2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex
);
86 DECLARE_RWSEM(css_set_rwsem
);
87 EXPORT_SYMBOL_GPL(cgroup_mutex
);
88 EXPORT_SYMBOL_GPL(css_set_rwsem
);
90 static DEFINE_MUTEX(cgroup_mutex
);
91 static DECLARE_RWSEM(css_set_rwsem
);
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock
);
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 static DEFINE_SPINLOCK(release_agent_path_lock
);
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct
*cgroup_destroy_wq
;
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
123 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys
*cgroup_subsys
[] = {
128 #include <linux/cgroup_subsys.h>
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name
[] = {
135 #include <linux/cgroup_subsys.h>
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
144 struct cgroup_root cgrp_dfl_root
;
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
150 static bool cgrp_dfl_root_visible
;
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
156 static bool cgroup_legacy_files_on_dfl
;
158 /* some controllers are not supported in the default hierarchy */
159 static unsigned long cgrp_dfl_root_inhibit_ss_mask
;
161 /* The list of hierarchy roots */
163 static LIST_HEAD(cgroup_roots
);
164 static int cgroup_root_count
;
166 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
167 static DEFINE_IDR(cgroup_hierarchy_idr
);
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
176 static u64 css_serial_nr_next
= 1;
179 * These bitmask flags indicate whether tasks in the fork and exit paths have
180 * fork/exit handlers to call. This avoids us having to do extra work in the
181 * fork/exit path to check which subsystems have fork/exit callbacks.
183 static unsigned long have_fork_callback __read_mostly
;
184 static unsigned long have_exit_callback __read_mostly
;
186 static struct cftype cgroup_dfl_base_files
[];
187 static struct cftype cgroup_legacy_base_files
[];
189 static int rebind_subsystems(struct cgroup_root
*dst_root
,
190 unsigned long ss_mask
);
191 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
192 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
194 static void css_release(struct percpu_ref
*ref
);
195 static void kill_css(struct cgroup_subsys_state
*css
);
196 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
199 /* IDR wrappers which synchronize using cgroup_idr_lock */
200 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
205 idr_preload(gfp_mask
);
206 spin_lock_bh(&cgroup_idr_lock
);
207 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
);
208 spin_unlock_bh(&cgroup_idr_lock
);
213 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
217 spin_lock_bh(&cgroup_idr_lock
);
218 ret
= idr_replace(idr
, ptr
, id
);
219 spin_unlock_bh(&cgroup_idr_lock
);
223 static void cgroup_idr_remove(struct idr
*idr
, int id
)
225 spin_lock_bh(&cgroup_idr_lock
);
227 spin_unlock_bh(&cgroup_idr_lock
);
230 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
232 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
235 return container_of(parent_css
, struct cgroup
, self
);
240 * cgroup_css - obtain a cgroup's css for the specified subsystem
241 * @cgrp: the cgroup of interest
242 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
244 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
245 * function must be called either under cgroup_mutex or rcu_read_lock() and
246 * the caller is responsible for pinning the returned css if it wants to
247 * keep accessing it outside the said locks. This function may return
248 * %NULL if @cgrp doesn't have @subsys_id enabled.
250 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
251 struct cgroup_subsys
*ss
)
254 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
255 lockdep_is_held(&cgroup_mutex
));
261 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
262 * @cgrp: the cgroup of interest
263 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
265 * Similar to cgroup_css() but returns the effective css, which is defined
266 * as the matching css of the nearest ancestor including self which has @ss
267 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
268 * function is guaranteed to return non-NULL css.
270 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
271 struct cgroup_subsys
*ss
)
273 lockdep_assert_held(&cgroup_mutex
);
278 if (!(cgrp
->root
->subsys_mask
& (1 << ss
->id
)))
282 * This function is used while updating css associations and thus
283 * can't test the csses directly. Use ->child_subsys_mask.
285 while (cgroup_parent(cgrp
) &&
286 !(cgroup_parent(cgrp
)->child_subsys_mask
& (1 << ss
->id
)))
287 cgrp
= cgroup_parent(cgrp
);
289 return cgroup_css(cgrp
, ss
);
293 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
294 * @cgrp: the cgroup of interest
295 * @ss: the subsystem of interest
297 * Find and get the effective css of @cgrp for @ss. The effective css is
298 * defined as the matching css of the nearest ancestor including self which
299 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
300 * the root css is returned, so this function always returns a valid css.
301 * The returned css must be put using css_put().
303 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
304 struct cgroup_subsys
*ss
)
306 struct cgroup_subsys_state
*css
;
311 css
= cgroup_css(cgrp
, ss
);
313 if (css
&& css_tryget_online(css
))
315 cgrp
= cgroup_parent(cgrp
);
318 css
= init_css_set
.subsys
[ss
->id
];
325 /* convenient tests for these bits */
326 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
328 return !(cgrp
->self
.flags
& CSS_ONLINE
);
331 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
333 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
334 struct cftype
*cft
= of_cft(of
);
337 * This is open and unprotected implementation of cgroup_css().
338 * seq_css() is only called from a kernfs file operation which has
339 * an active reference on the file. Because all the subsystem
340 * files are drained before a css is disassociated with a cgroup,
341 * the matching css from the cgroup's subsys table is guaranteed to
342 * be and stay valid until the enclosing operation is complete.
345 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
349 EXPORT_SYMBOL_GPL(of_css
);
352 * cgroup_is_descendant - test ancestry
353 * @cgrp: the cgroup to be tested
354 * @ancestor: possible ancestor of @cgrp
356 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
357 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
358 * and @ancestor are accessible.
360 bool cgroup_is_descendant(struct cgroup
*cgrp
, struct cgroup
*ancestor
)
363 if (cgrp
== ancestor
)
365 cgrp
= cgroup_parent(cgrp
);
370 static int notify_on_release(const struct cgroup
*cgrp
)
372 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
376 * for_each_css - iterate all css's of a cgroup
377 * @css: the iteration cursor
378 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
379 * @cgrp: the target cgroup to iterate css's of
381 * Should be called under cgroup_[tree_]mutex.
383 #define for_each_css(css, ssid, cgrp) \
384 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
385 if (!((css) = rcu_dereference_check( \
386 (cgrp)->subsys[(ssid)], \
387 lockdep_is_held(&cgroup_mutex)))) { } \
391 * for_each_e_css - iterate all effective css's of a cgroup
392 * @css: the iteration cursor
393 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
394 * @cgrp: the target cgroup to iterate css's of
396 * Should be called under cgroup_[tree_]mutex.
398 #define for_each_e_css(css, ssid, cgrp) \
399 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
400 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
405 * for_each_subsys - iterate all enabled cgroup subsystems
406 * @ss: the iteration cursor
407 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
409 #define for_each_subsys(ss, ssid) \
410 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
411 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
414 * for_each_subsys_which - filter for_each_subsys with a bitmask
415 * @ss: the iteration cursor
416 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
417 * @ss_maskp: a pointer to the bitmask
419 * The block will only run for cases where the ssid-th bit (1 << ssid) of
422 #define for_each_subsys_which(ss, ssid, ss_maskp) \
423 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
426 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
427 if (((ss) = cgroup_subsys[ssid]) && false) \
431 /* iterate across the hierarchies */
432 #define for_each_root(root) \
433 list_for_each_entry((root), &cgroup_roots, root_list)
435 /* iterate over child cgrps, lock should be held throughout iteration */
436 #define cgroup_for_each_live_child(child, cgrp) \
437 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
438 if (({ lockdep_assert_held(&cgroup_mutex); \
439 cgroup_is_dead(child); })) \
443 static void cgroup_release_agent(struct work_struct
*work
);
444 static void check_for_release(struct cgroup
*cgrp
);
447 * A cgroup can be associated with multiple css_sets as different tasks may
448 * belong to different cgroups on different hierarchies. In the other
449 * direction, a css_set is naturally associated with multiple cgroups.
450 * This M:N relationship is represented by the following link structure
451 * which exists for each association and allows traversing the associations
454 struct cgrp_cset_link
{
455 /* the cgroup and css_set this link associates */
457 struct css_set
*cset
;
459 /* list of cgrp_cset_links anchored at cgrp->cset_links */
460 struct list_head cset_link
;
462 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
463 struct list_head cgrp_link
;
467 * The default css_set - used by init and its children prior to any
468 * hierarchies being mounted. It contains a pointer to the root state
469 * for each subsystem. Also used to anchor the list of css_sets. Not
470 * reference-counted, to improve performance when child cgroups
471 * haven't been created.
473 struct css_set init_css_set
= {
474 .refcount
= ATOMIC_INIT(1),
475 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
476 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
477 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
478 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
479 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
482 static int css_set_count
= 1; /* 1 for init_css_set */
485 * cgroup_update_populated - updated populated count of a cgroup
486 * @cgrp: the target cgroup
487 * @populated: inc or dec populated count
489 * @cgrp is either getting the first task (css_set) or losing the last.
490 * Update @cgrp->populated_cnt accordingly. The count is propagated
491 * towards root so that a given cgroup's populated_cnt is zero iff the
492 * cgroup and all its descendants are empty.
494 * @cgrp's interface file "cgroup.populated" is zero if
495 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
496 * changes from or to zero, userland is notified that the content of the
497 * interface file has changed. This can be used to detect when @cgrp and
498 * its descendants become populated or empty.
500 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
502 lockdep_assert_held(&css_set_rwsem
);
508 trigger
= !cgrp
->populated_cnt
++;
510 trigger
= !--cgrp
->populated_cnt
;
515 if (cgrp
->populated_kn
)
516 kernfs_notify(cgrp
->populated_kn
);
517 cgrp
= cgroup_parent(cgrp
);
522 * hash table for cgroup groups. This improves the performance to find
523 * an existing css_set. This hash doesn't (currently) take into
524 * account cgroups in empty hierarchies.
526 #define CSS_SET_HASH_BITS 7
527 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
529 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
531 unsigned long key
= 0UL;
532 struct cgroup_subsys
*ss
;
535 for_each_subsys(ss
, i
)
536 key
+= (unsigned long)css
[i
];
537 key
= (key
>> 16) ^ key
;
542 static void put_css_set_locked(struct css_set
*cset
)
544 struct cgrp_cset_link
*link
, *tmp_link
;
545 struct cgroup_subsys
*ss
;
548 lockdep_assert_held(&css_set_rwsem
);
550 if (!atomic_dec_and_test(&cset
->refcount
))
553 /* This css_set is dead. unlink it and release cgroup refcounts */
554 for_each_subsys(ss
, ssid
)
555 list_del(&cset
->e_cset_node
[ssid
]);
556 hash_del(&cset
->hlist
);
559 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
560 struct cgroup
*cgrp
= link
->cgrp
;
562 list_del(&link
->cset_link
);
563 list_del(&link
->cgrp_link
);
565 /* @cgrp can't go away while we're holding css_set_rwsem */
566 if (list_empty(&cgrp
->cset_links
)) {
567 cgroup_update_populated(cgrp
, false);
568 check_for_release(cgrp
);
574 kfree_rcu(cset
, rcu_head
);
577 static void put_css_set(struct css_set
*cset
)
580 * Ensure that the refcount doesn't hit zero while any readers
581 * can see it. Similar to atomic_dec_and_lock(), but for an
584 if (atomic_add_unless(&cset
->refcount
, -1, 1))
587 down_write(&css_set_rwsem
);
588 put_css_set_locked(cset
);
589 up_write(&css_set_rwsem
);
593 * refcounted get/put for css_set objects
595 static inline void get_css_set(struct css_set
*cset
)
597 atomic_inc(&cset
->refcount
);
601 * compare_css_sets - helper function for find_existing_css_set().
602 * @cset: candidate css_set being tested
603 * @old_cset: existing css_set for a task
604 * @new_cgrp: cgroup that's being entered by the task
605 * @template: desired set of css pointers in css_set (pre-calculated)
607 * Returns true if "cset" matches "old_cset" except for the hierarchy
608 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
610 static bool compare_css_sets(struct css_set
*cset
,
611 struct css_set
*old_cset
,
612 struct cgroup
*new_cgrp
,
613 struct cgroup_subsys_state
*template[])
615 struct list_head
*l1
, *l2
;
618 * On the default hierarchy, there can be csets which are
619 * associated with the same set of cgroups but different csses.
620 * Let's first ensure that csses match.
622 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
626 * Compare cgroup pointers in order to distinguish between
627 * different cgroups in hierarchies. As different cgroups may
628 * share the same effective css, this comparison is always
631 l1
= &cset
->cgrp_links
;
632 l2
= &old_cset
->cgrp_links
;
634 struct cgrp_cset_link
*link1
, *link2
;
635 struct cgroup
*cgrp1
, *cgrp2
;
639 /* See if we reached the end - both lists are equal length. */
640 if (l1
== &cset
->cgrp_links
) {
641 BUG_ON(l2
!= &old_cset
->cgrp_links
);
644 BUG_ON(l2
== &old_cset
->cgrp_links
);
646 /* Locate the cgroups associated with these links. */
647 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
648 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
651 /* Hierarchies should be linked in the same order. */
652 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
655 * If this hierarchy is the hierarchy of the cgroup
656 * that's changing, then we need to check that this
657 * css_set points to the new cgroup; if it's any other
658 * hierarchy, then this css_set should point to the
659 * same cgroup as the old css_set.
661 if (cgrp1
->root
== new_cgrp
->root
) {
662 if (cgrp1
!= new_cgrp
)
673 * find_existing_css_set - init css array and find the matching css_set
674 * @old_cset: the css_set that we're using before the cgroup transition
675 * @cgrp: the cgroup that we're moving into
676 * @template: out param for the new set of csses, should be clear on entry
678 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
680 struct cgroup_subsys_state
*template[])
682 struct cgroup_root
*root
= cgrp
->root
;
683 struct cgroup_subsys
*ss
;
684 struct css_set
*cset
;
689 * Build the set of subsystem state objects that we want to see in the
690 * new css_set. while subsystems can change globally, the entries here
691 * won't change, so no need for locking.
693 for_each_subsys(ss
, i
) {
694 if (root
->subsys_mask
& (1UL << i
)) {
696 * @ss is in this hierarchy, so we want the
697 * effective css from @cgrp.
699 template[i
] = cgroup_e_css(cgrp
, ss
);
702 * @ss is not in this hierarchy, so we don't want
705 template[i
] = old_cset
->subsys
[i
];
709 key
= css_set_hash(template);
710 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
711 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
714 /* This css_set matches what we need */
718 /* No existing cgroup group matched */
722 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
724 struct cgrp_cset_link
*link
, *tmp_link
;
726 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
727 list_del(&link
->cset_link
);
733 * allocate_cgrp_cset_links - allocate cgrp_cset_links
734 * @count: the number of links to allocate
735 * @tmp_links: list_head the allocated links are put on
737 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
738 * through ->cset_link. Returns 0 on success or -errno.
740 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
742 struct cgrp_cset_link
*link
;
745 INIT_LIST_HEAD(tmp_links
);
747 for (i
= 0; i
< count
; i
++) {
748 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
750 free_cgrp_cset_links(tmp_links
);
753 list_add(&link
->cset_link
, tmp_links
);
759 * link_css_set - a helper function to link a css_set to a cgroup
760 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
761 * @cset: the css_set to be linked
762 * @cgrp: the destination cgroup
764 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
767 struct cgrp_cset_link
*link
;
769 BUG_ON(list_empty(tmp_links
));
771 if (cgroup_on_dfl(cgrp
))
772 cset
->dfl_cgrp
= cgrp
;
774 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
778 if (list_empty(&cgrp
->cset_links
))
779 cgroup_update_populated(cgrp
, true);
780 list_move(&link
->cset_link
, &cgrp
->cset_links
);
783 * Always add links to the tail of the list so that the list
784 * is sorted by order of hierarchy creation
786 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
790 * find_css_set - return a new css_set with one cgroup updated
791 * @old_cset: the baseline css_set
792 * @cgrp: the cgroup to be updated
794 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
795 * substituted into the appropriate hierarchy.
797 static struct css_set
*find_css_set(struct css_set
*old_cset
,
800 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
801 struct css_set
*cset
;
802 struct list_head tmp_links
;
803 struct cgrp_cset_link
*link
;
804 struct cgroup_subsys
*ss
;
808 lockdep_assert_held(&cgroup_mutex
);
810 /* First see if we already have a cgroup group that matches
812 down_read(&css_set_rwsem
);
813 cset
= find_existing_css_set(old_cset
, cgrp
, template);
816 up_read(&css_set_rwsem
);
821 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
825 /* Allocate all the cgrp_cset_link objects that we'll need */
826 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
831 atomic_set(&cset
->refcount
, 1);
832 INIT_LIST_HEAD(&cset
->cgrp_links
);
833 INIT_LIST_HEAD(&cset
->tasks
);
834 INIT_LIST_HEAD(&cset
->mg_tasks
);
835 INIT_LIST_HEAD(&cset
->mg_preload_node
);
836 INIT_LIST_HEAD(&cset
->mg_node
);
837 INIT_HLIST_NODE(&cset
->hlist
);
839 /* Copy the set of subsystem state objects generated in
840 * find_existing_css_set() */
841 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
843 down_write(&css_set_rwsem
);
844 /* Add reference counts and links from the new css_set. */
845 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
846 struct cgroup
*c
= link
->cgrp
;
848 if (c
->root
== cgrp
->root
)
850 link_css_set(&tmp_links
, cset
, c
);
853 BUG_ON(!list_empty(&tmp_links
));
857 /* Add @cset to the hash table */
858 key
= css_set_hash(cset
->subsys
);
859 hash_add(css_set_table
, &cset
->hlist
, key
);
861 for_each_subsys(ss
, ssid
)
862 list_add_tail(&cset
->e_cset_node
[ssid
],
863 &cset
->subsys
[ssid
]->cgroup
->e_csets
[ssid
]);
865 up_write(&css_set_rwsem
);
870 void cgroup_threadgroup_change_begin(struct task_struct
*tsk
)
872 down_read(&tsk
->signal
->group_rwsem
);
875 void cgroup_threadgroup_change_end(struct task_struct
*tsk
)
877 up_read(&tsk
->signal
->group_rwsem
);
881 * threadgroup_lock - lock threadgroup
882 * @tsk: member task of the threadgroup to lock
884 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
885 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
886 * change ->group_leader/pid. This is useful for cases where the threadgroup
887 * needs to stay stable across blockable operations.
889 * fork and exit explicitly call threadgroup_change_{begin|end}() for
890 * synchronization. While held, no new task will be added to threadgroup
891 * and no existing live task will have its PF_EXITING set.
893 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
894 * sub-thread becomes a new leader.
896 static void threadgroup_lock(struct task_struct
*tsk
)
898 down_write(&tsk
->signal
->group_rwsem
);
902 * threadgroup_unlock - unlock threadgroup
903 * @tsk: member task of the threadgroup to unlock
905 * Reverse threadgroup_lock().
907 static inline void threadgroup_unlock(struct task_struct
*tsk
)
909 up_write(&tsk
->signal
->group_rwsem
);
912 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
914 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
916 return root_cgrp
->root
;
919 static int cgroup_init_root_id(struct cgroup_root
*root
)
923 lockdep_assert_held(&cgroup_mutex
);
925 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
929 root
->hierarchy_id
= id
;
933 static void cgroup_exit_root_id(struct cgroup_root
*root
)
935 lockdep_assert_held(&cgroup_mutex
);
937 if (root
->hierarchy_id
) {
938 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
939 root
->hierarchy_id
= 0;
943 static void cgroup_free_root(struct cgroup_root
*root
)
946 /* hierarchy ID should already have been released */
947 WARN_ON_ONCE(root
->hierarchy_id
);
949 idr_destroy(&root
->cgroup_idr
);
954 static void cgroup_destroy_root(struct cgroup_root
*root
)
956 struct cgroup
*cgrp
= &root
->cgrp
;
957 struct cgrp_cset_link
*link
, *tmp_link
;
959 mutex_lock(&cgroup_mutex
);
961 BUG_ON(atomic_read(&root
->nr_cgrps
));
962 BUG_ON(!list_empty(&cgrp
->self
.children
));
964 /* Rebind all subsystems back to the default hierarchy */
965 rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
);
968 * Release all the links from cset_links to this hierarchy's
971 down_write(&css_set_rwsem
);
973 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
974 list_del(&link
->cset_link
);
975 list_del(&link
->cgrp_link
);
978 up_write(&css_set_rwsem
);
980 if (!list_empty(&root
->root_list
)) {
981 list_del(&root
->root_list
);
985 cgroup_exit_root_id(root
);
987 mutex_unlock(&cgroup_mutex
);
989 kernfs_destroy_root(root
->kf_root
);
990 cgroup_free_root(root
);
993 /* look up cgroup associated with given css_set on the specified hierarchy */
994 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
995 struct cgroup_root
*root
)
997 struct cgroup
*res
= NULL
;
999 lockdep_assert_held(&cgroup_mutex
);
1000 lockdep_assert_held(&css_set_rwsem
);
1002 if (cset
== &init_css_set
) {
1005 struct cgrp_cset_link
*link
;
1007 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1008 struct cgroup
*c
= link
->cgrp
;
1010 if (c
->root
== root
) {
1022 * Return the cgroup for "task" from the given hierarchy. Must be
1023 * called with cgroup_mutex and css_set_rwsem held.
1025 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1026 struct cgroup_root
*root
)
1029 * No need to lock the task - since we hold cgroup_mutex the
1030 * task can't change groups, so the only thing that can happen
1031 * is that it exits and its css is set back to init_css_set.
1033 return cset_cgroup_from_root(task_css_set(task
), root
);
1037 * A task must hold cgroup_mutex to modify cgroups.
1039 * Any task can increment and decrement the count field without lock.
1040 * So in general, code holding cgroup_mutex can't rely on the count
1041 * field not changing. However, if the count goes to zero, then only
1042 * cgroup_attach_task() can increment it again. Because a count of zero
1043 * means that no tasks are currently attached, therefore there is no
1044 * way a task attached to that cgroup can fork (the other way to
1045 * increment the count). So code holding cgroup_mutex can safely
1046 * assume that if the count is zero, it will stay zero. Similarly, if
1047 * a task holds cgroup_mutex on a cgroup with zero count, it
1048 * knows that the cgroup won't be removed, as cgroup_rmdir()
1051 * A cgroup can only be deleted if both its 'count' of using tasks
1052 * is zero, and its list of 'children' cgroups is empty. Since all
1053 * tasks in the system use _some_ cgroup, and since there is always at
1054 * least one task in the system (init, pid == 1), therefore, root cgroup
1055 * always has either children cgroups and/or using tasks. So we don't
1056 * need a special hack to ensure that root cgroup cannot be deleted.
1058 * P.S. One more locking exception. RCU is used to guard the
1059 * update of a tasks cgroup pointer by cgroup_attach_task()
1062 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned long subsys_mask
);
1063 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1064 static const struct file_operations proc_cgroupstats_operations
;
1066 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1069 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1070 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1071 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1072 cft
->ss
->name
, cft
->name
);
1074 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1079 * cgroup_file_mode - deduce file mode of a control file
1080 * @cft: the control file in question
1082 * returns cft->mode if ->mode is not 0
1083 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1084 * returns S_IRUGO if it has only a read handler
1085 * returns S_IWUSR if it has only a write hander
1087 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1094 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1097 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
)
1103 static void cgroup_get(struct cgroup
*cgrp
)
1105 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
1106 css_get(&cgrp
->self
);
1109 static bool cgroup_tryget(struct cgroup
*cgrp
)
1111 return css_tryget(&cgrp
->self
);
1114 static void cgroup_put(struct cgroup
*cgrp
)
1116 css_put(&cgrp
->self
);
1120 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1121 * @cgrp: the target cgroup
1122 * @subtree_control: the new subtree_control mask to consider
1124 * On the default hierarchy, a subsystem may request other subsystems to be
1125 * enabled together through its ->depends_on mask. In such cases, more
1126 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1128 * This function calculates which subsystems need to be enabled if
1129 * @subtree_control is to be applied to @cgrp. The returned mask is always
1130 * a superset of @subtree_control and follows the usual hierarchy rules.
1132 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup
*cgrp
,
1133 unsigned long subtree_control
)
1135 struct cgroup
*parent
= cgroup_parent(cgrp
);
1136 unsigned long cur_ss_mask
= subtree_control
;
1137 struct cgroup_subsys
*ss
;
1140 lockdep_assert_held(&cgroup_mutex
);
1142 if (!cgroup_on_dfl(cgrp
))
1146 unsigned long new_ss_mask
= cur_ss_mask
;
1148 for_each_subsys_which(ss
, ssid
, &cur_ss_mask
)
1149 new_ss_mask
|= ss
->depends_on
;
1152 * Mask out subsystems which aren't available. This can
1153 * happen only if some depended-upon subsystems were bound
1154 * to non-default hierarchies.
1157 new_ss_mask
&= parent
->child_subsys_mask
;
1159 new_ss_mask
&= cgrp
->root
->subsys_mask
;
1161 if (new_ss_mask
== cur_ss_mask
)
1163 cur_ss_mask
= new_ss_mask
;
1170 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1171 * @cgrp: the target cgroup
1173 * Update @cgrp->child_subsys_mask according to the current
1174 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1176 static void cgroup_refresh_child_subsys_mask(struct cgroup
*cgrp
)
1178 cgrp
->child_subsys_mask
=
1179 cgroup_calc_child_subsys_mask(cgrp
, cgrp
->subtree_control
);
1183 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1184 * @kn: the kernfs_node being serviced
1186 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1187 * the method finishes if locking succeeded. Note that once this function
1188 * returns the cgroup returned by cgroup_kn_lock_live() may become
1189 * inaccessible any time. If the caller intends to continue to access the
1190 * cgroup, it should pin it before invoking this function.
1192 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1194 struct cgroup
*cgrp
;
1196 if (kernfs_type(kn
) == KERNFS_DIR
)
1199 cgrp
= kn
->parent
->priv
;
1201 mutex_unlock(&cgroup_mutex
);
1203 kernfs_unbreak_active_protection(kn
);
1208 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1209 * @kn: the kernfs_node being serviced
1211 * This helper is to be used by a cgroup kernfs method currently servicing
1212 * @kn. It breaks the active protection, performs cgroup locking and
1213 * verifies that the associated cgroup is alive. Returns the cgroup if
1214 * alive; otherwise, %NULL. A successful return should be undone by a
1215 * matching cgroup_kn_unlock() invocation.
1217 * Any cgroup kernfs method implementation which requires locking the
1218 * associated cgroup should use this helper. It avoids nesting cgroup
1219 * locking under kernfs active protection and allows all kernfs operations
1220 * including self-removal.
1222 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
)
1224 struct cgroup
*cgrp
;
1226 if (kernfs_type(kn
) == KERNFS_DIR
)
1229 cgrp
= kn
->parent
->priv
;
1232 * We're gonna grab cgroup_mutex which nests outside kernfs
1233 * active_ref. cgroup liveliness check alone provides enough
1234 * protection against removal. Ensure @cgrp stays accessible and
1235 * break the active_ref protection.
1237 if (!cgroup_tryget(cgrp
))
1239 kernfs_break_active_protection(kn
);
1241 mutex_lock(&cgroup_mutex
);
1243 if (!cgroup_is_dead(cgrp
))
1246 cgroup_kn_unlock(kn
);
1250 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1252 char name
[CGROUP_FILE_NAME_MAX
];
1254 lockdep_assert_held(&cgroup_mutex
);
1255 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1259 * cgroup_clear_dir - remove subsys files in a cgroup directory
1260 * @cgrp: target cgroup
1261 * @subsys_mask: mask of the subsystem ids whose files should be removed
1263 static void cgroup_clear_dir(struct cgroup
*cgrp
, unsigned long subsys_mask
)
1265 struct cgroup_subsys
*ss
;
1268 for_each_subsys(ss
, i
) {
1269 struct cftype
*cfts
;
1271 if (!(subsys_mask
& (1 << i
)))
1273 list_for_each_entry(cfts
, &ss
->cfts
, node
)
1274 cgroup_addrm_files(cgrp
, cfts
, false);
1278 static int rebind_subsystems(struct cgroup_root
*dst_root
,
1279 unsigned long ss_mask
)
1281 struct cgroup_subsys
*ss
;
1282 unsigned long tmp_ss_mask
;
1285 lockdep_assert_held(&cgroup_mutex
);
1287 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
1288 /* if @ss has non-root csses attached to it, can't move */
1289 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)))
1292 /* can't move between two non-dummy roots either */
1293 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1297 /* skip creating root files on dfl_root for inhibited subsystems */
1298 tmp_ss_mask
= ss_mask
;
1299 if (dst_root
== &cgrp_dfl_root
)
1300 tmp_ss_mask
&= ~cgrp_dfl_root_inhibit_ss_mask
;
1302 ret
= cgroup_populate_dir(&dst_root
->cgrp
, tmp_ss_mask
);
1304 if (dst_root
!= &cgrp_dfl_root
)
1308 * Rebinding back to the default root is not allowed to
1309 * fail. Using both default and non-default roots should
1310 * be rare. Moving subsystems back and forth even more so.
1311 * Just warn about it and continue.
1313 if (cgrp_dfl_root_visible
) {
1314 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1316 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1321 * Nothing can fail from this point on. Remove files for the
1322 * removed subsystems and rebind each subsystem.
1324 for_each_subsys_which(ss
, ssid
, &ss_mask
)
1325 cgroup_clear_dir(&ss
->root
->cgrp
, 1 << ssid
);
1327 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
1328 struct cgroup_root
*src_root
;
1329 struct cgroup_subsys_state
*css
;
1330 struct css_set
*cset
;
1332 src_root
= ss
->root
;
1333 css
= cgroup_css(&src_root
->cgrp
, ss
);
1335 WARN_ON(!css
|| cgroup_css(&dst_root
->cgrp
, ss
));
1337 RCU_INIT_POINTER(src_root
->cgrp
.subsys
[ssid
], NULL
);
1338 rcu_assign_pointer(dst_root
->cgrp
.subsys
[ssid
], css
);
1339 ss
->root
= dst_root
;
1340 css
->cgroup
= &dst_root
->cgrp
;
1342 down_write(&css_set_rwsem
);
1343 hash_for_each(css_set_table
, i
, cset
, hlist
)
1344 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1345 &dst_root
->cgrp
.e_csets
[ss
->id
]);
1346 up_write(&css_set_rwsem
);
1348 src_root
->subsys_mask
&= ~(1 << ssid
);
1349 src_root
->cgrp
.subtree_control
&= ~(1 << ssid
);
1350 cgroup_refresh_child_subsys_mask(&src_root
->cgrp
);
1352 /* default hierarchy doesn't enable controllers by default */
1353 dst_root
->subsys_mask
|= 1 << ssid
;
1354 if (dst_root
!= &cgrp_dfl_root
) {
1355 dst_root
->cgrp
.subtree_control
|= 1 << ssid
;
1356 cgroup_refresh_child_subsys_mask(&dst_root
->cgrp
);
1363 kernfs_activate(dst_root
->cgrp
.kn
);
1367 static int cgroup_show_options(struct seq_file
*seq
,
1368 struct kernfs_root
*kf_root
)
1370 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1371 struct cgroup_subsys
*ss
;
1374 for_each_subsys(ss
, ssid
)
1375 if (root
->subsys_mask
& (1 << ssid
))
1376 seq_show_option(seq
, ss
->name
, NULL
);
1377 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1378 seq_puts(seq
, ",noprefix");
1379 if (root
->flags
& CGRP_ROOT_XATTR
)
1380 seq_puts(seq
, ",xattr");
1382 spin_lock(&release_agent_path_lock
);
1383 if (strlen(root
->release_agent_path
))
1384 seq_show_option(seq
, "release_agent",
1385 root
->release_agent_path
);
1386 spin_unlock(&release_agent_path_lock
);
1388 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1389 seq_puts(seq
, ",clone_children");
1390 if (strlen(root
->name
))
1391 seq_show_option(seq
, "name", root
->name
);
1395 struct cgroup_sb_opts
{
1396 unsigned long subsys_mask
;
1398 char *release_agent
;
1399 bool cpuset_clone_children
;
1401 /* User explicitly requested empty subsystem */
1405 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1407 char *token
, *o
= data
;
1408 bool all_ss
= false, one_ss
= false;
1409 unsigned long mask
= -1UL;
1410 struct cgroup_subsys
*ss
;
1414 #ifdef CONFIG_CPUSETS
1415 mask
= ~(1U << cpuset_cgrp_id
);
1418 memset(opts
, 0, sizeof(*opts
));
1420 while ((token
= strsep(&o
, ",")) != NULL
) {
1425 if (!strcmp(token
, "none")) {
1426 /* Explicitly have no subsystems */
1430 if (!strcmp(token
, "all")) {
1431 /* Mutually exclusive option 'all' + subsystem name */
1437 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1438 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1441 if (!strcmp(token
, "noprefix")) {
1442 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1445 if (!strcmp(token
, "clone_children")) {
1446 opts
->cpuset_clone_children
= true;
1449 if (!strcmp(token
, "xattr")) {
1450 opts
->flags
|= CGRP_ROOT_XATTR
;
1453 if (!strncmp(token
, "release_agent=", 14)) {
1454 /* Specifying two release agents is forbidden */
1455 if (opts
->release_agent
)
1457 opts
->release_agent
=
1458 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1459 if (!opts
->release_agent
)
1463 if (!strncmp(token
, "name=", 5)) {
1464 const char *name
= token
+ 5;
1465 /* Can't specify an empty name */
1468 /* Must match [\w.-]+ */
1469 for (i
= 0; i
< strlen(name
); i
++) {
1473 if ((c
== '.') || (c
== '-') || (c
== '_'))
1477 /* Specifying two names is forbidden */
1480 opts
->name
= kstrndup(name
,
1481 MAX_CGROUP_ROOT_NAMELEN
- 1,
1489 for_each_subsys(ss
, i
) {
1490 if (strcmp(token
, ss
->name
))
1495 /* Mutually exclusive option 'all' + subsystem name */
1498 opts
->subsys_mask
|= (1 << i
);
1503 if (i
== CGROUP_SUBSYS_COUNT
)
1507 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1508 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1510 pr_err("sane_behavior: no other mount options allowed\n");
1517 * If the 'all' option was specified select all the subsystems,
1518 * otherwise if 'none', 'name=' and a subsystem name options were
1519 * not specified, let's default to 'all'
1521 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1522 for_each_subsys(ss
, i
)
1524 opts
->subsys_mask
|= (1 << i
);
1527 * We either have to specify by name or by subsystems. (So all
1528 * empty hierarchies must have a name).
1530 if (!opts
->subsys_mask
&& !opts
->name
)
1534 * Option noprefix was introduced just for backward compatibility
1535 * with the old cpuset, so we allow noprefix only if mounting just
1536 * the cpuset subsystem.
1538 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1541 /* Can't specify "none" and some subsystems */
1542 if (opts
->subsys_mask
&& opts
->none
)
1548 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1551 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1552 struct cgroup_sb_opts opts
;
1553 unsigned long added_mask
, removed_mask
;
1555 if (root
== &cgrp_dfl_root
) {
1556 pr_err("remount is not allowed\n");
1560 mutex_lock(&cgroup_mutex
);
1562 /* See what subsystems are wanted */
1563 ret
= parse_cgroupfs_options(data
, &opts
);
1567 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1568 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1569 task_tgid_nr(current
), current
->comm
);
1571 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1572 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1574 /* Don't allow flags or name to change at remount */
1575 if ((opts
.flags
^ root
->flags
) ||
1576 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1577 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1578 opts
.flags
, opts
.name
?: "", root
->flags
, root
->name
);
1583 /* remounting is not allowed for populated hierarchies */
1584 if (!list_empty(&root
->cgrp
.self
.children
)) {
1589 ret
= rebind_subsystems(root
, added_mask
);
1593 rebind_subsystems(&cgrp_dfl_root
, removed_mask
);
1595 if (opts
.release_agent
) {
1596 spin_lock(&release_agent_path_lock
);
1597 strcpy(root
->release_agent_path
, opts
.release_agent
);
1598 spin_unlock(&release_agent_path_lock
);
1601 kfree(opts
.release_agent
);
1603 mutex_unlock(&cgroup_mutex
);
1608 * To reduce the fork() overhead for systems that are not actually using
1609 * their cgroups capability, we don't maintain the lists running through
1610 * each css_set to its tasks until we see the list actually used - in other
1611 * words after the first mount.
1613 static bool use_task_css_set_links __read_mostly
;
1615 static void cgroup_enable_task_cg_lists(void)
1617 struct task_struct
*p
, *g
;
1619 down_write(&css_set_rwsem
);
1621 if (use_task_css_set_links
)
1624 use_task_css_set_links
= true;
1627 * We need tasklist_lock because RCU is not safe against
1628 * while_each_thread(). Besides, a forking task that has passed
1629 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1630 * is not guaranteed to have its child immediately visible in the
1631 * tasklist if we walk through it with RCU.
1633 read_lock(&tasklist_lock
);
1634 do_each_thread(g
, p
) {
1635 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1636 task_css_set(p
) != &init_css_set
);
1639 * We should check if the process is exiting, otherwise
1640 * it will race with cgroup_exit() in that the list
1641 * entry won't be deleted though the process has exited.
1642 * Do it while holding siglock so that we don't end up
1643 * racing against cgroup_exit().
1645 spin_lock_irq(&p
->sighand
->siglock
);
1646 if (!(p
->flags
& PF_EXITING
)) {
1647 struct css_set
*cset
= task_css_set(p
);
1649 list_add(&p
->cg_list
, &cset
->tasks
);
1652 spin_unlock_irq(&p
->sighand
->siglock
);
1653 } while_each_thread(g
, p
);
1654 read_unlock(&tasklist_lock
);
1656 up_write(&css_set_rwsem
);
1659 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1661 struct cgroup_subsys
*ss
;
1664 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1665 INIT_LIST_HEAD(&cgrp
->self
.children
);
1666 INIT_LIST_HEAD(&cgrp
->cset_links
);
1667 INIT_LIST_HEAD(&cgrp
->pidlists
);
1668 mutex_init(&cgrp
->pidlist_mutex
);
1669 cgrp
->self
.cgroup
= cgrp
;
1670 cgrp
->self
.flags
|= CSS_ONLINE
;
1672 for_each_subsys(ss
, ssid
)
1673 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1675 init_waitqueue_head(&cgrp
->offline_waitq
);
1676 INIT_WORK(&cgrp
->release_agent_work
, cgroup_release_agent
);
1679 static void init_cgroup_root(struct cgroup_root
*root
,
1680 struct cgroup_sb_opts
*opts
)
1682 struct cgroup
*cgrp
= &root
->cgrp
;
1684 INIT_LIST_HEAD(&root
->root_list
);
1685 atomic_set(&root
->nr_cgrps
, 1);
1687 init_cgroup_housekeeping(cgrp
);
1688 idr_init(&root
->cgroup_idr
);
1690 root
->flags
= opts
->flags
;
1691 if (opts
->release_agent
)
1692 strcpy(root
->release_agent_path
, opts
->release_agent
);
1694 strcpy(root
->name
, opts
->name
);
1695 if (opts
->cpuset_clone_children
)
1696 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1699 static int cgroup_setup_root(struct cgroup_root
*root
, unsigned long ss_mask
)
1701 LIST_HEAD(tmp_links
);
1702 struct cgroup
*root_cgrp
= &root
->cgrp
;
1703 struct cftype
*base_files
;
1704 struct css_set
*cset
;
1707 lockdep_assert_held(&cgroup_mutex
);
1709 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_NOWAIT
);
1712 root_cgrp
->id
= ret
;
1714 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
, 0,
1720 * We're accessing css_set_count without locking css_set_rwsem here,
1721 * but that's OK - it can only be increased by someone holding
1722 * cgroup_lock, and that's us. The worst that can happen is that we
1723 * have some link structures left over
1725 ret
= allocate_cgrp_cset_links(css_set_count
, &tmp_links
);
1729 ret
= cgroup_init_root_id(root
);
1733 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
1734 KERNFS_ROOT_CREATE_DEACTIVATED
,
1736 if (IS_ERR(root
->kf_root
)) {
1737 ret
= PTR_ERR(root
->kf_root
);
1740 root_cgrp
->kn
= root
->kf_root
->kn
;
1742 if (root
== &cgrp_dfl_root
)
1743 base_files
= cgroup_dfl_base_files
;
1745 base_files
= cgroup_legacy_base_files
;
1747 ret
= cgroup_addrm_files(root_cgrp
, base_files
, true);
1751 ret
= rebind_subsystems(root
, ss_mask
);
1756 * There must be no failure case after here, since rebinding takes
1757 * care of subsystems' refcounts, which are explicitly dropped in
1758 * the failure exit path.
1760 list_add(&root
->root_list
, &cgroup_roots
);
1761 cgroup_root_count
++;
1764 * Link the root cgroup in this hierarchy into all the css_set
1767 down_write(&css_set_rwsem
);
1768 hash_for_each(css_set_table
, i
, cset
, hlist
)
1769 link_css_set(&tmp_links
, cset
, root_cgrp
);
1770 up_write(&css_set_rwsem
);
1772 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1773 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1775 kernfs_activate(root_cgrp
->kn
);
1780 kernfs_destroy_root(root
->kf_root
);
1781 root
->kf_root
= NULL
;
1783 cgroup_exit_root_id(root
);
1785 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
1787 free_cgrp_cset_links(&tmp_links
);
1791 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1792 int flags
, const char *unused_dev_name
,
1795 struct super_block
*pinned_sb
= NULL
;
1796 struct cgroup_subsys
*ss
;
1797 struct cgroup_root
*root
;
1798 struct cgroup_sb_opts opts
;
1799 struct dentry
*dentry
;
1805 * The first time anyone tries to mount a cgroup, enable the list
1806 * linking each css_set to its tasks and fix up all existing tasks.
1808 if (!use_task_css_set_links
)
1809 cgroup_enable_task_cg_lists();
1811 mutex_lock(&cgroup_mutex
);
1813 /* First find the desired set of subsystems */
1814 ret
= parse_cgroupfs_options(data
, &opts
);
1818 /* look for a matching existing root */
1819 if (opts
.flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1820 cgrp_dfl_root_visible
= true;
1821 root
= &cgrp_dfl_root
;
1822 cgroup_get(&root
->cgrp
);
1828 * Destruction of cgroup root is asynchronous, so subsystems may
1829 * still be dying after the previous unmount. Let's drain the
1830 * dying subsystems. We just need to ensure that the ones
1831 * unmounted previously finish dying and don't care about new ones
1832 * starting. Testing ref liveliness is good enough.
1834 for_each_subsys(ss
, i
) {
1835 if (!(opts
.subsys_mask
& (1 << i
)) ||
1836 ss
->root
== &cgrp_dfl_root
)
1839 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
1840 mutex_unlock(&cgroup_mutex
);
1842 ret
= restart_syscall();
1845 cgroup_put(&ss
->root
->cgrp
);
1848 for_each_root(root
) {
1849 bool name_match
= false;
1851 if (root
== &cgrp_dfl_root
)
1855 * If we asked for a name then it must match. Also, if
1856 * name matches but sybsys_mask doesn't, we should fail.
1857 * Remember whether name matched.
1860 if (strcmp(opts
.name
, root
->name
))
1866 * If we asked for subsystems (or explicitly for no
1867 * subsystems) then they must match.
1869 if ((opts
.subsys_mask
|| opts
.none
) &&
1870 (opts
.subsys_mask
!= root
->subsys_mask
)) {
1877 if (root
->flags
^ opts
.flags
)
1878 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1881 * We want to reuse @root whose lifetime is governed by its
1882 * ->cgrp. Let's check whether @root is alive and keep it
1883 * that way. As cgroup_kill_sb() can happen anytime, we
1884 * want to block it by pinning the sb so that @root doesn't
1885 * get killed before mount is complete.
1887 * With the sb pinned, tryget_live can reliably indicate
1888 * whether @root can be reused. If it's being killed,
1889 * drain it. We can use wait_queue for the wait but this
1890 * path is super cold. Let's just sleep a bit and retry.
1892 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
1893 if (IS_ERR(pinned_sb
) ||
1894 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
1895 mutex_unlock(&cgroup_mutex
);
1896 if (!IS_ERR_OR_NULL(pinned_sb
))
1897 deactivate_super(pinned_sb
);
1899 ret
= restart_syscall();
1908 * No such thing, create a new one. name= matching without subsys
1909 * specification is allowed for already existing hierarchies but we
1910 * can't create new one without subsys specification.
1912 if (!opts
.subsys_mask
&& !opts
.none
) {
1917 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1923 init_cgroup_root(root
, &opts
);
1925 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
1927 cgroup_free_root(root
);
1930 mutex_unlock(&cgroup_mutex
);
1932 kfree(opts
.release_agent
);
1936 return ERR_PTR(ret
);
1938 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
1939 CGROUP_SUPER_MAGIC
, &new_sb
);
1940 if (IS_ERR(dentry
) || !new_sb
)
1941 cgroup_put(&root
->cgrp
);
1944 * If @pinned_sb, we're reusing an existing root and holding an
1945 * extra ref on its sb. Mount is complete. Put the extra ref.
1949 deactivate_super(pinned_sb
);
1955 static void cgroup_kill_sb(struct super_block
*sb
)
1957 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
1958 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1961 * If @root doesn't have any mounts or children, start killing it.
1962 * This prevents new mounts by disabling percpu_ref_tryget_live().
1963 * cgroup_mount() may wait for @root's release.
1965 * And don't kill the default root.
1967 if (!list_empty(&root
->cgrp
.self
.children
) ||
1968 root
== &cgrp_dfl_root
)
1969 cgroup_put(&root
->cgrp
);
1971 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
1976 static struct file_system_type cgroup_fs_type
= {
1978 .mount
= cgroup_mount
,
1979 .kill_sb
= cgroup_kill_sb
,
1983 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1984 * @task: target task
1985 * @buf: the buffer to write the path into
1986 * @buflen: the length of the buffer
1988 * Determine @task's cgroup on the first (the one with the lowest non-zero
1989 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1990 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1991 * cgroup controller callbacks.
1993 * Return value is the same as kernfs_path().
1995 char *task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
1997 struct cgroup_root
*root
;
1998 struct cgroup
*cgrp
;
1999 int hierarchy_id
= 1;
2002 mutex_lock(&cgroup_mutex
);
2003 down_read(&css_set_rwsem
);
2005 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2008 cgrp
= task_cgroup_from_root(task
, root
);
2009 path
= cgroup_path(cgrp
, buf
, buflen
);
2011 /* if no hierarchy exists, everyone is in "/" */
2012 if (strlcpy(buf
, "/", buflen
) < buflen
)
2016 up_read(&css_set_rwsem
);
2017 mutex_unlock(&cgroup_mutex
);
2020 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2022 /* used to track tasks and other necessary states during migration */
2023 struct cgroup_taskset
{
2024 /* the src and dst cset list running through cset->mg_node */
2025 struct list_head src_csets
;
2026 struct list_head dst_csets
;
2029 * Fields for cgroup_taskset_*() iteration.
2031 * Before migration is committed, the target migration tasks are on
2032 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2033 * the csets on ->dst_csets. ->csets point to either ->src_csets
2034 * or ->dst_csets depending on whether migration is committed.
2036 * ->cur_csets and ->cur_task point to the current task position
2039 struct list_head
*csets
;
2040 struct css_set
*cur_cset
;
2041 struct task_struct
*cur_task
;
2045 * cgroup_taskset_first - reset taskset and return the first task
2046 * @tset: taskset of interest
2048 * @tset iteration is initialized and the first task is returned.
2050 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
2052 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2053 tset
->cur_task
= NULL
;
2055 return cgroup_taskset_next(tset
);
2059 * cgroup_taskset_next - iterate to the next task in taskset
2060 * @tset: taskset of interest
2062 * Return the next task in @tset. Iteration must have been initialized
2063 * with cgroup_taskset_first().
2065 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
2067 struct css_set
*cset
= tset
->cur_cset
;
2068 struct task_struct
*task
= tset
->cur_task
;
2070 while (&cset
->mg_node
!= tset
->csets
) {
2072 task
= list_first_entry(&cset
->mg_tasks
,
2073 struct task_struct
, cg_list
);
2075 task
= list_next_entry(task
, cg_list
);
2077 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2078 tset
->cur_cset
= cset
;
2079 tset
->cur_task
= task
;
2083 cset
= list_next_entry(cset
, mg_node
);
2091 * cgroup_task_migrate - move a task from one cgroup to another.
2092 * @old_cgrp: the cgroup @tsk is being migrated from
2093 * @tsk: the task being migrated
2094 * @new_cset: the new css_set @tsk is being attached to
2096 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2098 static void cgroup_task_migrate(struct cgroup
*old_cgrp
,
2099 struct task_struct
*tsk
,
2100 struct css_set
*new_cset
)
2102 struct css_set
*old_cset
;
2104 lockdep_assert_held(&cgroup_mutex
);
2105 lockdep_assert_held(&css_set_rwsem
);
2108 * We are synchronized through threadgroup_lock() against PF_EXITING
2109 * setting such that we can't race against cgroup_exit() changing the
2110 * css_set to init_css_set and dropping the old one.
2112 WARN_ON_ONCE(tsk
->flags
& PF_EXITING
);
2113 old_cset
= task_css_set(tsk
);
2115 get_css_set(new_cset
);
2116 rcu_assign_pointer(tsk
->cgroups
, new_cset
);
2119 * Use move_tail so that cgroup_taskset_first() still returns the
2120 * leader after migration. This works because cgroup_migrate()
2121 * ensures that the dst_cset of the leader is the first on the
2122 * tset's dst_csets list.
2124 list_move_tail(&tsk
->cg_list
, &new_cset
->mg_tasks
);
2127 * We just gained a reference on old_cset by taking it from the
2128 * task. As trading it for new_cset is protected by cgroup_mutex,
2129 * we're safe to drop it here; it will be freed under RCU.
2131 put_css_set_locked(old_cset
);
2135 * cgroup_migrate_finish - cleanup after attach
2136 * @preloaded_csets: list of preloaded css_sets
2138 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2139 * those functions for details.
2141 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2143 struct css_set
*cset
, *tmp_cset
;
2145 lockdep_assert_held(&cgroup_mutex
);
2147 down_write(&css_set_rwsem
);
2148 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2149 cset
->mg_src_cgrp
= NULL
;
2150 cset
->mg_dst_cset
= NULL
;
2151 list_del_init(&cset
->mg_preload_node
);
2152 put_css_set_locked(cset
);
2154 up_write(&css_set_rwsem
);
2158 * cgroup_migrate_add_src - add a migration source css_set
2159 * @src_cset: the source css_set to add
2160 * @dst_cgrp: the destination cgroup
2161 * @preloaded_csets: list of preloaded css_sets
2163 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2164 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2165 * up by cgroup_migrate_finish().
2167 * This function may be called without holding threadgroup_lock even if the
2168 * target is a process. Threads may be created and destroyed but as long
2169 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2170 * the preloaded css_sets are guaranteed to cover all migrations.
2172 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2173 struct cgroup
*dst_cgrp
,
2174 struct list_head
*preloaded_csets
)
2176 struct cgroup
*src_cgrp
;
2178 lockdep_assert_held(&cgroup_mutex
);
2179 lockdep_assert_held(&css_set_rwsem
);
2181 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2183 if (!list_empty(&src_cset
->mg_preload_node
))
2186 WARN_ON(src_cset
->mg_src_cgrp
);
2187 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2188 WARN_ON(!list_empty(&src_cset
->mg_node
));
2190 src_cset
->mg_src_cgrp
= src_cgrp
;
2191 get_css_set(src_cset
);
2192 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2196 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2197 * @dst_cgrp: the destination cgroup (may be %NULL)
2198 * @preloaded_csets: list of preloaded source css_sets
2200 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2201 * have been preloaded to @preloaded_csets. This function looks up and
2202 * pins all destination css_sets, links each to its source, and append them
2203 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2204 * source css_set is assumed to be its cgroup on the default hierarchy.
2206 * This function must be called after cgroup_migrate_add_src() has been
2207 * called on each migration source css_set. After migration is performed
2208 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2211 static int cgroup_migrate_prepare_dst(struct cgroup
*dst_cgrp
,
2212 struct list_head
*preloaded_csets
)
2215 struct css_set
*src_cset
, *tmp_cset
;
2217 lockdep_assert_held(&cgroup_mutex
);
2220 * Except for the root, child_subsys_mask must be zero for a cgroup
2221 * with tasks so that child cgroups don't compete against tasks.
2223 if (dst_cgrp
&& cgroup_on_dfl(dst_cgrp
) && cgroup_parent(dst_cgrp
) &&
2224 dst_cgrp
->child_subsys_mask
)
2227 /* look up the dst cset for each src cset and link it to src */
2228 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2229 struct css_set
*dst_cset
;
2231 dst_cset
= find_css_set(src_cset
,
2232 dst_cgrp
?: src_cset
->dfl_cgrp
);
2236 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2239 * If src cset equals dst, it's noop. Drop the src.
2240 * cgroup_migrate() will skip the cset too. Note that we
2241 * can't handle src == dst as some nodes are used by both.
2243 if (src_cset
== dst_cset
) {
2244 src_cset
->mg_src_cgrp
= NULL
;
2245 list_del_init(&src_cset
->mg_preload_node
);
2246 put_css_set(src_cset
);
2247 put_css_set(dst_cset
);
2251 src_cset
->mg_dst_cset
= dst_cset
;
2253 if (list_empty(&dst_cset
->mg_preload_node
))
2254 list_add(&dst_cset
->mg_preload_node
, &csets
);
2256 put_css_set(dst_cset
);
2259 list_splice_tail(&csets
, preloaded_csets
);
2262 cgroup_migrate_finish(&csets
);
2267 * cgroup_migrate - migrate a process or task to a cgroup
2268 * @cgrp: the destination cgroup
2269 * @leader: the leader of the process or the task to migrate
2270 * @threadgroup: whether @leader points to the whole process or a single task
2272 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2273 * process, the caller must be holding threadgroup_lock of @leader. The
2274 * caller is also responsible for invoking cgroup_migrate_add_src() and
2275 * cgroup_migrate_prepare_dst() on the targets before invoking this
2276 * function and following up with cgroup_migrate_finish().
2278 * As long as a controller's ->can_attach() doesn't fail, this function is
2279 * guaranteed to succeed. This means that, excluding ->can_attach()
2280 * failure, when migrating multiple targets, the success or failure can be
2281 * decided for all targets by invoking group_migrate_prepare_dst() before
2282 * actually starting migrating.
2284 static int cgroup_migrate(struct cgroup
*cgrp
, struct task_struct
*leader
,
2287 struct cgroup_taskset tset
= {
2288 .src_csets
= LIST_HEAD_INIT(tset
.src_csets
),
2289 .dst_csets
= LIST_HEAD_INIT(tset
.dst_csets
),
2290 .csets
= &tset
.src_csets
,
2292 struct cgroup_subsys_state
*css
, *failed_css
= NULL
;
2293 struct css_set
*cset
, *tmp_cset
;
2294 struct task_struct
*task
, *tmp_task
;
2298 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2299 * already PF_EXITING could be freed from underneath us unless we
2300 * take an rcu_read_lock.
2302 down_write(&css_set_rwsem
);
2306 /* @task either already exited or can't exit until the end */
2307 if (task
->flags
& PF_EXITING
)
2310 /* leave @task alone if post_fork() hasn't linked it yet */
2311 if (list_empty(&task
->cg_list
))
2314 cset
= task_css_set(task
);
2315 if (!cset
->mg_src_cgrp
)
2319 * cgroup_taskset_first() must always return the leader.
2320 * Take care to avoid disturbing the ordering.
2322 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2323 if (list_empty(&cset
->mg_node
))
2324 list_add_tail(&cset
->mg_node
, &tset
.src_csets
);
2325 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2326 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2331 } while_each_thread(leader
, task
);
2333 up_write(&css_set_rwsem
);
2335 /* methods shouldn't be called if no task is actually migrating */
2336 if (list_empty(&tset
.src_csets
))
2339 /* check that we can legitimately attach to the cgroup */
2340 for_each_e_css(css
, i
, cgrp
) {
2341 if (css
->ss
->can_attach
) {
2342 ret
= css
->ss
->can_attach(css
, &tset
);
2345 goto out_cancel_attach
;
2351 * Now that we're guaranteed success, proceed to move all tasks to
2352 * the new cgroup. There are no failure cases after here, so this
2353 * is the commit point.
2355 down_write(&css_set_rwsem
);
2356 list_for_each_entry(cset
, &tset
.src_csets
, mg_node
) {
2357 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
)
2358 cgroup_task_migrate(cset
->mg_src_cgrp
, task
,
2361 up_write(&css_set_rwsem
);
2364 * Migration is committed, all target tasks are now on dst_csets.
2365 * Nothing is sensitive to fork() after this point. Notify
2366 * controllers that migration is complete.
2368 tset
.csets
= &tset
.dst_csets
;
2370 for_each_e_css(css
, i
, cgrp
)
2371 if (css
->ss
->attach
)
2372 css
->ss
->attach(css
, &tset
);
2375 goto out_release_tset
;
2378 for_each_e_css(css
, i
, cgrp
) {
2379 if (css
== failed_css
)
2381 if (css
->ss
->cancel_attach
)
2382 css
->ss
->cancel_attach(css
, &tset
);
2385 down_write(&css_set_rwsem
);
2386 list_splice_init(&tset
.dst_csets
, &tset
.src_csets
);
2387 list_for_each_entry_safe(cset
, tmp_cset
, &tset
.src_csets
, mg_node
) {
2388 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2389 list_del_init(&cset
->mg_node
);
2391 up_write(&css_set_rwsem
);
2396 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2397 * @dst_cgrp: the cgroup to attach to
2398 * @leader: the task or the leader of the threadgroup to be attached
2399 * @threadgroup: attach the whole threadgroup?
2401 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2403 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2404 struct task_struct
*leader
, bool threadgroup
)
2406 LIST_HEAD(preloaded_csets
);
2407 struct task_struct
*task
;
2410 /* look up all src csets */
2411 down_read(&css_set_rwsem
);
2415 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2419 } while_each_thread(leader
, task
);
2421 up_read(&css_set_rwsem
);
2423 /* prepare dst csets and commit */
2424 ret
= cgroup_migrate_prepare_dst(dst_cgrp
, &preloaded_csets
);
2426 ret
= cgroup_migrate(dst_cgrp
, leader
, threadgroup
);
2428 cgroup_migrate_finish(&preloaded_csets
);
2432 static int cgroup_procs_write_permission(struct task_struct
*task
,
2433 struct cgroup
*dst_cgrp
,
2434 struct kernfs_open_file
*of
)
2436 const struct cred
*cred
= current_cred();
2437 const struct cred
*tcred
= get_task_cred(task
);
2441 * even if we're attaching all tasks in the thread group, we only
2442 * need to check permissions on one of them.
2444 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2445 !uid_eq(cred
->euid
, tcred
->uid
) &&
2446 !uid_eq(cred
->euid
, tcred
->suid
))
2449 if (!ret
&& cgroup_on_dfl(dst_cgrp
)) {
2450 struct super_block
*sb
= of
->file
->f_path
.dentry
->d_sb
;
2451 struct cgroup
*cgrp
;
2452 struct inode
*inode
;
2454 down_read(&css_set_rwsem
);
2455 cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
2456 up_read(&css_set_rwsem
);
2458 while (!cgroup_is_descendant(dst_cgrp
, cgrp
))
2459 cgrp
= cgroup_parent(cgrp
);
2462 inode
= kernfs_get_inode(sb
, cgrp
->procs_kn
);
2464 ret
= inode_permission(inode
, MAY_WRITE
);
2474 * Find the task_struct of the task to attach by vpid and pass it along to the
2475 * function to attach either it or all tasks in its threadgroup. Will lock
2476 * cgroup_mutex and threadgroup.
2478 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2479 size_t nbytes
, loff_t off
, bool threadgroup
)
2481 struct task_struct
*tsk
;
2482 struct cgroup
*cgrp
;
2486 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2489 cgrp
= cgroup_kn_lock_live(of
->kn
);
2496 tsk
= find_task_by_vpid(pid
);
2500 goto out_unlock_cgroup
;
2507 tsk
= tsk
->group_leader
;
2510 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2511 * trapped in a cpuset, or RT worker may be born in a cgroup
2512 * with no rt_runtime allocated. Just say no.
2514 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2517 goto out_unlock_cgroup
;
2520 get_task_struct(tsk
);
2523 threadgroup_lock(tsk
);
2525 if (!thread_group_leader(tsk
)) {
2527 * a race with de_thread from another thread's exec()
2528 * may strip us of our leadership, if this happens,
2529 * there is no choice but to throw this task away and
2530 * try again; this is
2531 * "double-double-toil-and-trouble-check locking".
2533 threadgroup_unlock(tsk
);
2534 put_task_struct(tsk
);
2535 goto retry_find_task
;
2539 ret
= cgroup_procs_write_permission(tsk
, cgrp
, of
);
2541 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2543 threadgroup_unlock(tsk
);
2545 put_task_struct(tsk
);
2547 cgroup_kn_unlock(of
->kn
);
2548 return ret
?: nbytes
;
2552 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2553 * @from: attach to all cgroups of a given task
2554 * @tsk: the task to be attached
2556 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2558 struct cgroup_root
*root
;
2561 mutex_lock(&cgroup_mutex
);
2562 for_each_root(root
) {
2563 struct cgroup
*from_cgrp
;
2565 if (root
== &cgrp_dfl_root
)
2568 down_read(&css_set_rwsem
);
2569 from_cgrp
= task_cgroup_from_root(from
, root
);
2570 up_read(&css_set_rwsem
);
2572 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2576 mutex_unlock(&cgroup_mutex
);
2580 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2582 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2583 char *buf
, size_t nbytes
, loff_t off
)
2585 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2588 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2589 char *buf
, size_t nbytes
, loff_t off
)
2591 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2594 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
2595 char *buf
, size_t nbytes
, loff_t off
)
2597 struct cgroup
*cgrp
;
2599 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2601 cgrp
= cgroup_kn_lock_live(of
->kn
);
2604 spin_lock(&release_agent_path_lock
);
2605 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
2606 sizeof(cgrp
->root
->release_agent_path
));
2607 spin_unlock(&release_agent_path_lock
);
2608 cgroup_kn_unlock(of
->kn
);
2612 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
2614 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2616 spin_lock(&release_agent_path_lock
);
2617 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2618 spin_unlock(&release_agent_path_lock
);
2619 seq_putc(seq
, '\n');
2623 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
2625 seq_puts(seq
, "0\n");
2629 static void cgroup_print_ss_mask(struct seq_file
*seq
, unsigned long ss_mask
)
2631 struct cgroup_subsys
*ss
;
2632 bool printed
= false;
2635 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
2638 seq_printf(seq
, "%s", ss
->name
);
2642 seq_putc(seq
, '\n');
2645 /* show controllers which are currently attached to the default hierarchy */
2646 static int cgroup_root_controllers_show(struct seq_file
*seq
, void *v
)
2648 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2650 cgroup_print_ss_mask(seq
, cgrp
->root
->subsys_mask
&
2651 ~cgrp_dfl_root_inhibit_ss_mask
);
2655 /* show controllers which are enabled from the parent */
2656 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2658 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2660 cgroup_print_ss_mask(seq
, cgroup_parent(cgrp
)->subtree_control
);
2664 /* show controllers which are enabled for a given cgroup's children */
2665 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2667 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2669 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2674 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2675 * @cgrp: root of the subtree to update csses for
2677 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2678 * css associations need to be updated accordingly. This function looks up
2679 * all css_sets which are attached to the subtree, creates the matching
2680 * updated css_sets and migrates the tasks to the new ones.
2682 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2684 LIST_HEAD(preloaded_csets
);
2685 struct cgroup_subsys_state
*css
;
2686 struct css_set
*src_cset
;
2689 lockdep_assert_held(&cgroup_mutex
);
2691 /* look up all csses currently attached to @cgrp's subtree */
2692 down_read(&css_set_rwsem
);
2693 css_for_each_descendant_pre(css
, cgroup_css(cgrp
, NULL
)) {
2694 struct cgrp_cset_link
*link
;
2696 /* self is not affected by child_subsys_mask change */
2697 if (css
->cgroup
== cgrp
)
2700 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
)
2701 cgroup_migrate_add_src(link
->cset
, cgrp
,
2704 up_read(&css_set_rwsem
);
2706 /* NULL dst indicates self on default hierarchy */
2707 ret
= cgroup_migrate_prepare_dst(NULL
, &preloaded_csets
);
2711 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
2712 struct task_struct
*last_task
= NULL
, *task
;
2714 /* src_csets precede dst_csets, break on the first dst_cset */
2715 if (!src_cset
->mg_src_cgrp
)
2719 * All tasks in src_cset need to be migrated to the
2720 * matching dst_cset. Empty it process by process. We
2721 * walk tasks but migrate processes. The leader might even
2722 * belong to a different cset but such src_cset would also
2723 * be among the target src_csets because the default
2724 * hierarchy enforces per-process membership.
2727 down_read(&css_set_rwsem
);
2728 task
= list_first_entry_or_null(&src_cset
->tasks
,
2729 struct task_struct
, cg_list
);
2731 task
= task
->group_leader
;
2732 WARN_ON_ONCE(!task_css_set(task
)->mg_src_cgrp
);
2733 get_task_struct(task
);
2735 up_read(&css_set_rwsem
);
2740 /* guard against possible infinite loop */
2741 if (WARN(last_task
== task
,
2742 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2746 threadgroup_lock(task
);
2747 /* raced against de_thread() from another thread? */
2748 if (!thread_group_leader(task
)) {
2749 threadgroup_unlock(task
);
2750 put_task_struct(task
);
2754 ret
= cgroup_migrate(src_cset
->dfl_cgrp
, task
, true);
2756 threadgroup_unlock(task
);
2757 put_task_struct(task
);
2759 if (WARN(ret
, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret
))
2765 cgroup_migrate_finish(&preloaded_csets
);
2769 /* change the enabled child controllers for a cgroup in the default hierarchy */
2770 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
2771 char *buf
, size_t nbytes
,
2774 unsigned long enable
= 0, disable
= 0;
2775 unsigned long css_enable
, css_disable
, old_sc
, new_sc
, old_ss
, new_ss
;
2776 struct cgroup
*cgrp
, *child
;
2777 struct cgroup_subsys
*ss
;
2782 * Parse input - space separated list of subsystem names prefixed
2783 * with either + or -.
2785 buf
= strstrip(buf
);
2786 while ((tok
= strsep(&buf
, " "))) {
2787 unsigned long tmp_ss_mask
= ~cgrp_dfl_root_inhibit_ss_mask
;
2791 for_each_subsys_which(ss
, ssid
, &tmp_ss_mask
) {
2792 if (ss
->disabled
|| strcmp(tok
+ 1, ss
->name
))
2796 enable
|= 1 << ssid
;
2797 disable
&= ~(1 << ssid
);
2798 } else if (*tok
== '-') {
2799 disable
|= 1 << ssid
;
2800 enable
&= ~(1 << ssid
);
2806 if (ssid
== CGROUP_SUBSYS_COUNT
)
2810 cgrp
= cgroup_kn_lock_live(of
->kn
);
2814 for_each_subsys(ss
, ssid
) {
2815 if (enable
& (1 << ssid
)) {
2816 if (cgrp
->subtree_control
& (1 << ssid
)) {
2817 enable
&= ~(1 << ssid
);
2821 /* unavailable or not enabled on the parent? */
2822 if (!(cgrp_dfl_root
.subsys_mask
& (1 << ssid
)) ||
2823 (cgroup_parent(cgrp
) &&
2824 !(cgroup_parent(cgrp
)->subtree_control
& (1 << ssid
)))) {
2828 } else if (disable
& (1 << ssid
)) {
2829 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
2830 disable
&= ~(1 << ssid
);
2834 /* a child has it enabled? */
2835 cgroup_for_each_live_child(child
, cgrp
) {
2836 if (child
->subtree_control
& (1 << ssid
)) {
2844 if (!enable
&& !disable
) {
2850 * Except for the root, subtree_control must be zero for a cgroup
2851 * with tasks so that child cgroups don't compete against tasks.
2853 if (enable
&& cgroup_parent(cgrp
) && !list_empty(&cgrp
->cset_links
)) {
2859 * Update subsys masks and calculate what needs to be done. More
2860 * subsystems than specified may need to be enabled or disabled
2861 * depending on subsystem dependencies.
2863 old_sc
= cgrp
->subtree_control
;
2864 old_ss
= cgrp
->child_subsys_mask
;
2865 new_sc
= (old_sc
| enable
) & ~disable
;
2866 new_ss
= cgroup_calc_child_subsys_mask(cgrp
, new_sc
);
2868 css_enable
= ~old_ss
& new_ss
;
2869 css_disable
= old_ss
& ~new_ss
;
2870 enable
|= css_enable
;
2871 disable
|= css_disable
;
2874 * Because css offlining is asynchronous, userland might try to
2875 * re-enable the same controller while the previous instance is
2876 * still around. In such cases, wait till it's gone using
2879 for_each_subsys_which(ss
, ssid
, &css_enable
) {
2880 cgroup_for_each_live_child(child
, cgrp
) {
2883 if (!cgroup_css(child
, ss
))
2887 prepare_to_wait(&child
->offline_waitq
, &wait
,
2888 TASK_UNINTERRUPTIBLE
);
2889 cgroup_kn_unlock(of
->kn
);
2891 finish_wait(&child
->offline_waitq
, &wait
);
2894 return restart_syscall();
2898 cgrp
->subtree_control
= new_sc
;
2899 cgrp
->child_subsys_mask
= new_ss
;
2902 * Create new csses or make the existing ones visible. A css is
2903 * created invisible if it's being implicitly enabled through
2904 * dependency. An invisible css is made visible when the userland
2905 * explicitly enables it.
2907 for_each_subsys(ss
, ssid
) {
2908 if (!(enable
& (1 << ssid
)))
2911 cgroup_for_each_live_child(child
, cgrp
) {
2912 if (css_enable
& (1 << ssid
))
2913 ret
= create_css(child
, ss
,
2914 cgrp
->subtree_control
& (1 << ssid
));
2916 ret
= cgroup_populate_dir(child
, 1 << ssid
);
2923 * At this point, cgroup_e_css() results reflect the new csses
2924 * making the following cgroup_update_dfl_csses() properly update
2925 * css associations of all tasks in the subtree.
2927 ret
= cgroup_update_dfl_csses(cgrp
);
2932 * All tasks are migrated out of disabled csses. Kill or hide
2933 * them. A css is hidden when the userland requests it to be
2934 * disabled while other subsystems are still depending on it. The
2935 * css must not actively control resources and be in the vanilla
2936 * state if it's made visible again later. Controllers which may
2937 * be depended upon should provide ->css_reset() for this purpose.
2939 for_each_subsys(ss
, ssid
) {
2940 if (!(disable
& (1 << ssid
)))
2943 cgroup_for_each_live_child(child
, cgrp
) {
2944 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
2946 if (css_disable
& (1 << ssid
)) {
2949 cgroup_clear_dir(child
, 1 << ssid
);
2957 * The effective csses of all the descendants (excluding @cgrp) may
2958 * have changed. Subsystems can optionally subscribe to this event
2959 * by implementing ->css_e_css_changed() which is invoked if any of
2960 * the effective csses seen from the css's cgroup may have changed.
2962 for_each_subsys(ss
, ssid
) {
2963 struct cgroup_subsys_state
*this_css
= cgroup_css(cgrp
, ss
);
2964 struct cgroup_subsys_state
*css
;
2966 if (!ss
->css_e_css_changed
|| !this_css
)
2969 css_for_each_descendant_pre(css
, this_css
)
2970 if (css
!= this_css
)
2971 ss
->css_e_css_changed(css
);
2974 kernfs_activate(cgrp
->kn
);
2977 cgroup_kn_unlock(of
->kn
);
2978 return ret
?: nbytes
;
2981 cgrp
->subtree_control
= old_sc
;
2982 cgrp
->child_subsys_mask
= old_ss
;
2984 for_each_subsys(ss
, ssid
) {
2985 if (!(enable
& (1 << ssid
)))
2988 cgroup_for_each_live_child(child
, cgrp
) {
2989 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
2994 if (css_enable
& (1 << ssid
))
2997 cgroup_clear_dir(child
, 1 << ssid
);
3003 static int cgroup_populated_show(struct seq_file
*seq
, void *v
)
3005 seq_printf(seq
, "%d\n", (bool)seq_css(seq
)->cgroup
->populated_cnt
);
3009 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3010 size_t nbytes
, loff_t off
)
3012 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3013 struct cftype
*cft
= of
->kn
->priv
;
3014 struct cgroup_subsys_state
*css
;
3018 return cft
->write(of
, buf
, nbytes
, off
);
3021 * kernfs guarantees that a file isn't deleted with operations in
3022 * flight, which means that the matching css is and stays alive and
3023 * doesn't need to be pinned. The RCU locking is not necessary
3024 * either. It's just for the convenience of using cgroup_css().
3027 css
= cgroup_css(cgrp
, cft
->ss
);
3030 if (cft
->write_u64
) {
3031 unsigned long long v
;
3032 ret
= kstrtoull(buf
, 0, &v
);
3034 ret
= cft
->write_u64(css
, cft
, v
);
3035 } else if (cft
->write_s64
) {
3037 ret
= kstrtoll(buf
, 0, &v
);
3039 ret
= cft
->write_s64(css
, cft
, v
);
3044 return ret
?: nbytes
;
3047 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3049 return seq_cft(seq
)->seq_start(seq
, ppos
);
3052 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3054 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3057 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3059 seq_cft(seq
)->seq_stop(seq
, v
);
3062 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3064 struct cftype
*cft
= seq_cft(m
);
3065 struct cgroup_subsys_state
*css
= seq_css(m
);
3068 return cft
->seq_show(m
, arg
);
3071 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3072 else if (cft
->read_s64
)
3073 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3079 static struct kernfs_ops cgroup_kf_single_ops
= {
3080 .atomic_write_len
= PAGE_SIZE
,
3081 .write
= cgroup_file_write
,
3082 .seq_show
= cgroup_seqfile_show
,
3085 static struct kernfs_ops cgroup_kf_ops
= {
3086 .atomic_write_len
= PAGE_SIZE
,
3087 .write
= cgroup_file_write
,
3088 .seq_start
= cgroup_seqfile_start
,
3089 .seq_next
= cgroup_seqfile_next
,
3090 .seq_stop
= cgroup_seqfile_stop
,
3091 .seq_show
= cgroup_seqfile_show
,
3095 * cgroup_rename - Only allow simple rename of directories in place.
3097 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
3098 const char *new_name_str
)
3100 struct cgroup
*cgrp
= kn
->priv
;
3103 if (kernfs_type(kn
) != KERNFS_DIR
)
3105 if (kn
->parent
!= new_parent
)
3109 * This isn't a proper migration and its usefulness is very
3110 * limited. Disallow on the default hierarchy.
3112 if (cgroup_on_dfl(cgrp
))
3116 * We're gonna grab cgroup_mutex which nests outside kernfs
3117 * active_ref. kernfs_rename() doesn't require active_ref
3118 * protection. Break them before grabbing cgroup_mutex.
3120 kernfs_break_active_protection(new_parent
);
3121 kernfs_break_active_protection(kn
);
3123 mutex_lock(&cgroup_mutex
);
3125 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
3127 mutex_unlock(&cgroup_mutex
);
3129 kernfs_unbreak_active_protection(kn
);
3130 kernfs_unbreak_active_protection(new_parent
);
3134 /* set uid and gid of cgroup dirs and files to that of the creator */
3135 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3137 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3138 .ia_uid
= current_fsuid(),
3139 .ia_gid
= current_fsgid(), };
3141 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3142 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3145 return kernfs_setattr(kn
, &iattr
);
3148 static int cgroup_add_file(struct cgroup
*cgrp
, struct cftype
*cft
)
3150 char name
[CGROUP_FILE_NAME_MAX
];
3151 struct kernfs_node
*kn
;
3152 struct lock_class_key
*key
= NULL
;
3155 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3156 key
= &cft
->lockdep_key
;
3158 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3159 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3164 ret
= cgroup_kn_set_ugid(kn
);
3170 if (cft
->write
== cgroup_procs_write
)
3171 cgrp
->procs_kn
= kn
;
3172 else if (cft
->seq_show
== cgroup_populated_show
)
3173 cgrp
->populated_kn
= kn
;
3178 * cgroup_addrm_files - add or remove files to a cgroup directory
3179 * @cgrp: the target cgroup
3180 * @cfts: array of cftypes to be added
3181 * @is_add: whether to add or remove
3183 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3184 * For removals, this function never fails. If addition fails, this
3185 * function doesn't remove files already added. The caller is responsible
3188 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
3194 lockdep_assert_held(&cgroup_mutex
);
3196 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3197 /* does cft->flags tell us to skip this file on @cgrp? */
3198 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3200 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3202 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3204 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3208 ret
= cgroup_add_file(cgrp
, cft
);
3210 pr_warn("%s: failed to add %s, err=%d\n",
3211 __func__
, cft
->name
, ret
);
3215 cgroup_rm_file(cgrp
, cft
);
3221 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3224 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3225 struct cgroup
*root
= &ss
->root
->cgrp
;
3226 struct cgroup_subsys_state
*css
;
3229 lockdep_assert_held(&cgroup_mutex
);
3231 /* add/rm files for all cgroups created before */
3232 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3233 struct cgroup
*cgrp
= css
->cgroup
;
3235 if (cgroup_is_dead(cgrp
))
3238 ret
= cgroup_addrm_files(cgrp
, cfts
, is_add
);
3244 kernfs_activate(root
->kn
);
3248 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3252 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3253 /* free copy for custom atomic_write_len, see init_cftypes() */
3254 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3259 /* revert flags set by cgroup core while adding @cfts */
3260 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3264 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3268 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3269 struct kernfs_ops
*kf_ops
;
3271 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3274 kf_ops
= &cgroup_kf_ops
;
3276 kf_ops
= &cgroup_kf_single_ops
;
3279 * Ugh... if @cft wants a custom max_write_len, we need to
3280 * make a copy of kf_ops to set its atomic_write_len.
3282 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3283 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3285 cgroup_exit_cftypes(cfts
);
3288 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3291 cft
->kf_ops
= kf_ops
;
3298 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3300 lockdep_assert_held(&cgroup_mutex
);
3302 if (!cfts
|| !cfts
[0].ss
)
3305 list_del(&cfts
->node
);
3306 cgroup_apply_cftypes(cfts
, false);
3307 cgroup_exit_cftypes(cfts
);
3312 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3313 * @cfts: zero-length name terminated array of cftypes
3315 * Unregister @cfts. Files described by @cfts are removed from all
3316 * existing cgroups and all future cgroups won't have them either. This
3317 * function can be called anytime whether @cfts' subsys is attached or not.
3319 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3322 int cgroup_rm_cftypes(struct cftype
*cfts
)
3326 mutex_lock(&cgroup_mutex
);
3327 ret
= cgroup_rm_cftypes_locked(cfts
);
3328 mutex_unlock(&cgroup_mutex
);
3333 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3334 * @ss: target cgroup subsystem
3335 * @cfts: zero-length name terminated array of cftypes
3337 * Register @cfts to @ss. Files described by @cfts are created for all
3338 * existing cgroups to which @ss is attached and all future cgroups will
3339 * have them too. This function can be called anytime whether @ss is
3342 * Returns 0 on successful registration, -errno on failure. Note that this
3343 * function currently returns 0 as long as @cfts registration is successful
3344 * even if some file creation attempts on existing cgroups fail.
3346 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3353 if (!cfts
|| cfts
[0].name
[0] == '\0')
3356 ret
= cgroup_init_cftypes(ss
, cfts
);
3360 mutex_lock(&cgroup_mutex
);
3362 list_add_tail(&cfts
->node
, &ss
->cfts
);
3363 ret
= cgroup_apply_cftypes(cfts
, true);
3365 cgroup_rm_cftypes_locked(cfts
);
3367 mutex_unlock(&cgroup_mutex
);
3372 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3373 * @ss: target cgroup subsystem
3374 * @cfts: zero-length name terminated array of cftypes
3376 * Similar to cgroup_add_cftypes() but the added files are only used for
3377 * the default hierarchy.
3379 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3383 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3384 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3385 return cgroup_add_cftypes(ss
, cfts
);
3389 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3390 * @ss: target cgroup subsystem
3391 * @cfts: zero-length name terminated array of cftypes
3393 * Similar to cgroup_add_cftypes() but the added files are only used for
3394 * the legacy hierarchies.
3396 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3401 * If legacy_flies_on_dfl, we want to show the legacy files on the
3402 * dfl hierarchy but iff the target subsystem hasn't been updated
3403 * for the dfl hierarchy yet.
3405 if (!cgroup_legacy_files_on_dfl
||
3406 ss
->dfl_cftypes
!= ss
->legacy_cftypes
) {
3407 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3408 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3411 return cgroup_add_cftypes(ss
, cfts
);
3415 * cgroup_task_count - count the number of tasks in a cgroup.
3416 * @cgrp: the cgroup in question
3418 * Return the number of tasks in the cgroup.
3420 static int cgroup_task_count(const struct cgroup
*cgrp
)
3423 struct cgrp_cset_link
*link
;
3425 down_read(&css_set_rwsem
);
3426 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3427 count
+= atomic_read(&link
->cset
->refcount
);
3428 up_read(&css_set_rwsem
);
3433 * css_next_child - find the next child of a given css
3434 * @pos: the current position (%NULL to initiate traversal)
3435 * @parent: css whose children to walk
3437 * This function returns the next child of @parent and should be called
3438 * under either cgroup_mutex or RCU read lock. The only requirement is
3439 * that @parent and @pos are accessible. The next sibling is guaranteed to
3440 * be returned regardless of their states.
3442 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3443 * css which finished ->css_online() is guaranteed to be visible in the
3444 * future iterations and will stay visible until the last reference is put.
3445 * A css which hasn't finished ->css_online() or already finished
3446 * ->css_offline() may show up during traversal. It's each subsystem's
3447 * responsibility to synchronize against on/offlining.
3449 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3450 struct cgroup_subsys_state
*parent
)
3452 struct cgroup_subsys_state
*next
;
3454 cgroup_assert_mutex_or_rcu_locked();
3457 * @pos could already have been unlinked from the sibling list.
3458 * Once a cgroup is removed, its ->sibling.next is no longer
3459 * updated when its next sibling changes. CSS_RELEASED is set when
3460 * @pos is taken off list, at which time its next pointer is valid,
3461 * and, as releases are serialized, the one pointed to by the next
3462 * pointer is guaranteed to not have started release yet. This
3463 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3464 * critical section, the one pointed to by its next pointer is
3465 * guaranteed to not have finished its RCU grace period even if we
3466 * have dropped rcu_read_lock() inbetween iterations.
3468 * If @pos has CSS_RELEASED set, its next pointer can't be
3469 * dereferenced; however, as each css is given a monotonically
3470 * increasing unique serial number and always appended to the
3471 * sibling list, the next one can be found by walking the parent's
3472 * children until the first css with higher serial number than
3473 * @pos's. While this path can be slower, it happens iff iteration
3474 * races against release and the race window is very small.
3477 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3478 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3479 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3481 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3482 if (next
->serial_nr
> pos
->serial_nr
)
3487 * @next, if not pointing to the head, can be dereferenced and is
3490 if (&next
->sibling
!= &parent
->children
)
3496 * css_next_descendant_pre - find the next descendant for pre-order walk
3497 * @pos: the current position (%NULL to initiate traversal)
3498 * @root: css whose descendants to walk
3500 * To be used by css_for_each_descendant_pre(). Find the next descendant
3501 * to visit for pre-order traversal of @root's descendants. @root is
3502 * included in the iteration and the first node to be visited.
3504 * While this function requires cgroup_mutex or RCU read locking, it
3505 * doesn't require the whole traversal to be contained in a single critical
3506 * section. This function will return the correct next descendant as long
3507 * as both @pos and @root are accessible and @pos is a descendant of @root.
3509 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3510 * css which finished ->css_online() is guaranteed to be visible in the
3511 * future iterations and will stay visible until the last reference is put.
3512 * A css which hasn't finished ->css_online() or already finished
3513 * ->css_offline() may show up during traversal. It's each subsystem's
3514 * responsibility to synchronize against on/offlining.
3516 struct cgroup_subsys_state
*
3517 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3518 struct cgroup_subsys_state
*root
)
3520 struct cgroup_subsys_state
*next
;
3522 cgroup_assert_mutex_or_rcu_locked();
3524 /* if first iteration, visit @root */
3528 /* visit the first child if exists */
3529 next
= css_next_child(NULL
, pos
);
3533 /* no child, visit my or the closest ancestor's next sibling */
3534 while (pos
!= root
) {
3535 next
= css_next_child(pos
, pos
->parent
);
3545 * css_rightmost_descendant - return the rightmost descendant of a css
3546 * @pos: css of interest
3548 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3549 * is returned. This can be used during pre-order traversal to skip
3552 * While this function requires cgroup_mutex or RCU read locking, it
3553 * doesn't require the whole traversal to be contained in a single critical
3554 * section. This function will return the correct rightmost descendant as
3555 * long as @pos is accessible.
3557 struct cgroup_subsys_state
*
3558 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3560 struct cgroup_subsys_state
*last
, *tmp
;
3562 cgroup_assert_mutex_or_rcu_locked();
3566 /* ->prev isn't RCU safe, walk ->next till the end */
3568 css_for_each_child(tmp
, last
)
3575 static struct cgroup_subsys_state
*
3576 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3578 struct cgroup_subsys_state
*last
;
3582 pos
= css_next_child(NULL
, pos
);
3589 * css_next_descendant_post - find the next descendant for post-order walk
3590 * @pos: the current position (%NULL to initiate traversal)
3591 * @root: css whose descendants to walk
3593 * To be used by css_for_each_descendant_post(). Find the next descendant
3594 * to visit for post-order traversal of @root's descendants. @root is
3595 * included in the iteration and the last node to be visited.
3597 * While this function requires cgroup_mutex or RCU read locking, it
3598 * doesn't require the whole traversal to be contained in a single critical
3599 * section. This function will return the correct next descendant as long
3600 * as both @pos and @cgroup are accessible and @pos is a descendant of
3603 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3604 * css which finished ->css_online() is guaranteed to be visible in the
3605 * future iterations and will stay visible until the last reference is put.
3606 * A css which hasn't finished ->css_online() or already finished
3607 * ->css_offline() may show up during traversal. It's each subsystem's
3608 * responsibility to synchronize against on/offlining.
3610 struct cgroup_subsys_state
*
3611 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3612 struct cgroup_subsys_state
*root
)
3614 struct cgroup_subsys_state
*next
;
3616 cgroup_assert_mutex_or_rcu_locked();
3618 /* if first iteration, visit leftmost descendant which may be @root */
3620 return css_leftmost_descendant(root
);
3622 /* if we visited @root, we're done */
3626 /* if there's an unvisited sibling, visit its leftmost descendant */
3627 next
= css_next_child(pos
, pos
->parent
);
3629 return css_leftmost_descendant(next
);
3631 /* no sibling left, visit parent */
3636 * css_has_online_children - does a css have online children
3637 * @css: the target css
3639 * Returns %true if @css has any online children; otherwise, %false. This
3640 * function can be called from any context but the caller is responsible
3641 * for synchronizing against on/offlining as necessary.
3643 bool css_has_online_children(struct cgroup_subsys_state
*css
)
3645 struct cgroup_subsys_state
*child
;
3649 css_for_each_child(child
, css
) {
3650 if (child
->flags
& CSS_ONLINE
) {
3660 * css_advance_task_iter - advance a task itererator to the next css_set
3661 * @it: the iterator to advance
3663 * Advance @it to the next css_set to walk.
3665 static void css_advance_task_iter(struct css_task_iter
*it
)
3667 struct list_head
*l
= it
->cset_pos
;
3668 struct cgrp_cset_link
*link
;
3669 struct css_set
*cset
;
3671 /* Advance to the next non-empty css_set */
3674 if (l
== it
->cset_head
) {
3675 it
->cset_pos
= NULL
;
3680 cset
= container_of(l
, struct css_set
,
3681 e_cset_node
[it
->ss
->id
]);
3683 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3686 } while (list_empty(&cset
->tasks
) && list_empty(&cset
->mg_tasks
));
3690 if (!list_empty(&cset
->tasks
))
3691 it
->task_pos
= cset
->tasks
.next
;
3693 it
->task_pos
= cset
->mg_tasks
.next
;
3695 it
->tasks_head
= &cset
->tasks
;
3696 it
->mg_tasks_head
= &cset
->mg_tasks
;
3700 * css_task_iter_start - initiate task iteration
3701 * @css: the css to walk tasks of
3702 * @it: the task iterator to use
3704 * Initiate iteration through the tasks of @css. The caller can call
3705 * css_task_iter_next() to walk through the tasks until the function
3706 * returns NULL. On completion of iteration, css_task_iter_end() must be
3709 * Note that this function acquires a lock which is released when the
3710 * iteration finishes. The caller can't sleep while iteration is in
3713 void css_task_iter_start(struct cgroup_subsys_state
*css
,
3714 struct css_task_iter
*it
)
3715 __acquires(css_set_rwsem
)
3717 /* no one should try to iterate before mounting cgroups */
3718 WARN_ON_ONCE(!use_task_css_set_links
);
3720 down_read(&css_set_rwsem
);
3725 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
3727 it
->cset_pos
= &css
->cgroup
->cset_links
;
3729 it
->cset_head
= it
->cset_pos
;
3731 css_advance_task_iter(it
);
3735 * css_task_iter_next - return the next task for the iterator
3736 * @it: the task iterator being iterated
3738 * The "next" function for task iteration. @it should have been
3739 * initialized via css_task_iter_start(). Returns NULL when the iteration
3742 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
3744 struct task_struct
*res
;
3745 struct list_head
*l
= it
->task_pos
;
3747 /* If the iterator cg is NULL, we have no tasks */
3750 res
= list_entry(l
, struct task_struct
, cg_list
);
3753 * Advance iterator to find next entry. cset->tasks is consumed
3754 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3759 if (l
== it
->tasks_head
)
3760 l
= it
->mg_tasks_head
->next
;
3762 if (l
== it
->mg_tasks_head
)
3763 css_advance_task_iter(it
);
3771 * css_task_iter_end - finish task iteration
3772 * @it: the task iterator to finish
3774 * Finish task iteration started by css_task_iter_start().
3776 void css_task_iter_end(struct css_task_iter
*it
)
3777 __releases(css_set_rwsem
)
3779 up_read(&css_set_rwsem
);
3783 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3784 * @to: cgroup to which the tasks will be moved
3785 * @from: cgroup in which the tasks currently reside
3787 * Locking rules between cgroup_post_fork() and the migration path
3788 * guarantee that, if a task is forking while being migrated, the new child
3789 * is guaranteed to be either visible in the source cgroup after the
3790 * parent's migration is complete or put into the target cgroup. No task
3791 * can slip out of migration through forking.
3793 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
3795 LIST_HEAD(preloaded_csets
);
3796 struct cgrp_cset_link
*link
;
3797 struct css_task_iter it
;
3798 struct task_struct
*task
;
3801 mutex_lock(&cgroup_mutex
);
3803 /* all tasks in @from are being moved, all csets are source */
3804 down_read(&css_set_rwsem
);
3805 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
3806 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
3807 up_read(&css_set_rwsem
);
3809 ret
= cgroup_migrate_prepare_dst(to
, &preloaded_csets
);
3814 * Migrate tasks one-by-one until @form is empty. This fails iff
3815 * ->can_attach() fails.
3818 css_task_iter_start(&from
->self
, &it
);
3819 task
= css_task_iter_next(&it
);
3821 get_task_struct(task
);
3822 css_task_iter_end(&it
);
3825 ret
= cgroup_migrate(to
, task
, false);
3826 put_task_struct(task
);
3828 } while (task
&& !ret
);
3830 cgroup_migrate_finish(&preloaded_csets
);
3831 mutex_unlock(&cgroup_mutex
);
3836 * Stuff for reading the 'tasks'/'procs' files.
3838 * Reading this file can return large amounts of data if a cgroup has
3839 * *lots* of attached tasks. So it may need several calls to read(),
3840 * but we cannot guarantee that the information we produce is correct
3841 * unless we produce it entirely atomically.
3845 /* which pidlist file are we talking about? */
3846 enum cgroup_filetype
{
3852 * A pidlist is a list of pids that virtually represents the contents of one
3853 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3854 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3857 struct cgroup_pidlist
{
3859 * used to find which pidlist is wanted. doesn't change as long as
3860 * this particular list stays in the list.
3862 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
3865 /* how many elements the above list has */
3867 /* each of these stored in a list by its cgroup */
3868 struct list_head links
;
3869 /* pointer to the cgroup we belong to, for list removal purposes */
3870 struct cgroup
*owner
;
3871 /* for delayed destruction */
3872 struct delayed_work destroy_dwork
;
3876 * The following two functions "fix" the issue where there are more pids
3877 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3878 * TODO: replace with a kernel-wide solution to this problem
3880 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3881 static void *pidlist_allocate(int count
)
3883 if (PIDLIST_TOO_LARGE(count
))
3884 return vmalloc(count
* sizeof(pid_t
));
3886 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3889 static void pidlist_free(void *p
)
3895 * Used to destroy all pidlists lingering waiting for destroy timer. None
3896 * should be left afterwards.
3898 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
3900 struct cgroup_pidlist
*l
, *tmp_l
;
3902 mutex_lock(&cgrp
->pidlist_mutex
);
3903 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
3904 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
3905 mutex_unlock(&cgrp
->pidlist_mutex
);
3907 flush_workqueue(cgroup_pidlist_destroy_wq
);
3908 BUG_ON(!list_empty(&cgrp
->pidlists
));
3911 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
3913 struct delayed_work
*dwork
= to_delayed_work(work
);
3914 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
3916 struct cgroup_pidlist
*tofree
= NULL
;
3918 mutex_lock(&l
->owner
->pidlist_mutex
);
3921 * Destroy iff we didn't get queued again. The state won't change
3922 * as destroy_dwork can only be queued while locked.
3924 if (!delayed_work_pending(dwork
)) {
3925 list_del(&l
->links
);
3926 pidlist_free(l
->list
);
3927 put_pid_ns(l
->key
.ns
);
3931 mutex_unlock(&l
->owner
->pidlist_mutex
);
3936 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3937 * Returns the number of unique elements.
3939 static int pidlist_uniq(pid_t
*list
, int length
)
3944 * we presume the 0th element is unique, so i starts at 1. trivial
3945 * edge cases first; no work needs to be done for either
3947 if (length
== 0 || length
== 1)
3949 /* src and dest walk down the list; dest counts unique elements */
3950 for (src
= 1; src
< length
; src
++) {
3951 /* find next unique element */
3952 while (list
[src
] == list
[src
-1]) {
3957 /* dest always points to where the next unique element goes */
3958 list
[dest
] = list
[src
];
3966 * The two pid files - task and cgroup.procs - guaranteed that the result
3967 * is sorted, which forced this whole pidlist fiasco. As pid order is
3968 * different per namespace, each namespace needs differently sorted list,
3969 * making it impossible to use, for example, single rbtree of member tasks
3970 * sorted by task pointer. As pidlists can be fairly large, allocating one
3971 * per open file is dangerous, so cgroup had to implement shared pool of
3972 * pidlists keyed by cgroup and namespace.
3974 * All this extra complexity was caused by the original implementation
3975 * committing to an entirely unnecessary property. In the long term, we
3976 * want to do away with it. Explicitly scramble sort order if on the
3977 * default hierarchy so that no such expectation exists in the new
3980 * Scrambling is done by swapping every two consecutive bits, which is
3981 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3983 static pid_t
pid_fry(pid_t pid
)
3985 unsigned a
= pid
& 0x55555555;
3986 unsigned b
= pid
& 0xAAAAAAAA;
3988 return (a
<< 1) | (b
>> 1);
3991 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
3993 if (cgroup_on_dfl(cgrp
))
3994 return pid_fry(pid
);
3999 static int cmppid(const void *a
, const void *b
)
4001 return *(pid_t
*)a
- *(pid_t
*)b
;
4004 static int fried_cmppid(const void *a
, const void *b
)
4006 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
4009 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
4010 enum cgroup_filetype type
)
4012 struct cgroup_pidlist
*l
;
4013 /* don't need task_nsproxy() if we're looking at ourself */
4014 struct pid_namespace
*ns
= task_active_pid_ns(current
);
4016 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4018 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
4019 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
4025 * find the appropriate pidlist for our purpose (given procs vs tasks)
4026 * returns with the lock on that pidlist already held, and takes care
4027 * of the use count, or returns NULL with no locks held if we're out of
4030 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
4031 enum cgroup_filetype type
)
4033 struct cgroup_pidlist
*l
;
4035 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4037 l
= cgroup_pidlist_find(cgrp
, type
);
4041 /* entry not found; create a new one */
4042 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
4046 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
4048 /* don't need task_nsproxy() if we're looking at ourself */
4049 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
4051 list_add(&l
->links
, &cgrp
->pidlists
);
4056 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4058 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
4059 struct cgroup_pidlist
**lp
)
4063 int pid
, n
= 0; /* used for populating the array */
4064 struct css_task_iter it
;
4065 struct task_struct
*tsk
;
4066 struct cgroup_pidlist
*l
;
4068 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4071 * If cgroup gets more users after we read count, we won't have
4072 * enough space - tough. This race is indistinguishable to the
4073 * caller from the case that the additional cgroup users didn't
4074 * show up until sometime later on.
4076 length
= cgroup_task_count(cgrp
);
4077 array
= pidlist_allocate(length
);
4080 /* now, populate the array */
4081 css_task_iter_start(&cgrp
->self
, &it
);
4082 while ((tsk
= css_task_iter_next(&it
))) {
4083 if (unlikely(n
== length
))
4085 /* get tgid or pid for procs or tasks file respectively */
4086 if (type
== CGROUP_FILE_PROCS
)
4087 pid
= task_tgid_vnr(tsk
);
4089 pid
= task_pid_vnr(tsk
);
4090 if (pid
> 0) /* make sure to only use valid results */
4093 css_task_iter_end(&it
);
4095 /* now sort & (if procs) strip out duplicates */
4096 if (cgroup_on_dfl(cgrp
))
4097 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
4099 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
4100 if (type
== CGROUP_FILE_PROCS
)
4101 length
= pidlist_uniq(array
, length
);
4103 l
= cgroup_pidlist_find_create(cgrp
, type
);
4105 pidlist_free(array
);
4109 /* store array, freeing old if necessary */
4110 pidlist_free(l
->list
);
4118 * cgroupstats_build - build and fill cgroupstats
4119 * @stats: cgroupstats to fill information into
4120 * @dentry: A dentry entry belonging to the cgroup for which stats have
4123 * Build and fill cgroupstats so that taskstats can export it to user
4126 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
4128 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
4129 struct cgroup
*cgrp
;
4130 struct css_task_iter it
;
4131 struct task_struct
*tsk
;
4133 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4134 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
4135 kernfs_type(kn
) != KERNFS_DIR
)
4138 mutex_lock(&cgroup_mutex
);
4141 * We aren't being called from kernfs and there's no guarantee on
4142 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4143 * @kn->priv is RCU safe. Let's do the RCU dancing.
4146 cgrp
= rcu_dereference(kn
->priv
);
4147 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
4149 mutex_unlock(&cgroup_mutex
);
4154 css_task_iter_start(&cgrp
->self
, &it
);
4155 while ((tsk
= css_task_iter_next(&it
))) {
4156 switch (tsk
->state
) {
4158 stats
->nr_running
++;
4160 case TASK_INTERRUPTIBLE
:
4161 stats
->nr_sleeping
++;
4163 case TASK_UNINTERRUPTIBLE
:
4164 stats
->nr_uninterruptible
++;
4167 stats
->nr_stopped
++;
4170 if (delayacct_is_task_waiting_on_io(tsk
))
4171 stats
->nr_io_wait
++;
4175 css_task_iter_end(&it
);
4177 mutex_unlock(&cgroup_mutex
);
4183 * seq_file methods for the tasks/procs files. The seq_file position is the
4184 * next pid to display; the seq_file iterator is a pointer to the pid
4185 * in the cgroup->l->list array.
4188 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
4191 * Initially we receive a position value that corresponds to
4192 * one more than the last pid shown (or 0 on the first call or
4193 * after a seek to the start). Use a binary-search to find the
4194 * next pid to display, if any
4196 struct kernfs_open_file
*of
= s
->private;
4197 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4198 struct cgroup_pidlist
*l
;
4199 enum cgroup_filetype type
= seq_cft(s
)->private;
4200 int index
= 0, pid
= *pos
;
4203 mutex_lock(&cgrp
->pidlist_mutex
);
4206 * !NULL @of->priv indicates that this isn't the first start()
4207 * after open. If the matching pidlist is around, we can use that.
4208 * Look for it. Note that @of->priv can't be used directly. It
4209 * could already have been destroyed.
4212 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
4215 * Either this is the first start() after open or the matching
4216 * pidlist has been destroyed inbetween. Create a new one.
4219 ret
= pidlist_array_load(cgrp
, type
,
4220 (struct cgroup_pidlist
**)&of
->priv
);
4222 return ERR_PTR(ret
);
4227 int end
= l
->length
;
4229 while (index
< end
) {
4230 int mid
= (index
+ end
) / 2;
4231 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
4234 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
4240 /* If we're off the end of the array, we're done */
4241 if (index
>= l
->length
)
4243 /* Update the abstract position to be the actual pid that we found */
4244 iter
= l
->list
+ index
;
4245 *pos
= cgroup_pid_fry(cgrp
, *iter
);
4249 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
4251 struct kernfs_open_file
*of
= s
->private;
4252 struct cgroup_pidlist
*l
= of
->priv
;
4255 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
4256 CGROUP_PIDLIST_DESTROY_DELAY
);
4257 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
4260 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4262 struct kernfs_open_file
*of
= s
->private;
4263 struct cgroup_pidlist
*l
= of
->priv
;
4265 pid_t
*end
= l
->list
+ l
->length
;
4267 * Advance to the next pid in the array. If this goes off the
4274 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4279 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4281 seq_printf(s
, "%d\n", *(int *)v
);
4286 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4289 return notify_on_release(css
->cgroup
);
4292 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4293 struct cftype
*cft
, u64 val
)
4296 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4298 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4302 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4305 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4308 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4309 struct cftype
*cft
, u64 val
)
4312 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4314 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4318 /* cgroup core interface files for the default hierarchy */
4319 static struct cftype cgroup_dfl_base_files
[] = {
4321 .name
= "cgroup.procs",
4322 .seq_start
= cgroup_pidlist_start
,
4323 .seq_next
= cgroup_pidlist_next
,
4324 .seq_stop
= cgroup_pidlist_stop
,
4325 .seq_show
= cgroup_pidlist_show
,
4326 .private = CGROUP_FILE_PROCS
,
4327 .write
= cgroup_procs_write
,
4328 .mode
= S_IRUGO
| S_IWUSR
,
4331 .name
= "cgroup.controllers",
4332 .flags
= CFTYPE_ONLY_ON_ROOT
,
4333 .seq_show
= cgroup_root_controllers_show
,
4336 .name
= "cgroup.controllers",
4337 .flags
= CFTYPE_NOT_ON_ROOT
,
4338 .seq_show
= cgroup_controllers_show
,
4341 .name
= "cgroup.subtree_control",
4342 .seq_show
= cgroup_subtree_control_show
,
4343 .write
= cgroup_subtree_control_write
,
4346 .name
= "cgroup.populated",
4347 .flags
= CFTYPE_NOT_ON_ROOT
,
4348 .seq_show
= cgroup_populated_show
,
4353 /* cgroup core interface files for the legacy hierarchies */
4354 static struct cftype cgroup_legacy_base_files
[] = {
4356 .name
= "cgroup.procs",
4357 .seq_start
= cgroup_pidlist_start
,
4358 .seq_next
= cgroup_pidlist_next
,
4359 .seq_stop
= cgroup_pidlist_stop
,
4360 .seq_show
= cgroup_pidlist_show
,
4361 .private = CGROUP_FILE_PROCS
,
4362 .write
= cgroup_procs_write
,
4363 .mode
= S_IRUGO
| S_IWUSR
,
4366 .name
= "cgroup.clone_children",
4367 .read_u64
= cgroup_clone_children_read
,
4368 .write_u64
= cgroup_clone_children_write
,
4371 .name
= "cgroup.sane_behavior",
4372 .flags
= CFTYPE_ONLY_ON_ROOT
,
4373 .seq_show
= cgroup_sane_behavior_show
,
4377 .seq_start
= cgroup_pidlist_start
,
4378 .seq_next
= cgroup_pidlist_next
,
4379 .seq_stop
= cgroup_pidlist_stop
,
4380 .seq_show
= cgroup_pidlist_show
,
4381 .private = CGROUP_FILE_TASKS
,
4382 .write
= cgroup_tasks_write
,
4383 .mode
= S_IRUGO
| S_IWUSR
,
4386 .name
= "notify_on_release",
4387 .read_u64
= cgroup_read_notify_on_release
,
4388 .write_u64
= cgroup_write_notify_on_release
,
4391 .name
= "release_agent",
4392 .flags
= CFTYPE_ONLY_ON_ROOT
,
4393 .seq_show
= cgroup_release_agent_show
,
4394 .write
= cgroup_release_agent_write
,
4395 .max_write_len
= PATH_MAX
- 1,
4401 * cgroup_populate_dir - create subsys files in a cgroup directory
4402 * @cgrp: target cgroup
4403 * @subsys_mask: mask of the subsystem ids whose files should be added
4405 * On failure, no file is added.
4407 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned long subsys_mask
)
4409 struct cgroup_subsys
*ss
;
4412 /* process cftsets of each subsystem */
4413 for_each_subsys(ss
, i
) {
4414 struct cftype
*cfts
;
4416 if (!(subsys_mask
& (1 << i
)))
4419 list_for_each_entry(cfts
, &ss
->cfts
, node
) {
4420 ret
= cgroup_addrm_files(cgrp
, cfts
, true);
4427 cgroup_clear_dir(cgrp
, subsys_mask
);
4432 * css destruction is four-stage process.
4434 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4435 * Implemented in kill_css().
4437 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4438 * and thus css_tryget_online() is guaranteed to fail, the css can be
4439 * offlined by invoking offline_css(). After offlining, the base ref is
4440 * put. Implemented in css_killed_work_fn().
4442 * 3. When the percpu_ref reaches zero, the only possible remaining
4443 * accessors are inside RCU read sections. css_release() schedules the
4446 * 4. After the grace period, the css can be freed. Implemented in
4447 * css_free_work_fn().
4449 * It is actually hairier because both step 2 and 4 require process context
4450 * and thus involve punting to css->destroy_work adding two additional
4451 * steps to the already complex sequence.
4453 static void css_free_work_fn(struct work_struct
*work
)
4455 struct cgroup_subsys_state
*css
=
4456 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4457 struct cgroup_subsys
*ss
= css
->ss
;
4458 struct cgroup
*cgrp
= css
->cgroup
;
4460 percpu_ref_exit(&css
->refcnt
);
4467 css_put(css
->parent
);
4470 cgroup_idr_remove(&ss
->css_idr
, id
);
4473 /* cgroup free path */
4474 atomic_dec(&cgrp
->root
->nr_cgrps
);
4475 cgroup_pidlist_destroy_all(cgrp
);
4476 cancel_work_sync(&cgrp
->release_agent_work
);
4478 if (cgroup_parent(cgrp
)) {
4480 * We get a ref to the parent, and put the ref when
4481 * this cgroup is being freed, so it's guaranteed
4482 * that the parent won't be destroyed before its
4485 cgroup_put(cgroup_parent(cgrp
));
4486 kernfs_put(cgrp
->kn
);
4490 * This is root cgroup's refcnt reaching zero,
4491 * which indicates that the root should be
4494 cgroup_destroy_root(cgrp
->root
);
4499 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4501 struct cgroup_subsys_state
*css
=
4502 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4504 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4505 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4508 static void css_release_work_fn(struct work_struct
*work
)
4510 struct cgroup_subsys_state
*css
=
4511 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4512 struct cgroup_subsys
*ss
= css
->ss
;
4513 struct cgroup
*cgrp
= css
->cgroup
;
4515 mutex_lock(&cgroup_mutex
);
4517 css
->flags
|= CSS_RELEASED
;
4518 list_del_rcu(&css
->sibling
);
4521 /* css release path */
4522 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4523 if (ss
->css_released
)
4524 ss
->css_released(css
);
4526 /* cgroup release path */
4527 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4531 * There are two control paths which try to determine
4532 * cgroup from dentry without going through kernfs -
4533 * cgroupstats_build() and css_tryget_online_from_dir().
4534 * Those are supported by RCU protecting clearing of
4535 * cgrp->kn->priv backpointer.
4537 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
, NULL
);
4540 mutex_unlock(&cgroup_mutex
);
4542 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4545 static void css_release(struct percpu_ref
*ref
)
4547 struct cgroup_subsys_state
*css
=
4548 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4550 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4551 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4554 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4555 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4557 lockdep_assert_held(&cgroup_mutex
);
4561 memset(css
, 0, sizeof(*css
));
4564 INIT_LIST_HEAD(&css
->sibling
);
4565 INIT_LIST_HEAD(&css
->children
);
4566 css
->serial_nr
= css_serial_nr_next
++;
4568 if (cgroup_parent(cgrp
)) {
4569 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4570 css_get(css
->parent
);
4573 BUG_ON(cgroup_css(cgrp
, ss
));
4576 /* invoke ->css_online() on a new CSS and mark it online if successful */
4577 static int online_css(struct cgroup_subsys_state
*css
)
4579 struct cgroup_subsys
*ss
= css
->ss
;
4582 lockdep_assert_held(&cgroup_mutex
);
4585 ret
= ss
->css_online(css
);
4587 css
->flags
|= CSS_ONLINE
;
4588 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4593 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4594 static void offline_css(struct cgroup_subsys_state
*css
)
4596 struct cgroup_subsys
*ss
= css
->ss
;
4598 lockdep_assert_held(&cgroup_mutex
);
4600 if (!(css
->flags
& CSS_ONLINE
))
4603 if (ss
->css_offline
)
4604 ss
->css_offline(css
);
4606 css
->flags
&= ~CSS_ONLINE
;
4607 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4609 wake_up_all(&css
->cgroup
->offline_waitq
);
4613 * create_css - create a cgroup_subsys_state
4614 * @cgrp: the cgroup new css will be associated with
4615 * @ss: the subsys of new css
4616 * @visible: whether to create control knobs for the new css or not
4618 * Create a new css associated with @cgrp - @ss pair. On success, the new
4619 * css is online and installed in @cgrp with all interface files created if
4620 * @visible. Returns 0 on success, -errno on failure.
4622 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
4625 struct cgroup
*parent
= cgroup_parent(cgrp
);
4626 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4627 struct cgroup_subsys_state
*css
;
4630 lockdep_assert_held(&cgroup_mutex
);
4632 css
= ss
->css_alloc(parent_css
);
4634 return PTR_ERR(css
);
4636 init_and_link_css(css
, ss
, cgrp
);
4638 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4642 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_NOWAIT
);
4644 goto err_free_percpu_ref
;
4648 err
= cgroup_populate_dir(cgrp
, 1 << ss
->id
);
4653 /* @css is ready to be brought online now, make it visible */
4654 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4655 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4657 err
= online_css(css
);
4661 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4662 cgroup_parent(parent
)) {
4663 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4664 current
->comm
, current
->pid
, ss
->name
);
4665 if (!strcmp(ss
->name
, "memory"))
4666 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4667 ss
->warned_broken_hierarchy
= true;
4673 list_del_rcu(&css
->sibling
);
4674 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->id
);
4676 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
4677 err_free_percpu_ref
:
4678 percpu_ref_exit(&css
->refcnt
);
4680 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4684 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
4687 struct cgroup
*parent
, *cgrp
;
4688 struct cgroup_root
*root
;
4689 struct cgroup_subsys
*ss
;
4690 struct kernfs_node
*kn
;
4691 struct cftype
*base_files
;
4694 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4696 if (strchr(name
, '\n'))
4699 parent
= cgroup_kn_lock_live(parent_kn
);
4702 root
= parent
->root
;
4704 /* allocate the cgroup and its ID, 0 is reserved for the root */
4705 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4711 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4716 * Temporarily set the pointer to NULL, so idr_find() won't return
4717 * a half-baked cgroup.
4719 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_NOWAIT
);
4722 goto out_cancel_ref
;
4725 init_cgroup_housekeeping(cgrp
);
4727 cgrp
->self
.parent
= &parent
->self
;
4730 if (notify_on_release(parent
))
4731 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4733 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4734 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4736 /* create the directory */
4737 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4745 * This extra ref will be put in cgroup_free_fn() and guarantees
4746 * that @cgrp->kn is always accessible.
4750 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4752 /* allocation complete, commit to creation */
4753 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4754 atomic_inc(&root
->nr_cgrps
);
4758 * @cgrp is now fully operational. If something fails after this
4759 * point, it'll be released via the normal destruction path.
4761 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4763 ret
= cgroup_kn_set_ugid(kn
);
4767 if (cgroup_on_dfl(cgrp
))
4768 base_files
= cgroup_dfl_base_files
;
4770 base_files
= cgroup_legacy_base_files
;
4772 ret
= cgroup_addrm_files(cgrp
, base_files
, true);
4776 /* let's create and online css's */
4777 for_each_subsys(ss
, ssid
) {
4778 if (parent
->child_subsys_mask
& (1 << ssid
)) {
4779 ret
= create_css(cgrp
, ss
,
4780 parent
->subtree_control
& (1 << ssid
));
4787 * On the default hierarchy, a child doesn't automatically inherit
4788 * subtree_control from the parent. Each is configured manually.
4790 if (!cgroup_on_dfl(cgrp
)) {
4791 cgrp
->subtree_control
= parent
->subtree_control
;
4792 cgroup_refresh_child_subsys_mask(cgrp
);
4795 kernfs_activate(kn
);
4801 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4803 percpu_ref_exit(&cgrp
->self
.refcnt
);
4807 cgroup_kn_unlock(parent_kn
);
4811 cgroup_destroy_locked(cgrp
);
4816 * This is called when the refcnt of a css is confirmed to be killed.
4817 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4818 * initate destruction and put the css ref from kill_css().
4820 static void css_killed_work_fn(struct work_struct
*work
)
4822 struct cgroup_subsys_state
*css
=
4823 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4825 mutex_lock(&cgroup_mutex
);
4827 mutex_unlock(&cgroup_mutex
);
4832 /* css kill confirmation processing requires process context, bounce */
4833 static void css_killed_ref_fn(struct percpu_ref
*ref
)
4835 struct cgroup_subsys_state
*css
=
4836 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4838 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
4839 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4843 * kill_css - destroy a css
4844 * @css: css to destroy
4846 * This function initiates destruction of @css by removing cgroup interface
4847 * files and putting its base reference. ->css_offline() will be invoked
4848 * asynchronously once css_tryget_online() is guaranteed to fail and when
4849 * the reference count reaches zero, @css will be released.
4851 static void kill_css(struct cgroup_subsys_state
*css
)
4853 lockdep_assert_held(&cgroup_mutex
);
4856 * This must happen before css is disassociated with its cgroup.
4857 * See seq_css() for details.
4859 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->id
);
4862 * Killing would put the base ref, but we need to keep it alive
4863 * until after ->css_offline().
4868 * cgroup core guarantees that, by the time ->css_offline() is
4869 * invoked, no new css reference will be given out via
4870 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4871 * proceed to offlining css's because percpu_ref_kill() doesn't
4872 * guarantee that the ref is seen as killed on all CPUs on return.
4874 * Use percpu_ref_kill_and_confirm() to get notifications as each
4875 * css is confirmed to be seen as killed on all CPUs.
4877 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
4881 * cgroup_destroy_locked - the first stage of cgroup destruction
4882 * @cgrp: cgroup to be destroyed
4884 * css's make use of percpu refcnts whose killing latency shouldn't be
4885 * exposed to userland and are RCU protected. Also, cgroup core needs to
4886 * guarantee that css_tryget_online() won't succeed by the time
4887 * ->css_offline() is invoked. To satisfy all the requirements,
4888 * destruction is implemented in the following two steps.
4890 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4891 * userland visible parts and start killing the percpu refcnts of
4892 * css's. Set up so that the next stage will be kicked off once all
4893 * the percpu refcnts are confirmed to be killed.
4895 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4896 * rest of destruction. Once all cgroup references are gone, the
4897 * cgroup is RCU-freed.
4899 * This function implements s1. After this step, @cgrp is gone as far as
4900 * the userland is concerned and a new cgroup with the same name may be
4901 * created. As cgroup doesn't care about the names internally, this
4902 * doesn't cause any problem.
4904 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
4905 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
4907 struct cgroup_subsys_state
*css
;
4911 lockdep_assert_held(&cgroup_mutex
);
4914 * css_set_rwsem synchronizes access to ->cset_links and prevents
4915 * @cgrp from being removed while put_css_set() is in progress.
4917 down_read(&css_set_rwsem
);
4918 empty
= list_empty(&cgrp
->cset_links
);
4919 up_read(&css_set_rwsem
);
4924 * Make sure there's no live children. We can't test emptiness of
4925 * ->self.children as dead children linger on it while being
4926 * drained; otherwise, "rmdir parent/child parent" may fail.
4928 if (css_has_online_children(&cgrp
->self
))
4932 * Mark @cgrp dead. This prevents further task migration and child
4933 * creation by disabling cgroup_lock_live_group().
4935 cgrp
->self
.flags
&= ~CSS_ONLINE
;
4937 /* initiate massacre of all css's */
4938 for_each_css(css
, ssid
, cgrp
)
4942 * Remove @cgrp directory along with the base files. @cgrp has an
4943 * extra ref on its kn.
4945 kernfs_remove(cgrp
->kn
);
4947 check_for_release(cgroup_parent(cgrp
));
4949 /* put the base reference */
4950 percpu_ref_kill(&cgrp
->self
.refcnt
);
4955 static int cgroup_rmdir(struct kernfs_node
*kn
)
4957 struct cgroup
*cgrp
;
4960 cgrp
= cgroup_kn_lock_live(kn
);
4964 ret
= cgroup_destroy_locked(cgrp
);
4966 cgroup_kn_unlock(kn
);
4970 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
4971 .remount_fs
= cgroup_remount
,
4972 .show_options
= cgroup_show_options
,
4973 .mkdir
= cgroup_mkdir
,
4974 .rmdir
= cgroup_rmdir
,
4975 .rename
= cgroup_rename
,
4978 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
4980 struct cgroup_subsys_state
*css
;
4982 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4984 mutex_lock(&cgroup_mutex
);
4986 idr_init(&ss
->css_idr
);
4987 INIT_LIST_HEAD(&ss
->cfts
);
4989 /* Create the root cgroup state for this subsystem */
4990 ss
->root
= &cgrp_dfl_root
;
4991 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
4992 /* We don't handle early failures gracefully */
4993 BUG_ON(IS_ERR(css
));
4994 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
4997 * Root csses are never destroyed and we can't initialize
4998 * percpu_ref during early init. Disable refcnting.
5000 css
->flags
|= CSS_NO_REF
;
5003 /* allocation can't be done safely during early init */
5006 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5007 BUG_ON(css
->id
< 0);
5010 /* Update the init_css_set to contain a subsys
5011 * pointer to this state - since the subsystem is
5012 * newly registered, all tasks and hence the
5013 * init_css_set is in the subsystem's root cgroup. */
5014 init_css_set
.subsys
[ss
->id
] = css
;
5016 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5017 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5019 /* At system boot, before all subsystems have been
5020 * registered, no tasks have been forked, so we don't
5021 * need to invoke fork callbacks here. */
5022 BUG_ON(!list_empty(&init_task
.tasks
));
5024 BUG_ON(online_css(css
));
5026 mutex_unlock(&cgroup_mutex
);
5030 * cgroup_init_early - cgroup initialization at system boot
5032 * Initialize cgroups at system boot, and initialize any
5033 * subsystems that request early init.
5035 int __init
cgroup_init_early(void)
5037 static struct cgroup_sb_opts __initdata opts
;
5038 struct cgroup_subsys
*ss
;
5041 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5042 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5044 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5046 for_each_subsys(ss
, i
) {
5047 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5048 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5049 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5051 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5052 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5055 ss
->name
= cgroup_subsys_name
[i
];
5058 cgroup_init_subsys(ss
, true);
5064 * cgroup_init - cgroup initialization
5066 * Register cgroup filesystem and /proc file, and initialize
5067 * any subsystems that didn't request early init.
5069 int __init
cgroup_init(void)
5071 struct cgroup_subsys
*ss
;
5075 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_dfl_base_files
));
5076 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_legacy_base_files
));
5078 mutex_lock(&cgroup_mutex
);
5080 /* Add init_css_set to the hash table */
5081 key
= css_set_hash(init_css_set
.subsys
);
5082 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
5084 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5086 mutex_unlock(&cgroup_mutex
);
5088 for_each_subsys(ss
, ssid
) {
5089 if (ss
->early_init
) {
5090 struct cgroup_subsys_state
*css
=
5091 init_css_set
.subsys
[ss
->id
];
5093 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5095 BUG_ON(css
->id
< 0);
5097 cgroup_init_subsys(ss
, false);
5100 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5101 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5104 * Setting dfl_root subsys_mask needs to consider the
5105 * disabled flag and cftype registration needs kmalloc,
5106 * both of which aren't available during early_init.
5111 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5113 if (cgroup_legacy_files_on_dfl
&& !ss
->dfl_cftypes
)
5114 ss
->dfl_cftypes
= ss
->legacy_cftypes
;
5116 if (!ss
->dfl_cftypes
)
5117 cgrp_dfl_root_inhibit_ss_mask
|= 1 << ss
->id
;
5119 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5120 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5122 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5123 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5127 ss
->bind(init_css_set
.subsys
[ssid
]);
5130 err
= sysfs_create_mount_point(fs_kobj
, "cgroup");
5134 err
= register_filesystem(&cgroup_fs_type
);
5136 sysfs_remove_mount_point(fs_kobj
, "cgroup");
5140 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
5144 static int __init
cgroup_wq_init(void)
5147 * There isn't much point in executing destruction path in
5148 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5149 * Use 1 for @max_active.
5151 * We would prefer to do this in cgroup_init() above, but that
5152 * is called before init_workqueues(): so leave this until after.
5154 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5155 BUG_ON(!cgroup_destroy_wq
);
5158 * Used to destroy pidlists and separate to serve as flush domain.
5159 * Cap @max_active to 1 too.
5161 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
5163 BUG_ON(!cgroup_pidlist_destroy_wq
);
5167 core_initcall(cgroup_wq_init
);
5170 * proc_cgroup_show()
5171 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5172 * - Used for /proc/<pid>/cgroup.
5174 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5175 struct pid
*pid
, struct task_struct
*tsk
)
5179 struct cgroup_root
*root
;
5182 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5186 mutex_lock(&cgroup_mutex
);
5187 down_read(&css_set_rwsem
);
5189 for_each_root(root
) {
5190 struct cgroup_subsys
*ss
;
5191 struct cgroup
*cgrp
;
5192 int ssid
, count
= 0;
5194 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_root_visible
)
5197 seq_printf(m
, "%d:", root
->hierarchy_id
);
5198 for_each_subsys(ss
, ssid
)
5199 if (root
->subsys_mask
& (1 << ssid
))
5200 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
5201 if (strlen(root
->name
))
5202 seq_printf(m
, "%sname=%s", count
? "," : "",
5205 cgrp
= task_cgroup_from_root(tsk
, root
);
5206 path
= cgroup_path(cgrp
, buf
, PATH_MAX
);
5208 retval
= -ENAMETOOLONG
;
5217 up_read(&css_set_rwsem
);
5218 mutex_unlock(&cgroup_mutex
);
5224 /* Display information about each subsystem and each hierarchy */
5225 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5227 struct cgroup_subsys
*ss
;
5230 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5232 * ideally we don't want subsystems moving around while we do this.
5233 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5234 * subsys/hierarchy state.
5236 mutex_lock(&cgroup_mutex
);
5238 for_each_subsys(ss
, i
)
5239 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5240 ss
->name
, ss
->root
->hierarchy_id
,
5241 atomic_read(&ss
->root
->nr_cgrps
), !ss
->disabled
);
5243 mutex_unlock(&cgroup_mutex
);
5247 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5249 return single_open(file
, proc_cgroupstats_show
, NULL
);
5252 static const struct file_operations proc_cgroupstats_operations
= {
5253 .open
= cgroupstats_open
,
5255 .llseek
= seq_lseek
,
5256 .release
= single_release
,
5260 * cgroup_fork - initialize cgroup related fields during copy_process()
5261 * @child: pointer to task_struct of forking parent process.
5263 * A task is associated with the init_css_set until cgroup_post_fork()
5264 * attaches it to the parent's css_set. Empty cg_list indicates that
5265 * @child isn't holding reference to its css_set.
5267 void cgroup_fork(struct task_struct
*child
)
5269 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5270 INIT_LIST_HEAD(&child
->cg_list
);
5274 * cgroup_post_fork - called on a new task after adding it to the task list
5275 * @child: the task in question
5277 * Adds the task to the list running through its css_set if necessary and
5278 * call the subsystem fork() callbacks. Has to be after the task is
5279 * visible on the task list in case we race with the first call to
5280 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5283 void cgroup_post_fork(struct task_struct
*child
)
5285 struct cgroup_subsys
*ss
;
5289 * This may race against cgroup_enable_task_cg_lists(). As that
5290 * function sets use_task_css_set_links before grabbing
5291 * tasklist_lock and we just went through tasklist_lock to add
5292 * @child, it's guaranteed that either we see the set
5293 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5294 * @child during its iteration.
5296 * If we won the race, @child is associated with %current's
5297 * css_set. Grabbing css_set_rwsem guarantees both that the
5298 * association is stable, and, on completion of the parent's
5299 * migration, @child is visible in the source of migration or
5300 * already in the destination cgroup. This guarantee is necessary
5301 * when implementing operations which need to migrate all tasks of
5302 * a cgroup to another.
5304 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5305 * will remain in init_css_set. This is safe because all tasks are
5306 * in the init_css_set before cg_links is enabled and there's no
5307 * operation which transfers all tasks out of init_css_set.
5309 if (use_task_css_set_links
) {
5310 struct css_set
*cset
;
5312 down_write(&css_set_rwsem
);
5313 cset
= task_css_set(current
);
5314 if (list_empty(&child
->cg_list
)) {
5315 rcu_assign_pointer(child
->cgroups
, cset
);
5316 list_add(&child
->cg_list
, &cset
->tasks
);
5319 up_write(&css_set_rwsem
);
5323 * Call ss->fork(). This must happen after @child is linked on
5324 * css_set; otherwise, @child might change state between ->fork()
5325 * and addition to css_set.
5327 for_each_subsys_which(ss
, i
, &have_fork_callback
)
5332 * cgroup_exit - detach cgroup from exiting task
5333 * @tsk: pointer to task_struct of exiting process
5335 * Description: Detach cgroup from @tsk and release it.
5337 * Note that cgroups marked notify_on_release force every task in
5338 * them to take the global cgroup_mutex mutex when exiting.
5339 * This could impact scaling on very large systems. Be reluctant to
5340 * use notify_on_release cgroups where very high task exit scaling
5341 * is required on large systems.
5343 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5344 * call cgroup_exit() while the task is still competent to handle
5345 * notify_on_release(), then leave the task attached to the root cgroup in
5346 * each hierarchy for the remainder of its exit. No need to bother with
5347 * init_css_set refcnting. init_css_set never goes away and we can't race
5348 * with migration path - PF_EXITING is visible to migration path.
5350 void cgroup_exit(struct task_struct
*tsk
)
5352 struct cgroup_subsys
*ss
;
5353 struct css_set
*cset
;
5354 bool put_cset
= false;
5358 * Unlink from @tsk from its css_set. As migration path can't race
5359 * with us, we can check cg_list without grabbing css_set_rwsem.
5361 if (!list_empty(&tsk
->cg_list
)) {
5362 down_write(&css_set_rwsem
);
5363 list_del_init(&tsk
->cg_list
);
5364 up_write(&css_set_rwsem
);
5368 /* Reassign the task to the init_css_set. */
5369 cset
= task_css_set(tsk
);
5370 RCU_INIT_POINTER(tsk
->cgroups
, &init_css_set
);
5372 /* see cgroup_post_fork() for details */
5373 for_each_subsys_which(ss
, i
, &have_exit_callback
) {
5374 struct cgroup_subsys_state
*old_css
= cset
->subsys
[i
];
5375 struct cgroup_subsys_state
*css
= task_css(tsk
, i
);
5377 ss
->exit(css
, old_css
, tsk
);
5384 static void check_for_release(struct cgroup
*cgrp
)
5386 if (notify_on_release(cgrp
) && !cgroup_has_tasks(cgrp
) &&
5387 !css_has_online_children(&cgrp
->self
) && !cgroup_is_dead(cgrp
))
5388 schedule_work(&cgrp
->release_agent_work
);
5392 * Notify userspace when a cgroup is released, by running the
5393 * configured release agent with the name of the cgroup (path
5394 * relative to the root of cgroup file system) as the argument.
5396 * Most likely, this user command will try to rmdir this cgroup.
5398 * This races with the possibility that some other task will be
5399 * attached to this cgroup before it is removed, or that some other
5400 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5401 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5402 * unused, and this cgroup will be reprieved from its death sentence,
5403 * to continue to serve a useful existence. Next time it's released,
5404 * we will get notified again, if it still has 'notify_on_release' set.
5406 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5407 * means only wait until the task is successfully execve()'d. The
5408 * separate release agent task is forked by call_usermodehelper(),
5409 * then control in this thread returns here, without waiting for the
5410 * release agent task. We don't bother to wait because the caller of
5411 * this routine has no use for the exit status of the release agent
5412 * task, so no sense holding our caller up for that.
5414 static void cgroup_release_agent(struct work_struct
*work
)
5416 struct cgroup
*cgrp
=
5417 container_of(work
, struct cgroup
, release_agent_work
);
5418 char *pathbuf
= NULL
, *agentbuf
= NULL
, *path
;
5419 char *argv
[3], *envp
[3];
5421 mutex_lock(&cgroup_mutex
);
5423 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5424 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5425 if (!pathbuf
|| !agentbuf
)
5428 path
= cgroup_path(cgrp
, pathbuf
, PATH_MAX
);
5436 /* minimal command environment */
5438 envp
[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5441 mutex_unlock(&cgroup_mutex
);
5442 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5445 mutex_unlock(&cgroup_mutex
);
5451 static int __init
cgroup_disable(char *str
)
5453 struct cgroup_subsys
*ss
;
5457 while ((token
= strsep(&str
, ",")) != NULL
) {
5461 for_each_subsys(ss
, i
) {
5462 if (!strcmp(token
, ss
->name
)) {
5464 printk(KERN_INFO
"Disabling %s control group"
5465 " subsystem\n", ss
->name
);
5472 __setup("cgroup_disable=", cgroup_disable
);
5474 static int __init
cgroup_set_legacy_files_on_dfl(char *str
)
5476 printk("cgroup: using legacy files on the default hierarchy\n");
5477 cgroup_legacy_files_on_dfl
= true;
5480 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl
);
5483 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5484 * @dentry: directory dentry of interest
5485 * @ss: subsystem of interest
5487 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5488 * to get the corresponding css and return it. If such css doesn't exist
5489 * or can't be pinned, an ERR_PTR value is returned.
5491 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5492 struct cgroup_subsys
*ss
)
5494 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5495 struct cgroup_subsys_state
*css
= NULL
;
5496 struct cgroup
*cgrp
;
5498 /* is @dentry a cgroup dir? */
5499 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
5500 kernfs_type(kn
) != KERNFS_DIR
)
5501 return ERR_PTR(-EBADF
);
5506 * This path doesn't originate from kernfs and @kn could already
5507 * have been or be removed at any point. @kn->priv is RCU
5508 * protected for this access. See css_release_work_fn() for details.
5510 cgrp
= rcu_dereference(kn
->priv
);
5512 css
= cgroup_css(cgrp
, ss
);
5514 if (!css
|| !css_tryget_online(css
))
5515 css
= ERR_PTR(-ENOENT
);
5522 * css_from_id - lookup css by id
5523 * @id: the cgroup id
5524 * @ss: cgroup subsys to be looked into
5526 * Returns the css if there's valid one with @id, otherwise returns NULL.
5527 * Should be called under rcu_read_lock().
5529 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5531 WARN_ON_ONCE(!rcu_read_lock_held());
5532 return id
> 0 ? idr_find(&ss
->css_idr
, id
) : NULL
;
5535 #ifdef CONFIG_CGROUP_DEBUG
5536 static struct cgroup_subsys_state
*
5537 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
5539 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5542 return ERR_PTR(-ENOMEM
);
5547 static void debug_css_free(struct cgroup_subsys_state
*css
)
5552 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
5555 return cgroup_task_count(css
->cgroup
);
5558 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
5561 return (u64
)(unsigned long)current
->cgroups
;
5564 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
5570 count
= atomic_read(&task_css_set(current
)->refcount
);
5575 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
5577 struct cgrp_cset_link
*link
;
5578 struct css_set
*cset
;
5581 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
5585 down_read(&css_set_rwsem
);
5587 cset
= rcu_dereference(current
->cgroups
);
5588 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
5589 struct cgroup
*c
= link
->cgrp
;
5591 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
5592 seq_printf(seq
, "Root %d group %s\n",
5593 c
->root
->hierarchy_id
, name_buf
);
5596 up_read(&css_set_rwsem
);
5601 #define MAX_TASKS_SHOWN_PER_CSS 25
5602 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
5604 struct cgroup_subsys_state
*css
= seq_css(seq
);
5605 struct cgrp_cset_link
*link
;
5607 down_read(&css_set_rwsem
);
5608 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
5609 struct css_set
*cset
= link
->cset
;
5610 struct task_struct
*task
;
5613 seq_printf(seq
, "css_set %p\n", cset
);
5615 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
5616 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5618 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5621 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
5622 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5624 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5628 seq_puts(seq
, " ...\n");
5630 up_read(&css_set_rwsem
);
5634 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
5636 return (!cgroup_has_tasks(css
->cgroup
) &&
5637 !css_has_online_children(&css
->cgroup
->self
));
5640 static struct cftype debug_files
[] = {
5642 .name
= "taskcount",
5643 .read_u64
= debug_taskcount_read
,
5647 .name
= "current_css_set",
5648 .read_u64
= current_css_set_read
,
5652 .name
= "current_css_set_refcount",
5653 .read_u64
= current_css_set_refcount_read
,
5657 .name
= "current_css_set_cg_links",
5658 .seq_show
= current_css_set_cg_links_read
,
5662 .name
= "cgroup_css_links",
5663 .seq_show
= cgroup_css_links_read
,
5667 .name
= "releasable",
5668 .read_u64
= releasable_read
,
5674 struct cgroup_subsys debug_cgrp_subsys
= {
5675 .css_alloc
= debug_css_alloc
,
5676 .css_free
= debug_css_free
,
5677 .legacy_cftypes
= debug_files
,
5679 #endif /* CONFIG_CGROUP_DEBUG */