1 #include <linux/bitmap.h>
3 #include <linux/export.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 #include <linux/xarray.h>
10 * idr_alloc_u32() - Allocate an ID.
12 * @ptr: Pointer to be associated with the new ID.
13 * @nextid: Pointer to an ID.
14 * @max: The maximum ID to allocate (inclusive).
15 * @gfp: Memory allocation flags.
17 * Allocates an unused ID in the range specified by @nextid and @max.
18 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
19 * is exclusive. The new ID is assigned to @nextid before the pointer
20 * is inserted into the IDR, so if @nextid points into the object pointed
21 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
23 * The caller should provide their own locking to ensure that two
24 * concurrent modifications to the IDR are not possible. Read-only
25 * accesses to the IDR may be done under the RCU read lock or may
26 * exclude simultaneous writers.
28 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
29 * or -ENOSPC if no free IDs could be found. If an error occurred,
30 * @nextid is unchanged.
32 int idr_alloc_u32(struct idr
*idr
, void *ptr
, u32
*nextid
,
33 unsigned long max
, gfp_t gfp
)
35 struct radix_tree_iter iter
;
37 unsigned int base
= idr
->idr_base
;
38 unsigned int id
= *nextid
;
40 if (WARN_ON_ONCE(!(idr
->idr_rt
.xa_flags
& ROOT_IS_IDR
)))
41 idr
->idr_rt
.xa_flags
|= IDR_RT_MARKER
;
43 id
= (id
< base
) ? 0 : id
- base
;
44 radix_tree_iter_init(&iter
, id
);
45 slot
= idr_get_free(&idr
->idr_rt
, &iter
, gfp
, max
- base
);
49 *nextid
= iter
.index
+ base
;
50 /* there is a memory barrier inside radix_tree_iter_replace() */
51 radix_tree_iter_replace(&idr
->idr_rt
, &iter
, slot
, ptr
);
52 radix_tree_iter_tag_clear(&idr
->idr_rt
, &iter
, IDR_FREE
);
56 EXPORT_SYMBOL_GPL(idr_alloc_u32
);
59 * idr_alloc() - Allocate an ID.
61 * @ptr: Pointer to be associated with the new ID.
62 * @start: The minimum ID (inclusive).
63 * @end: The maximum ID (exclusive).
64 * @gfp: Memory allocation flags.
66 * Allocates an unused ID in the range specified by @start and @end. If
67 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
68 * callers to use @start + N as @end as long as N is within integer range.
70 * The caller should provide their own locking to ensure that two
71 * concurrent modifications to the IDR are not possible. Read-only
72 * accesses to the IDR may be done under the RCU read lock or may
73 * exclude simultaneous writers.
75 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
76 * or -ENOSPC if no free IDs could be found.
78 int idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
, gfp_t gfp
)
83 if (WARN_ON_ONCE(start
< 0))
86 ret
= idr_alloc_u32(idr
, ptr
, &id
, end
> 0 ? end
- 1 : INT_MAX
, gfp
);
92 EXPORT_SYMBOL_GPL(idr_alloc
);
95 * idr_alloc_cyclic() - Allocate an ID cyclically.
97 * @ptr: Pointer to be associated with the new ID.
98 * @start: The minimum ID (inclusive).
99 * @end: The maximum ID (exclusive).
100 * @gfp: Memory allocation flags.
102 * Allocates an unused ID in the range specified by @nextid and @end. If
103 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
104 * callers to use @start + N as @end as long as N is within integer range.
105 * The search for an unused ID will start at the last ID allocated and will
106 * wrap around to @start if no free IDs are found before reaching @end.
108 * The caller should provide their own locking to ensure that two
109 * concurrent modifications to the IDR are not possible. Read-only
110 * accesses to the IDR may be done under the RCU read lock or may
111 * exclude simultaneous writers.
113 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
114 * or -ENOSPC if no free IDs could be found.
116 int idr_alloc_cyclic(struct idr
*idr
, void *ptr
, int start
, int end
, gfp_t gfp
)
118 u32 id
= idr
->idr_next
;
119 int err
, max
= end
> 0 ? end
- 1 : INT_MAX
;
124 err
= idr_alloc_u32(idr
, ptr
, &id
, max
, gfp
);
125 if ((err
== -ENOSPC
) && (id
> start
)) {
127 err
= idr_alloc_u32(idr
, ptr
, &id
, max
, gfp
);
132 idr
->idr_next
= id
+ 1;
135 EXPORT_SYMBOL(idr_alloc_cyclic
);
138 * idr_remove() - Remove an ID from the IDR.
142 * Removes this ID from the IDR. If the ID was not previously in the IDR,
143 * this function returns %NULL.
145 * Since this function modifies the IDR, the caller should provide their
146 * own locking to ensure that concurrent modification of the same IDR is
149 * Return: The pointer formerly associated with this ID.
151 void *idr_remove(struct idr
*idr
, unsigned long id
)
153 return radix_tree_delete_item(&idr
->idr_rt
, id
- idr
->idr_base
, NULL
);
155 EXPORT_SYMBOL_GPL(idr_remove
);
158 * idr_find() - Return pointer for given ID.
162 * Looks up the pointer associated with this ID. A %NULL pointer may
163 * indicate that @id is not allocated or that the %NULL pointer was
164 * associated with this ID.
166 * This function can be called under rcu_read_lock(), given that the leaf
167 * pointers lifetimes are correctly managed.
169 * Return: The pointer associated with this ID.
171 void *idr_find(const struct idr
*idr
, unsigned long id
)
173 return radix_tree_lookup(&idr
->idr_rt
, id
- idr
->idr_base
);
175 EXPORT_SYMBOL_GPL(idr_find
);
178 * idr_for_each() - Iterate through all stored pointers.
180 * @fn: Function to be called for each pointer.
181 * @data: Data passed to callback function.
183 * The callback function will be called for each entry in @idr, passing
184 * the ID, the entry and @data.
186 * If @fn returns anything other than %0, the iteration stops and that
187 * value is returned from this function.
189 * idr_for_each() can be called concurrently with idr_alloc() and
190 * idr_remove() if protected by RCU. Newly added entries may not be
191 * seen and deleted entries may be seen, but adding and removing entries
192 * will not cause other entries to be skipped, nor spurious ones to be seen.
194 int idr_for_each(const struct idr
*idr
,
195 int (*fn
)(int id
, void *p
, void *data
), void *data
)
197 struct radix_tree_iter iter
;
199 int base
= idr
->idr_base
;
201 radix_tree_for_each_slot(slot
, &idr
->idr_rt
, &iter
, 0) {
203 unsigned long id
= iter
.index
+ base
;
205 if (WARN_ON_ONCE(id
> INT_MAX
))
207 ret
= fn(id
, rcu_dereference_raw(*slot
), data
);
214 EXPORT_SYMBOL(idr_for_each
);
217 * idr_get_next() - Find next populated entry.
219 * @nextid: Pointer to an ID.
221 * Returns the next populated entry in the tree with an ID greater than
222 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
223 * to the ID of the found value. To use in a loop, the value pointed to by
224 * nextid must be incremented by the user.
226 void *idr_get_next(struct idr
*idr
, int *nextid
)
228 struct radix_tree_iter iter
;
230 unsigned long base
= idr
->idr_base
;
231 unsigned long id
= *nextid
;
233 id
= (id
< base
) ? 0 : id
- base
;
234 slot
= radix_tree_iter_find(&idr
->idr_rt
, &iter
, id
);
237 id
= iter
.index
+ base
;
239 if (WARN_ON_ONCE(id
> INT_MAX
))
243 return rcu_dereference_raw(*slot
);
245 EXPORT_SYMBOL(idr_get_next
);
248 * idr_get_next_ul() - Find next populated entry.
250 * @nextid: Pointer to an ID.
252 * Returns the next populated entry in the tree with an ID greater than
253 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
254 * to the ID of the found value. To use in a loop, the value pointed to by
255 * nextid must be incremented by the user.
257 void *idr_get_next_ul(struct idr
*idr
, unsigned long *nextid
)
259 struct radix_tree_iter iter
;
261 unsigned long base
= idr
->idr_base
;
262 unsigned long id
= *nextid
;
264 id
= (id
< base
) ? 0 : id
- base
;
265 slot
= radix_tree_iter_find(&idr
->idr_rt
, &iter
, id
);
269 *nextid
= iter
.index
+ base
;
270 return rcu_dereference_raw(*slot
);
272 EXPORT_SYMBOL(idr_get_next_ul
);
275 * idr_replace() - replace pointer for given ID.
277 * @ptr: New pointer to associate with the ID.
280 * Replace the pointer registered with an ID and return the old value.
281 * This function can be called under the RCU read lock concurrently with
282 * idr_alloc() and idr_remove() (as long as the ID being removed is not
283 * the one being replaced!).
285 * Returns: the old value on success. %-ENOENT indicates that @id was not
286 * found. %-EINVAL indicates that @ptr was not valid.
288 void *idr_replace(struct idr
*idr
, void *ptr
, unsigned long id
)
290 struct radix_tree_node
*node
;
291 void __rcu
**slot
= NULL
;
296 entry
= __radix_tree_lookup(&idr
->idr_rt
, id
, &node
, &slot
);
297 if (!slot
|| radix_tree_tag_get(&idr
->idr_rt
, id
, IDR_FREE
))
298 return ERR_PTR(-ENOENT
);
300 __radix_tree_replace(&idr
->idr_rt
, node
, slot
, ptr
);
304 EXPORT_SYMBOL(idr_replace
);
307 * DOC: IDA description
309 * The IDA is an ID allocator which does not provide the ability to
310 * associate an ID with a pointer. As such, it only needs to store one
311 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
312 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
313 * then initialise it using ida_init()). To allocate a new ID, call
314 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
315 * To free an ID, call ida_free().
317 * ida_destroy() can be used to dispose of an IDA without needing to
318 * free the individual IDs in it. You can use ida_is_empty() to find
319 * out whether the IDA has any IDs currently allocated.
321 * The IDA handles its own locking. It is safe to call any of the IDA
322 * functions without synchronisation in your code.
324 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
325 * limitation, it should be quite straightforward to raise the maximum.
331 * The IDA uses the functionality provided by the XArray to store bitmaps in
332 * each entry. The XA_FREE_MARK is only cleared when all bits in the bitmap
335 * I considered telling the XArray that each slot is an order-10 node
336 * and indexing by bit number, but the XArray can't allow a single multi-index
337 * entry in the head, which would significantly increase memory consumption
338 * for the IDA. So instead we divide the index by the number of bits in the
339 * leaf bitmap before doing a radix tree lookup.
341 * As an optimisation, if there are only a few low bits set in any given
342 * leaf, instead of allocating a 128-byte bitmap, we store the bits
343 * as a value entry. Value entries never have the XA_FREE_MARK cleared
344 * because we can always convert them into a bitmap entry.
346 * It would be possible to optimise further; once we've run out of a
347 * single 128-byte bitmap, we currently switch to a 576-byte node, put
348 * the 128-byte bitmap in the first entry and then start allocating extra
349 * 128-byte entries. We could instead use the 512 bytes of the node's
350 * data as a bitmap before moving to that scheme. I do not believe this
351 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
352 * users of the IDA and almost none of them use more than 1024 entries.
353 * Those that do use more than the 8192 IDs that the 512 bytes would
356 * The IDA always uses a lock to alloc/free. If we add a 'test_bit'
357 * equivalent, it will still need locking. Going to RCU lookup would require
358 * using RCU to free bitmaps, and that's not trivial without embedding an
359 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
360 * bitmap, which is excessive.
364 * ida_alloc_range() - Allocate an unused ID.
366 * @min: Lowest ID to allocate.
367 * @max: Highest ID to allocate.
368 * @gfp: Memory allocation flags.
370 * Allocate an ID between @min and @max, inclusive. The allocated ID will
371 * not exceed %INT_MAX, even if @max is larger.
373 * Context: Any context.
374 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
375 * or %-ENOSPC if there are no free IDs.
377 int ida_alloc_range(struct ida
*ida
, unsigned int min
, unsigned int max
,
380 XA_STATE(xas
, &ida
->xa
, min
/ IDA_BITMAP_BITS
);
381 unsigned bit
= min
% IDA_BITMAP_BITS
;
383 struct ida_bitmap
*bitmap
, *alloc
= NULL
;
392 xas_lock_irqsave(&xas
, flags
);
394 bitmap
= xas_find_marked(&xas
, max
/ IDA_BITMAP_BITS
, XA_FREE_MARK
);
395 if (xas
.xa_index
> min
/ IDA_BITMAP_BITS
)
397 if (xas
.xa_index
* IDA_BITMAP_BITS
+ bit
> max
)
400 if (xa_is_value(bitmap
)) {
401 unsigned long tmp
= xa_to_value(bitmap
);
403 if (bit
< BITS_PER_XA_VALUE
) {
404 bit
= find_next_zero_bit(&tmp
, BITS_PER_XA_VALUE
, bit
);
405 if (xas
.xa_index
* IDA_BITMAP_BITS
+ bit
> max
)
407 if (bit
< BITS_PER_XA_VALUE
) {
409 xas_store(&xas
, xa_mk_value(tmp
));
415 bitmap
= kzalloc(sizeof(*bitmap
), GFP_NOWAIT
);
418 bitmap
->bitmap
[0] = tmp
;
419 xas_store(&xas
, bitmap
);
420 if (xas_error(&xas
)) {
421 bitmap
->bitmap
[0] = 0;
427 bit
= find_next_zero_bit(bitmap
->bitmap
, IDA_BITMAP_BITS
, bit
);
428 if (xas
.xa_index
* IDA_BITMAP_BITS
+ bit
> max
)
430 if (bit
== IDA_BITMAP_BITS
)
433 __set_bit(bit
, bitmap
->bitmap
);
434 if (bitmap_full(bitmap
->bitmap
, IDA_BITMAP_BITS
))
435 xas_clear_mark(&xas
, XA_FREE_MARK
);
437 if (bit
< BITS_PER_XA_VALUE
) {
438 bitmap
= xa_mk_value(1UL << bit
);
442 bitmap
= kzalloc(sizeof(*bitmap
), GFP_NOWAIT
);
445 __set_bit(bit
, bitmap
->bitmap
);
447 xas_store(&xas
, bitmap
);
450 xas_unlock_irqrestore(&xas
, flags
);
451 if (xas_nomem(&xas
, gfp
)) {
452 xas
.xa_index
= min
/ IDA_BITMAP_BITS
;
453 bit
= min
% IDA_BITMAP_BITS
;
459 return xas_error(&xas
);
460 return xas
.xa_index
* IDA_BITMAP_BITS
+ bit
;
462 xas_unlock_irqrestore(&xas
, flags
);
463 alloc
= kzalloc(sizeof(*bitmap
), gfp
);
466 xas_set(&xas
, min
/ IDA_BITMAP_BITS
);
467 bit
= min
% IDA_BITMAP_BITS
;
470 xas_unlock_irqrestore(&xas
, flags
);
473 EXPORT_SYMBOL(ida_alloc_range
);
476 * ida_free() - Release an allocated ID.
478 * @id: Previously allocated ID.
480 * Context: Any context.
482 void ida_free(struct ida
*ida
, unsigned int id
)
484 XA_STATE(xas
, &ida
->xa
, id
/ IDA_BITMAP_BITS
);
485 unsigned bit
= id
% IDA_BITMAP_BITS
;
486 struct ida_bitmap
*bitmap
;
491 xas_lock_irqsave(&xas
, flags
);
492 bitmap
= xas_load(&xas
);
494 if (xa_is_value(bitmap
)) {
495 unsigned long v
= xa_to_value(bitmap
);
496 if (bit
>= BITS_PER_XA_VALUE
)
498 if (!(v
& (1UL << bit
)))
503 xas_store(&xas
, xa_mk_value(v
));
505 if (!test_bit(bit
, bitmap
->bitmap
))
507 __clear_bit(bit
, bitmap
->bitmap
);
508 xas_set_mark(&xas
, XA_FREE_MARK
);
509 if (bitmap_empty(bitmap
->bitmap
, IDA_BITMAP_BITS
)) {
512 xas_store(&xas
, NULL
);
515 xas_unlock_irqrestore(&xas
, flags
);
518 xas_unlock_irqrestore(&xas
, flags
);
519 WARN(1, "ida_free called for id=%d which is not allocated.\n", id
);
521 EXPORT_SYMBOL(ida_free
);
524 * ida_destroy() - Free all IDs.
527 * Calling this function frees all IDs and releases all resources used
528 * by an IDA. When this call returns, the IDA is empty and can be reused
529 * or freed. If the IDA is already empty, there is no need to call this
532 * Context: Any context.
534 void ida_destroy(struct ida
*ida
)
536 XA_STATE(xas
, &ida
->xa
, 0);
537 struct ida_bitmap
*bitmap
;
540 xas_lock_irqsave(&xas
, flags
);
541 xas_for_each(&xas
, bitmap
, ULONG_MAX
) {
542 if (!xa_is_value(bitmap
))
544 xas_store(&xas
, NULL
);
546 xas_unlock_irqrestore(&xas
, flags
);
548 EXPORT_SYMBOL(ida_destroy
);
551 extern void xa_dump_index(unsigned long index
, unsigned int shift
);
552 #define IDA_CHUNK_SHIFT ilog2(IDA_BITMAP_BITS)
554 static void ida_dump_entry(void *entry
, unsigned long index
)
561 if (xa_is_node(entry
)) {
562 struct xa_node
*node
= xa_to_node(entry
);
563 unsigned int shift
= node
->shift
+ IDA_CHUNK_SHIFT
+
566 xa_dump_index(index
* IDA_BITMAP_BITS
, shift
);
568 for (i
= 0; i
< XA_CHUNK_SIZE
; i
++)
569 ida_dump_entry(node
->slots
[i
],
570 index
| (i
<< node
->shift
));
571 } else if (xa_is_value(entry
)) {
572 xa_dump_index(index
* IDA_BITMAP_BITS
, ilog2(BITS_PER_LONG
));
573 pr_cont("value: data %lx [%px]\n", xa_to_value(entry
), entry
);
575 struct ida_bitmap
*bitmap
= entry
;
577 xa_dump_index(index
* IDA_BITMAP_BITS
, IDA_CHUNK_SHIFT
);
578 pr_cont("bitmap: %p data", bitmap
);
579 for (i
= 0; i
< IDA_BITMAP_LONGS
; i
++)
580 pr_cont(" %lx", bitmap
->bitmap
[i
]);
585 static void ida_dump(struct ida
*ida
)
587 struct xarray
*xa
= &ida
->xa
;
588 pr_debug("ida: %p node %p free %d\n", ida
, xa
->xa_head
,
589 xa
->xa_flags
>> ROOT_TAG_SHIFT
);
590 ida_dump_entry(xa
->xa_head
, 0);