Linux 4.2.6
[linux/fpc-iii.git] / kernel / fork.c
blobe769c8c86f8610c1f01c9d1c5a14dd0a465a4432
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
86 #include <trace/events/sched.h>
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
92 * Minimum number of threads to boot the kernel
94 #define MIN_THREADS 20
97 * Maximum number of threads
99 #define MAX_THREADS FUTEX_TID_MASK
102 * Protected counters by write_lock_irq(&tasklist_lock)
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
107 int max_threads; /* tunable limit on nr_threads */
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
116 return lockdep_is_held(&tasklist_lock);
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
121 int nr_processes(void)
123 int cpu;
124 int total = 0;
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
129 return total;
132 void __weak arch_release_task_struct(struct task_struct *tsk)
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
139 static inline struct task_struct *alloc_task_struct_node(int node)
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
144 static inline void free_task_struct(struct task_struct *tsk)
146 kmem_cache_free(task_struct_cachep, tsk);
148 #endif
150 void __weak arch_release_thread_info(struct thread_info *ti)
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
167 return page ? page_address(page) : NULL;
170 static inline void free_thread_info(struct thread_info *ti)
172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
174 # else
175 static struct kmem_cache *thread_info_cache;
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 int node)
180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
183 static void free_thread_info(struct thread_info *ti)
185 kmem_cache_free(thread_info_cache, ti);
188 void thread_info_cache_init(void)
190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 THREAD_SIZE, 0, NULL);
192 BUG_ON(thread_info_cache == NULL);
194 # endif
195 #endif
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
215 static void account_kernel_stack(struct thread_info *ti, int account)
217 struct zone *zone = page_zone(virt_to_page(ti));
219 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
222 void free_task(struct task_struct *tsk)
224 account_kernel_stack(tsk->stack, -1);
225 arch_release_thread_info(tsk->stack);
226 free_thread_info(tsk->stack);
227 rt_mutex_debug_task_free(tsk);
228 ftrace_graph_exit_task(tsk);
229 put_seccomp_filter(tsk);
230 arch_release_task_struct(tsk);
231 free_task_struct(tsk);
233 EXPORT_SYMBOL(free_task);
235 static inline void free_signal_struct(struct signal_struct *sig)
237 taskstats_tgid_free(sig);
238 sched_autogroup_exit(sig);
239 kmem_cache_free(signal_cachep, sig);
242 static inline void put_signal_struct(struct signal_struct *sig)
244 if (atomic_dec_and_test(&sig->sigcnt))
245 free_signal_struct(sig);
248 void __put_task_struct(struct task_struct *tsk)
250 WARN_ON(!tsk->exit_state);
251 WARN_ON(atomic_read(&tsk->usage));
252 WARN_ON(tsk == current);
254 task_numa_free(tsk);
255 security_task_free(tsk);
256 exit_creds(tsk);
257 delayacct_tsk_free(tsk);
258 put_signal_struct(tsk->signal);
260 if (!profile_handoff_task(tsk))
261 free_task(tsk);
263 EXPORT_SYMBOL_GPL(__put_task_struct);
265 void __init __weak arch_task_cache_init(void) { }
268 * set_max_threads
270 static void set_max_threads(unsigned int max_threads_suggested)
272 u64 threads;
275 * The number of threads shall be limited such that the thread
276 * structures may only consume a small part of the available memory.
278 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 threads = MAX_THREADS;
280 else
281 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 (u64) THREAD_SIZE * 8UL);
284 if (threads > max_threads_suggested)
285 threads = max_threads_suggested;
287 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
290 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
291 /* Initialized by the architecture: */
292 int arch_task_struct_size __read_mostly;
293 #endif
295 void __init fork_init(void)
297 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
298 #ifndef ARCH_MIN_TASKALIGN
299 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
300 #endif
301 /* create a slab on which task_structs can be allocated */
302 task_struct_cachep =
303 kmem_cache_create("task_struct", arch_task_struct_size,
304 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
305 #endif
307 /* do the arch specific task caches init */
308 arch_task_cache_init();
310 set_max_threads(MAX_THREADS);
312 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
313 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
314 init_task.signal->rlim[RLIMIT_SIGPENDING] =
315 init_task.signal->rlim[RLIMIT_NPROC];
318 int __weak arch_dup_task_struct(struct task_struct *dst,
319 struct task_struct *src)
321 *dst = *src;
322 return 0;
325 void set_task_stack_end_magic(struct task_struct *tsk)
327 unsigned long *stackend;
329 stackend = end_of_stack(tsk);
330 *stackend = STACK_END_MAGIC; /* for overflow detection */
333 static struct task_struct *dup_task_struct(struct task_struct *orig)
335 struct task_struct *tsk;
336 struct thread_info *ti;
337 int node = tsk_fork_get_node(orig);
338 int err;
340 tsk = alloc_task_struct_node(node);
341 if (!tsk)
342 return NULL;
344 ti = alloc_thread_info_node(tsk, node);
345 if (!ti)
346 goto free_tsk;
348 err = arch_dup_task_struct(tsk, orig);
349 if (err)
350 goto free_ti;
352 tsk->stack = ti;
353 #ifdef CONFIG_SECCOMP
355 * We must handle setting up seccomp filters once we're under
356 * the sighand lock in case orig has changed between now and
357 * then. Until then, filter must be NULL to avoid messing up
358 * the usage counts on the error path calling free_task.
360 tsk->seccomp.filter = NULL;
361 #endif
363 setup_thread_stack(tsk, orig);
364 clear_user_return_notifier(tsk);
365 clear_tsk_need_resched(tsk);
366 set_task_stack_end_magic(tsk);
368 #ifdef CONFIG_CC_STACKPROTECTOR
369 tsk->stack_canary = get_random_int();
370 #endif
373 * One for us, one for whoever does the "release_task()" (usually
374 * parent)
376 atomic_set(&tsk->usage, 2);
377 #ifdef CONFIG_BLK_DEV_IO_TRACE
378 tsk->btrace_seq = 0;
379 #endif
380 tsk->splice_pipe = NULL;
381 tsk->task_frag.page = NULL;
383 account_kernel_stack(ti, 1);
385 return tsk;
387 free_ti:
388 free_thread_info(ti);
389 free_tsk:
390 free_task_struct(tsk);
391 return NULL;
394 #ifdef CONFIG_MMU
395 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
397 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
398 struct rb_node **rb_link, *rb_parent;
399 int retval;
400 unsigned long charge;
402 uprobe_start_dup_mmap();
403 down_write(&oldmm->mmap_sem);
404 flush_cache_dup_mm(oldmm);
405 uprobe_dup_mmap(oldmm, mm);
407 * Not linked in yet - no deadlock potential:
409 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
411 /* No ordering required: file already has been exposed. */
412 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
414 mm->total_vm = oldmm->total_vm;
415 mm->shared_vm = oldmm->shared_vm;
416 mm->exec_vm = oldmm->exec_vm;
417 mm->stack_vm = oldmm->stack_vm;
419 rb_link = &mm->mm_rb.rb_node;
420 rb_parent = NULL;
421 pprev = &mm->mmap;
422 retval = ksm_fork(mm, oldmm);
423 if (retval)
424 goto out;
425 retval = khugepaged_fork(mm, oldmm);
426 if (retval)
427 goto out;
429 prev = NULL;
430 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
431 struct file *file;
433 if (mpnt->vm_flags & VM_DONTCOPY) {
434 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
435 -vma_pages(mpnt));
436 continue;
438 charge = 0;
439 if (mpnt->vm_flags & VM_ACCOUNT) {
440 unsigned long len = vma_pages(mpnt);
442 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
443 goto fail_nomem;
444 charge = len;
446 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
447 if (!tmp)
448 goto fail_nomem;
449 *tmp = *mpnt;
450 INIT_LIST_HEAD(&tmp->anon_vma_chain);
451 retval = vma_dup_policy(mpnt, tmp);
452 if (retval)
453 goto fail_nomem_policy;
454 tmp->vm_mm = mm;
455 if (anon_vma_fork(tmp, mpnt))
456 goto fail_nomem_anon_vma_fork;
457 tmp->vm_flags &= ~VM_LOCKED;
458 tmp->vm_next = tmp->vm_prev = NULL;
459 file = tmp->vm_file;
460 if (file) {
461 struct inode *inode = file_inode(file);
462 struct address_space *mapping = file->f_mapping;
464 get_file(file);
465 if (tmp->vm_flags & VM_DENYWRITE)
466 atomic_dec(&inode->i_writecount);
467 i_mmap_lock_write(mapping);
468 if (tmp->vm_flags & VM_SHARED)
469 atomic_inc(&mapping->i_mmap_writable);
470 flush_dcache_mmap_lock(mapping);
471 /* insert tmp into the share list, just after mpnt */
472 vma_interval_tree_insert_after(tmp, mpnt,
473 &mapping->i_mmap);
474 flush_dcache_mmap_unlock(mapping);
475 i_mmap_unlock_write(mapping);
479 * Clear hugetlb-related page reserves for children. This only
480 * affects MAP_PRIVATE mappings. Faults generated by the child
481 * are not guaranteed to succeed, even if read-only
483 if (is_vm_hugetlb_page(tmp))
484 reset_vma_resv_huge_pages(tmp);
487 * Link in the new vma and copy the page table entries.
489 *pprev = tmp;
490 pprev = &tmp->vm_next;
491 tmp->vm_prev = prev;
492 prev = tmp;
494 __vma_link_rb(mm, tmp, rb_link, rb_parent);
495 rb_link = &tmp->vm_rb.rb_right;
496 rb_parent = &tmp->vm_rb;
498 mm->map_count++;
499 retval = copy_page_range(mm, oldmm, mpnt);
501 if (tmp->vm_ops && tmp->vm_ops->open)
502 tmp->vm_ops->open(tmp);
504 if (retval)
505 goto out;
507 /* a new mm has just been created */
508 arch_dup_mmap(oldmm, mm);
509 retval = 0;
510 out:
511 up_write(&mm->mmap_sem);
512 flush_tlb_mm(oldmm);
513 up_write(&oldmm->mmap_sem);
514 uprobe_end_dup_mmap();
515 return retval;
516 fail_nomem_anon_vma_fork:
517 mpol_put(vma_policy(tmp));
518 fail_nomem_policy:
519 kmem_cache_free(vm_area_cachep, tmp);
520 fail_nomem:
521 retval = -ENOMEM;
522 vm_unacct_memory(charge);
523 goto out;
526 static inline int mm_alloc_pgd(struct mm_struct *mm)
528 mm->pgd = pgd_alloc(mm);
529 if (unlikely(!mm->pgd))
530 return -ENOMEM;
531 return 0;
534 static inline void mm_free_pgd(struct mm_struct *mm)
536 pgd_free(mm, mm->pgd);
538 #else
539 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
541 down_write(&oldmm->mmap_sem);
542 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
543 up_write(&oldmm->mmap_sem);
544 return 0;
546 #define mm_alloc_pgd(mm) (0)
547 #define mm_free_pgd(mm)
548 #endif /* CONFIG_MMU */
550 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
552 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
553 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
555 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
557 static int __init coredump_filter_setup(char *s)
559 default_dump_filter =
560 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
561 MMF_DUMP_FILTER_MASK;
562 return 1;
565 __setup("coredump_filter=", coredump_filter_setup);
567 #include <linux/init_task.h>
569 static void mm_init_aio(struct mm_struct *mm)
571 #ifdef CONFIG_AIO
572 spin_lock_init(&mm->ioctx_lock);
573 mm->ioctx_table = NULL;
574 #endif
577 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
579 #ifdef CONFIG_MEMCG
580 mm->owner = p;
581 #endif
584 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
586 mm->mmap = NULL;
587 mm->mm_rb = RB_ROOT;
588 mm->vmacache_seqnum = 0;
589 atomic_set(&mm->mm_users, 1);
590 atomic_set(&mm->mm_count, 1);
591 init_rwsem(&mm->mmap_sem);
592 INIT_LIST_HEAD(&mm->mmlist);
593 mm->core_state = NULL;
594 atomic_long_set(&mm->nr_ptes, 0);
595 mm_nr_pmds_init(mm);
596 mm->map_count = 0;
597 mm->locked_vm = 0;
598 mm->pinned_vm = 0;
599 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
600 spin_lock_init(&mm->page_table_lock);
601 mm_init_cpumask(mm);
602 mm_init_aio(mm);
603 mm_init_owner(mm, p);
604 mmu_notifier_mm_init(mm);
605 clear_tlb_flush_pending(mm);
606 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
607 mm->pmd_huge_pte = NULL;
608 #endif
610 if (current->mm) {
611 mm->flags = current->mm->flags & MMF_INIT_MASK;
612 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
613 } else {
614 mm->flags = default_dump_filter;
615 mm->def_flags = 0;
618 if (mm_alloc_pgd(mm))
619 goto fail_nopgd;
621 if (init_new_context(p, mm))
622 goto fail_nocontext;
624 return mm;
626 fail_nocontext:
627 mm_free_pgd(mm);
628 fail_nopgd:
629 free_mm(mm);
630 return NULL;
633 static void check_mm(struct mm_struct *mm)
635 int i;
637 for (i = 0; i < NR_MM_COUNTERS; i++) {
638 long x = atomic_long_read(&mm->rss_stat.count[i]);
640 if (unlikely(x))
641 printk(KERN_ALERT "BUG: Bad rss-counter state "
642 "mm:%p idx:%d val:%ld\n", mm, i, x);
645 if (atomic_long_read(&mm->nr_ptes))
646 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
647 atomic_long_read(&mm->nr_ptes));
648 if (mm_nr_pmds(mm))
649 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
650 mm_nr_pmds(mm));
652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
653 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
654 #endif
658 * Allocate and initialize an mm_struct.
660 struct mm_struct *mm_alloc(void)
662 struct mm_struct *mm;
664 mm = allocate_mm();
665 if (!mm)
666 return NULL;
668 memset(mm, 0, sizeof(*mm));
669 return mm_init(mm, current);
673 * Called when the last reference to the mm
674 * is dropped: either by a lazy thread or by
675 * mmput. Free the page directory and the mm.
677 void __mmdrop(struct mm_struct *mm)
679 BUG_ON(mm == &init_mm);
680 mm_free_pgd(mm);
681 destroy_context(mm);
682 mmu_notifier_mm_destroy(mm);
683 check_mm(mm);
684 free_mm(mm);
686 EXPORT_SYMBOL_GPL(__mmdrop);
689 * Decrement the use count and release all resources for an mm.
691 void mmput(struct mm_struct *mm)
693 might_sleep();
695 if (atomic_dec_and_test(&mm->mm_users)) {
696 uprobe_clear_state(mm);
697 exit_aio(mm);
698 ksm_exit(mm);
699 khugepaged_exit(mm); /* must run before exit_mmap */
700 exit_mmap(mm);
701 set_mm_exe_file(mm, NULL);
702 if (!list_empty(&mm->mmlist)) {
703 spin_lock(&mmlist_lock);
704 list_del(&mm->mmlist);
705 spin_unlock(&mmlist_lock);
707 if (mm->binfmt)
708 module_put(mm->binfmt->module);
709 mmdrop(mm);
712 EXPORT_SYMBOL_GPL(mmput);
715 * set_mm_exe_file - change a reference to the mm's executable file
717 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
719 * Main users are mmput() and sys_execve(). Callers prevent concurrent
720 * invocations: in mmput() nobody alive left, in execve task is single
721 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
722 * mm->exe_file, but does so without using set_mm_exe_file() in order
723 * to do avoid the need for any locks.
725 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
727 struct file *old_exe_file;
730 * It is safe to dereference the exe_file without RCU as
731 * this function is only called if nobody else can access
732 * this mm -- see comment above for justification.
734 old_exe_file = rcu_dereference_raw(mm->exe_file);
736 if (new_exe_file)
737 get_file(new_exe_file);
738 rcu_assign_pointer(mm->exe_file, new_exe_file);
739 if (old_exe_file)
740 fput(old_exe_file);
744 * get_mm_exe_file - acquire a reference to the mm's executable file
746 * Returns %NULL if mm has no associated executable file.
747 * User must release file via fput().
749 struct file *get_mm_exe_file(struct mm_struct *mm)
751 struct file *exe_file;
753 rcu_read_lock();
754 exe_file = rcu_dereference(mm->exe_file);
755 if (exe_file && !get_file_rcu(exe_file))
756 exe_file = NULL;
757 rcu_read_unlock();
758 return exe_file;
760 EXPORT_SYMBOL(get_mm_exe_file);
763 * get_task_mm - acquire a reference to the task's mm
765 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
766 * this kernel workthread has transiently adopted a user mm with use_mm,
767 * to do its AIO) is not set and if so returns a reference to it, after
768 * bumping up the use count. User must release the mm via mmput()
769 * after use. Typically used by /proc and ptrace.
771 struct mm_struct *get_task_mm(struct task_struct *task)
773 struct mm_struct *mm;
775 task_lock(task);
776 mm = task->mm;
777 if (mm) {
778 if (task->flags & PF_KTHREAD)
779 mm = NULL;
780 else
781 atomic_inc(&mm->mm_users);
783 task_unlock(task);
784 return mm;
786 EXPORT_SYMBOL_GPL(get_task_mm);
788 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
790 struct mm_struct *mm;
791 int err;
793 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
794 if (err)
795 return ERR_PTR(err);
797 mm = get_task_mm(task);
798 if (mm && mm != current->mm &&
799 !ptrace_may_access(task, mode)) {
800 mmput(mm);
801 mm = ERR_PTR(-EACCES);
803 mutex_unlock(&task->signal->cred_guard_mutex);
805 return mm;
808 static void complete_vfork_done(struct task_struct *tsk)
810 struct completion *vfork;
812 task_lock(tsk);
813 vfork = tsk->vfork_done;
814 if (likely(vfork)) {
815 tsk->vfork_done = NULL;
816 complete(vfork);
818 task_unlock(tsk);
821 static int wait_for_vfork_done(struct task_struct *child,
822 struct completion *vfork)
824 int killed;
826 freezer_do_not_count();
827 killed = wait_for_completion_killable(vfork);
828 freezer_count();
830 if (killed) {
831 task_lock(child);
832 child->vfork_done = NULL;
833 task_unlock(child);
836 put_task_struct(child);
837 return killed;
840 /* Please note the differences between mmput and mm_release.
841 * mmput is called whenever we stop holding onto a mm_struct,
842 * error success whatever.
844 * mm_release is called after a mm_struct has been removed
845 * from the current process.
847 * This difference is important for error handling, when we
848 * only half set up a mm_struct for a new process and need to restore
849 * the old one. Because we mmput the new mm_struct before
850 * restoring the old one. . .
851 * Eric Biederman 10 January 1998
853 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
855 /* Get rid of any futexes when releasing the mm */
856 #ifdef CONFIG_FUTEX
857 if (unlikely(tsk->robust_list)) {
858 exit_robust_list(tsk);
859 tsk->robust_list = NULL;
861 #ifdef CONFIG_COMPAT
862 if (unlikely(tsk->compat_robust_list)) {
863 compat_exit_robust_list(tsk);
864 tsk->compat_robust_list = NULL;
866 #endif
867 if (unlikely(!list_empty(&tsk->pi_state_list)))
868 exit_pi_state_list(tsk);
869 #endif
871 uprobe_free_utask(tsk);
873 /* Get rid of any cached register state */
874 deactivate_mm(tsk, mm);
877 * If we're exiting normally, clear a user-space tid field if
878 * requested. We leave this alone when dying by signal, to leave
879 * the value intact in a core dump, and to save the unnecessary
880 * trouble, say, a killed vfork parent shouldn't touch this mm.
881 * Userland only wants this done for a sys_exit.
883 if (tsk->clear_child_tid) {
884 if (!(tsk->flags & PF_SIGNALED) &&
885 atomic_read(&mm->mm_users) > 1) {
887 * We don't check the error code - if userspace has
888 * not set up a proper pointer then tough luck.
890 put_user(0, tsk->clear_child_tid);
891 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
892 1, NULL, NULL, 0);
894 tsk->clear_child_tid = NULL;
898 * All done, finally we can wake up parent and return this mm to him.
899 * Also kthread_stop() uses this completion for synchronization.
901 if (tsk->vfork_done)
902 complete_vfork_done(tsk);
906 * Allocate a new mm structure and copy contents from the
907 * mm structure of the passed in task structure.
909 static struct mm_struct *dup_mm(struct task_struct *tsk)
911 struct mm_struct *mm, *oldmm = current->mm;
912 int err;
914 mm = allocate_mm();
915 if (!mm)
916 goto fail_nomem;
918 memcpy(mm, oldmm, sizeof(*mm));
920 if (!mm_init(mm, tsk))
921 goto fail_nomem;
923 err = dup_mmap(mm, oldmm);
924 if (err)
925 goto free_pt;
927 mm->hiwater_rss = get_mm_rss(mm);
928 mm->hiwater_vm = mm->total_vm;
930 if (mm->binfmt && !try_module_get(mm->binfmt->module))
931 goto free_pt;
933 return mm;
935 free_pt:
936 /* don't put binfmt in mmput, we haven't got module yet */
937 mm->binfmt = NULL;
938 mmput(mm);
940 fail_nomem:
941 return NULL;
944 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
946 struct mm_struct *mm, *oldmm;
947 int retval;
949 tsk->min_flt = tsk->maj_flt = 0;
950 tsk->nvcsw = tsk->nivcsw = 0;
951 #ifdef CONFIG_DETECT_HUNG_TASK
952 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
953 #endif
955 tsk->mm = NULL;
956 tsk->active_mm = NULL;
959 * Are we cloning a kernel thread?
961 * We need to steal a active VM for that..
963 oldmm = current->mm;
964 if (!oldmm)
965 return 0;
967 /* initialize the new vmacache entries */
968 vmacache_flush(tsk);
970 if (clone_flags & CLONE_VM) {
971 atomic_inc(&oldmm->mm_users);
972 mm = oldmm;
973 goto good_mm;
976 retval = -ENOMEM;
977 mm = dup_mm(tsk);
978 if (!mm)
979 goto fail_nomem;
981 good_mm:
982 tsk->mm = mm;
983 tsk->active_mm = mm;
984 return 0;
986 fail_nomem:
987 return retval;
990 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
992 struct fs_struct *fs = current->fs;
993 if (clone_flags & CLONE_FS) {
994 /* tsk->fs is already what we want */
995 spin_lock(&fs->lock);
996 if (fs->in_exec) {
997 spin_unlock(&fs->lock);
998 return -EAGAIN;
1000 fs->users++;
1001 spin_unlock(&fs->lock);
1002 return 0;
1004 tsk->fs = copy_fs_struct(fs);
1005 if (!tsk->fs)
1006 return -ENOMEM;
1007 return 0;
1010 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1012 struct files_struct *oldf, *newf;
1013 int error = 0;
1016 * A background process may not have any files ...
1018 oldf = current->files;
1019 if (!oldf)
1020 goto out;
1022 if (clone_flags & CLONE_FILES) {
1023 atomic_inc(&oldf->count);
1024 goto out;
1027 newf = dup_fd(oldf, &error);
1028 if (!newf)
1029 goto out;
1031 tsk->files = newf;
1032 error = 0;
1033 out:
1034 return error;
1037 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1039 #ifdef CONFIG_BLOCK
1040 struct io_context *ioc = current->io_context;
1041 struct io_context *new_ioc;
1043 if (!ioc)
1044 return 0;
1046 * Share io context with parent, if CLONE_IO is set
1048 if (clone_flags & CLONE_IO) {
1049 ioc_task_link(ioc);
1050 tsk->io_context = ioc;
1051 } else if (ioprio_valid(ioc->ioprio)) {
1052 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1053 if (unlikely(!new_ioc))
1054 return -ENOMEM;
1056 new_ioc->ioprio = ioc->ioprio;
1057 put_io_context(new_ioc);
1059 #endif
1060 return 0;
1063 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1065 struct sighand_struct *sig;
1067 if (clone_flags & CLONE_SIGHAND) {
1068 atomic_inc(&current->sighand->count);
1069 return 0;
1071 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1072 rcu_assign_pointer(tsk->sighand, sig);
1073 if (!sig)
1074 return -ENOMEM;
1075 atomic_set(&sig->count, 1);
1076 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1077 return 0;
1080 void __cleanup_sighand(struct sighand_struct *sighand)
1082 if (atomic_dec_and_test(&sighand->count)) {
1083 signalfd_cleanup(sighand);
1085 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1086 * without an RCU grace period, see __lock_task_sighand().
1088 kmem_cache_free(sighand_cachep, sighand);
1093 * Initialize POSIX timer handling for a thread group.
1095 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1097 unsigned long cpu_limit;
1099 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1100 if (cpu_limit != RLIM_INFINITY) {
1101 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1102 sig->cputimer.running = 1;
1105 /* The timer lists. */
1106 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1107 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1108 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1111 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1113 struct signal_struct *sig;
1115 if (clone_flags & CLONE_THREAD)
1116 return 0;
1118 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1119 tsk->signal = sig;
1120 if (!sig)
1121 return -ENOMEM;
1123 sig->nr_threads = 1;
1124 atomic_set(&sig->live, 1);
1125 atomic_set(&sig->sigcnt, 1);
1127 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1128 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1129 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1131 init_waitqueue_head(&sig->wait_chldexit);
1132 sig->curr_target = tsk;
1133 init_sigpending(&sig->shared_pending);
1134 INIT_LIST_HEAD(&sig->posix_timers);
1135 seqlock_init(&sig->stats_lock);
1137 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1138 sig->real_timer.function = it_real_fn;
1140 task_lock(current->group_leader);
1141 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1142 task_unlock(current->group_leader);
1144 posix_cpu_timers_init_group(sig);
1146 tty_audit_fork(sig);
1147 sched_autogroup_fork(sig);
1149 #ifdef CONFIG_CGROUPS
1150 init_rwsem(&sig->group_rwsem);
1151 #endif
1153 sig->oom_score_adj = current->signal->oom_score_adj;
1154 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1156 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1157 current->signal->is_child_subreaper;
1159 mutex_init(&sig->cred_guard_mutex);
1161 return 0;
1164 static void copy_seccomp(struct task_struct *p)
1166 #ifdef CONFIG_SECCOMP
1168 * Must be called with sighand->lock held, which is common to
1169 * all threads in the group. Holding cred_guard_mutex is not
1170 * needed because this new task is not yet running and cannot
1171 * be racing exec.
1173 assert_spin_locked(&current->sighand->siglock);
1175 /* Ref-count the new filter user, and assign it. */
1176 get_seccomp_filter(current);
1177 p->seccomp = current->seccomp;
1180 * Explicitly enable no_new_privs here in case it got set
1181 * between the task_struct being duplicated and holding the
1182 * sighand lock. The seccomp state and nnp must be in sync.
1184 if (task_no_new_privs(current))
1185 task_set_no_new_privs(p);
1188 * If the parent gained a seccomp mode after copying thread
1189 * flags and between before we held the sighand lock, we have
1190 * to manually enable the seccomp thread flag here.
1192 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1193 set_tsk_thread_flag(p, TIF_SECCOMP);
1194 #endif
1197 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1199 current->clear_child_tid = tidptr;
1201 return task_pid_vnr(current);
1204 static void rt_mutex_init_task(struct task_struct *p)
1206 raw_spin_lock_init(&p->pi_lock);
1207 #ifdef CONFIG_RT_MUTEXES
1208 p->pi_waiters = RB_ROOT;
1209 p->pi_waiters_leftmost = NULL;
1210 p->pi_blocked_on = NULL;
1211 #endif
1215 * Initialize POSIX timer handling for a single task.
1217 static void posix_cpu_timers_init(struct task_struct *tsk)
1219 tsk->cputime_expires.prof_exp = 0;
1220 tsk->cputime_expires.virt_exp = 0;
1221 tsk->cputime_expires.sched_exp = 0;
1222 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1223 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1224 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1227 static inline void
1228 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1230 task->pids[type].pid = pid;
1234 * This creates a new process as a copy of the old one,
1235 * but does not actually start it yet.
1237 * It copies the registers, and all the appropriate
1238 * parts of the process environment (as per the clone
1239 * flags). The actual kick-off is left to the caller.
1241 static struct task_struct *copy_process(unsigned long clone_flags,
1242 unsigned long stack_start,
1243 unsigned long stack_size,
1244 int __user *child_tidptr,
1245 struct pid *pid,
1246 int trace,
1247 unsigned long tls)
1249 int retval;
1250 struct task_struct *p;
1252 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1253 return ERR_PTR(-EINVAL);
1255 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1256 return ERR_PTR(-EINVAL);
1259 * Thread groups must share signals as well, and detached threads
1260 * can only be started up within the thread group.
1262 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1263 return ERR_PTR(-EINVAL);
1266 * Shared signal handlers imply shared VM. By way of the above,
1267 * thread groups also imply shared VM. Blocking this case allows
1268 * for various simplifications in other code.
1270 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1271 return ERR_PTR(-EINVAL);
1274 * Siblings of global init remain as zombies on exit since they are
1275 * not reaped by their parent (swapper). To solve this and to avoid
1276 * multi-rooted process trees, prevent global and container-inits
1277 * from creating siblings.
1279 if ((clone_flags & CLONE_PARENT) &&
1280 current->signal->flags & SIGNAL_UNKILLABLE)
1281 return ERR_PTR(-EINVAL);
1284 * If the new process will be in a different pid or user namespace
1285 * do not allow it to share a thread group or signal handlers or
1286 * parent with the forking task.
1288 if (clone_flags & CLONE_SIGHAND) {
1289 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1290 (task_active_pid_ns(current) !=
1291 current->nsproxy->pid_ns_for_children))
1292 return ERR_PTR(-EINVAL);
1295 retval = security_task_create(clone_flags);
1296 if (retval)
1297 goto fork_out;
1299 retval = -ENOMEM;
1300 p = dup_task_struct(current);
1301 if (!p)
1302 goto fork_out;
1304 ftrace_graph_init_task(p);
1306 rt_mutex_init_task(p);
1308 #ifdef CONFIG_PROVE_LOCKING
1309 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1310 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1311 #endif
1312 retval = -EAGAIN;
1313 if (atomic_read(&p->real_cred->user->processes) >=
1314 task_rlimit(p, RLIMIT_NPROC)) {
1315 if (p->real_cred->user != INIT_USER &&
1316 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1317 goto bad_fork_free;
1319 current->flags &= ~PF_NPROC_EXCEEDED;
1321 retval = copy_creds(p, clone_flags);
1322 if (retval < 0)
1323 goto bad_fork_free;
1326 * If multiple threads are within copy_process(), then this check
1327 * triggers too late. This doesn't hurt, the check is only there
1328 * to stop root fork bombs.
1330 retval = -EAGAIN;
1331 if (nr_threads >= max_threads)
1332 goto bad_fork_cleanup_count;
1334 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1335 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1336 p->flags |= PF_FORKNOEXEC;
1337 INIT_LIST_HEAD(&p->children);
1338 INIT_LIST_HEAD(&p->sibling);
1339 rcu_copy_process(p);
1340 p->vfork_done = NULL;
1341 spin_lock_init(&p->alloc_lock);
1343 init_sigpending(&p->pending);
1345 p->utime = p->stime = p->gtime = 0;
1346 p->utimescaled = p->stimescaled = 0;
1347 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1348 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1349 #endif
1350 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1351 seqlock_init(&p->vtime_seqlock);
1352 p->vtime_snap = 0;
1353 p->vtime_snap_whence = VTIME_SLEEPING;
1354 #endif
1356 #if defined(SPLIT_RSS_COUNTING)
1357 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1358 #endif
1360 p->default_timer_slack_ns = current->timer_slack_ns;
1362 task_io_accounting_init(&p->ioac);
1363 acct_clear_integrals(p);
1365 posix_cpu_timers_init(p);
1367 p->start_time = ktime_get_ns();
1368 p->real_start_time = ktime_get_boot_ns();
1369 p->io_context = NULL;
1370 p->audit_context = NULL;
1371 if (clone_flags & CLONE_THREAD)
1372 threadgroup_change_begin(current);
1373 cgroup_fork(p);
1374 #ifdef CONFIG_NUMA
1375 p->mempolicy = mpol_dup(p->mempolicy);
1376 if (IS_ERR(p->mempolicy)) {
1377 retval = PTR_ERR(p->mempolicy);
1378 p->mempolicy = NULL;
1379 goto bad_fork_cleanup_threadgroup_lock;
1381 #endif
1382 #ifdef CONFIG_CPUSETS
1383 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1384 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1385 seqcount_init(&p->mems_allowed_seq);
1386 #endif
1387 #ifdef CONFIG_TRACE_IRQFLAGS
1388 p->irq_events = 0;
1389 p->hardirqs_enabled = 0;
1390 p->hardirq_enable_ip = 0;
1391 p->hardirq_enable_event = 0;
1392 p->hardirq_disable_ip = _THIS_IP_;
1393 p->hardirq_disable_event = 0;
1394 p->softirqs_enabled = 1;
1395 p->softirq_enable_ip = _THIS_IP_;
1396 p->softirq_enable_event = 0;
1397 p->softirq_disable_ip = 0;
1398 p->softirq_disable_event = 0;
1399 p->hardirq_context = 0;
1400 p->softirq_context = 0;
1401 #endif
1403 p->pagefault_disabled = 0;
1405 #ifdef CONFIG_LOCKDEP
1406 p->lockdep_depth = 0; /* no locks held yet */
1407 p->curr_chain_key = 0;
1408 p->lockdep_recursion = 0;
1409 #endif
1411 #ifdef CONFIG_DEBUG_MUTEXES
1412 p->blocked_on = NULL; /* not blocked yet */
1413 #endif
1414 #ifdef CONFIG_BCACHE
1415 p->sequential_io = 0;
1416 p->sequential_io_avg = 0;
1417 #endif
1419 /* Perform scheduler related setup. Assign this task to a CPU. */
1420 retval = sched_fork(clone_flags, p);
1421 if (retval)
1422 goto bad_fork_cleanup_policy;
1424 retval = perf_event_init_task(p);
1425 if (retval)
1426 goto bad_fork_cleanup_policy;
1427 retval = audit_alloc(p);
1428 if (retval)
1429 goto bad_fork_cleanup_perf;
1430 /* copy all the process information */
1431 shm_init_task(p);
1432 retval = copy_semundo(clone_flags, p);
1433 if (retval)
1434 goto bad_fork_cleanup_audit;
1435 retval = copy_files(clone_flags, p);
1436 if (retval)
1437 goto bad_fork_cleanup_semundo;
1438 retval = copy_fs(clone_flags, p);
1439 if (retval)
1440 goto bad_fork_cleanup_files;
1441 retval = copy_sighand(clone_flags, p);
1442 if (retval)
1443 goto bad_fork_cleanup_fs;
1444 retval = copy_signal(clone_flags, p);
1445 if (retval)
1446 goto bad_fork_cleanup_sighand;
1447 retval = copy_mm(clone_flags, p);
1448 if (retval)
1449 goto bad_fork_cleanup_signal;
1450 retval = copy_namespaces(clone_flags, p);
1451 if (retval)
1452 goto bad_fork_cleanup_mm;
1453 retval = copy_io(clone_flags, p);
1454 if (retval)
1455 goto bad_fork_cleanup_namespaces;
1456 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1457 if (retval)
1458 goto bad_fork_cleanup_io;
1460 if (pid != &init_struct_pid) {
1461 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1462 if (IS_ERR(pid)) {
1463 retval = PTR_ERR(pid);
1464 goto bad_fork_cleanup_io;
1468 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1470 * Clear TID on mm_release()?
1472 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1473 #ifdef CONFIG_BLOCK
1474 p->plug = NULL;
1475 #endif
1476 #ifdef CONFIG_FUTEX
1477 p->robust_list = NULL;
1478 #ifdef CONFIG_COMPAT
1479 p->compat_robust_list = NULL;
1480 #endif
1481 INIT_LIST_HEAD(&p->pi_state_list);
1482 p->pi_state_cache = NULL;
1483 #endif
1485 * sigaltstack should be cleared when sharing the same VM
1487 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1488 p->sas_ss_sp = p->sas_ss_size = 0;
1491 * Syscall tracing and stepping should be turned off in the
1492 * child regardless of CLONE_PTRACE.
1494 user_disable_single_step(p);
1495 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1496 #ifdef TIF_SYSCALL_EMU
1497 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1498 #endif
1499 clear_all_latency_tracing(p);
1501 /* ok, now we should be set up.. */
1502 p->pid = pid_nr(pid);
1503 if (clone_flags & CLONE_THREAD) {
1504 p->exit_signal = -1;
1505 p->group_leader = current->group_leader;
1506 p->tgid = current->tgid;
1507 } else {
1508 if (clone_flags & CLONE_PARENT)
1509 p->exit_signal = current->group_leader->exit_signal;
1510 else
1511 p->exit_signal = (clone_flags & CSIGNAL);
1512 p->group_leader = p;
1513 p->tgid = p->pid;
1516 p->nr_dirtied = 0;
1517 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1518 p->dirty_paused_when = 0;
1520 p->pdeath_signal = 0;
1521 INIT_LIST_HEAD(&p->thread_group);
1522 p->task_works = NULL;
1525 * Make it visible to the rest of the system, but dont wake it up yet.
1526 * Need tasklist lock for parent etc handling!
1528 write_lock_irq(&tasklist_lock);
1530 /* CLONE_PARENT re-uses the old parent */
1531 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1532 p->real_parent = current->real_parent;
1533 p->parent_exec_id = current->parent_exec_id;
1534 } else {
1535 p->real_parent = current;
1536 p->parent_exec_id = current->self_exec_id;
1539 spin_lock(&current->sighand->siglock);
1542 * Copy seccomp details explicitly here, in case they were changed
1543 * before holding sighand lock.
1545 copy_seccomp(p);
1548 * Process group and session signals need to be delivered to just the
1549 * parent before the fork or both the parent and the child after the
1550 * fork. Restart if a signal comes in before we add the new process to
1551 * it's process group.
1552 * A fatal signal pending means that current will exit, so the new
1553 * thread can't slip out of an OOM kill (or normal SIGKILL).
1555 recalc_sigpending();
1556 if (signal_pending(current)) {
1557 spin_unlock(&current->sighand->siglock);
1558 write_unlock_irq(&tasklist_lock);
1559 retval = -ERESTARTNOINTR;
1560 goto bad_fork_free_pid;
1563 if (likely(p->pid)) {
1564 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1566 init_task_pid(p, PIDTYPE_PID, pid);
1567 if (thread_group_leader(p)) {
1568 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1569 init_task_pid(p, PIDTYPE_SID, task_session(current));
1571 if (is_child_reaper(pid)) {
1572 ns_of_pid(pid)->child_reaper = p;
1573 p->signal->flags |= SIGNAL_UNKILLABLE;
1576 p->signal->leader_pid = pid;
1577 p->signal->tty = tty_kref_get(current->signal->tty);
1578 list_add_tail(&p->sibling, &p->real_parent->children);
1579 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1580 attach_pid(p, PIDTYPE_PGID);
1581 attach_pid(p, PIDTYPE_SID);
1582 __this_cpu_inc(process_counts);
1583 } else {
1584 current->signal->nr_threads++;
1585 atomic_inc(&current->signal->live);
1586 atomic_inc(&current->signal->sigcnt);
1587 list_add_tail_rcu(&p->thread_group,
1588 &p->group_leader->thread_group);
1589 list_add_tail_rcu(&p->thread_node,
1590 &p->signal->thread_head);
1592 attach_pid(p, PIDTYPE_PID);
1593 nr_threads++;
1596 total_forks++;
1597 spin_unlock(&current->sighand->siglock);
1598 syscall_tracepoint_update(p);
1599 write_unlock_irq(&tasklist_lock);
1601 proc_fork_connector(p);
1602 cgroup_post_fork(p);
1603 if (clone_flags & CLONE_THREAD)
1604 threadgroup_change_end(current);
1605 perf_event_fork(p);
1607 trace_task_newtask(p, clone_flags);
1608 uprobe_copy_process(p, clone_flags);
1610 return p;
1612 bad_fork_free_pid:
1613 if (pid != &init_struct_pid)
1614 free_pid(pid);
1615 bad_fork_cleanup_io:
1616 if (p->io_context)
1617 exit_io_context(p);
1618 bad_fork_cleanup_namespaces:
1619 exit_task_namespaces(p);
1620 bad_fork_cleanup_mm:
1621 if (p->mm)
1622 mmput(p->mm);
1623 bad_fork_cleanup_signal:
1624 if (!(clone_flags & CLONE_THREAD))
1625 free_signal_struct(p->signal);
1626 bad_fork_cleanup_sighand:
1627 __cleanup_sighand(p->sighand);
1628 bad_fork_cleanup_fs:
1629 exit_fs(p); /* blocking */
1630 bad_fork_cleanup_files:
1631 exit_files(p); /* blocking */
1632 bad_fork_cleanup_semundo:
1633 exit_sem(p);
1634 bad_fork_cleanup_audit:
1635 audit_free(p);
1636 bad_fork_cleanup_perf:
1637 perf_event_free_task(p);
1638 bad_fork_cleanup_policy:
1639 #ifdef CONFIG_NUMA
1640 mpol_put(p->mempolicy);
1641 bad_fork_cleanup_threadgroup_lock:
1642 #endif
1643 if (clone_flags & CLONE_THREAD)
1644 threadgroup_change_end(current);
1645 delayacct_tsk_free(p);
1646 bad_fork_cleanup_count:
1647 atomic_dec(&p->cred->user->processes);
1648 exit_creds(p);
1649 bad_fork_free:
1650 free_task(p);
1651 fork_out:
1652 return ERR_PTR(retval);
1655 static inline void init_idle_pids(struct pid_link *links)
1657 enum pid_type type;
1659 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1660 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1661 links[type].pid = &init_struct_pid;
1665 struct task_struct *fork_idle(int cpu)
1667 struct task_struct *task;
1668 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1669 if (!IS_ERR(task)) {
1670 init_idle_pids(task->pids);
1671 init_idle(task, cpu);
1674 return task;
1678 * Ok, this is the main fork-routine.
1680 * It copies the process, and if successful kick-starts
1681 * it and waits for it to finish using the VM if required.
1683 long _do_fork(unsigned long clone_flags,
1684 unsigned long stack_start,
1685 unsigned long stack_size,
1686 int __user *parent_tidptr,
1687 int __user *child_tidptr,
1688 unsigned long tls)
1690 struct task_struct *p;
1691 int trace = 0;
1692 long nr;
1695 * Determine whether and which event to report to ptracer. When
1696 * called from kernel_thread or CLONE_UNTRACED is explicitly
1697 * requested, no event is reported; otherwise, report if the event
1698 * for the type of forking is enabled.
1700 if (!(clone_flags & CLONE_UNTRACED)) {
1701 if (clone_flags & CLONE_VFORK)
1702 trace = PTRACE_EVENT_VFORK;
1703 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1704 trace = PTRACE_EVENT_CLONE;
1705 else
1706 trace = PTRACE_EVENT_FORK;
1708 if (likely(!ptrace_event_enabled(current, trace)))
1709 trace = 0;
1712 p = copy_process(clone_flags, stack_start, stack_size,
1713 child_tidptr, NULL, trace, tls);
1715 * Do this prior waking up the new thread - the thread pointer
1716 * might get invalid after that point, if the thread exits quickly.
1718 if (!IS_ERR(p)) {
1719 struct completion vfork;
1720 struct pid *pid;
1722 trace_sched_process_fork(current, p);
1724 pid = get_task_pid(p, PIDTYPE_PID);
1725 nr = pid_vnr(pid);
1727 if (clone_flags & CLONE_PARENT_SETTID)
1728 put_user(nr, parent_tidptr);
1730 if (clone_flags & CLONE_VFORK) {
1731 p->vfork_done = &vfork;
1732 init_completion(&vfork);
1733 get_task_struct(p);
1736 wake_up_new_task(p);
1738 /* forking complete and child started to run, tell ptracer */
1739 if (unlikely(trace))
1740 ptrace_event_pid(trace, pid);
1742 if (clone_flags & CLONE_VFORK) {
1743 if (!wait_for_vfork_done(p, &vfork))
1744 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1747 put_pid(pid);
1748 } else {
1749 nr = PTR_ERR(p);
1751 return nr;
1754 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1755 /* For compatibility with architectures that call do_fork directly rather than
1756 * using the syscall entry points below. */
1757 long do_fork(unsigned long clone_flags,
1758 unsigned long stack_start,
1759 unsigned long stack_size,
1760 int __user *parent_tidptr,
1761 int __user *child_tidptr)
1763 return _do_fork(clone_flags, stack_start, stack_size,
1764 parent_tidptr, child_tidptr, 0);
1766 #endif
1769 * Create a kernel thread.
1771 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1773 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1774 (unsigned long)arg, NULL, NULL, 0);
1777 #ifdef __ARCH_WANT_SYS_FORK
1778 SYSCALL_DEFINE0(fork)
1780 #ifdef CONFIG_MMU
1781 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1782 #else
1783 /* can not support in nommu mode */
1784 return -EINVAL;
1785 #endif
1787 #endif
1789 #ifdef __ARCH_WANT_SYS_VFORK
1790 SYSCALL_DEFINE0(vfork)
1792 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1793 0, NULL, NULL, 0);
1795 #endif
1797 #ifdef __ARCH_WANT_SYS_CLONE
1798 #ifdef CONFIG_CLONE_BACKWARDS
1799 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1800 int __user *, parent_tidptr,
1801 unsigned long, tls,
1802 int __user *, child_tidptr)
1803 #elif defined(CONFIG_CLONE_BACKWARDS2)
1804 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1805 int __user *, parent_tidptr,
1806 int __user *, child_tidptr,
1807 unsigned long, tls)
1808 #elif defined(CONFIG_CLONE_BACKWARDS3)
1809 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1810 int, stack_size,
1811 int __user *, parent_tidptr,
1812 int __user *, child_tidptr,
1813 unsigned long, tls)
1814 #else
1815 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1816 int __user *, parent_tidptr,
1817 int __user *, child_tidptr,
1818 unsigned long, tls)
1819 #endif
1821 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1823 #endif
1825 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1826 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1827 #endif
1829 static void sighand_ctor(void *data)
1831 struct sighand_struct *sighand = data;
1833 spin_lock_init(&sighand->siglock);
1834 init_waitqueue_head(&sighand->signalfd_wqh);
1837 void __init proc_caches_init(void)
1839 sighand_cachep = kmem_cache_create("sighand_cache",
1840 sizeof(struct sighand_struct), 0,
1841 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1842 SLAB_NOTRACK, sighand_ctor);
1843 signal_cachep = kmem_cache_create("signal_cache",
1844 sizeof(struct signal_struct), 0,
1845 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1846 files_cachep = kmem_cache_create("files_cache",
1847 sizeof(struct files_struct), 0,
1848 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1849 fs_cachep = kmem_cache_create("fs_cache",
1850 sizeof(struct fs_struct), 0,
1851 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1853 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1854 * whole struct cpumask for the OFFSTACK case. We could change
1855 * this to *only* allocate as much of it as required by the
1856 * maximum number of CPU's we can ever have. The cpumask_allocation
1857 * is at the end of the structure, exactly for that reason.
1859 mm_cachep = kmem_cache_create("mm_struct",
1860 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1861 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1862 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1863 mmap_init();
1864 nsproxy_cache_init();
1868 * Check constraints on flags passed to the unshare system call.
1870 static int check_unshare_flags(unsigned long unshare_flags)
1872 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1873 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1874 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1875 CLONE_NEWUSER|CLONE_NEWPID))
1876 return -EINVAL;
1878 * Not implemented, but pretend it works if there is nothing
1879 * to unshare. Note that unsharing the address space or the
1880 * signal handlers also need to unshare the signal queues (aka
1881 * CLONE_THREAD).
1883 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1884 if (!thread_group_empty(current))
1885 return -EINVAL;
1887 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1888 if (atomic_read(&current->sighand->count) > 1)
1889 return -EINVAL;
1891 if (unshare_flags & CLONE_VM) {
1892 if (!current_is_single_threaded())
1893 return -EINVAL;
1896 return 0;
1900 * Unshare the filesystem structure if it is being shared
1902 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1904 struct fs_struct *fs = current->fs;
1906 if (!(unshare_flags & CLONE_FS) || !fs)
1907 return 0;
1909 /* don't need lock here; in the worst case we'll do useless copy */
1910 if (fs->users == 1)
1911 return 0;
1913 *new_fsp = copy_fs_struct(fs);
1914 if (!*new_fsp)
1915 return -ENOMEM;
1917 return 0;
1921 * Unshare file descriptor table if it is being shared
1923 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1925 struct files_struct *fd = current->files;
1926 int error = 0;
1928 if ((unshare_flags & CLONE_FILES) &&
1929 (fd && atomic_read(&fd->count) > 1)) {
1930 *new_fdp = dup_fd(fd, &error);
1931 if (!*new_fdp)
1932 return error;
1935 return 0;
1939 * unshare allows a process to 'unshare' part of the process
1940 * context which was originally shared using clone. copy_*
1941 * functions used by do_fork() cannot be used here directly
1942 * because they modify an inactive task_struct that is being
1943 * constructed. Here we are modifying the current, active,
1944 * task_struct.
1946 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1948 struct fs_struct *fs, *new_fs = NULL;
1949 struct files_struct *fd, *new_fd = NULL;
1950 struct cred *new_cred = NULL;
1951 struct nsproxy *new_nsproxy = NULL;
1952 int do_sysvsem = 0;
1953 int err;
1956 * If unsharing a user namespace must also unshare the thread.
1958 if (unshare_flags & CLONE_NEWUSER)
1959 unshare_flags |= CLONE_THREAD | CLONE_FS;
1961 * If unsharing vm, must also unshare signal handlers.
1963 if (unshare_flags & CLONE_VM)
1964 unshare_flags |= CLONE_SIGHAND;
1966 * If unsharing a signal handlers, must also unshare the signal queues.
1968 if (unshare_flags & CLONE_SIGHAND)
1969 unshare_flags |= CLONE_THREAD;
1971 * If unsharing namespace, must also unshare filesystem information.
1973 if (unshare_flags & CLONE_NEWNS)
1974 unshare_flags |= CLONE_FS;
1976 err = check_unshare_flags(unshare_flags);
1977 if (err)
1978 goto bad_unshare_out;
1980 * CLONE_NEWIPC must also detach from the undolist: after switching
1981 * to a new ipc namespace, the semaphore arrays from the old
1982 * namespace are unreachable.
1984 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1985 do_sysvsem = 1;
1986 err = unshare_fs(unshare_flags, &new_fs);
1987 if (err)
1988 goto bad_unshare_out;
1989 err = unshare_fd(unshare_flags, &new_fd);
1990 if (err)
1991 goto bad_unshare_cleanup_fs;
1992 err = unshare_userns(unshare_flags, &new_cred);
1993 if (err)
1994 goto bad_unshare_cleanup_fd;
1995 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1996 new_cred, new_fs);
1997 if (err)
1998 goto bad_unshare_cleanup_cred;
2000 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2001 if (do_sysvsem) {
2003 * CLONE_SYSVSEM is equivalent to sys_exit().
2005 exit_sem(current);
2007 if (unshare_flags & CLONE_NEWIPC) {
2008 /* Orphan segments in old ns (see sem above). */
2009 exit_shm(current);
2010 shm_init_task(current);
2013 if (new_nsproxy)
2014 switch_task_namespaces(current, new_nsproxy);
2016 task_lock(current);
2018 if (new_fs) {
2019 fs = current->fs;
2020 spin_lock(&fs->lock);
2021 current->fs = new_fs;
2022 if (--fs->users)
2023 new_fs = NULL;
2024 else
2025 new_fs = fs;
2026 spin_unlock(&fs->lock);
2029 if (new_fd) {
2030 fd = current->files;
2031 current->files = new_fd;
2032 new_fd = fd;
2035 task_unlock(current);
2037 if (new_cred) {
2038 /* Install the new user namespace */
2039 commit_creds(new_cred);
2040 new_cred = NULL;
2044 bad_unshare_cleanup_cred:
2045 if (new_cred)
2046 put_cred(new_cred);
2047 bad_unshare_cleanup_fd:
2048 if (new_fd)
2049 put_files_struct(new_fd);
2051 bad_unshare_cleanup_fs:
2052 if (new_fs)
2053 free_fs_struct(new_fs);
2055 bad_unshare_out:
2056 return err;
2060 * Helper to unshare the files of the current task.
2061 * We don't want to expose copy_files internals to
2062 * the exec layer of the kernel.
2065 int unshare_files(struct files_struct **displaced)
2067 struct task_struct *task = current;
2068 struct files_struct *copy = NULL;
2069 int error;
2071 error = unshare_fd(CLONE_FILES, &copy);
2072 if (error || !copy) {
2073 *displaced = NULL;
2074 return error;
2076 *displaced = task->files;
2077 task_lock(task);
2078 task->files = copy;
2079 task_unlock(task);
2080 return 0;
2083 int sysctl_max_threads(struct ctl_table *table, int write,
2084 void __user *buffer, size_t *lenp, loff_t *ppos)
2086 struct ctl_table t;
2087 int ret;
2088 int threads = max_threads;
2089 int min = MIN_THREADS;
2090 int max = MAX_THREADS;
2092 t = *table;
2093 t.data = &threads;
2094 t.extra1 = &min;
2095 t.extra2 = &max;
2097 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2098 if (ret || !write)
2099 return ret;
2101 set_max_threads(threads);
2103 return 0;