Linux 4.2.6
[linux/fpc-iii.git] / fs / splice.c
blob5fc1e50a7f30c4258c018f560709c54fda005b40
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
49 lock_page(page);
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
83 out_unlock:
84 unlock_page(page);
85 return 1;
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
103 int err;
105 if (!PageUptodate(page)) {
106 lock_page(page);
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
126 * Page is ok afterall, we are done.
128 unlock_page(page);
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
188 ret = 0;
189 do_wakeup = 0;
190 page_nr = 0;
192 pipe_lock(pipe);
194 for (;;) {
195 if (!pipe->readers) {
196 send_sig(SIGPIPE, current, 0);
197 if (!ret)
198 ret = -EPIPE;
199 break;
202 if (pipe->nrbufs < pipe->buffers) {
203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 struct pipe_buffer *buf = pipe->bufs + newbuf;
206 buf->page = spd->pages[page_nr];
207 buf->offset = spd->partial[page_nr].offset;
208 buf->len = spd->partial[page_nr].len;
209 buf->private = spd->partial[page_nr].private;
210 buf->ops = spd->ops;
211 if (spd->flags & SPLICE_F_GIFT)
212 buf->flags |= PIPE_BUF_FLAG_GIFT;
214 pipe->nrbufs++;
215 page_nr++;
216 ret += buf->len;
218 if (pipe->files)
219 do_wakeup = 1;
221 if (!--spd->nr_pages)
222 break;
223 if (pipe->nrbufs < pipe->buffers)
224 continue;
226 break;
229 if (spd->flags & SPLICE_F_NONBLOCK) {
230 if (!ret)
231 ret = -EAGAIN;
232 break;
235 if (signal_pending(current)) {
236 if (!ret)
237 ret = -ERESTARTSYS;
238 break;
241 if (do_wakeup) {
242 smp_mb();
243 if (waitqueue_active(&pipe->wait))
244 wake_up_interruptible_sync(&pipe->wait);
245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 do_wakeup = 0;
249 pipe->waiting_writers++;
250 pipe_wait(pipe);
251 pipe->waiting_writers--;
254 pipe_unlock(pipe);
256 if (do_wakeup)
257 wakeup_pipe_readers(pipe);
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
262 return ret;
264 EXPORT_SYMBOL_GPL(splice_to_pipe);
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 page_cache_release(spd->pages[i]);
272 * Check if we need to grow the arrays holding pages and partial page
273 * descriptions.
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279 spd->nr_pages_max = buffers;
280 if (buffers <= PIPE_DEF_BUFFERS)
281 return 0;
283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286 if (spd->pages && spd->partial)
287 return 0;
289 kfree(spd->pages);
290 kfree(spd->partial);
291 return -ENOMEM;
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 return;
299 kfree(spd->pages);
300 kfree(spd->partial);
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 struct pipe_inode_info *pipe, size_t len,
306 unsigned int flags)
308 struct address_space *mapping = in->f_mapping;
309 unsigned int loff, nr_pages, req_pages;
310 struct page *pages[PIPE_DEF_BUFFERS];
311 struct partial_page partial[PIPE_DEF_BUFFERS];
312 struct page *page;
313 pgoff_t index, end_index;
314 loff_t isize;
315 int error, page_nr;
316 struct splice_pipe_desc spd = {
317 .pages = pages,
318 .partial = partial,
319 .nr_pages_max = PIPE_DEF_BUFFERS,
320 .flags = flags,
321 .ops = &page_cache_pipe_buf_ops,
322 .spd_release = spd_release_page,
325 if (splice_grow_spd(pipe, &spd))
326 return -ENOMEM;
328 index = *ppos >> PAGE_CACHE_SHIFT;
329 loff = *ppos & ~PAGE_CACHE_MASK;
330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 nr_pages = min(req_pages, spd.nr_pages_max);
334 * Lookup the (hopefully) full range of pages we need.
336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 index += spd.nr_pages;
340 * If find_get_pages_contig() returned fewer pages than we needed,
341 * readahead/allocate the rest and fill in the holes.
343 if (spd.nr_pages < nr_pages)
344 page_cache_sync_readahead(mapping, &in->f_ra, in,
345 index, req_pages - spd.nr_pages);
347 error = 0;
348 while (spd.nr_pages < nr_pages) {
350 * Page could be there, find_get_pages_contig() breaks on
351 * the first hole.
353 page = find_get_page(mapping, index);
354 if (!page) {
356 * page didn't exist, allocate one.
358 page = page_cache_alloc_cold(mapping);
359 if (!page)
360 break;
362 error = add_to_page_cache_lru(page, mapping, index,
363 GFP_KERNEL & mapping_gfp_mask(mapping));
364 if (unlikely(error)) {
365 page_cache_release(page);
366 if (error == -EEXIST)
367 continue;
368 break;
371 * add_to_page_cache() locks the page, unlock it
372 * to avoid convoluting the logic below even more.
374 unlock_page(page);
377 spd.pages[spd.nr_pages++] = page;
378 index++;
382 * Now loop over the map and see if we need to start IO on any
383 * pages, fill in the partial map, etc.
385 index = *ppos >> PAGE_CACHE_SHIFT;
386 nr_pages = spd.nr_pages;
387 spd.nr_pages = 0;
388 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 unsigned int this_len;
391 if (!len)
392 break;
395 * this_len is the max we'll use from this page
397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 page = spd.pages[page_nr];
400 if (PageReadahead(page))
401 page_cache_async_readahead(mapping, &in->f_ra, in,
402 page, index, req_pages - page_nr);
405 * If the page isn't uptodate, we may need to start io on it
407 if (!PageUptodate(page)) {
408 lock_page(page);
411 * Page was truncated, or invalidated by the
412 * filesystem. Redo the find/create, but this time the
413 * page is kept locked, so there's no chance of another
414 * race with truncate/invalidate.
416 if (!page->mapping) {
417 unlock_page(page);
418 page = find_or_create_page(mapping, index,
419 mapping_gfp_mask(mapping));
421 if (!page) {
422 error = -ENOMEM;
423 break;
425 page_cache_release(spd.pages[page_nr]);
426 spd.pages[page_nr] = page;
429 * page was already under io and is now done, great
431 if (PageUptodate(page)) {
432 unlock_page(page);
433 goto fill_it;
437 * need to read in the page
439 error = mapping->a_ops->readpage(in, page);
440 if (unlikely(error)) {
442 * We really should re-lookup the page here,
443 * but it complicates things a lot. Instead
444 * lets just do what we already stored, and
445 * we'll get it the next time we are called.
447 if (error == AOP_TRUNCATED_PAGE)
448 error = 0;
450 break;
453 fill_it:
455 * i_size must be checked after PageUptodate.
457 isize = i_size_read(mapping->host);
458 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459 if (unlikely(!isize || index > end_index))
460 break;
463 * if this is the last page, see if we need to shrink
464 * the length and stop
466 if (end_index == index) {
467 unsigned int plen;
470 * max good bytes in this page
472 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473 if (plen <= loff)
474 break;
477 * force quit after adding this page
479 this_len = min(this_len, plen - loff);
480 len = this_len;
483 spd.partial[page_nr].offset = loff;
484 spd.partial[page_nr].len = this_len;
485 len -= this_len;
486 loff = 0;
487 spd.nr_pages++;
488 index++;
492 * Release any pages at the end, if we quit early. 'page_nr' is how far
493 * we got, 'nr_pages' is how many pages are in the map.
495 while (page_nr < nr_pages)
496 page_cache_release(spd.pages[page_nr++]);
497 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
499 if (spd.nr_pages)
500 error = splice_to_pipe(pipe, &spd);
502 splice_shrink_spd(&spd);
503 return error;
507 * generic_file_splice_read - splice data from file to a pipe
508 * @in: file to splice from
509 * @ppos: position in @in
510 * @pipe: pipe to splice to
511 * @len: number of bytes to splice
512 * @flags: splice modifier flags
514 * Description:
515 * Will read pages from given file and fill them into a pipe. Can be
516 * used as long as the address_space operations for the source implements
517 * a readpage() hook.
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521 struct pipe_inode_info *pipe, size_t len,
522 unsigned int flags)
524 loff_t isize, left;
525 int ret;
527 if (IS_DAX(in->f_mapping->host))
528 return default_file_splice_read(in, ppos, pipe, len, flags);
530 isize = i_size_read(in->f_mapping->host);
531 if (unlikely(*ppos >= isize))
532 return 0;
534 left = isize - *ppos;
535 if (unlikely(left < len))
536 len = left;
538 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
539 if (ret > 0) {
540 *ppos += ret;
541 file_accessed(in);
544 return ret;
546 EXPORT_SYMBOL(generic_file_splice_read);
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
549 .can_merge = 0,
550 .confirm = generic_pipe_buf_confirm,
551 .release = generic_pipe_buf_release,
552 .steal = generic_pipe_buf_steal,
553 .get = generic_pipe_buf_get,
556 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
557 struct pipe_buffer *buf)
559 return 1;
562 /* Pipe buffer operations for a socket and similar. */
563 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
564 .can_merge = 0,
565 .confirm = generic_pipe_buf_confirm,
566 .release = generic_pipe_buf_release,
567 .steal = generic_pipe_buf_nosteal,
568 .get = generic_pipe_buf_get,
570 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
572 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
573 unsigned long vlen, loff_t offset)
575 mm_segment_t old_fs;
576 loff_t pos = offset;
577 ssize_t res;
579 old_fs = get_fs();
580 set_fs(get_ds());
581 /* The cast to a user pointer is valid due to the set_fs() */
582 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
583 set_fs(old_fs);
585 return res;
588 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
589 loff_t pos)
591 mm_segment_t old_fs;
592 ssize_t res;
594 old_fs = get_fs();
595 set_fs(get_ds());
596 /* The cast to a user pointer is valid due to the set_fs() */
597 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
598 set_fs(old_fs);
600 return res;
602 EXPORT_SYMBOL(kernel_write);
604 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
605 struct pipe_inode_info *pipe, size_t len,
606 unsigned int flags)
608 unsigned int nr_pages;
609 unsigned int nr_freed;
610 size_t offset;
611 struct page *pages[PIPE_DEF_BUFFERS];
612 struct partial_page partial[PIPE_DEF_BUFFERS];
613 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
614 ssize_t res;
615 size_t this_len;
616 int error;
617 int i;
618 struct splice_pipe_desc spd = {
619 .pages = pages,
620 .partial = partial,
621 .nr_pages_max = PIPE_DEF_BUFFERS,
622 .flags = flags,
623 .ops = &default_pipe_buf_ops,
624 .spd_release = spd_release_page,
627 if (splice_grow_spd(pipe, &spd))
628 return -ENOMEM;
630 res = -ENOMEM;
631 vec = __vec;
632 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
633 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
634 if (!vec)
635 goto shrink_ret;
638 offset = *ppos & ~PAGE_CACHE_MASK;
639 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
641 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
642 struct page *page;
644 page = alloc_page(GFP_USER);
645 error = -ENOMEM;
646 if (!page)
647 goto err;
649 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
650 vec[i].iov_base = (void __user *) page_address(page);
651 vec[i].iov_len = this_len;
652 spd.pages[i] = page;
653 spd.nr_pages++;
654 len -= this_len;
655 offset = 0;
658 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
659 if (res < 0) {
660 error = res;
661 goto err;
664 error = 0;
665 if (!res)
666 goto err;
668 nr_freed = 0;
669 for (i = 0; i < spd.nr_pages; i++) {
670 this_len = min_t(size_t, vec[i].iov_len, res);
671 spd.partial[i].offset = 0;
672 spd.partial[i].len = this_len;
673 if (!this_len) {
674 __free_page(spd.pages[i]);
675 spd.pages[i] = NULL;
676 nr_freed++;
678 res -= this_len;
680 spd.nr_pages -= nr_freed;
682 res = splice_to_pipe(pipe, &spd);
683 if (res > 0)
684 *ppos += res;
686 shrink_ret:
687 if (vec != __vec)
688 kfree(vec);
689 splice_shrink_spd(&spd);
690 return res;
692 err:
693 for (i = 0; i < spd.nr_pages; i++)
694 __free_page(spd.pages[i]);
696 res = error;
697 goto shrink_ret;
699 EXPORT_SYMBOL(default_file_splice_read);
702 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
703 * using sendpage(). Return the number of bytes sent.
705 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
706 struct pipe_buffer *buf, struct splice_desc *sd)
708 struct file *file = sd->u.file;
709 loff_t pos = sd->pos;
710 int more;
712 if (!likely(file->f_op->sendpage))
713 return -EINVAL;
715 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
717 if (sd->len < sd->total_len && pipe->nrbufs > 1)
718 more |= MSG_SENDPAGE_NOTLAST;
720 return file->f_op->sendpage(file, buf->page, buf->offset,
721 sd->len, &pos, more);
724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726 smp_mb();
727 if (waitqueue_active(&pipe->wait))
728 wake_up_interruptible(&pipe->wait);
729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
733 * splice_from_pipe_feed - feed available data from a pipe to a file
734 * @pipe: pipe to splice from
735 * @sd: information to @actor
736 * @actor: handler that splices the data
738 * Description:
739 * This function loops over the pipe and calls @actor to do the
740 * actual moving of a single struct pipe_buffer to the desired
741 * destination. It returns when there's no more buffers left in
742 * the pipe or if the requested number of bytes (@sd->total_len)
743 * have been copied. It returns a positive number (one) if the
744 * pipe needs to be filled with more data, zero if the required
745 * number of bytes have been copied and -errno on error.
747 * This, together with splice_from_pipe_{begin,end,next}, may be
748 * used to implement the functionality of __splice_from_pipe() when
749 * locking is required around copying the pipe buffers to the
750 * destination.
752 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
753 splice_actor *actor)
755 int ret;
757 while (pipe->nrbufs) {
758 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
759 const struct pipe_buf_operations *ops = buf->ops;
761 sd->len = buf->len;
762 if (sd->len > sd->total_len)
763 sd->len = sd->total_len;
765 ret = buf->ops->confirm(pipe, buf);
766 if (unlikely(ret)) {
767 if (ret == -ENODATA)
768 ret = 0;
769 return ret;
772 ret = actor(pipe, buf, sd);
773 if (ret <= 0)
774 return ret;
776 buf->offset += ret;
777 buf->len -= ret;
779 sd->num_spliced += ret;
780 sd->len -= ret;
781 sd->pos += ret;
782 sd->total_len -= ret;
784 if (!buf->len) {
785 buf->ops = NULL;
786 ops->release(pipe, buf);
787 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
788 pipe->nrbufs--;
789 if (pipe->files)
790 sd->need_wakeup = true;
793 if (!sd->total_len)
794 return 0;
797 return 1;
801 * splice_from_pipe_next - wait for some data to splice from
802 * @pipe: pipe to splice from
803 * @sd: information about the splice operation
805 * Description:
806 * This function will wait for some data and return a positive
807 * value (one) if pipe buffers are available. It will return zero
808 * or -errno if no more data needs to be spliced.
810 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812 while (!pipe->nrbufs) {
813 if (!pipe->writers)
814 return 0;
816 if (!pipe->waiting_writers && sd->num_spliced)
817 return 0;
819 if (sd->flags & SPLICE_F_NONBLOCK)
820 return -EAGAIN;
822 if (signal_pending(current))
823 return -ERESTARTSYS;
825 if (sd->need_wakeup) {
826 wakeup_pipe_writers(pipe);
827 sd->need_wakeup = false;
830 pipe_wait(pipe);
833 return 1;
837 * splice_from_pipe_begin - start splicing from pipe
838 * @sd: information about the splice operation
840 * Description:
841 * This function should be called before a loop containing
842 * splice_from_pipe_next() and splice_from_pipe_feed() to
843 * initialize the necessary fields of @sd.
845 static void splice_from_pipe_begin(struct splice_desc *sd)
847 sd->num_spliced = 0;
848 sd->need_wakeup = false;
852 * splice_from_pipe_end - finish splicing from pipe
853 * @pipe: pipe to splice from
854 * @sd: information about the splice operation
856 * Description:
857 * This function will wake up pipe writers if necessary. It should
858 * be called after a loop containing splice_from_pipe_next() and
859 * splice_from_pipe_feed().
861 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
863 if (sd->need_wakeup)
864 wakeup_pipe_writers(pipe);
868 * __splice_from_pipe - splice data from a pipe to given actor
869 * @pipe: pipe to splice from
870 * @sd: information to @actor
871 * @actor: handler that splices the data
873 * Description:
874 * This function does little more than loop over the pipe and call
875 * @actor to do the actual moving of a single struct pipe_buffer to
876 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
877 * pipe_to_user.
880 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
881 splice_actor *actor)
883 int ret;
885 splice_from_pipe_begin(sd);
886 do {
887 ret = splice_from_pipe_next(pipe, sd);
888 if (ret > 0)
889 ret = splice_from_pipe_feed(pipe, sd, actor);
890 } while (ret > 0);
891 splice_from_pipe_end(pipe, sd);
893 return sd->num_spliced ? sd->num_spliced : ret;
895 EXPORT_SYMBOL(__splice_from_pipe);
898 * splice_from_pipe - splice data from a pipe to a file
899 * @pipe: pipe to splice from
900 * @out: file to splice to
901 * @ppos: position in @out
902 * @len: how many bytes to splice
903 * @flags: splice modifier flags
904 * @actor: handler that splices the data
906 * Description:
907 * See __splice_from_pipe. This function locks the pipe inode,
908 * otherwise it's identical to __splice_from_pipe().
911 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
912 loff_t *ppos, size_t len, unsigned int flags,
913 splice_actor *actor)
915 ssize_t ret;
916 struct splice_desc sd = {
917 .total_len = len,
918 .flags = flags,
919 .pos = *ppos,
920 .u.file = out,
923 pipe_lock(pipe);
924 ret = __splice_from_pipe(pipe, &sd, actor);
925 pipe_unlock(pipe);
927 return ret;
931 * iter_file_splice_write - splice data from a pipe to a file
932 * @pipe: pipe info
933 * @out: file to write to
934 * @ppos: position in @out
935 * @len: number of bytes to splice
936 * @flags: splice modifier flags
938 * Description:
939 * Will either move or copy pages (determined by @flags options) from
940 * the given pipe inode to the given file.
941 * This one is ->write_iter-based.
944 ssize_t
945 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
946 loff_t *ppos, size_t len, unsigned int flags)
948 struct splice_desc sd = {
949 .total_len = len,
950 .flags = flags,
951 .pos = *ppos,
952 .u.file = out,
954 int nbufs = pipe->buffers;
955 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
956 GFP_KERNEL);
957 ssize_t ret;
959 if (unlikely(!array))
960 return -ENOMEM;
962 pipe_lock(pipe);
964 splice_from_pipe_begin(&sd);
965 while (sd.total_len) {
966 struct iov_iter from;
967 size_t left;
968 int n, idx;
970 ret = splice_from_pipe_next(pipe, &sd);
971 if (ret <= 0)
972 break;
974 if (unlikely(nbufs < pipe->buffers)) {
975 kfree(array);
976 nbufs = pipe->buffers;
977 array = kcalloc(nbufs, sizeof(struct bio_vec),
978 GFP_KERNEL);
979 if (!array) {
980 ret = -ENOMEM;
981 break;
985 /* build the vector */
986 left = sd.total_len;
987 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
988 struct pipe_buffer *buf = pipe->bufs + idx;
989 size_t this_len = buf->len;
991 if (this_len > left)
992 this_len = left;
994 if (idx == pipe->buffers - 1)
995 idx = -1;
997 ret = buf->ops->confirm(pipe, buf);
998 if (unlikely(ret)) {
999 if (ret == -ENODATA)
1000 ret = 0;
1001 goto done;
1004 array[n].bv_page = buf->page;
1005 array[n].bv_len = this_len;
1006 array[n].bv_offset = buf->offset;
1007 left -= this_len;
1010 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1011 sd.total_len - left);
1012 ret = vfs_iter_write(out, &from, &sd.pos);
1013 if (ret <= 0)
1014 break;
1016 sd.num_spliced += ret;
1017 sd.total_len -= ret;
1018 *ppos = sd.pos;
1020 /* dismiss the fully eaten buffers, adjust the partial one */
1021 while (ret) {
1022 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1023 if (ret >= buf->len) {
1024 const struct pipe_buf_operations *ops = buf->ops;
1025 ret -= buf->len;
1026 buf->len = 0;
1027 buf->ops = NULL;
1028 ops->release(pipe, buf);
1029 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1030 pipe->nrbufs--;
1031 if (pipe->files)
1032 sd.need_wakeup = true;
1033 } else {
1034 buf->offset += ret;
1035 buf->len -= ret;
1036 ret = 0;
1040 done:
1041 kfree(array);
1042 splice_from_pipe_end(pipe, &sd);
1044 pipe_unlock(pipe);
1046 if (sd.num_spliced)
1047 ret = sd.num_spliced;
1049 return ret;
1052 EXPORT_SYMBOL(iter_file_splice_write);
1054 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1055 struct splice_desc *sd)
1057 int ret;
1058 void *data;
1059 loff_t tmp = sd->pos;
1061 data = kmap(buf->page);
1062 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1063 kunmap(buf->page);
1065 return ret;
1068 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1069 struct file *out, loff_t *ppos,
1070 size_t len, unsigned int flags)
1072 ssize_t ret;
1074 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1075 if (ret > 0)
1076 *ppos += ret;
1078 return ret;
1082 * generic_splice_sendpage - splice data from a pipe to a socket
1083 * @pipe: pipe to splice from
1084 * @out: socket to write to
1085 * @ppos: position in @out
1086 * @len: number of bytes to splice
1087 * @flags: splice modifier flags
1089 * Description:
1090 * Will send @len bytes from the pipe to a network socket. No data copying
1091 * is involved.
1094 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1095 loff_t *ppos, size_t len, unsigned int flags)
1097 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1100 EXPORT_SYMBOL(generic_splice_sendpage);
1103 * Attempt to initiate a splice from pipe to file.
1105 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1106 loff_t *ppos, size_t len, unsigned int flags)
1108 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1109 loff_t *, size_t, unsigned int);
1111 if (out->f_op->splice_write)
1112 splice_write = out->f_op->splice_write;
1113 else
1114 splice_write = default_file_splice_write;
1116 return splice_write(pipe, out, ppos, len, flags);
1120 * Attempt to initiate a splice from a file to a pipe.
1122 static long do_splice_to(struct file *in, loff_t *ppos,
1123 struct pipe_inode_info *pipe, size_t len,
1124 unsigned int flags)
1126 ssize_t (*splice_read)(struct file *, loff_t *,
1127 struct pipe_inode_info *, size_t, unsigned int);
1128 int ret;
1130 if (unlikely(!(in->f_mode & FMODE_READ)))
1131 return -EBADF;
1133 ret = rw_verify_area(READ, in, ppos, len);
1134 if (unlikely(ret < 0))
1135 return ret;
1137 if (in->f_op->splice_read)
1138 splice_read = in->f_op->splice_read;
1139 else
1140 splice_read = default_file_splice_read;
1142 return splice_read(in, ppos, pipe, len, flags);
1146 * splice_direct_to_actor - splices data directly between two non-pipes
1147 * @in: file to splice from
1148 * @sd: actor information on where to splice to
1149 * @actor: handles the data splicing
1151 * Description:
1152 * This is a special case helper to splice directly between two
1153 * points, without requiring an explicit pipe. Internally an allocated
1154 * pipe is cached in the process, and reused during the lifetime of
1155 * that process.
1158 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1159 splice_direct_actor *actor)
1161 struct pipe_inode_info *pipe;
1162 long ret, bytes;
1163 umode_t i_mode;
1164 size_t len;
1165 int i, flags, more;
1168 * We require the input being a regular file, as we don't want to
1169 * randomly drop data for eg socket -> socket splicing. Use the
1170 * piped splicing for that!
1172 i_mode = file_inode(in)->i_mode;
1173 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1174 return -EINVAL;
1177 * neither in nor out is a pipe, setup an internal pipe attached to
1178 * 'out' and transfer the wanted data from 'in' to 'out' through that
1180 pipe = current->splice_pipe;
1181 if (unlikely(!pipe)) {
1182 pipe = alloc_pipe_info();
1183 if (!pipe)
1184 return -ENOMEM;
1187 * We don't have an immediate reader, but we'll read the stuff
1188 * out of the pipe right after the splice_to_pipe(). So set
1189 * PIPE_READERS appropriately.
1191 pipe->readers = 1;
1193 current->splice_pipe = pipe;
1197 * Do the splice.
1199 ret = 0;
1200 bytes = 0;
1201 len = sd->total_len;
1202 flags = sd->flags;
1205 * Don't block on output, we have to drain the direct pipe.
1207 sd->flags &= ~SPLICE_F_NONBLOCK;
1208 more = sd->flags & SPLICE_F_MORE;
1210 while (len) {
1211 size_t read_len;
1212 loff_t pos = sd->pos, prev_pos = pos;
1214 ret = do_splice_to(in, &pos, pipe, len, flags);
1215 if (unlikely(ret <= 0))
1216 goto out_release;
1218 read_len = ret;
1219 sd->total_len = read_len;
1222 * If more data is pending, set SPLICE_F_MORE
1223 * If this is the last data and SPLICE_F_MORE was not set
1224 * initially, clears it.
1226 if (read_len < len)
1227 sd->flags |= SPLICE_F_MORE;
1228 else if (!more)
1229 sd->flags &= ~SPLICE_F_MORE;
1231 * NOTE: nonblocking mode only applies to the input. We
1232 * must not do the output in nonblocking mode as then we
1233 * could get stuck data in the internal pipe:
1235 ret = actor(pipe, sd);
1236 if (unlikely(ret <= 0)) {
1237 sd->pos = prev_pos;
1238 goto out_release;
1241 bytes += ret;
1242 len -= ret;
1243 sd->pos = pos;
1245 if (ret < read_len) {
1246 sd->pos = prev_pos + ret;
1247 goto out_release;
1251 done:
1252 pipe->nrbufs = pipe->curbuf = 0;
1253 file_accessed(in);
1254 return bytes;
1256 out_release:
1258 * If we did an incomplete transfer we must release
1259 * the pipe buffers in question:
1261 for (i = 0; i < pipe->buffers; i++) {
1262 struct pipe_buffer *buf = pipe->bufs + i;
1264 if (buf->ops) {
1265 buf->ops->release(pipe, buf);
1266 buf->ops = NULL;
1270 if (!bytes)
1271 bytes = ret;
1273 goto done;
1275 EXPORT_SYMBOL(splice_direct_to_actor);
1277 static int direct_splice_actor(struct pipe_inode_info *pipe,
1278 struct splice_desc *sd)
1280 struct file *file = sd->u.file;
1282 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1283 sd->flags);
1287 * do_splice_direct - splices data directly between two files
1288 * @in: file to splice from
1289 * @ppos: input file offset
1290 * @out: file to splice to
1291 * @opos: output file offset
1292 * @len: number of bytes to splice
1293 * @flags: splice modifier flags
1295 * Description:
1296 * For use by do_sendfile(). splice can easily emulate sendfile, but
1297 * doing it in the application would incur an extra system call
1298 * (splice in + splice out, as compared to just sendfile()). So this helper
1299 * can splice directly through a process-private pipe.
1302 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1303 loff_t *opos, size_t len, unsigned int flags)
1305 struct splice_desc sd = {
1306 .len = len,
1307 .total_len = len,
1308 .flags = flags,
1309 .pos = *ppos,
1310 .u.file = out,
1311 .opos = opos,
1313 long ret;
1315 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1316 return -EBADF;
1318 if (unlikely(out->f_flags & O_APPEND))
1319 return -EINVAL;
1321 ret = rw_verify_area(WRITE, out, opos, len);
1322 if (unlikely(ret < 0))
1323 return ret;
1325 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1326 if (ret > 0)
1327 *ppos = sd.pos;
1329 return ret;
1331 EXPORT_SYMBOL(do_splice_direct);
1333 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1334 struct pipe_inode_info *opipe,
1335 size_t len, unsigned int flags);
1338 * Determine where to splice to/from.
1340 static long do_splice(struct file *in, loff_t __user *off_in,
1341 struct file *out, loff_t __user *off_out,
1342 size_t len, unsigned int flags)
1344 struct pipe_inode_info *ipipe;
1345 struct pipe_inode_info *opipe;
1346 loff_t offset;
1347 long ret;
1349 ipipe = get_pipe_info(in);
1350 opipe = get_pipe_info(out);
1352 if (ipipe && opipe) {
1353 if (off_in || off_out)
1354 return -ESPIPE;
1356 if (!(in->f_mode & FMODE_READ))
1357 return -EBADF;
1359 if (!(out->f_mode & FMODE_WRITE))
1360 return -EBADF;
1362 /* Splicing to self would be fun, but... */
1363 if (ipipe == opipe)
1364 return -EINVAL;
1366 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1369 if (ipipe) {
1370 if (off_in)
1371 return -ESPIPE;
1372 if (off_out) {
1373 if (!(out->f_mode & FMODE_PWRITE))
1374 return -EINVAL;
1375 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1376 return -EFAULT;
1377 } else {
1378 offset = out->f_pos;
1381 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1382 return -EBADF;
1384 if (unlikely(out->f_flags & O_APPEND))
1385 return -EINVAL;
1387 ret = rw_verify_area(WRITE, out, &offset, len);
1388 if (unlikely(ret < 0))
1389 return ret;
1391 file_start_write(out);
1392 ret = do_splice_from(ipipe, out, &offset, len, flags);
1393 file_end_write(out);
1395 if (!off_out)
1396 out->f_pos = offset;
1397 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1398 ret = -EFAULT;
1400 return ret;
1403 if (opipe) {
1404 if (off_out)
1405 return -ESPIPE;
1406 if (off_in) {
1407 if (!(in->f_mode & FMODE_PREAD))
1408 return -EINVAL;
1409 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1410 return -EFAULT;
1411 } else {
1412 offset = in->f_pos;
1415 ret = do_splice_to(in, &offset, opipe, len, flags);
1417 if (!off_in)
1418 in->f_pos = offset;
1419 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1420 ret = -EFAULT;
1422 return ret;
1425 return -EINVAL;
1429 * Map an iov into an array of pages and offset/length tupples. With the
1430 * partial_page structure, we can map several non-contiguous ranges into
1431 * our ones pages[] map instead of splitting that operation into pieces.
1432 * Could easily be exported as a generic helper for other users, in which
1433 * case one would probably want to add a 'max_nr_pages' parameter as well.
1435 static int get_iovec_page_array(const struct iovec __user *iov,
1436 unsigned int nr_vecs, struct page **pages,
1437 struct partial_page *partial, bool aligned,
1438 unsigned int pipe_buffers)
1440 int buffers = 0, error = 0;
1442 while (nr_vecs) {
1443 unsigned long off, npages;
1444 struct iovec entry;
1445 void __user *base;
1446 size_t len;
1447 int i;
1449 error = -EFAULT;
1450 if (copy_from_user(&entry, iov, sizeof(entry)))
1451 break;
1453 base = entry.iov_base;
1454 len = entry.iov_len;
1457 * Sanity check this iovec. 0 read succeeds.
1459 error = 0;
1460 if (unlikely(!len))
1461 break;
1462 error = -EFAULT;
1463 if (!access_ok(VERIFY_READ, base, len))
1464 break;
1467 * Get this base offset and number of pages, then map
1468 * in the user pages.
1470 off = (unsigned long) base & ~PAGE_MASK;
1473 * If asked for alignment, the offset must be zero and the
1474 * length a multiple of the PAGE_SIZE.
1476 error = -EINVAL;
1477 if (aligned && (off || len & ~PAGE_MASK))
1478 break;
1480 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1481 if (npages > pipe_buffers - buffers)
1482 npages = pipe_buffers - buffers;
1484 error = get_user_pages_fast((unsigned long)base, npages,
1485 0, &pages[buffers]);
1487 if (unlikely(error <= 0))
1488 break;
1491 * Fill this contiguous range into the partial page map.
1493 for (i = 0; i < error; i++) {
1494 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1496 partial[buffers].offset = off;
1497 partial[buffers].len = plen;
1499 off = 0;
1500 len -= plen;
1501 buffers++;
1505 * We didn't complete this iov, stop here since it probably
1506 * means we have to move some of this into a pipe to
1507 * be able to continue.
1509 if (len)
1510 break;
1513 * Don't continue if we mapped fewer pages than we asked for,
1514 * or if we mapped the max number of pages that we have
1515 * room for.
1517 if (error < npages || buffers == pipe_buffers)
1518 break;
1520 nr_vecs--;
1521 iov++;
1524 if (buffers)
1525 return buffers;
1527 return error;
1530 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1531 struct splice_desc *sd)
1533 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1534 return n == sd->len ? n : -EFAULT;
1538 * For lack of a better implementation, implement vmsplice() to userspace
1539 * as a simple copy of the pipes pages to the user iov.
1541 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1542 unsigned long nr_segs, unsigned int flags)
1544 struct pipe_inode_info *pipe;
1545 struct splice_desc sd;
1546 long ret;
1547 struct iovec iovstack[UIO_FASTIOV];
1548 struct iovec *iov = iovstack;
1549 struct iov_iter iter;
1551 pipe = get_pipe_info(file);
1552 if (!pipe)
1553 return -EBADF;
1555 ret = import_iovec(READ, uiov, nr_segs,
1556 ARRAY_SIZE(iovstack), &iov, &iter);
1557 if (ret < 0)
1558 return ret;
1560 sd.total_len = iov_iter_count(&iter);
1561 sd.len = 0;
1562 sd.flags = flags;
1563 sd.u.data = &iter;
1564 sd.pos = 0;
1566 if (sd.total_len) {
1567 pipe_lock(pipe);
1568 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1569 pipe_unlock(pipe);
1572 kfree(iov);
1573 return ret;
1577 * vmsplice splices a user address range into a pipe. It can be thought of
1578 * as splice-from-memory, where the regular splice is splice-from-file (or
1579 * to file). In both cases the output is a pipe, naturally.
1581 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1582 unsigned long nr_segs, unsigned int flags)
1584 struct pipe_inode_info *pipe;
1585 struct page *pages[PIPE_DEF_BUFFERS];
1586 struct partial_page partial[PIPE_DEF_BUFFERS];
1587 struct splice_pipe_desc spd = {
1588 .pages = pages,
1589 .partial = partial,
1590 .nr_pages_max = PIPE_DEF_BUFFERS,
1591 .flags = flags,
1592 .ops = &user_page_pipe_buf_ops,
1593 .spd_release = spd_release_page,
1595 long ret;
1597 pipe = get_pipe_info(file);
1598 if (!pipe)
1599 return -EBADF;
1601 if (splice_grow_spd(pipe, &spd))
1602 return -ENOMEM;
1604 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1605 spd.partial, false,
1606 spd.nr_pages_max);
1607 if (spd.nr_pages <= 0)
1608 ret = spd.nr_pages;
1609 else
1610 ret = splice_to_pipe(pipe, &spd);
1612 splice_shrink_spd(&spd);
1613 return ret;
1617 * Note that vmsplice only really supports true splicing _from_ user memory
1618 * to a pipe, not the other way around. Splicing from user memory is a simple
1619 * operation that can be supported without any funky alignment restrictions
1620 * or nasty vm tricks. We simply map in the user memory and fill them into
1621 * a pipe. The reverse isn't quite as easy, though. There are two possible
1622 * solutions for that:
1624 * - memcpy() the data internally, at which point we might as well just
1625 * do a regular read() on the buffer anyway.
1626 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1627 * has restriction limitations on both ends of the pipe).
1629 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1632 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1633 unsigned long, nr_segs, unsigned int, flags)
1635 struct fd f;
1636 long error;
1638 if (unlikely(nr_segs > UIO_MAXIOV))
1639 return -EINVAL;
1640 else if (unlikely(!nr_segs))
1641 return 0;
1643 error = -EBADF;
1644 f = fdget(fd);
1645 if (f.file) {
1646 if (f.file->f_mode & FMODE_WRITE)
1647 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1648 else if (f.file->f_mode & FMODE_READ)
1649 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1651 fdput(f);
1654 return error;
1657 #ifdef CONFIG_COMPAT
1658 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1659 unsigned int, nr_segs, unsigned int, flags)
1661 unsigned i;
1662 struct iovec __user *iov;
1663 if (nr_segs > UIO_MAXIOV)
1664 return -EINVAL;
1665 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1666 for (i = 0; i < nr_segs; i++) {
1667 struct compat_iovec v;
1668 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1669 get_user(v.iov_len, &iov32[i].iov_len) ||
1670 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1671 put_user(v.iov_len, &iov[i].iov_len))
1672 return -EFAULT;
1674 return sys_vmsplice(fd, iov, nr_segs, flags);
1676 #endif
1678 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1679 int, fd_out, loff_t __user *, off_out,
1680 size_t, len, unsigned int, flags)
1682 struct fd in, out;
1683 long error;
1685 if (unlikely(!len))
1686 return 0;
1688 error = -EBADF;
1689 in = fdget(fd_in);
1690 if (in.file) {
1691 if (in.file->f_mode & FMODE_READ) {
1692 out = fdget(fd_out);
1693 if (out.file) {
1694 if (out.file->f_mode & FMODE_WRITE)
1695 error = do_splice(in.file, off_in,
1696 out.file, off_out,
1697 len, flags);
1698 fdput(out);
1701 fdput(in);
1703 return error;
1707 * Make sure there's data to read. Wait for input if we can, otherwise
1708 * return an appropriate error.
1710 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1712 int ret;
1715 * Check ->nrbufs without the inode lock first. This function
1716 * is speculative anyways, so missing one is ok.
1718 if (pipe->nrbufs)
1719 return 0;
1721 ret = 0;
1722 pipe_lock(pipe);
1724 while (!pipe->nrbufs) {
1725 if (signal_pending(current)) {
1726 ret = -ERESTARTSYS;
1727 break;
1729 if (!pipe->writers)
1730 break;
1731 if (!pipe->waiting_writers) {
1732 if (flags & SPLICE_F_NONBLOCK) {
1733 ret = -EAGAIN;
1734 break;
1737 pipe_wait(pipe);
1740 pipe_unlock(pipe);
1741 return ret;
1745 * Make sure there's writeable room. Wait for room if we can, otherwise
1746 * return an appropriate error.
1748 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1750 int ret;
1753 * Check ->nrbufs without the inode lock first. This function
1754 * is speculative anyways, so missing one is ok.
1756 if (pipe->nrbufs < pipe->buffers)
1757 return 0;
1759 ret = 0;
1760 pipe_lock(pipe);
1762 while (pipe->nrbufs >= pipe->buffers) {
1763 if (!pipe->readers) {
1764 send_sig(SIGPIPE, current, 0);
1765 ret = -EPIPE;
1766 break;
1768 if (flags & SPLICE_F_NONBLOCK) {
1769 ret = -EAGAIN;
1770 break;
1772 if (signal_pending(current)) {
1773 ret = -ERESTARTSYS;
1774 break;
1776 pipe->waiting_writers++;
1777 pipe_wait(pipe);
1778 pipe->waiting_writers--;
1781 pipe_unlock(pipe);
1782 return ret;
1786 * Splice contents of ipipe to opipe.
1788 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1789 struct pipe_inode_info *opipe,
1790 size_t len, unsigned int flags)
1792 struct pipe_buffer *ibuf, *obuf;
1793 int ret = 0, nbuf;
1794 bool input_wakeup = false;
1797 retry:
1798 ret = ipipe_prep(ipipe, flags);
1799 if (ret)
1800 return ret;
1802 ret = opipe_prep(opipe, flags);
1803 if (ret)
1804 return ret;
1807 * Potential ABBA deadlock, work around it by ordering lock
1808 * grabbing by pipe info address. Otherwise two different processes
1809 * could deadlock (one doing tee from A -> B, the other from B -> A).
1811 pipe_double_lock(ipipe, opipe);
1813 do {
1814 if (!opipe->readers) {
1815 send_sig(SIGPIPE, current, 0);
1816 if (!ret)
1817 ret = -EPIPE;
1818 break;
1821 if (!ipipe->nrbufs && !ipipe->writers)
1822 break;
1825 * Cannot make any progress, because either the input
1826 * pipe is empty or the output pipe is full.
1828 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1829 /* Already processed some buffers, break */
1830 if (ret)
1831 break;
1833 if (flags & SPLICE_F_NONBLOCK) {
1834 ret = -EAGAIN;
1835 break;
1839 * We raced with another reader/writer and haven't
1840 * managed to process any buffers. A zero return
1841 * value means EOF, so retry instead.
1843 pipe_unlock(ipipe);
1844 pipe_unlock(opipe);
1845 goto retry;
1848 ibuf = ipipe->bufs + ipipe->curbuf;
1849 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1850 obuf = opipe->bufs + nbuf;
1852 if (len >= ibuf->len) {
1854 * Simply move the whole buffer from ipipe to opipe
1856 *obuf = *ibuf;
1857 ibuf->ops = NULL;
1858 opipe->nrbufs++;
1859 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1860 ipipe->nrbufs--;
1861 input_wakeup = true;
1862 } else {
1864 * Get a reference to this pipe buffer,
1865 * so we can copy the contents over.
1867 ibuf->ops->get(ipipe, ibuf);
1868 *obuf = *ibuf;
1871 * Don't inherit the gift flag, we need to
1872 * prevent multiple steals of this page.
1874 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1876 obuf->len = len;
1877 opipe->nrbufs++;
1878 ibuf->offset += obuf->len;
1879 ibuf->len -= obuf->len;
1881 ret += obuf->len;
1882 len -= obuf->len;
1883 } while (len);
1885 pipe_unlock(ipipe);
1886 pipe_unlock(opipe);
1889 * If we put data in the output pipe, wakeup any potential readers.
1891 if (ret > 0)
1892 wakeup_pipe_readers(opipe);
1894 if (input_wakeup)
1895 wakeup_pipe_writers(ipipe);
1897 return ret;
1901 * Link contents of ipipe to opipe.
1903 static int link_pipe(struct pipe_inode_info *ipipe,
1904 struct pipe_inode_info *opipe,
1905 size_t len, unsigned int flags)
1907 struct pipe_buffer *ibuf, *obuf;
1908 int ret = 0, i = 0, nbuf;
1911 * Potential ABBA deadlock, work around it by ordering lock
1912 * grabbing by pipe info address. Otherwise two different processes
1913 * could deadlock (one doing tee from A -> B, the other from B -> A).
1915 pipe_double_lock(ipipe, opipe);
1917 do {
1918 if (!opipe->readers) {
1919 send_sig(SIGPIPE, current, 0);
1920 if (!ret)
1921 ret = -EPIPE;
1922 break;
1926 * If we have iterated all input buffers or ran out of
1927 * output room, break.
1929 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1930 break;
1932 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1933 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1936 * Get a reference to this pipe buffer,
1937 * so we can copy the contents over.
1939 ibuf->ops->get(ipipe, ibuf);
1941 obuf = opipe->bufs + nbuf;
1942 *obuf = *ibuf;
1945 * Don't inherit the gift flag, we need to
1946 * prevent multiple steals of this page.
1948 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1950 if (obuf->len > len)
1951 obuf->len = len;
1953 opipe->nrbufs++;
1954 ret += obuf->len;
1955 len -= obuf->len;
1956 i++;
1957 } while (len);
1960 * return EAGAIN if we have the potential of some data in the
1961 * future, otherwise just return 0
1963 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1964 ret = -EAGAIN;
1966 pipe_unlock(ipipe);
1967 pipe_unlock(opipe);
1970 * If we put data in the output pipe, wakeup any potential readers.
1972 if (ret > 0)
1973 wakeup_pipe_readers(opipe);
1975 return ret;
1979 * This is a tee(1) implementation that works on pipes. It doesn't copy
1980 * any data, it simply references the 'in' pages on the 'out' pipe.
1981 * The 'flags' used are the SPLICE_F_* variants, currently the only
1982 * applicable one is SPLICE_F_NONBLOCK.
1984 static long do_tee(struct file *in, struct file *out, size_t len,
1985 unsigned int flags)
1987 struct pipe_inode_info *ipipe = get_pipe_info(in);
1988 struct pipe_inode_info *opipe = get_pipe_info(out);
1989 int ret = -EINVAL;
1992 * Duplicate the contents of ipipe to opipe without actually
1993 * copying the data.
1995 if (ipipe && opipe && ipipe != opipe) {
1997 * Keep going, unless we encounter an error. The ipipe/opipe
1998 * ordering doesn't really matter.
2000 ret = ipipe_prep(ipipe, flags);
2001 if (!ret) {
2002 ret = opipe_prep(opipe, flags);
2003 if (!ret)
2004 ret = link_pipe(ipipe, opipe, len, flags);
2008 return ret;
2011 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2013 struct fd in;
2014 int error;
2016 if (unlikely(!len))
2017 return 0;
2019 error = -EBADF;
2020 in = fdget(fdin);
2021 if (in.file) {
2022 if (in.file->f_mode & FMODE_READ) {
2023 struct fd out = fdget(fdout);
2024 if (out.file) {
2025 if (out.file->f_mode & FMODE_WRITE)
2026 error = do_tee(in.file, out.file,
2027 len, flags);
2028 fdput(out);
2031 fdput(in);
2034 return error;