_logical
;
4192 ac
->ac_o_ex
.fe_group
= group
;
4193 ac
->ac_o_ex
.fe_start
= block
;
4194 ac
->ac_o_ex
.fe_len
= len
;
4195 ac
->ac_g_ex
= ac
->ac_o_ex
;
4196 ac
->ac_flags
= ar
->flags
;
4198 /* we have to define context: we'll we work with a file or
4199 * locality group. this is a policy, actually */
4200 ext4_mb_group_or_file(ac
);
4202 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4203 "left: %u/%u, right %u/%u to %swritable\n",
4204 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4205 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4206 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4207 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4208 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4213 static noinline_for_stack
void
4214 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4215 struct ext4_locality_group
*lg
,
4216 int order
, int total_entries
)
4218 ext4_group_t group
= 0;
4219 struct ext4_buddy e4b
;
4220 struct list_head discard_list
;
4221 struct ext4_prealloc_space
*pa
, *tmp
;
4223 mb_debug(1, "discard locality group preallocation\n");
4225 INIT_LIST_HEAD(&discard_list
);
4227 spin_lock(&lg
->lg_prealloc_lock
);
4228 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4230 spin_lock(&pa
->pa_lock
);
4231 if (atomic_read(&pa
->pa_count
)) {
4233 * This is the pa that we just used
4234 * for block allocation. So don't
4237 spin_unlock(&pa
->pa_lock
);
4240 if (pa
->pa_deleted
) {
4241 spin_unlock(&pa
->pa_lock
);
4244 /* only lg prealloc space */
4245 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4247 /* seems this one can be freed ... */
4249 spin_unlock(&pa
->pa_lock
);
4251 list_del_rcu(&pa
->pa_inode_list
);
4252 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4255 if (total_entries
<= 5) {
4257 * we want to keep only 5 entries
4258 * allowing it to grow to 8. This
4259 * mak sure we don't call discard
4260 * soon for this list.
4265 spin_unlock(&lg
->lg_prealloc_lock
);
4267 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4269 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4270 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4271 ext4_error(sb
, "Error loading buddy information for %u",
4275 ext4_lock_group(sb
, group
);
4276 list_del(&pa
->pa_group_list
);
4277 ext4_mb_release_group_pa(&e4b
, pa
);
4278 ext4_unlock_group(sb
, group
);
4280 ext4_mb_unload_buddy(&e4b
);
4281 list_del(&pa
->u
.pa_tmp_list
);
4282 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4287 * We have incremented pa_count. So it cannot be freed at this
4288 * point. Also we hold lg_mutex. So no parallel allocation is
4289 * possible from this lg. That means pa_free cannot be updated.
4291 * A parallel ext4_mb_discard_group_preallocations is possible.
4292 * which can cause the lg_prealloc_list to be updated.
4295 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4297 int order
, added
= 0, lg_prealloc_count
= 1;
4298 struct super_block
*sb
= ac
->ac_sb
;
4299 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4300 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4302 order
= fls(pa
->pa_free
) - 1;
4303 if (order
> PREALLOC_TB_SIZE
- 1)
4304 /* The max size of hash table is PREALLOC_TB_SIZE */
4305 order
= PREALLOC_TB_SIZE
- 1;
4306 /* Add the prealloc space to lg */
4307 spin_lock(&lg
->lg_prealloc_lock
);
4308 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4310 spin_lock(&tmp_pa
->pa_lock
);
4311 if (tmp_pa
->pa_deleted
) {
4312 spin_unlock(&tmp_pa
->pa_lock
);
4315 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4316 /* Add to the tail of the previous entry */
4317 list_add_tail_rcu(&pa
->pa_inode_list
,
4318 &tmp_pa
->pa_inode_list
);
4321 * we want to count the total
4322 * number of entries in the list
4325 spin_unlock(&tmp_pa
->pa_lock
);
4326 lg_prealloc_count
++;
4329 list_add_tail_rcu(&pa
->pa_inode_list
,
4330 &lg
->lg_prealloc_list
[order
]);
4331 spin_unlock(&lg
->lg_prealloc_lock
);
4333 /* Now trim the list to be not more than 8 elements */
4334 if (lg_prealloc_count
> 8) {
4335 ext4_mb_discard_lg_preallocations(sb
, lg
,
4336 order
, lg_prealloc_count
);
4343 * release all resource we used in allocation
4345 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4347 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4348 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4350 if (pa
->pa_type
== MB_GROUP_PA
) {
4351 /* see comment in ext4_mb_use_group_pa() */
4352 spin_lock(&pa
->pa_lock
);
4353 pa
->pa_pstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4354 pa
->pa_lstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4355 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4356 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4357 spin_unlock(&pa
->pa_lock
);
4362 * We want to add the pa to the right bucket.
4363 * Remove it from the list and while adding
4364 * make sure the list to which we are adding
4367 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4368 spin_lock(pa
->pa_obj_lock
);
4369 list_del_rcu(&pa
->pa_inode_list
);
4370 spin_unlock(pa
->pa_obj_lock
);
4371 ext4_mb_add_n_trim(ac
);
4373 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4375 if (ac
->ac_bitmap_page
)
4376 page_cache_release(ac
->ac_bitmap_page
);
4377 if (ac
->ac_buddy_page
)
4378 page_cache_release(ac
->ac_buddy_page
);
4379 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4380 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4381 ext4_mb_collect_stats(ac
);
4385 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4387 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4391 trace_ext4_mb_discard_preallocations(sb
, needed
);
4392 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4393 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4402 * Main entry point into mballoc to allocate blocks
4403 * it tries to use preallocation first, then falls back
4404 * to usual allocation
4406 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4407 struct ext4_allocation_request
*ar
, int *errp
)
4410 struct ext4_allocation_context
*ac
= NULL
;
4411 struct ext4_sb_info
*sbi
;
4412 struct super_block
*sb
;
4413 ext4_fsblk_t block
= 0;
4414 unsigned int inquota
= 0;
4415 unsigned int reserv_clstrs
= 0;
4418 sb
= ar
->inode
->i_sb
;
4421 trace_ext4_request_blocks(ar
);
4423 /* Allow to use superuser reservation for quota file */
4424 if (IS_NOQUOTA(ar
->inode
))
4425 ar
->flags
|= EXT4_MB_USE_ROOT_BLOCKS
;
4427 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0) {
4428 /* Without delayed allocation we need to verify
4429 * there is enough free blocks to do block allocation
4430 * and verify allocation doesn't exceed the quota limits.
4433 ext4_claim_free_clusters(sbi
, ar
->len
, ar
->flags
)) {
4435 /* let others to free the space */
4437 ar
->len
= ar
->len
>> 1;
4443 reserv_clstrs
= ar
->len
;
4444 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4445 dquot_alloc_block_nofail(ar
->inode
,
4446 EXT4_C2B(sbi
, ar
->len
));
4449 dquot_alloc_block(ar
->inode
,
4450 EXT4_C2B(sbi
, ar
->len
))) {
4452 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4463 ac
= kmem_cache_zalloc(ext4_ac_cachep
, GFP_NOFS
);
4470 *errp
= ext4_mb_initialize_context(ac
, ar
);
4476 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4477 if (!ext4_mb_use_preallocated(ac
)) {
4478 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4479 ext4_mb_normalize_request(ac
, ar
);
4481 /* allocate space in core */
4482 *errp
= ext4_mb_regular_allocator(ac
);
4484 goto discard_and_exit
;
4486 /* as we've just preallocated more space than
4487 * user requested originally, we store allocated
4488 * space in a special descriptor */
4489 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4490 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4491 *errp
= ext4_mb_new_preallocation(ac
);
4494 ext4_discard_allocated_blocks(ac
);
4498 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4499 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_clstrs
);
4500 if (*errp
== -EAGAIN
) {
4502 * drop the reference that we took
4503 * in ext4_mb_use_best_found
4505 ext4_mb_release_context(ac
);
4506 ac
->ac_b_ex
.fe_group
= 0;
4507 ac
->ac_b_ex
.fe_start
= 0;
4508 ac
->ac_b_ex
.fe_len
= 0;
4509 ac
->ac_status
= AC_STATUS_CONTINUE
;
4512 ext4_discard_allocated_blocks(ac
);
4515 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4516 ar
->len
= ac
->ac_b_ex
.fe_len
;
4519 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4527 ac
->ac_b_ex
.fe_len
= 0;
4529 ext4_mb_show_ac(ac
);
4531 ext4_mb_release_context(ac
);
4534 kmem_cache_free(ext4_ac_cachep
, ac
);
4535 if (inquota
&& ar
->len
< inquota
)
4536 dquot_free_block(ar
->inode
, EXT4_C2B(sbi
, inquota
- ar
->len
));
4538 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0)
4539 /* release all the reserved blocks if non delalloc */
4540 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
4544 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4550 * We can merge two free data extents only if the physical blocks
4551 * are contiguous, AND the extents were freed by the same transaction,
4552 * AND the blocks are associated with the same group.
4554 static int can_merge(struct ext4_free_data
*entry1
,
4555 struct ext4_free_data
*entry2
)
4557 if ((entry1
->efd_tid
== entry2
->efd_tid
) &&
4558 (entry1
->efd_group
== entry2
->efd_group
) &&
4559 ((entry1
->efd_start_cluster
+ entry1
->efd_count
) == entry2
->efd_start_cluster
))
4564 static noinline_for_stack
int
4565 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4566 struct ext4_free_data
*new_entry
)
4568 ext4_group_t group
= e4b
->bd_group
;
4569 ext4_grpblk_t cluster
;
4570 struct ext4_free_data
*entry
;
4571 struct ext4_group_info
*db
= e4b
->bd_info
;
4572 struct super_block
*sb
= e4b
->bd_sb
;
4573 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4574 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4575 struct rb_node
*parent
= NULL
, *new_node
;
4577 BUG_ON(!ext4_handle_valid(handle
));
4578 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4579 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4581 new_node
= &new_entry
->efd_node
;
4582 cluster
= new_entry
->efd_start_cluster
;
4585 /* first free block exent. We need to
4586 protect buddy cache from being freed,
4587 * otherwise we'll refresh it from
4588 * on-disk bitmap and lose not-yet-available
4590 page_cache_get(e4b
->bd_buddy_page
);
4591 page_cache_get(e4b
->bd_bitmap_page
);
4595 entry
= rb_entry(parent
, struct ext4_free_data
, efd_node
);
4596 if (cluster
< entry
->efd_start_cluster
)
4598 else if (cluster
>= (entry
->efd_start_cluster
+ entry
->efd_count
))
4599 n
= &(*n
)->rb_right
;
4601 ext4_grp_locked_error(sb
, group
, 0,
4602 ext4_group_first_block_no(sb
, group
) +
4603 EXT4_C2B(sbi
, cluster
),
4604 "Block already on to-be-freed list");
4609 rb_link_node(new_node
, parent
, n
);
4610 rb_insert_color(new_node
, &db
->bb_free_root
);
4612 /* Now try to see the extent can be merged to left and right */
4613 node
= rb_prev(new_node
);
4615 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4616 if (can_merge(entry
, new_entry
) &&
4617 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4618 new_entry
->efd_start_cluster
= entry
->efd_start_cluster
;
4619 new_entry
->efd_count
+= entry
->efd_count
;
4620 rb_erase(node
, &(db
->bb_free_root
));
4621 kmem_cache_free(ext4_free_data_cachep
, entry
);
4625 node
= rb_next(new_node
);
4627 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4628 if (can_merge(new_entry
, entry
) &&
4629 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4630 new_entry
->efd_count
+= entry
->efd_count
;
4631 rb_erase(node
, &(db
->bb_free_root
));
4632 kmem_cache_free(ext4_free_data_cachep
, entry
);
4635 /* Add the extent to transaction's private list */
4636 ext4_journal_callback_add(handle
, ext4_free_data_callback
,
4637 &new_entry
->efd_jce
);
4642 * ext4_free_blocks() -- Free given blocks and update quota
4643 * @handle: handle for this transaction
4645 * @block: start physical block to free
4646 * @count: number of blocks to count
4647 * @flags: flags used by ext4_free_blocks
4649 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4650 struct buffer_head
*bh
, ext4_fsblk_t block
,
4651 unsigned long count
, int flags
)
4653 struct buffer_head
*bitmap_bh
= NULL
;
4654 struct super_block
*sb
= inode
->i_sb
;
4655 struct ext4_group_desc
*gdp
;
4656 unsigned int overflow
;
4658 struct buffer_head
*gd_bh
;
4659 ext4_group_t block_group
;
4660 struct ext4_sb_info
*sbi
;
4661 struct ext4_buddy e4b
;
4662 unsigned int count_clusters
;
4669 BUG_ON(block
!= bh
->b_blocknr
);
4671 block
= bh
->b_blocknr
;
4675 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4676 !ext4_data_block_valid(sbi
, block
, count
)) {
4677 ext4_error(sb
, "Freeing blocks not in datazone - "
4678 "block = %llu, count = %lu", block
, count
);
4682 ext4_debug("freeing block %llu\n", block
);
4683 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4685 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4686 struct buffer_head
*tbh
= bh
;
4689 BUG_ON(bh
&& (count
> 1));
4691 for (i
= 0; i
< count
; i
++) {
4694 tbh
= sb_find_get_block(inode
->i_sb
,
4698 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4699 inode
, tbh
, block
+ i
);
4704 * We need to make sure we don't reuse the freed block until
4705 * after the transaction is committed, which we can do by
4706 * treating the block as metadata, below. We make an
4707 * exception if the inode is to be written in writeback mode
4708 * since writeback mode has weak data consistency guarantees.
4710 if (!ext4_should_writeback_data(inode
))
4711 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4714 * If the extent to be freed does not begin on a cluster
4715 * boundary, we need to deal with partial clusters at the
4716 * beginning and end of the extent. Normally we will free
4717 * blocks at the beginning or the end unless we are explicitly
4718 * requested to avoid doing so.
4720 overflow
= EXT4_PBLK_COFF(sbi
, block
);
4722 if (flags
& EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
) {
4723 overflow
= sbi
->s_cluster_ratio
- overflow
;
4725 if (count
> overflow
)
4734 overflow
= EXT4_LBLK_COFF(sbi
, count
);
4736 if (flags
& EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER
) {
4737 if (count
> overflow
)
4742 count
+= sbi
->s_cluster_ratio
- overflow
;
4747 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4749 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4750 ext4_get_group_info(sb
, block_group
))))
4754 * Check to see if we are freeing blocks across a group
4757 if (EXT4_C2B(sbi
, bit
) + count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4758 overflow
= EXT4_C2B(sbi
, bit
) + count
-
4759 EXT4_BLOCKS_PER_GROUP(sb
);
4762 count_clusters
= EXT4_NUM_B2C(sbi
, count
);
4763 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4768 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4774 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4775 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4776 in_range(block
, ext4_inode_table(sb
, gdp
),
4777 EXT4_SB(sb
)->s_itb_per_group
) ||
4778 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4779 EXT4_SB(sb
)->s_itb_per_group
)) {
4781 ext4_error(sb
, "Freeing blocks in system zone - "
4782 "Block = %llu, count = %lu", block
, count
);
4783 /* err = 0. ext4_std_error should be a no op */
4787 BUFFER_TRACE(bitmap_bh
, "getting write access");
4788 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4793 * We are about to modify some metadata. Call the journal APIs
4794 * to unshare ->b_data if a currently-committing transaction is
4797 BUFFER_TRACE(gd_bh
, "get_write_access");
4798 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4801 #ifdef AGGRESSIVE_CHECK
4804 for (i
= 0; i
< count_clusters
; i
++)
4805 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4808 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count_clusters
);
4810 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4814 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4815 struct ext4_free_data
*new_entry
;
4817 * blocks being freed are metadata. these blocks shouldn't
4818 * be used until this transaction is committed
4820 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4823 new_entry
= kmem_cache_alloc(ext4_free_data_cachep
,
4824 GFP_NOFS
|__GFP_NOFAIL
);
4825 new_entry
->efd_start_cluster
= bit
;
4826 new_entry
->efd_group
= block_group
;
4827 new_entry
->efd_count
= count_clusters
;
4828 new_entry
->efd_tid
= handle
->h_transaction
->t_tid
;
4830 ext4_lock_group(sb
, block_group
);
4831 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4832 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4834 /* need to update group_info->bb_free and bitmap
4835 * with group lock held. generate_buddy look at
4836 * them with group lock_held
4838 if (test_opt(sb
, DISCARD
)) {
4839 err
= ext4_issue_discard(sb
, block_group
, bit
, count
);
4840 if (err
&& err
!= -EOPNOTSUPP
)
4841 ext4_msg(sb
, KERN_WARNING
, "discard request in"
4842 " group:%d block:%d count:%lu failed"
4843 " with %d", block_group
, bit
, count
,
4846 EXT4_MB_GRP_CLEAR_TRIMMED(e4b
.bd_info
);
4848 ext4_lock_group(sb
, block_group
);
4849 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4850 mb_free_blocks(inode
, &e4b
, bit
, count_clusters
);
4853 ret
= ext4_free_group_clusters(sb
, gdp
) + count_clusters
;
4854 ext4_free_group_clusters_set(sb
, gdp
, ret
);
4855 ext4_block_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
);
4856 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
4857 ext4_unlock_group(sb
, block_group
);
4859 if (sbi
->s_log_groups_per_flex
) {
4860 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4861 atomic64_add(count_clusters
,
4862 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
4865 if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
4866 dquot_free_block(inode
, EXT4_C2B(sbi
, count_clusters
));
4867 percpu_counter_add(&sbi
->s_freeclusters_counter
, count_clusters
);
4869 ext4_mb_unload_buddy(&e4b
);
4871 /* We dirtied the bitmap block */
4872 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4873 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4875 /* And the group descriptor block */
4876 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4877 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4881 if (overflow
&& !err
) {
4889 ext4_std_error(sb
, err
);
4894 * ext4_group_add_blocks() -- Add given blocks to an existing group
4895 * @handle: handle to this transaction
4897 * @block: start physical block to add to the block group
4898 * @count: number of blocks to free
4900 * This marks the blocks as free in the bitmap and buddy.
4902 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
4903 ext4_fsblk_t block
, unsigned long count
)
4905 struct buffer_head
*bitmap_bh
= NULL
;
4906 struct buffer_head
*gd_bh
;
4907 ext4_group_t block_group
;
4910 struct ext4_group_desc
*desc
;
4911 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4912 struct ext4_buddy e4b
;
4913 int err
= 0, ret
, blk_free_count
;
4914 ext4_grpblk_t blocks_freed
;
4916 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
4921 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4923 * Check to see if we are freeing blocks across a group
4926 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4927 ext4_warning(sb
, "too much blocks added to group %u\n",
4933 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4939 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4945 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
4946 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
4947 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
4948 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
4949 sbi
->s_itb_per_group
)) {
4950 ext4_error(sb
, "Adding blocks in system zones - "
4951 "Block = %llu, count = %lu",
4957 BUFFER_TRACE(bitmap_bh
, "getting write access");
4958 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4963 * We are about to modify some metadata. Call the journal APIs
4964 * to unshare ->b_data if a currently-committing transaction is
4967 BUFFER_TRACE(gd_bh
, "get_write_access");
4968 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4972 for (i
= 0, blocks_freed
= 0; i
< count
; i
++) {
4973 BUFFER_TRACE(bitmap_bh
, "clear bit");
4974 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
4975 ext4_error(sb
, "bit already cleared for block %llu",
4976 (ext4_fsblk_t
)(block
+ i
));
4977 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
4983 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4988 * need to update group_info->bb_free and bitmap
4989 * with group lock held. generate_buddy look at
4990 * them with group lock_held
4992 ext4_lock_group(sb
, block_group
);
4993 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4994 mb_free_blocks(NULL
, &e4b
, bit
, count
);
4995 blk_free_count
= blocks_freed
+ ext4_free_group_clusters(sb
, desc
);
4996 ext4_free_group_clusters_set(sb
, desc
, blk_free_count
);
4997 ext4_block_bitmap_csum_set(sb
, block_group
, desc
, bitmap_bh
);
4998 ext4_group_desc_csum_set(sb
, block_group
, desc
);
4999 ext4_unlock_group(sb
, block_group
);
5000 percpu_counter_add(&sbi
->s_freeclusters_counter
,
5001 EXT4_NUM_B2C(sbi
, blocks_freed
));
5003 if (sbi
->s_log_groups_per_flex
) {
5004 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
5005 atomic64_add(EXT4_NUM_B2C(sbi
, blocks_freed
),
5006 &sbi
->s_flex_groups
[flex_group
].free_clusters
);
5009 ext4_mb_unload_buddy(&e4b
);
5011 /* We dirtied the bitmap block */
5012 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
5013 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
5015 /* And the group descriptor block */
5016 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
5017 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
5023 ext4_std_error(sb
, err
);
5028 * ext4_trim_extent -- function to TRIM one single free extent in the group
5029 * @sb: super block for the file system
5030 * @start: starting block of the free extent in the alloc. group
5031 * @count: number of blocks to TRIM
5032 * @group: alloc. group we are working with
5033 * @e4b: ext4 buddy for the group
5035 * Trim "count" blocks starting at "start" in the "group". To assure that no
5036 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5037 * be called with under the group lock.
5039 static int ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
5040 ext4_group_t group
, struct ext4_buddy
*e4b
)
5044 struct ext4_free_extent ex
;
5047 trace_ext4_trim_extent(sb
, group
, start
, count
);
5049 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
5051 ex
.fe_start
= start
;
5052 ex
.fe_group
= group
;
5056 * Mark blocks used, so no one can reuse them while
5059 mb_mark_used(e4b
, &ex
);
5060 ext4_unlock_group(sb
, group
);
5061 ret
= ext4_issue_discard(sb
, group
, start
, count
);
5062 ext4_lock_group(sb
, group
);
5063 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
5068 * ext4_trim_all_free -- function to trim all free space in alloc. group
5069 * @sb: super block for file system
5070 * @group: group to be trimmed
5071 * @start: first group block to examine
5072 * @max: last group block to examine
5073 * @minblocks: minimum extent block count
5075 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5076 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5080 * ext4_trim_all_free walks through group's block bitmap searching for free
5081 * extents. When the free extent is found, mark it as used in group buddy
5082 * bitmap. Then issue a TRIM command on this extent and free the extent in
5083 * the group buddy bitmap. This is done until whole group is scanned.
5085 static ext4_grpblk_t
5086 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
5087 ext4_grpblk_t start
, ext4_grpblk_t max
,
5088 ext4_grpblk_t minblocks
)
5091 ext4_grpblk_t next
, count
= 0, free_count
= 0;
5092 struct ext4_buddy e4b
;
5095 trace_ext4_trim_all_free(sb
, group
, start
, max
);
5097 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
5099 ext4_error(sb
, "Error in loading buddy "
5100 "information for %u", group
);
5103 bitmap
= e4b
.bd_bitmap
;
5105 ext4_lock_group(sb
, group
);
5106 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
5107 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
5110 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
5111 e4b
.bd_info
->bb_first_free
: start
;
5113 while (start
<= max
) {
5114 start
= mb_find_next_zero_bit(bitmap
, max
+ 1, start
);
5117 next
= mb_find_next_bit(bitmap
, max
+ 1, start
);
5119 if ((next
- start
) >= minblocks
) {
5120 ret
= ext4_trim_extent(sb
, start
,
5121 next
- start
, group
, &e4b
);
5122 if (ret
&& ret
!= -EOPNOTSUPP
)
5125 count
+= next
- start
;
5127 free_count
+= next
- start
;
5130 if (fatal_signal_pending(current
)) {
5131 count
= -ERESTARTSYS
;
5135 if (need_resched()) {
5136 ext4_unlock_group(sb
, group
);
5138 ext4_lock_group(sb
, group
);
5141 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
5147 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
5150 ext4_unlock_group(sb
, group
);
5151 ext4_mb_unload_buddy(&e4b
);
5153 ext4_debug("trimmed %d blocks in the group %d\n",
5160 * ext4_trim_fs() -- trim ioctl handle function
5161 * @sb: superblock for filesystem
5162 * @range: fstrim_range structure
5164 * start: First Byte to trim
5165 * len: number of Bytes to trim from start
5166 * minlen: minimum extent length in Bytes
5167 * ext4_trim_fs goes through all allocation groups containing Bytes from
5168 * start to start+len. For each such a group ext4_trim_all_free function
5169 * is invoked to trim all free space.
5171 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
5173 struct ext4_group_info
*grp
;
5174 ext4_group_t group
, first_group
, last_group
;
5175 ext4_grpblk_t cnt
= 0, first_cluster
, last_cluster
;
5176 uint64_t start
, end
, minlen
, trimmed
= 0;
5177 ext4_fsblk_t first_data_blk
=
5178 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
5179 ext4_fsblk_t max_blks
= ext4_blocks_count(EXT4_SB(sb
)->s_es
);
5182 start
= range
->start
>> sb
->s_blocksize_bits
;
5183 end
= start
+ (range
->len
>> sb
->s_blocksize_bits
) - 1;
5184 minlen
= EXT4_NUM_B2C(EXT4_SB(sb
),
5185 range
->minlen
>> sb
->s_blocksize_bits
);
5187 if (minlen
> EXT4_CLUSTERS_PER_GROUP(sb
) ||
5188 start
>= max_blks
||
5189 range
->len
< sb
->s_blocksize
)
5191 if (end
>= max_blks
)
5193 if (end
<= first_data_blk
)
5195 if (start
< first_data_blk
)
5196 start
= first_data_blk
;
5198 /* Determine first and last group to examine based on start and end */
5199 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
5200 &first_group
, &first_cluster
);
5201 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) end
,
5202 &last_group
, &last_cluster
);
5204 /* end now represents the last cluster to discard in this group */
5205 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5207 for (group
= first_group
; group
<= last_group
; group
++) {
5208 grp
= ext4_get_group_info(sb
, group
);
5209 /* We only do this if the grp has never been initialized */
5210 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
5211 ret
= ext4_mb_init_group(sb
, group
);
5217 * For all the groups except the last one, last cluster will
5218 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5219 * change it for the last group, note that last_cluster is
5220 * already computed earlier by ext4_get_group_no_and_offset()
5222 if (group
== last_group
)
5225 if (grp
->bb_free
>= minlen
) {
5226 cnt
= ext4_trim_all_free(sb
, group
, first_cluster
,
5236 * For every group except the first one, we are sure
5237 * that the first cluster to discard will be cluster #0.
5243 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);
5246 range
->len
= EXT4_C2B(EXT4_SB(sb
), trimmed
) << sb
->s_blocksize_bits
;