2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
42 static const struct super_operations hugetlbfs_ops
;
43 static const struct address_space_operations hugetlbfs_aops
;
44 const struct file_operations hugetlbfs_file_operations
;
45 static const struct inode_operations hugetlbfs_dir_inode_operations
;
46 static const struct inode_operations hugetlbfs_inode_operations
;
48 enum hugetlbfs_size_type
{ NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
50 struct hugetlbfs_fs_context
{
51 struct hstate
*hstate
;
52 unsigned long long max_size_opt
;
53 unsigned long long min_size_opt
;
57 enum hugetlbfs_size_type max_val_type
;
58 enum hugetlbfs_size_type min_val_type
;
64 int sysctl_hugetlb_shm_group
;
76 static const struct fs_parameter_spec hugetlb_param_specs
[] = {
77 fsparam_u32 ("gid", Opt_gid
),
78 fsparam_string("min_size", Opt_min_size
),
79 fsparam_u32 ("mode", Opt_mode
),
80 fsparam_string("nr_inodes", Opt_nr_inodes
),
81 fsparam_string("pagesize", Opt_pagesize
),
82 fsparam_string("size", Opt_size
),
83 fsparam_u32 ("uid", Opt_uid
),
87 static const struct fs_parameter_description hugetlb_fs_parameters
= {
89 .specs
= hugetlb_param_specs
,
93 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
94 struct inode
*inode
, pgoff_t index
)
96 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
100 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
102 mpol_cond_put(vma
->vm_policy
);
105 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
106 struct inode
*inode
, pgoff_t index
)
110 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
115 static void huge_pagevec_release(struct pagevec
*pvec
)
119 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
120 put_page(pvec
->pages
[i
]);
122 pagevec_reinit(pvec
);
126 * Mask used when checking the page offset value passed in via system
127 * calls. This value will be converted to a loff_t which is signed.
128 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
129 * value. The extra bit (- 1 in the shift value) is to take the sign
132 #define PGOFF_LOFFT_MAX \
133 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
135 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
137 struct inode
*inode
= file_inode(file
);
140 struct hstate
*h
= hstate_file(file
);
143 * vma address alignment (but not the pgoff alignment) has
144 * already been checked by prepare_hugepage_range. If you add
145 * any error returns here, do so after setting VM_HUGETLB, so
146 * is_vm_hugetlb_page tests below unmap_region go the right
147 * way when do_mmap_pgoff unwinds (may be important on powerpc
150 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
151 vma
->vm_ops
= &hugetlb_vm_ops
;
154 * page based offset in vm_pgoff could be sufficiently large to
155 * overflow a loff_t when converted to byte offset. This can
156 * only happen on architectures where sizeof(loff_t) ==
157 * sizeof(unsigned long). So, only check in those instances.
159 if (sizeof(unsigned long) == sizeof(loff_t
)) {
160 if (vma
->vm_pgoff
& PGOFF_LOFFT_MAX
)
164 /* must be huge page aligned */
165 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
168 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
169 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
170 /* check for overflow */
178 if (hugetlb_reserve_pages(inode
,
179 vma
->vm_pgoff
>> huge_page_order(h
),
180 len
>> huge_page_shift(h
), vma
,
185 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
186 i_size_write(inode
, len
);
194 * Called under down_write(mmap_sem).
197 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
200 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
202 struct mm_struct
*mm
= current
->mm
;
203 struct vm_area_struct
*vma
;
204 struct hstate
*h
= hstate_file(file
);
205 struct vm_unmapped_area_info info
;
207 if (len
& ~huge_page_mask(h
))
212 if (flags
& MAP_FIXED
) {
213 if (prepare_hugepage_range(file
, addr
, len
))
219 addr
= ALIGN(addr
, huge_page_size(h
));
220 vma
= find_vma(mm
, addr
);
221 if (TASK_SIZE
- len
>= addr
&&
222 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
228 info
.low_limit
= TASK_UNMAPPED_BASE
;
229 info
.high_limit
= TASK_SIZE
;
230 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
231 info
.align_offset
= 0;
232 return vm_unmapped_area(&info
);
237 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
238 struct iov_iter
*to
, unsigned long size
)
243 /* Find which 4k chunk and offset with in that chunk */
244 i
= offset
>> PAGE_SHIFT
;
245 offset
= offset
& ~PAGE_MASK
;
249 chunksize
= PAGE_SIZE
;
252 if (chunksize
> size
)
254 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
266 * Support for read() - Find the page attached to f_mapping and copy out the
267 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
268 * since it has PAGE_SIZE assumptions.
270 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
272 struct file
*file
= iocb
->ki_filp
;
273 struct hstate
*h
= hstate_file(file
);
274 struct address_space
*mapping
= file
->f_mapping
;
275 struct inode
*inode
= mapping
->host
;
276 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
277 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
278 unsigned long end_index
;
282 while (iov_iter_count(to
)) {
286 /* nr is the maximum number of bytes to copy from this page */
287 nr
= huge_page_size(h
);
288 isize
= i_size_read(inode
);
291 end_index
= (isize
- 1) >> huge_page_shift(h
);
292 if (index
> end_index
)
294 if (index
== end_index
) {
295 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
302 page
= find_lock_page(mapping
, index
);
303 if (unlikely(page
== NULL
)) {
305 * We have a HOLE, zero out the user-buffer for the
306 * length of the hole or request.
308 copied
= iov_iter_zero(nr
, to
);
313 * We have the page, copy it to user space buffer.
315 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
320 if (copied
!= nr
&& iov_iter_count(to
)) {
325 index
+= offset
>> huge_page_shift(h
);
326 offset
&= ~huge_page_mask(h
);
328 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
332 static int hugetlbfs_write_begin(struct file
*file
,
333 struct address_space
*mapping
,
334 loff_t pos
, unsigned len
, unsigned flags
,
335 struct page
**pagep
, void **fsdata
)
340 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
341 loff_t pos
, unsigned len
, unsigned copied
,
342 struct page
*page
, void *fsdata
)
348 static void remove_huge_page(struct page
*page
)
350 ClearPageDirty(page
);
351 ClearPageUptodate(page
);
352 delete_from_page_cache(page
);
356 hugetlb_vmdelete_list(struct rb_root_cached
*root
, pgoff_t start
, pgoff_t end
)
358 struct vm_area_struct
*vma
;
361 * end == 0 indicates that the entire range after
362 * start should be unmapped.
364 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
365 unsigned long v_offset
;
369 * Can the expression below overflow on 32-bit arches?
370 * No, because the interval tree returns us only those vmas
371 * which overlap the truncated area starting at pgoff,
372 * and no vma on a 32-bit arch can span beyond the 4GB.
374 if (vma
->vm_pgoff
< start
)
375 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
382 v_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
)
384 if (v_end
> vma
->vm_end
)
388 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, v_end
,
394 * remove_inode_hugepages handles two distinct cases: truncation and hole
395 * punch. There are subtle differences in operation for each case.
397 * truncation is indicated by end of range being LLONG_MAX
398 * In this case, we first scan the range and release found pages.
399 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
400 * maps and global counts. Page faults can not race with truncation
401 * in this routine. hugetlb_no_page() prevents page faults in the
402 * truncated range. It checks i_size before allocation, and again after
403 * with the page table lock for the page held. The same lock must be
404 * acquired to unmap a page.
405 * hole punch is indicated if end is not LLONG_MAX
406 * In the hole punch case we scan the range and release found pages.
407 * Only when releasing a page is the associated region/reserv map
408 * deleted. The region/reserv map for ranges without associated
409 * pages are not modified. Page faults can race with hole punch.
410 * This is indicated if we find a mapped page.
411 * Note: If the passed end of range value is beyond the end of file, but
412 * not LLONG_MAX this routine still performs a hole punch operation.
414 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
417 struct hstate
*h
= hstate_inode(inode
);
418 struct address_space
*mapping
= &inode
->i_data
;
419 const pgoff_t start
= lstart
>> huge_page_shift(h
);
420 const pgoff_t end
= lend
>> huge_page_shift(h
);
421 struct vm_area_struct pseudo_vma
;
425 bool truncate_op
= (lend
== LLONG_MAX
);
427 vma_init(&pseudo_vma
, current
->mm
);
428 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
433 * When no more pages are found, we are done.
435 if (!pagevec_lookup_range(&pvec
, mapping
, &next
, end
- 1))
438 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
439 struct page
*page
= pvec
.pages
[i
];
443 hash
= hugetlb_fault_mutex_hash(h
, mapping
, index
, 0);
444 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
447 * If page is mapped, it was faulted in after being
448 * unmapped in caller. Unmap (again) now after taking
449 * the fault mutex. The mutex will prevent faults
450 * until we finish removing the page.
452 * This race can only happen in the hole punch case.
453 * Getting here in a truncate operation is a bug.
455 if (unlikely(page_mapped(page
))) {
458 i_mmap_lock_write(mapping
);
459 hugetlb_vmdelete_list(&mapping
->i_mmap
,
460 index
* pages_per_huge_page(h
),
461 (index
+ 1) * pages_per_huge_page(h
));
462 i_mmap_unlock_write(mapping
);
467 * We must free the huge page and remove from page
468 * cache (remove_huge_page) BEFORE removing the
469 * region/reserve map (hugetlb_unreserve_pages). In
470 * rare out of memory conditions, removal of the
471 * region/reserve map could fail. Correspondingly,
472 * the subpool and global reserve usage count can need
475 VM_BUG_ON(PagePrivate(page
));
476 remove_huge_page(page
);
479 if (unlikely(hugetlb_unreserve_pages(inode
,
480 index
, index
+ 1, 1)))
481 hugetlb_fix_reserve_counts(inode
);
485 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
487 huge_pagevec_release(&pvec
);
492 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
495 static void hugetlbfs_evict_inode(struct inode
*inode
)
497 struct resv_map
*resv_map
;
499 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
502 * Get the resv_map from the address space embedded in the inode.
503 * This is the address space which points to any resv_map allocated
504 * at inode creation time. If this is a device special inode,
505 * i_mapping may not point to the original address space.
507 resv_map
= (struct resv_map
*)(&inode
->i_data
)->private_data
;
508 /* Only regular and link inodes have associated reserve maps */
510 resv_map_release(&resv_map
->refs
);
514 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
517 struct address_space
*mapping
= inode
->i_mapping
;
518 struct hstate
*h
= hstate_inode(inode
);
520 BUG_ON(offset
& ~huge_page_mask(h
));
521 pgoff
= offset
>> PAGE_SHIFT
;
523 i_size_write(inode
, offset
);
524 i_mmap_lock_write(mapping
);
525 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
526 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
527 i_mmap_unlock_write(mapping
);
528 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
532 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
534 struct hstate
*h
= hstate_inode(inode
);
535 loff_t hpage_size
= huge_page_size(h
);
536 loff_t hole_start
, hole_end
;
539 * For hole punch round up the beginning offset of the hole and
540 * round down the end.
542 hole_start
= round_up(offset
, hpage_size
);
543 hole_end
= round_down(offset
+ len
, hpage_size
);
545 if (hole_end
> hole_start
) {
546 struct address_space
*mapping
= inode
->i_mapping
;
547 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
551 /* protected by i_mutex */
552 if (info
->seals
& (F_SEAL_WRITE
| F_SEAL_FUTURE_WRITE
)) {
557 i_mmap_lock_write(mapping
);
558 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
))
559 hugetlb_vmdelete_list(&mapping
->i_mmap
,
560 hole_start
>> PAGE_SHIFT
,
561 hole_end
>> PAGE_SHIFT
);
562 i_mmap_unlock_write(mapping
);
563 remove_inode_hugepages(inode
, hole_start
, hole_end
);
570 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
573 struct inode
*inode
= file_inode(file
);
574 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
575 struct address_space
*mapping
= inode
->i_mapping
;
576 struct hstate
*h
= hstate_inode(inode
);
577 struct vm_area_struct pseudo_vma
;
578 struct mm_struct
*mm
= current
->mm
;
579 loff_t hpage_size
= huge_page_size(h
);
580 unsigned long hpage_shift
= huge_page_shift(h
);
581 pgoff_t start
, index
, end
;
585 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
588 if (mode
& FALLOC_FL_PUNCH_HOLE
)
589 return hugetlbfs_punch_hole(inode
, offset
, len
);
592 * Default preallocate case.
593 * For this range, start is rounded down and end is rounded up
594 * as well as being converted to page offsets.
596 start
= offset
>> hpage_shift
;
597 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
601 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
602 error
= inode_newsize_ok(inode
, offset
+ len
);
606 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
612 * Initialize a pseudo vma as this is required by the huge page
613 * allocation routines. If NUMA is configured, use page index
614 * as input to create an allocation policy.
616 vma_init(&pseudo_vma
, mm
);
617 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
618 pseudo_vma
.vm_file
= file
;
620 for (index
= start
; index
< end
; index
++) {
622 * This is supposed to be the vaddr where the page is being
623 * faulted in, but we have no vaddr here.
627 int avoid_reserve
= 0;
632 * fallocate(2) manpage permits EINTR; we may have been
633 * interrupted because we are using up too much memory.
635 if (signal_pending(current
)) {
640 /* Set numa allocation policy based on index */
641 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
643 /* addr is the offset within the file (zero based) */
644 addr
= index
* hpage_size
;
646 /* mutex taken here, fault path and hole punch */
647 hash
= hugetlb_fault_mutex_hash(h
, mapping
, index
, addr
);
648 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
650 /* See if already present in mapping to avoid alloc/free */
651 page
= find_get_page(mapping
, index
);
654 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
655 hugetlb_drop_vma_policy(&pseudo_vma
);
659 /* Allocate page and add to page cache */
660 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
661 hugetlb_drop_vma_policy(&pseudo_vma
);
663 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
664 error
= PTR_ERR(page
);
667 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
668 __SetPageUptodate(page
);
669 error
= huge_add_to_page_cache(page
, mapping
, index
);
670 if (unlikely(error
)) {
672 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
676 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
679 * unlock_page because locked by add_to_page_cache()
680 * page_put due to reference from alloc_huge_page()
686 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
687 i_size_write(inode
, offset
+ len
);
688 inode
->i_ctime
= current_time(inode
);
694 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
696 struct inode
*inode
= d_inode(dentry
);
697 struct hstate
*h
= hstate_inode(inode
);
699 unsigned int ia_valid
= attr
->ia_valid
;
700 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
704 error
= setattr_prepare(dentry
, attr
);
708 if (ia_valid
& ATTR_SIZE
) {
709 loff_t oldsize
= inode
->i_size
;
710 loff_t newsize
= attr
->ia_size
;
712 if (newsize
& ~huge_page_mask(h
))
714 /* protected by i_mutex */
715 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
716 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
718 error
= hugetlb_vmtruncate(inode
, newsize
);
723 setattr_copy(inode
, attr
);
724 mark_inode_dirty(inode
);
728 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
729 struct hugetlbfs_fs_context
*ctx
)
733 inode
= new_inode(sb
);
735 inode
->i_ino
= get_next_ino();
736 inode
->i_mode
= S_IFDIR
| ctx
->mode
;
737 inode
->i_uid
= ctx
->uid
;
738 inode
->i_gid
= ctx
->gid
;
739 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
740 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
741 inode
->i_fop
= &simple_dir_operations
;
742 /* directory inodes start off with i_nlink == 2 (for "." entry) */
744 lockdep_annotate_inode_mutex_key(inode
);
750 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
751 * be taken from reclaim -- unlike regular filesystems. This needs an
752 * annotation because huge_pmd_share() does an allocation under hugetlb's
755 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
757 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
759 umode_t mode
, dev_t dev
)
762 struct resv_map
*resv_map
= NULL
;
765 * Reserve maps are only needed for inodes that can have associated
768 if (S_ISREG(mode
) || S_ISLNK(mode
)) {
769 resv_map
= resv_map_alloc();
774 inode
= new_inode(sb
);
776 struct hugetlbfs_inode_info
*info
= HUGETLBFS_I(inode
);
778 inode
->i_ino
= get_next_ino();
779 inode_init_owner(inode
, dir
, mode
);
780 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
781 &hugetlbfs_i_mmap_rwsem_key
);
782 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
783 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
784 inode
->i_mapping
->private_data
= resv_map
;
785 info
->seals
= F_SEAL_SEAL
;
786 switch (mode
& S_IFMT
) {
788 init_special_inode(inode
, mode
, dev
);
791 inode
->i_op
= &hugetlbfs_inode_operations
;
792 inode
->i_fop
= &hugetlbfs_file_operations
;
795 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
796 inode
->i_fop
= &simple_dir_operations
;
798 /* directory inodes start off with i_nlink == 2 (for "." entry) */
802 inode
->i_op
= &page_symlink_inode_operations
;
803 inode_nohighmem(inode
);
806 lockdep_annotate_inode_mutex_key(inode
);
809 kref_put(&resv_map
->refs
, resv_map_release
);
816 * File creation. Allocate an inode, and we're done..
818 static int hugetlbfs_mknod(struct inode
*dir
,
819 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
824 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
826 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
827 d_instantiate(dentry
, inode
);
828 dget(dentry
); /* Extra count - pin the dentry in core */
834 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
836 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
842 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
844 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
847 static int hugetlbfs_symlink(struct inode
*dir
,
848 struct dentry
*dentry
, const char *symname
)
853 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
855 int l
= strlen(symname
)+1;
856 error
= page_symlink(inode
, symname
, l
);
858 d_instantiate(dentry
, inode
);
863 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
869 * mark the head page dirty
871 static int hugetlbfs_set_page_dirty(struct page
*page
)
873 struct page
*head
= compound_head(page
);
879 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
880 struct page
*newpage
, struct page
*page
,
881 enum migrate_mode mode
)
885 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
886 if (rc
!= MIGRATEPAGE_SUCCESS
)
890 * page_private is subpool pointer in hugetlb pages. Transfer to
891 * new page. PagePrivate is not associated with page_private for
892 * hugetlb pages and can not be set here as only page_huge_active
893 * pages can be migrated.
895 if (page_private(page
)) {
896 set_page_private(newpage
, page_private(page
));
897 set_page_private(page
, 0);
900 if (mode
!= MIGRATE_SYNC_NO_COPY
)
901 migrate_page_copy(newpage
, page
);
903 migrate_page_states(newpage
, page
);
905 return MIGRATEPAGE_SUCCESS
;
908 static int hugetlbfs_error_remove_page(struct address_space
*mapping
,
911 struct inode
*inode
= mapping
->host
;
912 pgoff_t index
= page
->index
;
914 remove_huge_page(page
);
915 if (unlikely(hugetlb_unreserve_pages(inode
, index
, index
+ 1, 1)))
916 hugetlb_fix_reserve_counts(inode
);
922 * Display the mount options in /proc/mounts.
924 static int hugetlbfs_show_options(struct seq_file
*m
, struct dentry
*root
)
926 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(root
->d_sb
);
927 struct hugepage_subpool
*spool
= sbinfo
->spool
;
928 unsigned long hpage_size
= huge_page_size(sbinfo
->hstate
);
929 unsigned hpage_shift
= huge_page_shift(sbinfo
->hstate
);
932 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
933 seq_printf(m
, ",uid=%u",
934 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
935 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
936 seq_printf(m
, ",gid=%u",
937 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
938 if (sbinfo
->mode
!= 0755)
939 seq_printf(m
, ",mode=%o", sbinfo
->mode
);
940 if (sbinfo
->max_inodes
!= -1)
941 seq_printf(m
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
945 if (hpage_size
>= 1024) {
949 seq_printf(m
, ",pagesize=%lu%c", hpage_size
, mod
);
951 if (spool
->max_hpages
!= -1)
952 seq_printf(m
, ",size=%llu",
953 (unsigned long long)spool
->max_hpages
<< hpage_shift
);
954 if (spool
->min_hpages
!= -1)
955 seq_printf(m
, ",min_size=%llu",
956 (unsigned long long)spool
->min_hpages
<< hpage_shift
);
961 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
963 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
964 struct hstate
*h
= hstate_inode(d_inode(dentry
));
966 buf
->f_type
= HUGETLBFS_MAGIC
;
967 buf
->f_bsize
= huge_page_size(h
);
969 spin_lock(&sbinfo
->stat_lock
);
970 /* If no limits set, just report 0 for max/free/used
971 * blocks, like simple_statfs() */
975 spin_lock(&sbinfo
->spool
->lock
);
976 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
977 free_pages
= sbinfo
->spool
->max_hpages
978 - sbinfo
->spool
->used_hpages
;
979 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
980 spin_unlock(&sbinfo
->spool
->lock
);
981 buf
->f_files
= sbinfo
->max_inodes
;
982 buf
->f_ffree
= sbinfo
->free_inodes
;
984 spin_unlock(&sbinfo
->stat_lock
);
986 buf
->f_namelen
= NAME_MAX
;
990 static void hugetlbfs_put_super(struct super_block
*sb
)
992 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
995 sb
->s_fs_info
= NULL
;
998 hugepage_put_subpool(sbi
->spool
);
1004 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1006 if (sbinfo
->free_inodes
>= 0) {
1007 spin_lock(&sbinfo
->stat_lock
);
1008 if (unlikely(!sbinfo
->free_inodes
)) {
1009 spin_unlock(&sbinfo
->stat_lock
);
1012 sbinfo
->free_inodes
--;
1013 spin_unlock(&sbinfo
->stat_lock
);
1019 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
1021 if (sbinfo
->free_inodes
>= 0) {
1022 spin_lock(&sbinfo
->stat_lock
);
1023 sbinfo
->free_inodes
++;
1024 spin_unlock(&sbinfo
->stat_lock
);
1029 static struct kmem_cache
*hugetlbfs_inode_cachep
;
1031 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
1033 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
1034 struct hugetlbfs_inode_info
*p
;
1036 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
1038 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
1040 hugetlbfs_inc_free_inodes(sbinfo
);
1045 * Any time after allocation, hugetlbfs_destroy_inode can be called
1046 * for the inode. mpol_free_shared_policy is unconditionally called
1047 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1048 * in case of a quick call to destroy.
1050 * Note that the policy is initialized even if we are creating a
1051 * private inode. This simplifies hugetlbfs_destroy_inode.
1053 mpol_shared_policy_init(&p
->policy
, NULL
);
1055 return &p
->vfs_inode
;
1058 static void hugetlbfs_free_inode(struct inode
*inode
)
1060 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
1063 static void hugetlbfs_destroy_inode(struct inode
*inode
)
1065 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
1066 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
1069 static const struct address_space_operations hugetlbfs_aops
= {
1070 .write_begin
= hugetlbfs_write_begin
,
1071 .write_end
= hugetlbfs_write_end
,
1072 .set_page_dirty
= hugetlbfs_set_page_dirty
,
1073 .migratepage
= hugetlbfs_migrate_page
,
1074 .error_remove_page
= hugetlbfs_error_remove_page
,
1078 static void init_once(void *foo
)
1080 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
1082 inode_init_once(&ei
->vfs_inode
);
1085 const struct file_operations hugetlbfs_file_operations
= {
1086 .read_iter
= hugetlbfs_read_iter
,
1087 .mmap
= hugetlbfs_file_mmap
,
1088 .fsync
= noop_fsync
,
1089 .get_unmapped_area
= hugetlb_get_unmapped_area
,
1090 .llseek
= default_llseek
,
1091 .fallocate
= hugetlbfs_fallocate
,
1094 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
1095 .create
= hugetlbfs_create
,
1096 .lookup
= simple_lookup
,
1097 .link
= simple_link
,
1098 .unlink
= simple_unlink
,
1099 .symlink
= hugetlbfs_symlink
,
1100 .mkdir
= hugetlbfs_mkdir
,
1101 .rmdir
= simple_rmdir
,
1102 .mknod
= hugetlbfs_mknod
,
1103 .rename
= simple_rename
,
1104 .setattr
= hugetlbfs_setattr
,
1107 static const struct inode_operations hugetlbfs_inode_operations
= {
1108 .setattr
= hugetlbfs_setattr
,
1111 static const struct super_operations hugetlbfs_ops
= {
1112 .alloc_inode
= hugetlbfs_alloc_inode
,
1113 .free_inode
= hugetlbfs_free_inode
,
1114 .destroy_inode
= hugetlbfs_destroy_inode
,
1115 .evict_inode
= hugetlbfs_evict_inode
,
1116 .statfs
= hugetlbfs_statfs
,
1117 .put_super
= hugetlbfs_put_super
,
1118 .show_options
= hugetlbfs_show_options
,
1122 * Convert size option passed from command line to number of huge pages
1123 * in the pool specified by hstate. Size option could be in bytes
1124 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1127 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1128 enum hugetlbfs_size_type val_type
)
1130 if (val_type
== NO_SIZE
)
1133 if (val_type
== SIZE_PERCENT
) {
1134 size_opt
<<= huge_page_shift(h
);
1135 size_opt
*= h
->max_huge_pages
;
1136 do_div(size_opt
, 100);
1139 size_opt
>>= huge_page_shift(h
);
1144 * Parse one mount parameter.
1146 static int hugetlbfs_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1148 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1149 struct fs_parse_result result
;
1154 opt
= fs_parse(fc
, &hugetlb_fs_parameters
, param
, &result
);
1160 ctx
->uid
= make_kuid(current_user_ns(), result
.uint_32
);
1161 if (!uid_valid(ctx
->uid
))
1166 ctx
->gid
= make_kgid(current_user_ns(), result
.uint_32
);
1167 if (!gid_valid(ctx
->gid
))
1172 ctx
->mode
= result
.uint_32
& 01777U;
1176 /* memparse() will accept a K/M/G without a digit */
1177 if (!isdigit(param
->string
[0]))
1179 ctx
->max_size_opt
= memparse(param
->string
, &rest
);
1180 ctx
->max_val_type
= SIZE_STD
;
1182 ctx
->max_val_type
= SIZE_PERCENT
;
1186 /* memparse() will accept a K/M/G without a digit */
1187 if (!isdigit(param
->string
[0]))
1189 ctx
->nr_inodes
= memparse(param
->string
, &rest
);
1193 ps
= memparse(param
->string
, &rest
);
1194 ctx
->hstate
= size_to_hstate(ps
);
1196 pr_err("Unsupported page size %lu MB\n", ps
>> 20);
1202 /* memparse() will accept a K/M/G without a digit */
1203 if (!isdigit(param
->string
[0]))
1205 ctx
->min_size_opt
= memparse(param
->string
, &rest
);
1206 ctx
->min_val_type
= SIZE_STD
;
1208 ctx
->min_val_type
= SIZE_PERCENT
;
1216 return invalf(fc
, "hugetlbfs: Bad value '%s' for mount option '%s'\n",
1217 param
->string
, param
->key
);
1221 * Validate the parsed options.
1223 static int hugetlbfs_validate(struct fs_context
*fc
)
1225 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1228 * Use huge page pool size (in hstate) to convert the size
1229 * options to number of huge pages. If NO_SIZE, -1 is returned.
1231 ctx
->max_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1234 ctx
->min_hpages
= hugetlbfs_size_to_hpages(ctx
->hstate
,
1239 * If max_size was specified, then min_size must be smaller
1241 if (ctx
->max_val_type
> NO_SIZE
&&
1242 ctx
->min_hpages
> ctx
->max_hpages
) {
1243 pr_err("Minimum size can not be greater than maximum size\n");
1251 hugetlbfs_fill_super(struct super_block
*sb
, struct fs_context
*fc
)
1253 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1254 struct hugetlbfs_sb_info
*sbinfo
;
1256 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1259 sb
->s_fs_info
= sbinfo
;
1260 spin_lock_init(&sbinfo
->stat_lock
);
1261 sbinfo
->hstate
= ctx
->hstate
;
1262 sbinfo
->max_inodes
= ctx
->nr_inodes
;
1263 sbinfo
->free_inodes
= ctx
->nr_inodes
;
1264 sbinfo
->spool
= NULL
;
1265 sbinfo
->uid
= ctx
->uid
;
1266 sbinfo
->gid
= ctx
->gid
;
1267 sbinfo
->mode
= ctx
->mode
;
1270 * Allocate and initialize subpool if maximum or minimum size is
1271 * specified. Any needed reservations (for minimim size) are taken
1272 * taken when the subpool is created.
1274 if (ctx
->max_hpages
!= -1 || ctx
->min_hpages
!= -1) {
1275 sbinfo
->spool
= hugepage_new_subpool(ctx
->hstate
,
1281 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1282 sb
->s_blocksize
= huge_page_size(ctx
->hstate
);
1283 sb
->s_blocksize_bits
= huge_page_shift(ctx
->hstate
);
1284 sb
->s_magic
= HUGETLBFS_MAGIC
;
1285 sb
->s_op
= &hugetlbfs_ops
;
1286 sb
->s_time_gran
= 1;
1287 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, ctx
));
1292 kfree(sbinfo
->spool
);
1297 static int hugetlbfs_get_tree(struct fs_context
*fc
)
1299 int err
= hugetlbfs_validate(fc
);
1302 return get_tree_nodev(fc
, hugetlbfs_fill_super
);
1305 static void hugetlbfs_fs_context_free(struct fs_context
*fc
)
1307 kfree(fc
->fs_private
);
1310 static const struct fs_context_operations hugetlbfs_fs_context_ops
= {
1311 .free
= hugetlbfs_fs_context_free
,
1312 .parse_param
= hugetlbfs_parse_param
,
1313 .get_tree
= hugetlbfs_get_tree
,
1316 static int hugetlbfs_init_fs_context(struct fs_context
*fc
)
1318 struct hugetlbfs_fs_context
*ctx
;
1320 ctx
= kzalloc(sizeof(struct hugetlbfs_fs_context
), GFP_KERNEL
);
1324 ctx
->max_hpages
= -1; /* No limit on size by default */
1325 ctx
->nr_inodes
= -1; /* No limit on number of inodes by default */
1326 ctx
->uid
= current_fsuid();
1327 ctx
->gid
= current_fsgid();
1329 ctx
->hstate
= &default_hstate
;
1330 ctx
->min_hpages
= -1; /* No default minimum size */
1331 ctx
->max_val_type
= NO_SIZE
;
1332 ctx
->min_val_type
= NO_SIZE
;
1333 fc
->fs_private
= ctx
;
1334 fc
->ops
= &hugetlbfs_fs_context_ops
;
1338 static struct file_system_type hugetlbfs_fs_type
= {
1339 .name
= "hugetlbfs",
1340 .init_fs_context
= hugetlbfs_init_fs_context
,
1341 .parameters
= &hugetlb_fs_parameters
,
1342 .kill_sb
= kill_litter_super
,
1345 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1347 static int can_do_hugetlb_shm(void)
1350 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1351 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1354 static int get_hstate_idx(int page_size_log
)
1356 struct hstate
*h
= hstate_sizelog(page_size_log
);
1364 * Note that size should be aligned to proper hugepage size in caller side,
1365 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1367 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1368 vm_flags_t acctflag
, struct user_struct
**user
,
1369 int creat_flags
, int page_size_log
)
1371 struct inode
*inode
;
1372 struct vfsmount
*mnt
;
1376 hstate_idx
= get_hstate_idx(page_size_log
);
1378 return ERR_PTR(-ENODEV
);
1381 mnt
= hugetlbfs_vfsmount
[hstate_idx
];
1383 return ERR_PTR(-ENOENT
);
1385 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1386 *user
= current_user();
1387 if (user_shm_lock(size
, *user
)) {
1389 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1390 current
->comm
, current
->pid
);
1391 task_unlock(current
);
1394 return ERR_PTR(-EPERM
);
1398 file
= ERR_PTR(-ENOSPC
);
1399 inode
= hugetlbfs_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1402 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1403 inode
->i_flags
|= S_PRIVATE
;
1405 inode
->i_size
= size
;
1408 if (hugetlb_reserve_pages(inode
, 0,
1409 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1411 file
= ERR_PTR(-ENOMEM
);
1413 file
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
1414 &hugetlbfs_file_operations
);
1421 user_shm_unlock(size
, *user
);
1427 static struct vfsmount
*__init
mount_one_hugetlbfs(struct hstate
*h
)
1429 struct fs_context
*fc
;
1430 struct vfsmount
*mnt
;
1432 fc
= fs_context_for_mount(&hugetlbfs_fs_type
, SB_KERNMOUNT
);
1436 struct hugetlbfs_fs_context
*ctx
= fc
->fs_private
;
1442 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1443 1U << (h
->order
+ PAGE_SHIFT
- 10));
1447 static int __init
init_hugetlbfs_fs(void)
1449 struct vfsmount
*mnt
;
1454 if (!hugepages_supported()) {
1455 pr_info("disabling because there are no supported hugepage sizes\n");
1460 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1461 sizeof(struct hugetlbfs_inode_info
),
1462 0, SLAB_ACCOUNT
, init_once
);
1463 if (hugetlbfs_inode_cachep
== NULL
)
1466 error
= register_filesystem(&hugetlbfs_fs_type
);
1470 /* default hstate mount is required */
1471 mnt
= mount_one_hugetlbfs(&hstates
[default_hstate_idx
]);
1473 error
= PTR_ERR(mnt
);
1476 hugetlbfs_vfsmount
[default_hstate_idx
] = mnt
;
1478 /* other hstates are optional */
1480 for_each_hstate(h
) {
1481 if (i
== default_hstate_idx
) {
1486 mnt
= mount_one_hugetlbfs(h
);
1488 hugetlbfs_vfsmount
[i
] = NULL
;
1490 hugetlbfs_vfsmount
[i
] = mnt
;
1497 (void)unregister_filesystem(&hugetlbfs_fs_type
);
1499 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1503 fs_initcall(init_hugetlbfs_fs
)