Staging: remove at76_usb wireless driver.
[linux/fpc-iii.git] / fs / splice.c
blob7394e9e17534ecb03573e28b2288d06cccf24a32
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
43 struct page *page = buf->page;
44 struct address_space *mapping;
46 lock_page(page);
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
60 wait_on_page_writeback(page);
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
80 out_unlock:
81 unlock_page(page);
82 return 1;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
99 struct page *page = buf->page;
100 int err;
102 if (!PageUptodate(page)) {
103 lock_page(page);
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
123 * Page is ok afterall, we are done.
125 unlock_page(page);
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 pipe_lock(pipe);
187 for (;;) {
188 if (!pipe->readers) {
189 send_sig(SIGPIPE, current, 0);
190 if (!ret)
191 ret = -EPIPE;
192 break;
195 if (pipe->nrbufs < PIPE_BUFFERS) {
196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 struct pipe_buffer *buf = pipe->bufs + newbuf;
199 buf->page = spd->pages[page_nr];
200 buf->offset = spd->partial[page_nr].offset;
201 buf->len = spd->partial[page_nr].len;
202 buf->private = spd->partial[page_nr].private;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
211 if (pipe->inode)
212 do_wakeup = 1;
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
219 break;
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
247 pipe_unlock(pipe);
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 while (page_nr < spd_pages)
257 spd->spd_release(spd, page_nr++);
259 return ret;
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 page_cache_release(spd->pages[i]);
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 struct pipe_inode_info *pipe, size_t len,
270 unsigned int flags)
272 struct address_space *mapping = in->f_mapping;
273 unsigned int loff, nr_pages, req_pages;
274 struct page *pages[PIPE_BUFFERS];
275 struct partial_page partial[PIPE_BUFFERS];
276 struct page *page;
277 pgoff_t index, end_index;
278 loff_t isize;
279 int error, page_nr;
280 struct splice_pipe_desc spd = {
281 .pages = pages,
282 .partial = partial,
283 .flags = flags,
284 .ops = &page_cache_pipe_buf_ops,
285 .spd_release = spd_release_page,
288 index = *ppos >> PAGE_CACHE_SHIFT;
289 loff = *ppos & ~PAGE_CACHE_MASK;
290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
294 * Lookup the (hopefully) full range of pages we need.
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 index += spd.nr_pages;
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
303 if (spd.nr_pages < nr_pages)
304 page_cache_sync_readahead(mapping, &in->f_ra, in,
305 index, req_pages - spd.nr_pages);
307 error = 0;
308 while (spd.nr_pages < nr_pages) {
310 * Page could be there, find_get_pages_contig() breaks on
311 * the first hole.
313 page = find_get_page(mapping, index);
314 if (!page) {
316 * page didn't exist, allocate one.
318 page = page_cache_alloc_cold(mapping);
319 if (!page)
320 break;
322 error = add_to_page_cache_lru(page, mapping, index,
323 mapping_gfp_mask(mapping));
324 if (unlikely(error)) {
325 page_cache_release(page);
326 if (error == -EEXIST)
327 continue;
328 break;
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
334 unlock_page(page);
337 pages[spd.nr_pages++] = page;
338 index++;
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
345 index = *ppos >> PAGE_CACHE_SHIFT;
346 nr_pages = spd.nr_pages;
347 spd.nr_pages = 0;
348 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 unsigned int this_len;
351 if (!len)
352 break;
355 * this_len is the max we'll use from this page
357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 page = pages[page_nr];
360 if (PageReadahead(page))
361 page_cache_async_readahead(mapping, &in->f_ra, in,
362 page, index, req_pages - page_nr);
365 * If the page isn't uptodate, we may need to start io on it
367 if (!PageUptodate(page)) {
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
372 if (flags & SPLICE_F_NONBLOCK) {
373 if (!trylock_page(page)) {
374 error = -EAGAIN;
375 break;
377 } else
378 lock_page(page);
381 * Page was truncated, or invalidated by the
382 * filesystem. Redo the find/create, but this time the
383 * page is kept locked, so there's no chance of another
384 * race with truncate/invalidate.
386 if (!page->mapping) {
387 unlock_page(page);
388 page = find_or_create_page(mapping, index,
389 mapping_gfp_mask(mapping));
391 if (!page) {
392 error = -ENOMEM;
393 break;
395 page_cache_release(pages[page_nr]);
396 pages[page_nr] = page;
399 * page was already under io and is now done, great
401 if (PageUptodate(page)) {
402 unlock_page(page);
403 goto fill_it;
407 * need to read in the page
409 error = mapping->a_ops->readpage(in, page);
410 if (unlikely(error)) {
412 * We really should re-lookup the page here,
413 * but it complicates things a lot. Instead
414 * lets just do what we already stored, and
415 * we'll get it the next time we are called.
417 if (error == AOP_TRUNCATED_PAGE)
418 error = 0;
420 break;
423 fill_it:
425 * i_size must be checked after PageUptodate.
427 isize = i_size_read(mapping->host);
428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 if (unlikely(!isize || index > end_index))
430 break;
433 * if this is the last page, see if we need to shrink
434 * the length and stop
436 if (end_index == index) {
437 unsigned int plen;
440 * max good bytes in this page
442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 if (plen <= loff)
444 break;
447 * force quit after adding this page
449 this_len = min(this_len, plen - loff);
450 len = this_len;
453 partial[page_nr].offset = loff;
454 partial[page_nr].len = this_len;
455 len -= this_len;
456 loff = 0;
457 spd.nr_pages++;
458 index++;
462 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 * we got, 'nr_pages' is how many pages are in the map.
465 while (page_nr < nr_pages)
466 page_cache_release(pages[page_nr++]);
467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
469 if (spd.nr_pages)
470 return splice_to_pipe(pipe, &spd);
472 return error;
476 * generic_file_splice_read - splice data from file to a pipe
477 * @in: file to splice from
478 * @ppos: position in @in
479 * @pipe: pipe to splice to
480 * @len: number of bytes to splice
481 * @flags: splice modifier flags
483 * Description:
484 * Will read pages from given file and fill them into a pipe. Can be
485 * used as long as the address_space operations for the source implements
486 * a readpage() hook.
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 struct pipe_inode_info *pipe, size_t len,
491 unsigned int flags)
493 loff_t isize, left;
494 int ret;
496 isize = i_size_read(in->f_mapping->host);
497 if (unlikely(*ppos >= isize))
498 return 0;
500 left = isize - *ppos;
501 if (unlikely(left < len))
502 len = left;
504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 if (ret > 0) {
506 *ppos += ret;
507 file_accessed(in);
510 return ret;
512 EXPORT_SYMBOL(generic_file_splice_read);
514 static const struct pipe_buf_operations default_pipe_buf_ops = {
515 .can_merge = 0,
516 .map = generic_pipe_buf_map,
517 .unmap = generic_pipe_buf_unmap,
518 .confirm = generic_pipe_buf_confirm,
519 .release = generic_pipe_buf_release,
520 .steal = generic_pipe_buf_steal,
521 .get = generic_pipe_buf_get,
524 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
525 unsigned long vlen, loff_t offset)
527 mm_segment_t old_fs;
528 loff_t pos = offset;
529 ssize_t res;
531 old_fs = get_fs();
532 set_fs(get_ds());
533 /* The cast to a user pointer is valid due to the set_fs() */
534 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
535 set_fs(old_fs);
537 return res;
540 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
541 loff_t pos)
543 mm_segment_t old_fs;
544 ssize_t res;
546 old_fs = get_fs();
547 set_fs(get_ds());
548 /* The cast to a user pointer is valid due to the set_fs() */
549 res = vfs_write(file, (const char __user *)buf, count, &pos);
550 set_fs(old_fs);
552 return res;
555 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
556 struct pipe_inode_info *pipe, size_t len,
557 unsigned int flags)
559 unsigned int nr_pages;
560 unsigned int nr_freed;
561 size_t offset;
562 struct page *pages[PIPE_BUFFERS];
563 struct partial_page partial[PIPE_BUFFERS];
564 struct iovec vec[PIPE_BUFFERS];
565 pgoff_t index;
566 ssize_t res;
567 size_t this_len;
568 int error;
569 int i;
570 struct splice_pipe_desc spd = {
571 .pages = pages,
572 .partial = partial,
573 .flags = flags,
574 .ops = &default_pipe_buf_ops,
575 .spd_release = spd_release_page,
578 index = *ppos >> PAGE_CACHE_SHIFT;
579 offset = *ppos & ~PAGE_CACHE_MASK;
580 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
582 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
583 struct page *page;
585 page = alloc_page(GFP_USER);
586 error = -ENOMEM;
587 if (!page)
588 goto err;
590 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
591 vec[i].iov_base = (void __user *) page_address(page);
592 vec[i].iov_len = this_len;
593 pages[i] = page;
594 spd.nr_pages++;
595 len -= this_len;
596 offset = 0;
599 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
600 if (res < 0) {
601 error = res;
602 goto err;
605 error = 0;
606 if (!res)
607 goto err;
609 nr_freed = 0;
610 for (i = 0; i < spd.nr_pages; i++) {
611 this_len = min_t(size_t, vec[i].iov_len, res);
612 partial[i].offset = 0;
613 partial[i].len = this_len;
614 if (!this_len) {
615 __free_page(pages[i]);
616 pages[i] = NULL;
617 nr_freed++;
619 res -= this_len;
621 spd.nr_pages -= nr_freed;
623 res = splice_to_pipe(pipe, &spd);
624 if (res > 0)
625 *ppos += res;
627 return res;
629 err:
630 for (i = 0; i < spd.nr_pages; i++)
631 __free_page(pages[i]);
633 return error;
635 EXPORT_SYMBOL(default_file_splice_read);
638 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
639 * using sendpage(). Return the number of bytes sent.
641 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
642 struct pipe_buffer *buf, struct splice_desc *sd)
644 struct file *file = sd->u.file;
645 loff_t pos = sd->pos;
646 int ret, more;
648 ret = buf->ops->confirm(pipe, buf);
649 if (!ret) {
650 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
652 ret = file->f_op->sendpage(file, buf->page, buf->offset,
653 sd->len, &pos, more);
656 return ret;
660 * This is a little more tricky than the file -> pipe splicing. There are
661 * basically three cases:
663 * - Destination page already exists in the address space and there
664 * are users of it. For that case we have no other option that
665 * copying the data. Tough luck.
666 * - Destination page already exists in the address space, but there
667 * are no users of it. Make sure it's uptodate, then drop it. Fall
668 * through to last case.
669 * - Destination page does not exist, we can add the pipe page to
670 * the page cache and avoid the copy.
672 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
673 * sd->flags), we attempt to migrate pages from the pipe to the output
674 * file address space page cache. This is possible if no one else has
675 * the pipe page referenced outside of the pipe and page cache. If
676 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
677 * a new page in the output file page cache and fill/dirty that.
679 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
680 struct splice_desc *sd)
682 struct file *file = sd->u.file;
683 struct address_space *mapping = file->f_mapping;
684 unsigned int offset, this_len;
685 struct page *page;
686 void *fsdata;
687 int ret;
690 * make sure the data in this buffer is uptodate
692 ret = buf->ops->confirm(pipe, buf);
693 if (unlikely(ret))
694 return ret;
696 offset = sd->pos & ~PAGE_CACHE_MASK;
698 this_len = sd->len;
699 if (this_len + offset > PAGE_CACHE_SIZE)
700 this_len = PAGE_CACHE_SIZE - offset;
702 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
703 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
704 if (unlikely(ret))
705 goto out;
707 if (buf->page != page) {
709 * Careful, ->map() uses KM_USER0!
711 char *src = buf->ops->map(pipe, buf, 1);
712 char *dst = kmap_atomic(page, KM_USER1);
714 memcpy(dst + offset, src + buf->offset, this_len);
715 flush_dcache_page(page);
716 kunmap_atomic(dst, KM_USER1);
717 buf->ops->unmap(pipe, buf, src);
719 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
720 page, fsdata);
721 out:
722 return ret;
724 EXPORT_SYMBOL(pipe_to_file);
726 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
728 smp_mb();
729 if (waitqueue_active(&pipe->wait))
730 wake_up_interruptible(&pipe->wait);
731 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
735 * splice_from_pipe_feed - feed available data from a pipe to a file
736 * @pipe: pipe to splice from
737 * @sd: information to @actor
738 * @actor: handler that splices the data
740 * Description:
741 * This function loops over the pipe and calls @actor to do the
742 * actual moving of a single struct pipe_buffer to the desired
743 * destination. It returns when there's no more buffers left in
744 * the pipe or if the requested number of bytes (@sd->total_len)
745 * have been copied. It returns a positive number (one) if the
746 * pipe needs to be filled with more data, zero if the required
747 * number of bytes have been copied and -errno on error.
749 * This, together with splice_from_pipe_{begin,end,next}, may be
750 * used to implement the functionality of __splice_from_pipe() when
751 * locking is required around copying the pipe buffers to the
752 * destination.
754 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
755 splice_actor *actor)
757 int ret;
759 while (pipe->nrbufs) {
760 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
761 const struct pipe_buf_operations *ops = buf->ops;
763 sd->len = buf->len;
764 if (sd->len > sd->total_len)
765 sd->len = sd->total_len;
767 ret = actor(pipe, buf, sd);
768 if (ret <= 0) {
769 if (ret == -ENODATA)
770 ret = 0;
771 return ret;
773 buf->offset += ret;
774 buf->len -= ret;
776 sd->num_spliced += ret;
777 sd->len -= ret;
778 sd->pos += ret;
779 sd->total_len -= ret;
781 if (!buf->len) {
782 buf->ops = NULL;
783 ops->release(pipe, buf);
784 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
785 pipe->nrbufs--;
786 if (pipe->inode)
787 sd->need_wakeup = true;
790 if (!sd->total_len)
791 return 0;
794 return 1;
796 EXPORT_SYMBOL(splice_from_pipe_feed);
799 * splice_from_pipe_next - wait for some data to splice from
800 * @pipe: pipe to splice from
801 * @sd: information about the splice operation
803 * Description:
804 * This function will wait for some data and return a positive
805 * value (one) if pipe buffers are available. It will return zero
806 * or -errno if no more data needs to be spliced.
808 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
810 while (!pipe->nrbufs) {
811 if (!pipe->writers)
812 return 0;
814 if (!pipe->waiting_writers && sd->num_spliced)
815 return 0;
817 if (sd->flags & SPLICE_F_NONBLOCK)
818 return -EAGAIN;
820 if (signal_pending(current))
821 return -ERESTARTSYS;
823 if (sd->need_wakeup) {
824 wakeup_pipe_writers(pipe);
825 sd->need_wakeup = false;
828 pipe_wait(pipe);
831 return 1;
833 EXPORT_SYMBOL(splice_from_pipe_next);
836 * splice_from_pipe_begin - start splicing from pipe
837 * @sd: information about the splice operation
839 * Description:
840 * This function should be called before a loop containing
841 * splice_from_pipe_next() and splice_from_pipe_feed() to
842 * initialize the necessary fields of @sd.
844 void splice_from_pipe_begin(struct splice_desc *sd)
846 sd->num_spliced = 0;
847 sd->need_wakeup = false;
849 EXPORT_SYMBOL(splice_from_pipe_begin);
852 * splice_from_pipe_end - finish splicing from pipe
853 * @pipe: pipe to splice from
854 * @sd: information about the splice operation
856 * Description:
857 * This function will wake up pipe writers if necessary. It should
858 * be called after a loop containing splice_from_pipe_next() and
859 * splice_from_pipe_feed().
861 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
863 if (sd->need_wakeup)
864 wakeup_pipe_writers(pipe);
866 EXPORT_SYMBOL(splice_from_pipe_end);
869 * __splice_from_pipe - splice data from a pipe to given actor
870 * @pipe: pipe to splice from
871 * @sd: information to @actor
872 * @actor: handler that splices the data
874 * Description:
875 * This function does little more than loop over the pipe and call
876 * @actor to do the actual moving of a single struct pipe_buffer to
877 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
878 * pipe_to_user.
881 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
882 splice_actor *actor)
884 int ret;
886 splice_from_pipe_begin(sd);
887 do {
888 ret = splice_from_pipe_next(pipe, sd);
889 if (ret > 0)
890 ret = splice_from_pipe_feed(pipe, sd, actor);
891 } while (ret > 0);
892 splice_from_pipe_end(pipe, sd);
894 return sd->num_spliced ? sd->num_spliced : ret;
896 EXPORT_SYMBOL(__splice_from_pipe);
899 * splice_from_pipe - splice data from a pipe to a file
900 * @pipe: pipe to splice from
901 * @out: file to splice to
902 * @ppos: position in @out
903 * @len: how many bytes to splice
904 * @flags: splice modifier flags
905 * @actor: handler that splices the data
907 * Description:
908 * See __splice_from_pipe. This function locks the pipe inode,
909 * otherwise it's identical to __splice_from_pipe().
912 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
913 loff_t *ppos, size_t len, unsigned int flags,
914 splice_actor *actor)
916 ssize_t ret;
917 struct splice_desc sd = {
918 .total_len = len,
919 .flags = flags,
920 .pos = *ppos,
921 .u.file = out,
924 pipe_lock(pipe);
925 ret = __splice_from_pipe(pipe, &sd, actor);
926 pipe_unlock(pipe);
928 return ret;
932 * generic_file_splice_write - splice data from a pipe to a file
933 * @pipe: pipe info
934 * @out: file to write to
935 * @ppos: position in @out
936 * @len: number of bytes to splice
937 * @flags: splice modifier flags
939 * Description:
940 * Will either move or copy pages (determined by @flags options) from
941 * the given pipe inode to the given file.
944 ssize_t
945 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
946 loff_t *ppos, size_t len, unsigned int flags)
948 struct address_space *mapping = out->f_mapping;
949 struct inode *inode = mapping->host;
950 struct splice_desc sd = {
951 .total_len = len,
952 .flags = flags,
953 .pos = *ppos,
954 .u.file = out,
956 ssize_t ret;
958 pipe_lock(pipe);
960 splice_from_pipe_begin(&sd);
961 do {
962 ret = splice_from_pipe_next(pipe, &sd);
963 if (ret <= 0)
964 break;
966 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
967 ret = file_remove_suid(out);
968 if (!ret) {
969 file_update_time(out);
970 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
972 mutex_unlock(&inode->i_mutex);
973 } while (ret > 0);
974 splice_from_pipe_end(pipe, &sd);
976 pipe_unlock(pipe);
978 if (sd.num_spliced)
979 ret = sd.num_spliced;
981 if (ret > 0) {
982 unsigned long nr_pages;
983 int err;
985 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
987 err = generic_write_sync(out, *ppos, ret);
988 if (err)
989 ret = err;
990 else
991 *ppos += ret;
992 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
995 return ret;
998 EXPORT_SYMBOL(generic_file_splice_write);
1000 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1001 struct splice_desc *sd)
1003 int ret;
1004 void *data;
1006 ret = buf->ops->confirm(pipe, buf);
1007 if (ret)
1008 return ret;
1010 data = buf->ops->map(pipe, buf, 0);
1011 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1012 buf->ops->unmap(pipe, buf, data);
1014 return ret;
1017 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1018 struct file *out, loff_t *ppos,
1019 size_t len, unsigned int flags)
1021 ssize_t ret;
1023 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1024 if (ret > 0)
1025 *ppos += ret;
1027 return ret;
1031 * generic_splice_sendpage - splice data from a pipe to a socket
1032 * @pipe: pipe to splice from
1033 * @out: socket to write to
1034 * @ppos: position in @out
1035 * @len: number of bytes to splice
1036 * @flags: splice modifier flags
1038 * Description:
1039 * Will send @len bytes from the pipe to a network socket. No data copying
1040 * is involved.
1043 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1044 loff_t *ppos, size_t len, unsigned int flags)
1046 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1049 EXPORT_SYMBOL(generic_splice_sendpage);
1052 * Attempt to initiate a splice from pipe to file.
1054 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1055 loff_t *ppos, size_t len, unsigned int flags)
1057 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1058 loff_t *, size_t, unsigned int);
1059 int ret;
1061 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1062 return -EBADF;
1064 if (unlikely(out->f_flags & O_APPEND))
1065 return -EINVAL;
1067 ret = rw_verify_area(WRITE, out, ppos, len);
1068 if (unlikely(ret < 0))
1069 return ret;
1071 splice_write = out->f_op->splice_write;
1072 if (!splice_write)
1073 splice_write = default_file_splice_write;
1075 return splice_write(pipe, out, ppos, len, flags);
1079 * Attempt to initiate a splice from a file to a pipe.
1081 static long do_splice_to(struct file *in, loff_t *ppos,
1082 struct pipe_inode_info *pipe, size_t len,
1083 unsigned int flags)
1085 ssize_t (*splice_read)(struct file *, loff_t *,
1086 struct pipe_inode_info *, size_t, unsigned int);
1087 int ret;
1089 if (unlikely(!(in->f_mode & FMODE_READ)))
1090 return -EBADF;
1092 ret = rw_verify_area(READ, in, ppos, len);
1093 if (unlikely(ret < 0))
1094 return ret;
1096 splice_read = in->f_op->splice_read;
1097 if (!splice_read)
1098 splice_read = default_file_splice_read;
1100 return splice_read(in, ppos, pipe, len, flags);
1104 * splice_direct_to_actor - splices data directly between two non-pipes
1105 * @in: file to splice from
1106 * @sd: actor information on where to splice to
1107 * @actor: handles the data splicing
1109 * Description:
1110 * This is a special case helper to splice directly between two
1111 * points, without requiring an explicit pipe. Internally an allocated
1112 * pipe is cached in the process, and reused during the lifetime of
1113 * that process.
1116 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1117 splice_direct_actor *actor)
1119 struct pipe_inode_info *pipe;
1120 long ret, bytes;
1121 umode_t i_mode;
1122 size_t len;
1123 int i, flags;
1126 * We require the input being a regular file, as we don't want to
1127 * randomly drop data for eg socket -> socket splicing. Use the
1128 * piped splicing for that!
1130 i_mode = in->f_path.dentry->d_inode->i_mode;
1131 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1132 return -EINVAL;
1135 * neither in nor out is a pipe, setup an internal pipe attached to
1136 * 'out' and transfer the wanted data from 'in' to 'out' through that
1138 pipe = current->splice_pipe;
1139 if (unlikely(!pipe)) {
1140 pipe = alloc_pipe_info(NULL);
1141 if (!pipe)
1142 return -ENOMEM;
1145 * We don't have an immediate reader, but we'll read the stuff
1146 * out of the pipe right after the splice_to_pipe(). So set
1147 * PIPE_READERS appropriately.
1149 pipe->readers = 1;
1151 current->splice_pipe = pipe;
1155 * Do the splice.
1157 ret = 0;
1158 bytes = 0;
1159 len = sd->total_len;
1160 flags = sd->flags;
1163 * Don't block on output, we have to drain the direct pipe.
1165 sd->flags &= ~SPLICE_F_NONBLOCK;
1167 while (len) {
1168 size_t read_len;
1169 loff_t pos = sd->pos, prev_pos = pos;
1171 ret = do_splice_to(in, &pos, pipe, len, flags);
1172 if (unlikely(ret <= 0))
1173 goto out_release;
1175 read_len = ret;
1176 sd->total_len = read_len;
1179 * NOTE: nonblocking mode only applies to the input. We
1180 * must not do the output in nonblocking mode as then we
1181 * could get stuck data in the internal pipe:
1183 ret = actor(pipe, sd);
1184 if (unlikely(ret <= 0)) {
1185 sd->pos = prev_pos;
1186 goto out_release;
1189 bytes += ret;
1190 len -= ret;
1191 sd->pos = pos;
1193 if (ret < read_len) {
1194 sd->pos = prev_pos + ret;
1195 goto out_release;
1199 done:
1200 pipe->nrbufs = pipe->curbuf = 0;
1201 file_accessed(in);
1202 return bytes;
1204 out_release:
1206 * If we did an incomplete transfer we must release
1207 * the pipe buffers in question:
1209 for (i = 0; i < PIPE_BUFFERS; i++) {
1210 struct pipe_buffer *buf = pipe->bufs + i;
1212 if (buf->ops) {
1213 buf->ops->release(pipe, buf);
1214 buf->ops = NULL;
1218 if (!bytes)
1219 bytes = ret;
1221 goto done;
1223 EXPORT_SYMBOL(splice_direct_to_actor);
1225 static int direct_splice_actor(struct pipe_inode_info *pipe,
1226 struct splice_desc *sd)
1228 struct file *file = sd->u.file;
1230 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1234 * do_splice_direct - splices data directly between two files
1235 * @in: file to splice from
1236 * @ppos: input file offset
1237 * @out: file to splice to
1238 * @len: number of bytes to splice
1239 * @flags: splice modifier flags
1241 * Description:
1242 * For use by do_sendfile(). splice can easily emulate sendfile, but
1243 * doing it in the application would incur an extra system call
1244 * (splice in + splice out, as compared to just sendfile()). So this helper
1245 * can splice directly through a process-private pipe.
1248 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1249 size_t len, unsigned int flags)
1251 struct splice_desc sd = {
1252 .len = len,
1253 .total_len = len,
1254 .flags = flags,
1255 .pos = *ppos,
1256 .u.file = out,
1258 long ret;
1260 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1261 if (ret > 0)
1262 *ppos = sd.pos;
1264 return ret;
1267 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1268 struct pipe_inode_info *opipe,
1269 size_t len, unsigned int flags);
1271 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1272 * location, so checking ->i_pipe is not enough to verify that this is a
1273 * pipe.
1275 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1277 if (S_ISFIFO(inode->i_mode))
1278 return inode->i_pipe;
1280 return NULL;
1284 * Determine where to splice to/from.
1286 static long do_splice(struct file *in, loff_t __user *off_in,
1287 struct file *out, loff_t __user *off_out,
1288 size_t len, unsigned int flags)
1290 struct pipe_inode_info *ipipe;
1291 struct pipe_inode_info *opipe;
1292 loff_t offset, *off;
1293 long ret;
1295 ipipe = pipe_info(in->f_path.dentry->d_inode);
1296 opipe = pipe_info(out->f_path.dentry->d_inode);
1298 if (ipipe && opipe) {
1299 if (off_in || off_out)
1300 return -ESPIPE;
1302 if (!(in->f_mode & FMODE_READ))
1303 return -EBADF;
1305 if (!(out->f_mode & FMODE_WRITE))
1306 return -EBADF;
1308 /* Splicing to self would be fun, but... */
1309 if (ipipe == opipe)
1310 return -EINVAL;
1312 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1315 if (ipipe) {
1316 if (off_in)
1317 return -ESPIPE;
1318 if (off_out) {
1319 if (out->f_op->llseek == no_llseek)
1320 return -EINVAL;
1321 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1322 return -EFAULT;
1323 off = &offset;
1324 } else
1325 off = &out->f_pos;
1327 ret = do_splice_from(ipipe, out, off, len, flags);
1329 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1330 ret = -EFAULT;
1332 return ret;
1335 if (opipe) {
1336 if (off_out)
1337 return -ESPIPE;
1338 if (off_in) {
1339 if (in->f_op->llseek == no_llseek)
1340 return -EINVAL;
1341 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1342 return -EFAULT;
1343 off = &offset;
1344 } else
1345 off = &in->f_pos;
1347 ret = do_splice_to(in, off, opipe, len, flags);
1349 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1350 ret = -EFAULT;
1352 return ret;
1355 return -EINVAL;
1359 * Map an iov into an array of pages and offset/length tupples. With the
1360 * partial_page structure, we can map several non-contiguous ranges into
1361 * our ones pages[] map instead of splitting that operation into pieces.
1362 * Could easily be exported as a generic helper for other users, in which
1363 * case one would probably want to add a 'max_nr_pages' parameter as well.
1365 static int get_iovec_page_array(const struct iovec __user *iov,
1366 unsigned int nr_vecs, struct page **pages,
1367 struct partial_page *partial, int aligned)
1369 int buffers = 0, error = 0;
1371 while (nr_vecs) {
1372 unsigned long off, npages;
1373 struct iovec entry;
1374 void __user *base;
1375 size_t len;
1376 int i;
1378 error = -EFAULT;
1379 if (copy_from_user(&entry, iov, sizeof(entry)))
1380 break;
1382 base = entry.iov_base;
1383 len = entry.iov_len;
1386 * Sanity check this iovec. 0 read succeeds.
1388 error = 0;
1389 if (unlikely(!len))
1390 break;
1391 error = -EFAULT;
1392 if (!access_ok(VERIFY_READ, base, len))
1393 break;
1396 * Get this base offset and number of pages, then map
1397 * in the user pages.
1399 off = (unsigned long) base & ~PAGE_MASK;
1402 * If asked for alignment, the offset must be zero and the
1403 * length a multiple of the PAGE_SIZE.
1405 error = -EINVAL;
1406 if (aligned && (off || len & ~PAGE_MASK))
1407 break;
1409 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1410 if (npages > PIPE_BUFFERS - buffers)
1411 npages = PIPE_BUFFERS - buffers;
1413 error = get_user_pages_fast((unsigned long)base, npages,
1414 0, &pages[buffers]);
1416 if (unlikely(error <= 0))
1417 break;
1420 * Fill this contiguous range into the partial page map.
1422 for (i = 0; i < error; i++) {
1423 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1425 partial[buffers].offset = off;
1426 partial[buffers].len = plen;
1428 off = 0;
1429 len -= plen;
1430 buffers++;
1434 * We didn't complete this iov, stop here since it probably
1435 * means we have to move some of this into a pipe to
1436 * be able to continue.
1438 if (len)
1439 break;
1442 * Don't continue if we mapped fewer pages than we asked for,
1443 * or if we mapped the max number of pages that we have
1444 * room for.
1446 if (error < npages || buffers == PIPE_BUFFERS)
1447 break;
1449 nr_vecs--;
1450 iov++;
1453 if (buffers)
1454 return buffers;
1456 return error;
1459 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1460 struct splice_desc *sd)
1462 char *src;
1463 int ret;
1465 ret = buf->ops->confirm(pipe, buf);
1466 if (unlikely(ret))
1467 return ret;
1470 * See if we can use the atomic maps, by prefaulting in the
1471 * pages and doing an atomic copy
1473 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1474 src = buf->ops->map(pipe, buf, 1);
1475 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1476 sd->len);
1477 buf->ops->unmap(pipe, buf, src);
1478 if (!ret) {
1479 ret = sd->len;
1480 goto out;
1485 * No dice, use slow non-atomic map and copy
1487 src = buf->ops->map(pipe, buf, 0);
1489 ret = sd->len;
1490 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1491 ret = -EFAULT;
1493 buf->ops->unmap(pipe, buf, src);
1494 out:
1495 if (ret > 0)
1496 sd->u.userptr += ret;
1497 return ret;
1501 * For lack of a better implementation, implement vmsplice() to userspace
1502 * as a simple copy of the pipes pages to the user iov.
1504 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1505 unsigned long nr_segs, unsigned int flags)
1507 struct pipe_inode_info *pipe;
1508 struct splice_desc sd;
1509 ssize_t size;
1510 int error;
1511 long ret;
1513 pipe = pipe_info(file->f_path.dentry->d_inode);
1514 if (!pipe)
1515 return -EBADF;
1517 pipe_lock(pipe);
1519 error = ret = 0;
1520 while (nr_segs) {
1521 void __user *base;
1522 size_t len;
1525 * Get user address base and length for this iovec.
1527 error = get_user(base, &iov->iov_base);
1528 if (unlikely(error))
1529 break;
1530 error = get_user(len, &iov->iov_len);
1531 if (unlikely(error))
1532 break;
1535 * Sanity check this iovec. 0 read succeeds.
1537 if (unlikely(!len))
1538 break;
1539 if (unlikely(!base)) {
1540 error = -EFAULT;
1541 break;
1544 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1545 error = -EFAULT;
1546 break;
1549 sd.len = 0;
1550 sd.total_len = len;
1551 sd.flags = flags;
1552 sd.u.userptr = base;
1553 sd.pos = 0;
1555 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1556 if (size < 0) {
1557 if (!ret)
1558 ret = size;
1560 break;
1563 ret += size;
1565 if (size < len)
1566 break;
1568 nr_segs--;
1569 iov++;
1572 pipe_unlock(pipe);
1574 if (!ret)
1575 ret = error;
1577 return ret;
1581 * vmsplice splices a user address range into a pipe. It can be thought of
1582 * as splice-from-memory, where the regular splice is splice-from-file (or
1583 * to file). In both cases the output is a pipe, naturally.
1585 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1586 unsigned long nr_segs, unsigned int flags)
1588 struct pipe_inode_info *pipe;
1589 struct page *pages[PIPE_BUFFERS];
1590 struct partial_page partial[PIPE_BUFFERS];
1591 struct splice_pipe_desc spd = {
1592 .pages = pages,
1593 .partial = partial,
1594 .flags = flags,
1595 .ops = &user_page_pipe_buf_ops,
1596 .spd_release = spd_release_page,
1599 pipe = pipe_info(file->f_path.dentry->d_inode);
1600 if (!pipe)
1601 return -EBADF;
1603 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1604 flags & SPLICE_F_GIFT);
1605 if (spd.nr_pages <= 0)
1606 return spd.nr_pages;
1608 return splice_to_pipe(pipe, &spd);
1612 * Note that vmsplice only really supports true splicing _from_ user memory
1613 * to a pipe, not the other way around. Splicing from user memory is a simple
1614 * operation that can be supported without any funky alignment restrictions
1615 * or nasty vm tricks. We simply map in the user memory and fill them into
1616 * a pipe. The reverse isn't quite as easy, though. There are two possible
1617 * solutions for that:
1619 * - memcpy() the data internally, at which point we might as well just
1620 * do a regular read() on the buffer anyway.
1621 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1622 * has restriction limitations on both ends of the pipe).
1624 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1627 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1628 unsigned long, nr_segs, unsigned int, flags)
1630 struct file *file;
1631 long error;
1632 int fput;
1634 if (unlikely(nr_segs > UIO_MAXIOV))
1635 return -EINVAL;
1636 else if (unlikely(!nr_segs))
1637 return 0;
1639 error = -EBADF;
1640 file = fget_light(fd, &fput);
1641 if (file) {
1642 if (file->f_mode & FMODE_WRITE)
1643 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1644 else if (file->f_mode & FMODE_READ)
1645 error = vmsplice_to_user(file, iov, nr_segs, flags);
1647 fput_light(file, fput);
1650 return error;
1653 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1654 int, fd_out, loff_t __user *, off_out,
1655 size_t, len, unsigned int, flags)
1657 long error;
1658 struct file *in, *out;
1659 int fput_in, fput_out;
1661 if (unlikely(!len))
1662 return 0;
1664 error = -EBADF;
1665 in = fget_light(fd_in, &fput_in);
1666 if (in) {
1667 if (in->f_mode & FMODE_READ) {
1668 out = fget_light(fd_out, &fput_out);
1669 if (out) {
1670 if (out->f_mode & FMODE_WRITE)
1671 error = do_splice(in, off_in,
1672 out, off_out,
1673 len, flags);
1674 fput_light(out, fput_out);
1678 fput_light(in, fput_in);
1681 return error;
1685 * Make sure there's data to read. Wait for input if we can, otherwise
1686 * return an appropriate error.
1688 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1690 int ret;
1693 * Check ->nrbufs without the inode lock first. This function
1694 * is speculative anyways, so missing one is ok.
1696 if (pipe->nrbufs)
1697 return 0;
1699 ret = 0;
1700 pipe_lock(pipe);
1702 while (!pipe->nrbufs) {
1703 if (signal_pending(current)) {
1704 ret = -ERESTARTSYS;
1705 break;
1707 if (!pipe->writers)
1708 break;
1709 if (!pipe->waiting_writers) {
1710 if (flags & SPLICE_F_NONBLOCK) {
1711 ret = -EAGAIN;
1712 break;
1715 pipe_wait(pipe);
1718 pipe_unlock(pipe);
1719 return ret;
1723 * Make sure there's writeable room. Wait for room if we can, otherwise
1724 * return an appropriate error.
1726 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1728 int ret;
1731 * Check ->nrbufs without the inode lock first. This function
1732 * is speculative anyways, so missing one is ok.
1734 if (pipe->nrbufs < PIPE_BUFFERS)
1735 return 0;
1737 ret = 0;
1738 pipe_lock(pipe);
1740 while (pipe->nrbufs >= PIPE_BUFFERS) {
1741 if (!pipe->readers) {
1742 send_sig(SIGPIPE, current, 0);
1743 ret = -EPIPE;
1744 break;
1746 if (flags & SPLICE_F_NONBLOCK) {
1747 ret = -EAGAIN;
1748 break;
1750 if (signal_pending(current)) {
1751 ret = -ERESTARTSYS;
1752 break;
1754 pipe->waiting_writers++;
1755 pipe_wait(pipe);
1756 pipe->waiting_writers--;
1759 pipe_unlock(pipe);
1760 return ret;
1764 * Splice contents of ipipe to opipe.
1766 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1767 struct pipe_inode_info *opipe,
1768 size_t len, unsigned int flags)
1770 struct pipe_buffer *ibuf, *obuf;
1771 int ret = 0, nbuf;
1772 bool input_wakeup = false;
1775 retry:
1776 ret = ipipe_prep(ipipe, flags);
1777 if (ret)
1778 return ret;
1780 ret = opipe_prep(opipe, flags);
1781 if (ret)
1782 return ret;
1785 * Potential ABBA deadlock, work around it by ordering lock
1786 * grabbing by pipe info address. Otherwise two different processes
1787 * could deadlock (one doing tee from A -> B, the other from B -> A).
1789 pipe_double_lock(ipipe, opipe);
1791 do {
1792 if (!opipe->readers) {
1793 send_sig(SIGPIPE, current, 0);
1794 if (!ret)
1795 ret = -EPIPE;
1796 break;
1799 if (!ipipe->nrbufs && !ipipe->writers)
1800 break;
1803 * Cannot make any progress, because either the input
1804 * pipe is empty or the output pipe is full.
1806 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1807 /* Already processed some buffers, break */
1808 if (ret)
1809 break;
1811 if (flags & SPLICE_F_NONBLOCK) {
1812 ret = -EAGAIN;
1813 break;
1817 * We raced with another reader/writer and haven't
1818 * managed to process any buffers. A zero return
1819 * value means EOF, so retry instead.
1821 pipe_unlock(ipipe);
1822 pipe_unlock(opipe);
1823 goto retry;
1826 ibuf = ipipe->bufs + ipipe->curbuf;
1827 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1828 obuf = opipe->bufs + nbuf;
1830 if (len >= ibuf->len) {
1832 * Simply move the whole buffer from ipipe to opipe
1834 *obuf = *ibuf;
1835 ibuf->ops = NULL;
1836 opipe->nrbufs++;
1837 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1838 ipipe->nrbufs--;
1839 input_wakeup = true;
1840 } else {
1842 * Get a reference to this pipe buffer,
1843 * so we can copy the contents over.
1845 ibuf->ops->get(ipipe, ibuf);
1846 *obuf = *ibuf;
1849 * Don't inherit the gift flag, we need to
1850 * prevent multiple steals of this page.
1852 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1854 obuf->len = len;
1855 opipe->nrbufs++;
1856 ibuf->offset += obuf->len;
1857 ibuf->len -= obuf->len;
1859 ret += obuf->len;
1860 len -= obuf->len;
1861 } while (len);
1863 pipe_unlock(ipipe);
1864 pipe_unlock(opipe);
1867 * If we put data in the output pipe, wakeup any potential readers.
1869 if (ret > 0) {
1870 smp_mb();
1871 if (waitqueue_active(&opipe->wait))
1872 wake_up_interruptible(&opipe->wait);
1873 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1875 if (input_wakeup)
1876 wakeup_pipe_writers(ipipe);
1878 return ret;
1882 * Link contents of ipipe to opipe.
1884 static int link_pipe(struct pipe_inode_info *ipipe,
1885 struct pipe_inode_info *opipe,
1886 size_t len, unsigned int flags)
1888 struct pipe_buffer *ibuf, *obuf;
1889 int ret = 0, i = 0, nbuf;
1892 * Potential ABBA deadlock, work around it by ordering lock
1893 * grabbing by pipe info address. Otherwise two different processes
1894 * could deadlock (one doing tee from A -> B, the other from B -> A).
1896 pipe_double_lock(ipipe, opipe);
1898 do {
1899 if (!opipe->readers) {
1900 send_sig(SIGPIPE, current, 0);
1901 if (!ret)
1902 ret = -EPIPE;
1903 break;
1907 * If we have iterated all input buffers or ran out of
1908 * output room, break.
1910 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1911 break;
1913 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1914 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1917 * Get a reference to this pipe buffer,
1918 * so we can copy the contents over.
1920 ibuf->ops->get(ipipe, ibuf);
1922 obuf = opipe->bufs + nbuf;
1923 *obuf = *ibuf;
1926 * Don't inherit the gift flag, we need to
1927 * prevent multiple steals of this page.
1929 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1931 if (obuf->len > len)
1932 obuf->len = len;
1934 opipe->nrbufs++;
1935 ret += obuf->len;
1936 len -= obuf->len;
1937 i++;
1938 } while (len);
1941 * return EAGAIN if we have the potential of some data in the
1942 * future, otherwise just return 0
1944 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1945 ret = -EAGAIN;
1947 pipe_unlock(ipipe);
1948 pipe_unlock(opipe);
1951 * If we put data in the output pipe, wakeup any potential readers.
1953 if (ret > 0) {
1954 smp_mb();
1955 if (waitqueue_active(&opipe->wait))
1956 wake_up_interruptible(&opipe->wait);
1957 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1960 return ret;
1964 * This is a tee(1) implementation that works on pipes. It doesn't copy
1965 * any data, it simply references the 'in' pages on the 'out' pipe.
1966 * The 'flags' used are the SPLICE_F_* variants, currently the only
1967 * applicable one is SPLICE_F_NONBLOCK.
1969 static long do_tee(struct file *in, struct file *out, size_t len,
1970 unsigned int flags)
1972 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1973 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1974 int ret = -EINVAL;
1977 * Duplicate the contents of ipipe to opipe without actually
1978 * copying the data.
1980 if (ipipe && opipe && ipipe != opipe) {
1982 * Keep going, unless we encounter an error. The ipipe/opipe
1983 * ordering doesn't really matter.
1985 ret = ipipe_prep(ipipe, flags);
1986 if (!ret) {
1987 ret = opipe_prep(opipe, flags);
1988 if (!ret)
1989 ret = link_pipe(ipipe, opipe, len, flags);
1993 return ret;
1996 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1998 struct file *in;
1999 int error, fput_in;
2001 if (unlikely(!len))
2002 return 0;
2004 error = -EBADF;
2005 in = fget_light(fdin, &fput_in);
2006 if (in) {
2007 if (in->f_mode & FMODE_READ) {
2008 int fput_out;
2009 struct file *out = fget_light(fdout, &fput_out);
2011 if (out) {
2012 if (out->f_mode & FMODE_WRITE)
2013 error = do_tee(in, out, len, flags);
2014 fput_light(out, fput_out);
2017 fput_light(in, fput_in);
2020 return error;