1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include "net_driver.h"
11 #include "ef10_regs.h"
14 #include "mcdi_pcol.h"
16 #include "workarounds.h"
19 #include <linux/jhash.h>
20 #include <linux/wait.h>
21 #include <linux/workqueue.h>
23 /* Hardware control for EF10 architecture including 'Huntington'. */
25 #define EFX_EF10_DRVGEN_EV 7
31 /* The reserved RSS context value */
32 #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
34 /* The filter table(s) are managed by firmware and we have write-only
35 * access. When removing filters we must identify them to the
36 * firmware by a 64-bit handle, but this is too wide for Linux kernel
37 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
38 * be able to tell in advance whether a requested insertion will
39 * replace an existing filter. Therefore we maintain a software hash
40 * table, which should be at least as large as the hardware hash
43 * Huntington has a single 8K filter table shared between all filter
44 * types and both ports.
46 #define HUNT_FILTER_TBL_ROWS 8192
48 struct efx_ef10_filter_table
{
49 /* The RX match field masks supported by this fw & hw, in order of priority */
50 enum efx_filter_match_flags rx_match_flags
[
51 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM
];
52 unsigned int rx_match_count
;
55 unsigned long spec
; /* pointer to spec plus flag bits */
56 /* BUSY flag indicates that an update is in progress. AUTO_OLD is
57 * used to mark and sweep MAC filters for the device address lists.
59 #define EFX_EF10_FILTER_FLAG_BUSY 1UL
60 #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
61 #define EFX_EF10_FILTER_FLAGS 3UL
62 u64 handle
; /* firmware handle */
64 wait_queue_head_t waitq
;
65 /* Shadow of net_device address lists, guarded by mac_lock */
66 #define EFX_EF10_FILTER_DEV_UC_MAX 32
67 #define EFX_EF10_FILTER_DEV_MC_MAX 256
71 } dev_uc_list
[EFX_EF10_FILTER_DEV_UC_MAX
],
72 dev_mc_list
[EFX_EF10_FILTER_DEV_MC_MAX
];
73 int dev_uc_count
; /* negative for PROMISC */
74 int dev_mc_count
; /* negative for PROMISC/ALLMULTI */
77 /* An arbitrary search limit for the software hash table */
78 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
80 static void efx_ef10_rx_push_rss_config(struct efx_nic
*efx
);
81 static void efx_ef10_rx_free_indir_table(struct efx_nic
*efx
);
82 static void efx_ef10_filter_table_remove(struct efx_nic
*efx
);
84 static int efx_ef10_get_warm_boot_count(struct efx_nic
*efx
)
88 efx_readd(efx
, ®
, ER_DZ_BIU_MC_SFT_STATUS
);
89 return EFX_DWORD_FIELD(reg
, EFX_WORD_1
) == 0xb007 ?
90 EFX_DWORD_FIELD(reg
, EFX_WORD_0
) : -EIO
;
93 static unsigned int efx_ef10_mem_map_size(struct efx_nic
*efx
)
95 return resource_size(&efx
->pci_dev
->resource
[EFX_MEM_BAR
]);
98 static int efx_ef10_init_datapath_caps(struct efx_nic
*efx
)
100 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CAPABILITIES_OUT_LEN
);
101 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
105 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN
!= 0);
107 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CAPABILITIES
, NULL
, 0,
108 outbuf
, sizeof(outbuf
), &outlen
);
111 if (outlen
< sizeof(outbuf
)) {
112 netif_err(efx
, drv
, efx
->net_dev
,
113 "unable to read datapath firmware capabilities\n");
117 nic_data
->datapath_caps
=
118 MCDI_DWORD(outbuf
, GET_CAPABILITIES_OUT_FLAGS1
);
120 if (!(nic_data
->datapath_caps
&
121 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN
))) {
122 netif_err(efx
, drv
, efx
->net_dev
,
123 "current firmware does not support TSO\n");
127 if (!(nic_data
->datapath_caps
&
128 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN
))) {
129 netif_err(efx
, probe
, efx
->net_dev
,
130 "current firmware does not support an RX prefix\n");
137 static int efx_ef10_get_sysclk_freq(struct efx_nic
*efx
)
139 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_CLOCK_OUT_LEN
);
142 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CLOCK
, NULL
, 0,
143 outbuf
, sizeof(outbuf
), NULL
);
146 rc
= MCDI_DWORD(outbuf
, GET_CLOCK_OUT_SYS_FREQ
);
147 return rc
> 0 ? rc
: -ERANGE
;
150 static int efx_ef10_get_mac_address(struct efx_nic
*efx
, u8
*mac_address
)
152 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
);
156 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN
!= 0);
158 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_MAC_ADDRESSES
, NULL
, 0,
159 outbuf
, sizeof(outbuf
), &outlen
);
162 if (outlen
< MC_CMD_GET_MAC_ADDRESSES_OUT_LEN
)
165 ether_addr_copy(mac_address
,
166 MCDI_PTR(outbuf
, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE
));
170 static int efx_ef10_probe(struct efx_nic
*efx
)
172 struct efx_ef10_nic_data
*nic_data
;
175 /* We can have one VI for each 8K region. However, until we
176 * use TX option descriptors we need two TX queues per channel.
181 resource_size(&efx
->pci_dev
->resource
[EFX_MEM_BAR
]) /
182 (EFX_VI_PAGE_SIZE
* EFX_TXQ_TYPES
));
183 if (WARN_ON(efx
->max_channels
== 0))
186 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
189 efx
->nic_data
= nic_data
;
191 rc
= efx_nic_alloc_buffer(efx
, &nic_data
->mcdi_buf
,
192 8 + MCDI_CTL_SDU_LEN_MAX_V2
, GFP_KERNEL
);
196 /* Get the MC's warm boot count. In case it's rebooting right
197 * now, be prepared to retry.
201 rc
= efx_ef10_get_warm_boot_count(efx
);
208 nic_data
->warm_boot_count
= rc
;
210 nic_data
->rx_rss_context
= EFX_EF10_RSS_CONTEXT_INVALID
;
212 /* In case we're recovering from a crash (kexec), we want to
213 * cancel any outstanding request by the previous user of this
214 * function. We send a special message using the least
215 * significant bits of the 'high' (doorbell) register.
217 _efx_writed(efx
, cpu_to_le32(1), ER_DZ_MC_DB_HWRD
);
219 rc
= efx_mcdi_init(efx
);
223 /* Reset (most) configuration for this function */
224 rc
= efx_mcdi_reset(efx
, RESET_TYPE_ALL
);
228 /* Enable event logging */
229 rc
= efx_mcdi_log_ctrl(efx
, true, false, 0);
233 rc
= efx_ef10_init_datapath_caps(efx
);
237 efx
->rx_packet_len_offset
=
238 ES_DZ_RX_PREFIX_PKTLEN_OFST
- ES_DZ_RX_PREFIX_SIZE
;
240 rc
= efx_mcdi_port_get_number(efx
);
245 rc
= efx_ef10_get_mac_address(efx
, efx
->net_dev
->perm_addr
);
249 rc
= efx_ef10_get_sysclk_freq(efx
);
252 efx
->timer_quantum_ns
= 1536000 / rc
; /* 1536 cycles */
254 /* Check whether firmware supports bug 35388 workaround */
255 rc
= efx_mcdi_set_workaround(efx
, MC_CMD_WORKAROUND_BUG35388
, true);
257 nic_data
->workaround_35388
= true;
258 else if (rc
!= -ENOSYS
&& rc
!= -ENOENT
)
260 netif_dbg(efx
, probe
, efx
->net_dev
,
261 "workaround for bug 35388 is %sabled\n",
262 nic_data
->workaround_35388
? "en" : "dis");
264 rc
= efx_mcdi_mon_probe(efx
);
268 efx_ptp_probe(efx
, NULL
);
275 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
278 efx
->nic_data
= NULL
;
282 static int efx_ef10_free_vis(struct efx_nic
*efx
)
284 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf
, 0);
286 int rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FREE_VIS
, NULL
, 0,
287 outbuf
, sizeof(outbuf
), &outlen
);
289 /* -EALREADY means nothing to free, so ignore */
293 efx_mcdi_display_error(efx
, MC_CMD_FREE_VIS
, 0, outbuf
, outlen
,
300 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
302 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
303 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FREE_PIOBUF_IN_LEN
);
307 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN
!= 0);
309 for (i
= 0; i
< nic_data
->n_piobufs
; i
++) {
310 MCDI_SET_DWORD(inbuf
, FREE_PIOBUF_IN_PIOBUF_HANDLE
,
311 nic_data
->piobuf_handle
[i
]);
312 rc
= efx_mcdi_rpc(efx
, MC_CMD_FREE_PIOBUF
, inbuf
, sizeof(inbuf
),
317 nic_data
->n_piobufs
= 0;
320 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
322 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
323 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_PIOBUF_OUT_LEN
);
328 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN
!= 0);
330 for (i
= 0; i
< n
; i
++) {
331 rc
= efx_mcdi_rpc(efx
, MC_CMD_ALLOC_PIOBUF
, NULL
, 0,
332 outbuf
, sizeof(outbuf
), &outlen
);
335 if (outlen
< MC_CMD_ALLOC_PIOBUF_OUT_LEN
) {
339 nic_data
->piobuf_handle
[i
] =
340 MCDI_DWORD(outbuf
, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE
);
341 netif_dbg(efx
, probe
, efx
->net_dev
,
342 "allocated PIO buffer %u handle %x\n", i
,
343 nic_data
->piobuf_handle
[i
]);
346 nic_data
->n_piobufs
= i
;
348 efx_ef10_free_piobufs(efx
);
352 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
354 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
355 MCDI_DECLARE_BUF(inbuf
,
356 max(MC_CMD_LINK_PIOBUF_IN_LEN
,
357 MC_CMD_UNLINK_PIOBUF_IN_LEN
));
358 struct efx_channel
*channel
;
359 struct efx_tx_queue
*tx_queue
;
360 unsigned int offset
, index
;
363 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN
!= 0);
364 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN
!= 0);
366 /* Link a buffer to each VI in the write-combining mapping */
367 for (index
= 0; index
< nic_data
->n_piobufs
; ++index
) {
368 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_PIOBUF_HANDLE
,
369 nic_data
->piobuf_handle
[index
]);
370 MCDI_SET_DWORD(inbuf
, LINK_PIOBUF_IN_TXQ_INSTANCE
,
371 nic_data
->pio_write_vi_base
+ index
);
372 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
373 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
376 netif_err(efx
, drv
, efx
->net_dev
,
377 "failed to link VI %u to PIO buffer %u (%d)\n",
378 nic_data
->pio_write_vi_base
+ index
, index
,
382 netif_dbg(efx
, probe
, efx
->net_dev
,
383 "linked VI %u to PIO buffer %u\n",
384 nic_data
->pio_write_vi_base
+ index
, index
);
387 /* Link a buffer to each TX queue */
388 efx_for_each_channel(channel
, efx
) {
389 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
390 /* We assign the PIO buffers to queues in
391 * reverse order to allow for the following
394 offset
= ((efx
->tx_channel_offset
+ efx
->n_tx_channels
-
395 tx_queue
->channel
->channel
- 1) *
397 index
= offset
/ ER_DZ_TX_PIOBUF_SIZE
;
398 offset
= offset
% ER_DZ_TX_PIOBUF_SIZE
;
400 /* When the host page size is 4K, the first
401 * host page in the WC mapping may be within
402 * the same VI page as the last TX queue. We
403 * can only link one buffer to each VI.
405 if (tx_queue
->queue
== nic_data
->pio_write_vi_base
) {
409 MCDI_SET_DWORD(inbuf
,
410 LINK_PIOBUF_IN_PIOBUF_HANDLE
,
411 nic_data
->piobuf_handle
[index
]);
412 MCDI_SET_DWORD(inbuf
,
413 LINK_PIOBUF_IN_TXQ_INSTANCE
,
415 rc
= efx_mcdi_rpc(efx
, MC_CMD_LINK_PIOBUF
,
416 inbuf
, MC_CMD_LINK_PIOBUF_IN_LEN
,
421 /* This is non-fatal; the TX path just
422 * won't use PIO for this queue
424 netif_err(efx
, drv
, efx
->net_dev
,
425 "failed to link VI %u to PIO buffer %u (%d)\n",
426 tx_queue
->queue
, index
, rc
);
427 tx_queue
->piobuf
= NULL
;
430 nic_data
->pio_write_base
+
431 index
* EFX_VI_PAGE_SIZE
+ offset
;
432 tx_queue
->piobuf_offset
= offset
;
433 netif_dbg(efx
, probe
, efx
->net_dev
,
434 "linked VI %u to PIO buffer %u offset %x addr %p\n",
435 tx_queue
->queue
, index
,
436 tx_queue
->piobuf_offset
,
446 MCDI_SET_DWORD(inbuf
, UNLINK_PIOBUF_IN_TXQ_INSTANCE
,
447 nic_data
->pio_write_vi_base
+ index
);
448 efx_mcdi_rpc(efx
, MC_CMD_UNLINK_PIOBUF
,
449 inbuf
, MC_CMD_UNLINK_PIOBUF_IN_LEN
,
455 static void efx_ef10_forget_old_piobufs(struct efx_nic
*efx
)
457 struct efx_channel
*channel
;
458 struct efx_tx_queue
*tx_queue
;
460 /* All our existing PIO buffers went away */
461 efx_for_each_channel(channel
, efx
)
462 efx_for_each_channel_tx_queue(tx_queue
, channel
)
463 tx_queue
->piobuf
= NULL
;
466 #else /* !EFX_USE_PIO */
468 static int efx_ef10_alloc_piobufs(struct efx_nic
*efx
, unsigned int n
)
470 return n
== 0 ? 0 : -ENOBUFS
;
473 static int efx_ef10_link_piobufs(struct efx_nic
*efx
)
478 static void efx_ef10_free_piobufs(struct efx_nic
*efx
)
482 static void efx_ef10_forget_old_piobufs(struct efx_nic
*efx
)
486 #endif /* EFX_USE_PIO */
488 static void efx_ef10_remove(struct efx_nic
*efx
)
490 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
495 efx_mcdi_mon_remove(efx
);
497 efx_ef10_rx_free_indir_table(efx
);
499 if (nic_data
->wc_membase
)
500 iounmap(nic_data
->wc_membase
);
502 rc
= efx_ef10_free_vis(efx
);
505 if (!nic_data
->must_restore_piobufs
)
506 efx_ef10_free_piobufs(efx
);
509 efx_nic_free_buffer(efx
, &nic_data
->mcdi_buf
);
513 static int efx_ef10_alloc_vis(struct efx_nic
*efx
,
514 unsigned int min_vis
, unsigned int max_vis
)
516 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ALLOC_VIS_IN_LEN
);
517 MCDI_DECLARE_BUF(outbuf
, MC_CMD_ALLOC_VIS_OUT_LEN
);
518 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
522 MCDI_SET_DWORD(inbuf
, ALLOC_VIS_IN_MIN_VI_COUNT
, min_vis
);
523 MCDI_SET_DWORD(inbuf
, ALLOC_VIS_IN_MAX_VI_COUNT
, max_vis
);
524 rc
= efx_mcdi_rpc(efx
, MC_CMD_ALLOC_VIS
, inbuf
, sizeof(inbuf
),
525 outbuf
, sizeof(outbuf
), &outlen
);
529 if (outlen
< MC_CMD_ALLOC_VIS_OUT_LEN
)
532 netif_dbg(efx
, drv
, efx
->net_dev
, "base VI is A0x%03x\n",
533 MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_BASE
));
535 nic_data
->vi_base
= MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_BASE
);
536 nic_data
->n_allocated_vis
= MCDI_DWORD(outbuf
, ALLOC_VIS_OUT_VI_COUNT
);
540 /* Note that the failure path of this function does not free
541 * resources, as this will be done by efx_ef10_remove().
543 static int efx_ef10_dimension_resources(struct efx_nic
*efx
)
545 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
546 unsigned int uc_mem_map_size
, wc_mem_map_size
;
547 unsigned int min_vis
, pio_write_vi_base
, max_vis
;
548 void __iomem
*membase
;
551 min_vis
= max(efx
->n_channels
, efx
->n_tx_channels
* EFX_TXQ_TYPES
);
554 /* Try to allocate PIO buffers if wanted and if the full
555 * number of PIO buffers would be sufficient to allocate one
556 * copy-buffer per TX channel. Failure is non-fatal, as there
557 * are only a small number of PIO buffers shared between all
558 * functions of the controller.
560 if (efx_piobuf_size
!= 0 &&
561 ER_DZ_TX_PIOBUF_SIZE
/ efx_piobuf_size
* EF10_TX_PIOBUF_COUNT
>=
562 efx
->n_tx_channels
) {
563 unsigned int n_piobufs
=
564 DIV_ROUND_UP(efx
->n_tx_channels
,
565 ER_DZ_TX_PIOBUF_SIZE
/ efx_piobuf_size
);
567 rc
= efx_ef10_alloc_piobufs(efx
, n_piobufs
);
569 netif_err(efx
, probe
, efx
->net_dev
,
570 "failed to allocate PIO buffers (%d)\n", rc
);
572 netif_dbg(efx
, probe
, efx
->net_dev
,
573 "allocated %u PIO buffers\n", n_piobufs
);
576 nic_data
->n_piobufs
= 0;
579 /* PIO buffers should be mapped with write-combining enabled,
580 * and we want to make single UC and WC mappings rather than
581 * several of each (in fact that's the only option if host
582 * page size is >4K). So we may allocate some extra VIs just
583 * for writing PIO buffers through.
585 * The UC mapping contains (min_vis - 1) complete VIs and the
586 * first half of the next VI. Then the WC mapping begins with
587 * the second half of this last VI.
589 uc_mem_map_size
= PAGE_ALIGN((min_vis
- 1) * EFX_VI_PAGE_SIZE
+
591 if (nic_data
->n_piobufs
) {
592 /* pio_write_vi_base rounds down to give the number of complete
593 * VIs inside the UC mapping.
595 pio_write_vi_base
= uc_mem_map_size
/ EFX_VI_PAGE_SIZE
;
596 wc_mem_map_size
= (PAGE_ALIGN((pio_write_vi_base
+
597 nic_data
->n_piobufs
) *
600 max_vis
= pio_write_vi_base
+ nic_data
->n_piobufs
;
602 pio_write_vi_base
= 0;
607 /* In case the last attached driver failed to free VIs, do it now */
608 rc
= efx_ef10_free_vis(efx
);
612 rc
= efx_ef10_alloc_vis(efx
, min_vis
, max_vis
);
616 /* If we didn't get enough VIs to map all the PIO buffers, free the
619 if (nic_data
->n_piobufs
&&
620 nic_data
->n_allocated_vis
<
621 pio_write_vi_base
+ nic_data
->n_piobufs
) {
622 netif_dbg(efx
, probe
, efx
->net_dev
,
623 "%u VIs are not sufficient to map %u PIO buffers\n",
624 nic_data
->n_allocated_vis
, nic_data
->n_piobufs
);
625 efx_ef10_free_piobufs(efx
);
628 /* Shrink the original UC mapping of the memory BAR */
629 membase
= ioremap_nocache(efx
->membase_phys
, uc_mem_map_size
);
631 netif_err(efx
, probe
, efx
->net_dev
,
632 "could not shrink memory BAR to %x\n",
636 iounmap(efx
->membase
);
637 efx
->membase
= membase
;
639 /* Set up the WC mapping if needed */
640 if (wc_mem_map_size
) {
641 nic_data
->wc_membase
= ioremap_wc(efx
->membase_phys
+
644 if (!nic_data
->wc_membase
) {
645 netif_err(efx
, probe
, efx
->net_dev
,
646 "could not allocate WC mapping of size %x\n",
650 nic_data
->pio_write_vi_base
= pio_write_vi_base
;
651 nic_data
->pio_write_base
=
652 nic_data
->wc_membase
+
653 (pio_write_vi_base
* EFX_VI_PAGE_SIZE
+ ER_DZ_TX_PIOBUF
-
656 rc
= efx_ef10_link_piobufs(efx
);
658 efx_ef10_free_piobufs(efx
);
661 netif_dbg(efx
, probe
, efx
->net_dev
,
662 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
663 &efx
->membase_phys
, efx
->membase
, uc_mem_map_size
,
664 nic_data
->wc_membase
, wc_mem_map_size
);
669 static int efx_ef10_init_nic(struct efx_nic
*efx
)
671 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
674 if (nic_data
->must_check_datapath_caps
) {
675 rc
= efx_ef10_init_datapath_caps(efx
);
678 nic_data
->must_check_datapath_caps
= false;
681 if (nic_data
->must_realloc_vis
) {
682 /* We cannot let the number of VIs change now */
683 rc
= efx_ef10_alloc_vis(efx
, nic_data
->n_allocated_vis
,
684 nic_data
->n_allocated_vis
);
687 nic_data
->must_realloc_vis
= false;
690 if (nic_data
->must_restore_piobufs
&& nic_data
->n_piobufs
) {
691 rc
= efx_ef10_alloc_piobufs(efx
, nic_data
->n_piobufs
);
693 rc
= efx_ef10_link_piobufs(efx
);
695 efx_ef10_free_piobufs(efx
);
698 /* Log an error on failure, but this is non-fatal */
700 netif_err(efx
, drv
, efx
->net_dev
,
701 "failed to restore PIO buffers (%d)\n", rc
);
702 nic_data
->must_restore_piobufs
= false;
705 efx_ef10_rx_push_rss_config(efx
);
709 static void efx_ef10_reset_mc_allocations(struct efx_nic
*efx
)
711 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
713 /* All our allocations have been reset */
714 nic_data
->must_realloc_vis
= true;
715 nic_data
->must_restore_filters
= true;
716 nic_data
->must_restore_piobufs
= true;
717 efx_ef10_forget_old_piobufs(efx
);
718 nic_data
->rx_rss_context
= EFX_EF10_RSS_CONTEXT_INVALID
;
721 static int efx_ef10_map_reset_flags(u32
*flags
)
724 EF10_RESET_PORT
= ((ETH_RESET_MAC
| ETH_RESET_PHY
) <<
725 ETH_RESET_SHARED_SHIFT
),
726 EF10_RESET_MC
= ((ETH_RESET_DMA
| ETH_RESET_FILTER
|
727 ETH_RESET_OFFLOAD
| ETH_RESET_MAC
|
728 ETH_RESET_PHY
| ETH_RESET_MGMT
) <<
729 ETH_RESET_SHARED_SHIFT
)
732 /* We assume for now that our PCI function is permitted to
736 if ((*flags
& EF10_RESET_MC
) == EF10_RESET_MC
) {
737 *flags
&= ~EF10_RESET_MC
;
738 return RESET_TYPE_WORLD
;
741 if ((*flags
& EF10_RESET_PORT
) == EF10_RESET_PORT
) {
742 *flags
&= ~EF10_RESET_PORT
;
743 return RESET_TYPE_ALL
;
746 /* no invisible reset implemented */
751 static int efx_ef10_reset(struct efx_nic
*efx
, enum reset_type reset_type
)
753 int rc
= efx_mcdi_reset(efx
, reset_type
);
755 /* If it was a port reset, trigger reallocation of MC resources.
756 * Note that on an MC reset nothing needs to be done now because we'll
757 * detect the MC reset later and handle it then.
758 * For an FLR, we never get an MC reset event, but the MC has reset all
759 * resources assigned to us, so we have to trigger reallocation now.
761 if ((reset_type
== RESET_TYPE_ALL
||
762 reset_type
== RESET_TYPE_MCDI_TIMEOUT
) && !rc
)
763 efx_ef10_reset_mc_allocations(efx
);
767 #define EF10_DMA_STAT(ext_name, mcdi_name) \
768 [EF10_STAT_ ## ext_name] = \
769 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
770 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
771 [EF10_STAT_ ## int_name] = \
772 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
773 #define EF10_OTHER_STAT(ext_name) \
774 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
775 #define GENERIC_SW_STAT(ext_name) \
776 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
778 static const struct efx_hw_stat_desc efx_ef10_stat_desc
[EF10_STAT_COUNT
] = {
779 EF10_DMA_STAT(tx_bytes
, TX_BYTES
),
780 EF10_DMA_STAT(tx_packets
, TX_PKTS
),
781 EF10_DMA_STAT(tx_pause
, TX_PAUSE_PKTS
),
782 EF10_DMA_STAT(tx_control
, TX_CONTROL_PKTS
),
783 EF10_DMA_STAT(tx_unicast
, TX_UNICAST_PKTS
),
784 EF10_DMA_STAT(tx_multicast
, TX_MULTICAST_PKTS
),
785 EF10_DMA_STAT(tx_broadcast
, TX_BROADCAST_PKTS
),
786 EF10_DMA_STAT(tx_lt64
, TX_LT64_PKTS
),
787 EF10_DMA_STAT(tx_64
, TX_64_PKTS
),
788 EF10_DMA_STAT(tx_65_to_127
, TX_65_TO_127_PKTS
),
789 EF10_DMA_STAT(tx_128_to_255
, TX_128_TO_255_PKTS
),
790 EF10_DMA_STAT(tx_256_to_511
, TX_256_TO_511_PKTS
),
791 EF10_DMA_STAT(tx_512_to_1023
, TX_512_TO_1023_PKTS
),
792 EF10_DMA_STAT(tx_1024_to_15xx
, TX_1024_TO_15XX_PKTS
),
793 EF10_DMA_STAT(tx_15xx_to_jumbo
, TX_15XX_TO_JUMBO_PKTS
),
794 EF10_DMA_STAT(rx_bytes
, RX_BYTES
),
795 EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes
, RX_BAD_BYTES
),
796 EF10_OTHER_STAT(rx_good_bytes
),
797 EF10_OTHER_STAT(rx_bad_bytes
),
798 EF10_DMA_STAT(rx_packets
, RX_PKTS
),
799 EF10_DMA_STAT(rx_good
, RX_GOOD_PKTS
),
800 EF10_DMA_STAT(rx_bad
, RX_BAD_FCS_PKTS
),
801 EF10_DMA_STAT(rx_pause
, RX_PAUSE_PKTS
),
802 EF10_DMA_STAT(rx_control
, RX_CONTROL_PKTS
),
803 EF10_DMA_STAT(rx_unicast
, RX_UNICAST_PKTS
),
804 EF10_DMA_STAT(rx_multicast
, RX_MULTICAST_PKTS
),
805 EF10_DMA_STAT(rx_broadcast
, RX_BROADCAST_PKTS
),
806 EF10_DMA_STAT(rx_lt64
, RX_UNDERSIZE_PKTS
),
807 EF10_DMA_STAT(rx_64
, RX_64_PKTS
),
808 EF10_DMA_STAT(rx_65_to_127
, RX_65_TO_127_PKTS
),
809 EF10_DMA_STAT(rx_128_to_255
, RX_128_TO_255_PKTS
),
810 EF10_DMA_STAT(rx_256_to_511
, RX_256_TO_511_PKTS
),
811 EF10_DMA_STAT(rx_512_to_1023
, RX_512_TO_1023_PKTS
),
812 EF10_DMA_STAT(rx_1024_to_15xx
, RX_1024_TO_15XX_PKTS
),
813 EF10_DMA_STAT(rx_15xx_to_jumbo
, RX_15XX_TO_JUMBO_PKTS
),
814 EF10_DMA_STAT(rx_gtjumbo
, RX_GTJUMBO_PKTS
),
815 EF10_DMA_STAT(rx_bad_gtjumbo
, RX_JABBER_PKTS
),
816 EF10_DMA_STAT(rx_overflow
, RX_OVERFLOW_PKTS
),
817 EF10_DMA_STAT(rx_align_error
, RX_ALIGN_ERROR_PKTS
),
818 EF10_DMA_STAT(rx_length_error
, RX_LENGTH_ERROR_PKTS
),
819 EF10_DMA_STAT(rx_nodesc_drops
, RX_NODESC_DROPS
),
820 GENERIC_SW_STAT(rx_nodesc_trunc
),
821 GENERIC_SW_STAT(rx_noskb_drops
),
822 EF10_DMA_STAT(rx_pm_trunc_bb_overflow
, PM_TRUNC_BB_OVERFLOW
),
823 EF10_DMA_STAT(rx_pm_discard_bb_overflow
, PM_DISCARD_BB_OVERFLOW
),
824 EF10_DMA_STAT(rx_pm_trunc_vfifo_full
, PM_TRUNC_VFIFO_FULL
),
825 EF10_DMA_STAT(rx_pm_discard_vfifo_full
, PM_DISCARD_VFIFO_FULL
),
826 EF10_DMA_STAT(rx_pm_trunc_qbb
, PM_TRUNC_QBB
),
827 EF10_DMA_STAT(rx_pm_discard_qbb
, PM_DISCARD_QBB
),
828 EF10_DMA_STAT(rx_pm_discard_mapping
, PM_DISCARD_MAPPING
),
829 EF10_DMA_STAT(rx_dp_q_disabled_packets
, RXDP_Q_DISABLED_PKTS
),
830 EF10_DMA_STAT(rx_dp_di_dropped_packets
, RXDP_DI_DROPPED_PKTS
),
831 EF10_DMA_STAT(rx_dp_streaming_packets
, RXDP_STREAMING_PKTS
),
832 EF10_DMA_STAT(rx_dp_hlb_fetch
, RXDP_EMERGENCY_FETCH_CONDITIONS
),
833 EF10_DMA_STAT(rx_dp_hlb_wait
, RXDP_EMERGENCY_WAIT_CONDITIONS
),
836 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) | \
837 (1ULL << EF10_STAT_tx_packets) | \
838 (1ULL << EF10_STAT_tx_pause) | \
839 (1ULL << EF10_STAT_tx_unicast) | \
840 (1ULL << EF10_STAT_tx_multicast) | \
841 (1ULL << EF10_STAT_tx_broadcast) | \
842 (1ULL << EF10_STAT_rx_bytes) | \
843 (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
844 (1ULL << EF10_STAT_rx_good_bytes) | \
845 (1ULL << EF10_STAT_rx_bad_bytes) | \
846 (1ULL << EF10_STAT_rx_packets) | \
847 (1ULL << EF10_STAT_rx_good) | \
848 (1ULL << EF10_STAT_rx_bad) | \
849 (1ULL << EF10_STAT_rx_pause) | \
850 (1ULL << EF10_STAT_rx_control) | \
851 (1ULL << EF10_STAT_rx_unicast) | \
852 (1ULL << EF10_STAT_rx_multicast) | \
853 (1ULL << EF10_STAT_rx_broadcast) | \
854 (1ULL << EF10_STAT_rx_lt64) | \
855 (1ULL << EF10_STAT_rx_64) | \
856 (1ULL << EF10_STAT_rx_65_to_127) | \
857 (1ULL << EF10_STAT_rx_128_to_255) | \
858 (1ULL << EF10_STAT_rx_256_to_511) | \
859 (1ULL << EF10_STAT_rx_512_to_1023) | \
860 (1ULL << EF10_STAT_rx_1024_to_15xx) | \
861 (1ULL << EF10_STAT_rx_15xx_to_jumbo) | \
862 (1ULL << EF10_STAT_rx_gtjumbo) | \
863 (1ULL << EF10_STAT_rx_bad_gtjumbo) | \
864 (1ULL << EF10_STAT_rx_overflow) | \
865 (1ULL << EF10_STAT_rx_nodesc_drops) | \
866 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
867 (1ULL << GENERIC_STAT_rx_noskb_drops))
869 /* These statistics are only provided by the 10G MAC. For a 10G/40G
870 * switchable port we do not expose these because they might not
871 * include all the packets they should.
873 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) | \
874 (1ULL << EF10_STAT_tx_lt64) | \
875 (1ULL << EF10_STAT_tx_64) | \
876 (1ULL << EF10_STAT_tx_65_to_127) | \
877 (1ULL << EF10_STAT_tx_128_to_255) | \
878 (1ULL << EF10_STAT_tx_256_to_511) | \
879 (1ULL << EF10_STAT_tx_512_to_1023) | \
880 (1ULL << EF10_STAT_tx_1024_to_15xx) | \
881 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
883 /* These statistics are only provided by the 40G MAC. For a 10G/40G
884 * switchable port we do expose these because the errors will otherwise
887 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) | \
888 (1ULL << EF10_STAT_rx_length_error))
890 /* These statistics are only provided if the firmware supports the
891 * capability PM_AND_RXDP_COUNTERS.
893 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
894 (1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) | \
895 (1ULL << EF10_STAT_rx_pm_discard_bb_overflow) | \
896 (1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) | \
897 (1ULL << EF10_STAT_rx_pm_discard_vfifo_full) | \
898 (1ULL << EF10_STAT_rx_pm_trunc_qbb) | \
899 (1ULL << EF10_STAT_rx_pm_discard_qbb) | \
900 (1ULL << EF10_STAT_rx_pm_discard_mapping) | \
901 (1ULL << EF10_STAT_rx_dp_q_disabled_packets) | \
902 (1ULL << EF10_STAT_rx_dp_di_dropped_packets) | \
903 (1ULL << EF10_STAT_rx_dp_streaming_packets) | \
904 (1ULL << EF10_STAT_rx_dp_hlb_fetch) | \
905 (1ULL << EF10_STAT_rx_dp_hlb_wait))
907 static u64
efx_ef10_raw_stat_mask(struct efx_nic
*efx
)
909 u64 raw_mask
= HUNT_COMMON_STAT_MASK
;
910 u32 port_caps
= efx_mcdi_phy_get_caps(efx
);
911 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
913 if (port_caps
& (1 << MC_CMD_PHY_CAP_40000FDX_LBN
))
914 raw_mask
|= HUNT_40G_EXTRA_STAT_MASK
;
916 raw_mask
|= HUNT_10G_ONLY_STAT_MASK
;
918 if (nic_data
->datapath_caps
&
919 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN
))
920 raw_mask
|= HUNT_PM_AND_RXDP_STAT_MASK
;
925 static void efx_ef10_get_stat_mask(struct efx_nic
*efx
, unsigned long *mask
)
927 u64 raw_mask
= efx_ef10_raw_stat_mask(efx
);
929 #if BITS_PER_LONG == 64
932 mask
[0] = raw_mask
& 0xffffffff;
933 mask
[1] = raw_mask
>> 32;
937 static size_t efx_ef10_describe_stats(struct efx_nic
*efx
, u8
*names
)
939 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
941 efx_ef10_get_stat_mask(efx
, mask
);
942 return efx_nic_describe_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
,
946 static int efx_ef10_try_update_nic_stats(struct efx_nic
*efx
)
948 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
949 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
950 __le64 generation_start
, generation_end
;
951 u64
*stats
= nic_data
->stats
;
954 efx_ef10_get_stat_mask(efx
, mask
);
956 dma_stats
= efx
->stats_buffer
.addr
;
957 nic_data
= efx
->nic_data
;
959 generation_end
= dma_stats
[MC_CMD_MAC_GENERATION_END
];
960 if (generation_end
== EFX_MC_STATS_GENERATION_INVALID
)
963 efx_nic_update_stats(efx_ef10_stat_desc
, EF10_STAT_COUNT
, mask
,
964 stats
, efx
->stats_buffer
.addr
, false);
966 generation_start
= dma_stats
[MC_CMD_MAC_GENERATION_START
];
967 if (generation_end
!= generation_start
)
970 /* Update derived statistics */
971 efx_nic_fix_nodesc_drop_stat(efx
, &stats
[EF10_STAT_rx_nodesc_drops
]);
972 stats
[EF10_STAT_rx_good_bytes
] =
973 stats
[EF10_STAT_rx_bytes
] -
974 stats
[EF10_STAT_rx_bytes_minus_good_bytes
];
975 efx_update_diff_stat(&stats
[EF10_STAT_rx_bad_bytes
],
976 stats
[EF10_STAT_rx_bytes_minus_good_bytes
]);
977 efx_update_sw_stats(efx
, stats
);
982 static size_t efx_ef10_update_stats(struct efx_nic
*efx
, u64
*full_stats
,
983 struct rtnl_link_stats64
*core_stats
)
985 DECLARE_BITMAP(mask
, EF10_STAT_COUNT
);
986 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
987 u64
*stats
= nic_data
->stats
;
988 size_t stats_count
= 0, index
;
991 efx_ef10_get_stat_mask(efx
, mask
);
993 /* If we're unlucky enough to read statistics during the DMA, wait
994 * up to 10ms for it to finish (typically takes <500us)
996 for (retry
= 0; retry
< 100; ++retry
) {
997 if (efx_ef10_try_update_nic_stats(efx
) == 0)
1003 for_each_set_bit(index
, mask
, EF10_STAT_COUNT
) {
1004 if (efx_ef10_stat_desc
[index
].name
) {
1005 *full_stats
++ = stats
[index
];
1012 core_stats
->rx_packets
= stats
[EF10_STAT_rx_packets
];
1013 core_stats
->tx_packets
= stats
[EF10_STAT_tx_packets
];
1014 core_stats
->rx_bytes
= stats
[EF10_STAT_rx_bytes
];
1015 core_stats
->tx_bytes
= stats
[EF10_STAT_tx_bytes
];
1016 core_stats
->rx_dropped
= stats
[EF10_STAT_rx_nodesc_drops
] +
1017 stats
[GENERIC_STAT_rx_nodesc_trunc
] +
1018 stats
[GENERIC_STAT_rx_noskb_drops
];
1019 core_stats
->multicast
= stats
[EF10_STAT_rx_multicast
];
1020 core_stats
->rx_length_errors
=
1021 stats
[EF10_STAT_rx_gtjumbo
] +
1022 stats
[EF10_STAT_rx_length_error
];
1023 core_stats
->rx_crc_errors
= stats
[EF10_STAT_rx_bad
];
1024 core_stats
->rx_frame_errors
= stats
[EF10_STAT_rx_align_error
];
1025 core_stats
->rx_fifo_errors
= stats
[EF10_STAT_rx_overflow
];
1026 core_stats
->rx_errors
= (core_stats
->rx_length_errors
+
1027 core_stats
->rx_crc_errors
+
1028 core_stats
->rx_frame_errors
);
1034 static void efx_ef10_push_irq_moderation(struct efx_channel
*channel
)
1036 struct efx_nic
*efx
= channel
->efx
;
1037 unsigned int mode
, value
;
1038 efx_dword_t timer_cmd
;
1040 if (channel
->irq_moderation
) {
1042 value
= channel
->irq_moderation
- 1;
1048 if (EFX_EF10_WORKAROUND_35388(efx
)) {
1049 EFX_POPULATE_DWORD_3(timer_cmd
, ERF_DD_EVQ_IND_TIMER_FLAGS
,
1050 EFE_DD_EVQ_IND_TIMER_FLAGS
,
1051 ERF_DD_EVQ_IND_TIMER_MODE
, mode
,
1052 ERF_DD_EVQ_IND_TIMER_VAL
, value
);
1053 efx_writed_page(efx
, &timer_cmd
, ER_DD_EVQ_INDIRECT
,
1056 EFX_POPULATE_DWORD_2(timer_cmd
, ERF_DZ_TC_TIMER_MODE
, mode
,
1057 ERF_DZ_TC_TIMER_VAL
, value
);
1058 efx_writed_page(efx
, &timer_cmd
, ER_DZ_EVQ_TMR
,
1063 static void efx_ef10_get_wol(struct efx_nic
*efx
, struct ethtool_wolinfo
*wol
)
1067 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1070 static int efx_ef10_set_wol(struct efx_nic
*efx
, u32 type
)
1077 static void efx_ef10_mcdi_request(struct efx_nic
*efx
,
1078 const efx_dword_t
*hdr
, size_t hdr_len
,
1079 const efx_dword_t
*sdu
, size_t sdu_len
)
1081 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1082 u8
*pdu
= nic_data
->mcdi_buf
.addr
;
1084 memcpy(pdu
, hdr
, hdr_len
);
1085 memcpy(pdu
+ hdr_len
, sdu
, sdu_len
);
1088 /* The hardware provides 'low' and 'high' (doorbell) registers
1089 * for passing the 64-bit address of an MCDI request to
1090 * firmware. However the dwords are swapped by firmware. The
1091 * least significant bits of the doorbell are then 0 for all
1092 * MCDI requests due to alignment.
1094 _efx_writed(efx
, cpu_to_le32((u64
)nic_data
->mcdi_buf
.dma_addr
>> 32),
1096 _efx_writed(efx
, cpu_to_le32((u32
)nic_data
->mcdi_buf
.dma_addr
),
1100 static bool efx_ef10_mcdi_poll_response(struct efx_nic
*efx
)
1102 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1103 const efx_dword_t hdr
= *(const efx_dword_t
*)nic_data
->mcdi_buf
.addr
;
1106 return EFX_DWORD_FIELD(hdr
, MCDI_HEADER_RESPONSE
);
1110 efx_ef10_mcdi_read_response(struct efx_nic
*efx
, efx_dword_t
*outbuf
,
1111 size_t offset
, size_t outlen
)
1113 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1114 const u8
*pdu
= nic_data
->mcdi_buf
.addr
;
1116 memcpy(outbuf
, pdu
+ offset
, outlen
);
1119 static int efx_ef10_mcdi_poll_reboot(struct efx_nic
*efx
)
1121 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1124 rc
= efx_ef10_get_warm_boot_count(efx
);
1126 /* The firmware is presumably in the process of
1127 * rebooting. However, we are supposed to report each
1128 * reboot just once, so we must only do that once we
1129 * can read and store the updated warm boot count.
1134 if (rc
== nic_data
->warm_boot_count
)
1137 nic_data
->warm_boot_count
= rc
;
1139 /* All our allocations have been reset */
1140 efx_ef10_reset_mc_allocations(efx
);
1142 /* The datapath firmware might have been changed */
1143 nic_data
->must_check_datapath_caps
= true;
1145 /* MAC statistics have been cleared on the NIC; clear the local
1146 * statistic that we update with efx_update_diff_stat().
1148 nic_data
->stats
[EF10_STAT_rx_bad_bytes
] = 0;
1153 /* Handle an MSI interrupt
1155 * Handle an MSI hardware interrupt. This routine schedules event
1156 * queue processing. No interrupt acknowledgement cycle is necessary.
1157 * Also, we never need to check that the interrupt is for us, since
1158 * MSI interrupts cannot be shared.
1160 static irqreturn_t
efx_ef10_msi_interrupt(int irq
, void *dev_id
)
1162 struct efx_msi_context
*context
= dev_id
;
1163 struct efx_nic
*efx
= context
->efx
;
1165 netif_vdbg(efx
, intr
, efx
->net_dev
,
1166 "IRQ %d on CPU %d\n", irq
, raw_smp_processor_id());
1168 if (likely(ACCESS_ONCE(efx
->irq_soft_enabled
))) {
1169 /* Note test interrupts */
1170 if (context
->index
== efx
->irq_level
)
1171 efx
->last_irq_cpu
= raw_smp_processor_id();
1173 /* Schedule processing of the channel */
1174 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
1180 static irqreturn_t
efx_ef10_legacy_interrupt(int irq
, void *dev_id
)
1182 struct efx_nic
*efx
= dev_id
;
1183 bool soft_enabled
= ACCESS_ONCE(efx
->irq_soft_enabled
);
1184 struct efx_channel
*channel
;
1188 /* Read the ISR which also ACKs the interrupts */
1189 efx_readd(efx
, ®
, ER_DZ_BIU_INT_ISR
);
1190 queues
= EFX_DWORD_FIELD(reg
, ERF_DZ_ISR_REG
);
1195 if (likely(soft_enabled
)) {
1196 /* Note test interrupts */
1197 if (queues
& (1U << efx
->irq_level
))
1198 efx
->last_irq_cpu
= raw_smp_processor_id();
1200 efx_for_each_channel(channel
, efx
) {
1202 efx_schedule_channel_irq(channel
);
1207 netif_vdbg(efx
, intr
, efx
->net_dev
,
1208 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1209 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1214 static void efx_ef10_irq_test_generate(struct efx_nic
*efx
)
1216 MCDI_DECLARE_BUF(inbuf
, MC_CMD_TRIGGER_INTERRUPT_IN_LEN
);
1218 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN
!= 0);
1220 MCDI_SET_DWORD(inbuf
, TRIGGER_INTERRUPT_IN_INTR_LEVEL
, efx
->irq_level
);
1221 (void) efx_mcdi_rpc(efx
, MC_CMD_TRIGGER_INTERRUPT
,
1222 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
1225 static int efx_ef10_tx_probe(struct efx_tx_queue
*tx_queue
)
1227 return efx_nic_alloc_buffer(tx_queue
->efx
, &tx_queue
->txd
.buf
,
1228 (tx_queue
->ptr_mask
+ 1) *
1229 sizeof(efx_qword_t
),
1233 /* This writes to the TX_DESC_WPTR and also pushes data */
1234 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue
*tx_queue
,
1235 const efx_qword_t
*txd
)
1237 unsigned int write_ptr
;
1240 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
1241 EFX_POPULATE_OWORD_1(reg
, ERF_DZ_TX_DESC_WPTR
, write_ptr
);
1242 reg
.qword
[0] = *txd
;
1243 efx_writeo_page(tx_queue
->efx
, ®
,
1244 ER_DZ_TX_DESC_UPD
, tx_queue
->queue
);
1247 static void efx_ef10_tx_init(struct efx_tx_queue
*tx_queue
)
1249 MCDI_DECLARE_BUF(inbuf
, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE
* 8 /
1251 MCDI_DECLARE_BUF(outbuf
, MC_CMD_INIT_TXQ_OUT_LEN
);
1252 bool csum_offload
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
1253 size_t entries
= tx_queue
->txd
.buf
.len
/ EFX_BUF_SIZE
;
1254 struct efx_channel
*channel
= tx_queue
->channel
;
1255 struct efx_nic
*efx
= tx_queue
->efx
;
1256 size_t inlen
, outlen
;
1257 dma_addr_t dma_addr
;
1262 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_SIZE
, tx_queue
->ptr_mask
+ 1);
1263 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_TARGET_EVQ
, channel
->channel
);
1264 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_LABEL
, tx_queue
->queue
);
1265 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_INSTANCE
, tx_queue
->queue
);
1266 MCDI_POPULATE_DWORD_2(inbuf
, INIT_TXQ_IN_FLAGS
,
1267 INIT_TXQ_IN_FLAG_IP_CSUM_DIS
, !csum_offload
,
1268 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS
, !csum_offload
);
1269 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_OWNER_ID
, 0);
1270 MCDI_SET_DWORD(inbuf
, INIT_TXQ_IN_PORT_ID
, EVB_PORT_ID_ASSIGNED
);
1272 dma_addr
= tx_queue
->txd
.buf
.dma_addr
;
1274 netif_dbg(efx
, hw
, efx
->net_dev
, "pushing TXQ %d. %zu entries (%llx)\n",
1275 tx_queue
->queue
, entries
, (u64
)dma_addr
);
1277 for (i
= 0; i
< entries
; ++i
) {
1278 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_TXQ_IN_DMA_ADDR
, i
, dma_addr
);
1279 dma_addr
+= EFX_BUF_SIZE
;
1282 inlen
= MC_CMD_INIT_TXQ_IN_LEN(entries
);
1284 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_TXQ
, inbuf
, inlen
,
1285 outbuf
, sizeof(outbuf
), &outlen
);
1289 /* A previous user of this TX queue might have set us up the
1290 * bomb by writing a descriptor to the TX push collector but
1291 * not the doorbell. (Each collector belongs to a port, not a
1292 * queue or function, so cannot easily be reset.) We must
1293 * attempt to push a no-op descriptor in its place.
1295 tx_queue
->buffer
[0].flags
= EFX_TX_BUF_OPTION
;
1296 tx_queue
->insert_count
= 1;
1297 txd
= efx_tx_desc(tx_queue
, 0);
1298 EFX_POPULATE_QWORD_4(*txd
,
1299 ESF_DZ_TX_DESC_IS_OPT
, true,
1300 ESF_DZ_TX_OPTION_TYPE
,
1301 ESE_DZ_TX_OPTION_DESC_CRC_CSUM
,
1302 ESF_DZ_TX_OPTION_UDP_TCP_CSUM
, csum_offload
,
1303 ESF_DZ_TX_OPTION_IP_CSUM
, csum_offload
);
1304 tx_queue
->write_count
= 1;
1306 efx_ef10_push_tx_desc(tx_queue
, txd
);
1311 netdev_WARN(efx
->net_dev
, "failed to initialise TXQ %d\n",
1315 static void efx_ef10_tx_fini(struct efx_tx_queue
*tx_queue
)
1317 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_TXQ_IN_LEN
);
1318 MCDI_DECLARE_BUF(outbuf
, MC_CMD_FINI_TXQ_OUT_LEN
);
1319 struct efx_nic
*efx
= tx_queue
->efx
;
1323 MCDI_SET_DWORD(inbuf
, FINI_TXQ_IN_INSTANCE
,
1326 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_TXQ
, inbuf
, sizeof(inbuf
),
1327 outbuf
, sizeof(outbuf
), &outlen
);
1329 if (rc
&& rc
!= -EALREADY
)
1335 efx_mcdi_display_error(efx
, MC_CMD_FINI_TXQ
, MC_CMD_FINI_TXQ_IN_LEN
,
1336 outbuf
, outlen
, rc
);
1339 static void efx_ef10_tx_remove(struct efx_tx_queue
*tx_queue
)
1341 efx_nic_free_buffer(tx_queue
->efx
, &tx_queue
->txd
.buf
);
1344 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1345 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
1347 unsigned int write_ptr
;
1350 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
1351 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_TX_DESC_WPTR_DWORD
, write_ptr
);
1352 efx_writed_page(tx_queue
->efx
, ®
,
1353 ER_DZ_TX_DESC_UPD_DWORD
, tx_queue
->queue
);
1356 static void efx_ef10_tx_write(struct efx_tx_queue
*tx_queue
)
1358 unsigned int old_write_count
= tx_queue
->write_count
;
1359 struct efx_tx_buffer
*buffer
;
1360 unsigned int write_ptr
;
1363 tx_queue
->xmit_more_available
= false;
1364 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
1368 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
1369 buffer
= &tx_queue
->buffer
[write_ptr
];
1370 txd
= efx_tx_desc(tx_queue
, write_ptr
);
1371 ++tx_queue
->write_count
;
1373 /* Create TX descriptor ring entry */
1374 if (buffer
->flags
& EFX_TX_BUF_OPTION
) {
1375 *txd
= buffer
->option
;
1377 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
1378 EFX_POPULATE_QWORD_3(
1381 buffer
->flags
& EFX_TX_BUF_CONT
,
1382 ESF_DZ_TX_KER_BYTE_CNT
, buffer
->len
,
1383 ESF_DZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
1385 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
1387 wmb(); /* Ensure descriptors are written before they are fetched */
1389 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
1390 txd
= efx_tx_desc(tx_queue
,
1391 old_write_count
& tx_queue
->ptr_mask
);
1392 efx_ef10_push_tx_desc(tx_queue
, txd
);
1395 efx_ef10_notify_tx_desc(tx_queue
);
1399 static int efx_ef10_alloc_rss_context(struct efx_nic
*efx
, u32
*context
)
1401 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN
);
1402 MCDI_DECLARE_BUF(outbuf
, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN
);
1406 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID
,
1407 EVB_PORT_ID_ASSIGNED
);
1408 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_TYPE
,
1409 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE
);
1410 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES
,
1413 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_ALLOC
, inbuf
, sizeof(inbuf
),
1414 outbuf
, sizeof(outbuf
), &outlen
);
1418 if (outlen
< MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN
)
1421 *context
= MCDI_DWORD(outbuf
, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID
);
1426 static void efx_ef10_free_rss_context(struct efx_nic
*efx
, u32 context
)
1428 MCDI_DECLARE_BUF(inbuf
, MC_CMD_RSS_CONTEXT_FREE_IN_LEN
);
1431 MCDI_SET_DWORD(inbuf
, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID
,
1434 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_FREE
, inbuf
, sizeof(inbuf
),
1439 static int efx_ef10_populate_rss_table(struct efx_nic
*efx
, u32 context
)
1441 MCDI_DECLARE_BUF(tablebuf
, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN
);
1442 MCDI_DECLARE_BUF(keybuf
, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN
);
1445 MCDI_SET_DWORD(tablebuf
, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID
,
1447 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1448 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN
);
1450 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); ++i
)
1452 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE
)[i
] =
1453 (u8
) efx
->rx_indir_table
[i
];
1455 rc
= efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_SET_TABLE
, tablebuf
,
1456 sizeof(tablebuf
), NULL
, 0, NULL
);
1460 MCDI_SET_DWORD(keybuf
, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID
,
1462 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_hash_key
) !=
1463 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN
);
1464 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_hash_key
); ++i
)
1465 MCDI_PTR(keybuf
, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY
)[i
] =
1466 efx
->rx_hash_key
[i
];
1468 return efx_mcdi_rpc(efx
, MC_CMD_RSS_CONTEXT_SET_KEY
, keybuf
,
1469 sizeof(keybuf
), NULL
, 0, NULL
);
1472 static void efx_ef10_rx_free_indir_table(struct efx_nic
*efx
)
1474 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1476 if (nic_data
->rx_rss_context
!= EFX_EF10_RSS_CONTEXT_INVALID
)
1477 efx_ef10_free_rss_context(efx
, nic_data
->rx_rss_context
);
1478 nic_data
->rx_rss_context
= EFX_EF10_RSS_CONTEXT_INVALID
;
1481 static void efx_ef10_rx_push_rss_config(struct efx_nic
*efx
)
1483 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1486 netif_dbg(efx
, drv
, efx
->net_dev
, "pushing RSS config\n");
1488 if (nic_data
->rx_rss_context
== EFX_EF10_RSS_CONTEXT_INVALID
) {
1489 rc
= efx_ef10_alloc_rss_context(efx
, &nic_data
->rx_rss_context
);
1494 rc
= efx_ef10_populate_rss_table(efx
, nic_data
->rx_rss_context
);
1501 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1504 static int efx_ef10_rx_probe(struct efx_rx_queue
*rx_queue
)
1506 return efx_nic_alloc_buffer(rx_queue
->efx
, &rx_queue
->rxd
.buf
,
1507 (rx_queue
->ptr_mask
+ 1) *
1508 sizeof(efx_qword_t
),
1512 static void efx_ef10_rx_init(struct efx_rx_queue
*rx_queue
)
1514 MCDI_DECLARE_BUF(inbuf
,
1515 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE
* 8 /
1517 MCDI_DECLARE_BUF(outbuf
, MC_CMD_INIT_RXQ_OUT_LEN
);
1518 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
1519 size_t entries
= rx_queue
->rxd
.buf
.len
/ EFX_BUF_SIZE
;
1520 struct efx_nic
*efx
= rx_queue
->efx
;
1521 size_t inlen
, outlen
;
1522 dma_addr_t dma_addr
;
1526 rx_queue
->scatter_n
= 0;
1527 rx_queue
->scatter_len
= 0;
1529 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_SIZE
, rx_queue
->ptr_mask
+ 1);
1530 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_TARGET_EVQ
, channel
->channel
);
1531 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_LABEL
, efx_rx_queue_index(rx_queue
));
1532 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_INSTANCE
,
1533 efx_rx_queue_index(rx_queue
));
1534 MCDI_POPULATE_DWORD_2(inbuf
, INIT_RXQ_IN_FLAGS
,
1535 INIT_RXQ_IN_FLAG_PREFIX
, 1,
1536 INIT_RXQ_IN_FLAG_TIMESTAMP
, 1);
1537 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_OWNER_ID
, 0);
1538 MCDI_SET_DWORD(inbuf
, INIT_RXQ_IN_PORT_ID
, EVB_PORT_ID_ASSIGNED
);
1540 dma_addr
= rx_queue
->rxd
.buf
.dma_addr
;
1542 netif_dbg(efx
, hw
, efx
->net_dev
, "pushing RXQ %d. %zu entries (%llx)\n",
1543 efx_rx_queue_index(rx_queue
), entries
, (u64
)dma_addr
);
1545 for (i
= 0; i
< entries
; ++i
) {
1546 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_RXQ_IN_DMA_ADDR
, i
, dma_addr
);
1547 dma_addr
+= EFX_BUF_SIZE
;
1550 inlen
= MC_CMD_INIT_RXQ_IN_LEN(entries
);
1552 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_RXQ
, inbuf
, inlen
,
1553 outbuf
, sizeof(outbuf
), &outlen
);
1555 netdev_WARN(efx
->net_dev
, "failed to initialise RXQ %d\n",
1556 efx_rx_queue_index(rx_queue
));
1559 static void efx_ef10_rx_fini(struct efx_rx_queue
*rx_queue
)
1561 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_RXQ_IN_LEN
);
1562 MCDI_DECLARE_BUF(outbuf
, MC_CMD_FINI_RXQ_OUT_LEN
);
1563 struct efx_nic
*efx
= rx_queue
->efx
;
1567 MCDI_SET_DWORD(inbuf
, FINI_RXQ_IN_INSTANCE
,
1568 efx_rx_queue_index(rx_queue
));
1570 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_RXQ
, inbuf
, sizeof(inbuf
),
1571 outbuf
, sizeof(outbuf
), &outlen
);
1573 if (rc
&& rc
!= -EALREADY
)
1579 efx_mcdi_display_error(efx
, MC_CMD_FINI_RXQ
, MC_CMD_FINI_RXQ_IN_LEN
,
1580 outbuf
, outlen
, rc
);
1583 static void efx_ef10_rx_remove(struct efx_rx_queue
*rx_queue
)
1585 efx_nic_free_buffer(rx_queue
->efx
, &rx_queue
->rxd
.buf
);
1588 /* This creates an entry in the RX descriptor queue */
1590 efx_ef10_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
1592 struct efx_rx_buffer
*rx_buf
;
1595 rxd
= efx_rx_desc(rx_queue
, index
);
1596 rx_buf
= efx_rx_buffer(rx_queue
, index
);
1597 EFX_POPULATE_QWORD_2(*rxd
,
1598 ESF_DZ_RX_KER_BYTE_CNT
, rx_buf
->len
,
1599 ESF_DZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
1602 static void efx_ef10_rx_write(struct efx_rx_queue
*rx_queue
)
1604 struct efx_nic
*efx
= rx_queue
->efx
;
1605 unsigned int write_count
;
1608 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1609 write_count
= rx_queue
->added_count
& ~7;
1610 if (rx_queue
->notified_count
== write_count
)
1614 efx_ef10_build_rx_desc(
1616 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
1617 while (++rx_queue
->notified_count
!= write_count
);
1620 EFX_POPULATE_DWORD_1(reg
, ERF_DZ_RX_DESC_WPTR
,
1621 write_count
& rx_queue
->ptr_mask
);
1622 efx_writed_page(efx
, ®
, ER_DZ_RX_DESC_UPD
,
1623 efx_rx_queue_index(rx_queue
));
1626 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete
;
1628 static void efx_ef10_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
1630 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
1631 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
1634 EFX_POPULATE_QWORD_2(event
,
1635 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
1636 ESF_DZ_EV_DATA
, EFX_EF10_REFILL
);
1638 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
1640 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1641 * already swapped the data to little-endian order.
1643 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
1644 sizeof(efx_qword_t
));
1646 efx_mcdi_rpc_async(channel
->efx
, MC_CMD_DRIVER_EVENT
,
1647 inbuf
, sizeof(inbuf
), 0,
1648 efx_ef10_rx_defer_refill_complete
, 0);
1652 efx_ef10_rx_defer_refill_complete(struct efx_nic
*efx
, unsigned long cookie
,
1653 int rc
, efx_dword_t
*outbuf
,
1654 size_t outlen_actual
)
1659 static int efx_ef10_ev_probe(struct efx_channel
*channel
)
1661 return efx_nic_alloc_buffer(channel
->efx
, &channel
->eventq
.buf
,
1662 (channel
->eventq_mask
+ 1) *
1663 sizeof(efx_qword_t
),
1667 static int efx_ef10_ev_init(struct efx_channel
*channel
)
1669 MCDI_DECLARE_BUF(inbuf
,
1670 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE
* 8 /
1672 MCDI_DECLARE_BUF(outbuf
, MC_CMD_INIT_EVQ_OUT_LEN
);
1673 size_t entries
= channel
->eventq
.buf
.len
/ EFX_BUF_SIZE
;
1674 struct efx_nic
*efx
= channel
->efx
;
1675 struct efx_ef10_nic_data
*nic_data
;
1676 bool supports_rx_merge
;
1677 size_t inlen
, outlen
;
1678 dma_addr_t dma_addr
;
1682 nic_data
= efx
->nic_data
;
1684 !!(nic_data
->datapath_caps
&
1685 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
);
1687 /* Fill event queue with all ones (i.e. empty events) */
1688 memset(channel
->eventq
.buf
.addr
, 0xff, channel
->eventq
.buf
.len
);
1690 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_SIZE
, channel
->eventq_mask
+ 1);
1691 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_INSTANCE
, channel
->channel
);
1692 /* INIT_EVQ expects index in vector table, not absolute */
1693 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_IRQ_NUM
, channel
->channel
);
1694 MCDI_POPULATE_DWORD_4(inbuf
, INIT_EVQ_IN_FLAGS
,
1695 INIT_EVQ_IN_FLAG_INTERRUPTING
, 1,
1696 INIT_EVQ_IN_FLAG_RX_MERGE
, 1,
1697 INIT_EVQ_IN_FLAG_TX_MERGE
, 1,
1698 INIT_EVQ_IN_FLAG_CUT_THRU
, !supports_rx_merge
);
1699 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_MODE
,
1700 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS
);
1701 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_LOAD
, 0);
1702 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_TMR_RELOAD
, 0);
1703 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_COUNT_MODE
,
1704 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS
);
1705 MCDI_SET_DWORD(inbuf
, INIT_EVQ_IN_COUNT_THRSHLD
, 0);
1707 dma_addr
= channel
->eventq
.buf
.dma_addr
;
1708 for (i
= 0; i
< entries
; ++i
) {
1709 MCDI_SET_ARRAY_QWORD(inbuf
, INIT_EVQ_IN_DMA_ADDR
, i
, dma_addr
);
1710 dma_addr
+= EFX_BUF_SIZE
;
1713 inlen
= MC_CMD_INIT_EVQ_IN_LEN(entries
);
1715 rc
= efx_mcdi_rpc(efx
, MC_CMD_INIT_EVQ
, inbuf
, inlen
,
1716 outbuf
, sizeof(outbuf
), &outlen
);
1717 /* IRQ return is ignored */
1721 static void efx_ef10_ev_fini(struct efx_channel
*channel
)
1723 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FINI_EVQ_IN_LEN
);
1724 MCDI_DECLARE_BUF(outbuf
, MC_CMD_FINI_EVQ_OUT_LEN
);
1725 struct efx_nic
*efx
= channel
->efx
;
1729 MCDI_SET_DWORD(inbuf
, FINI_EVQ_IN_INSTANCE
, channel
->channel
);
1731 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_FINI_EVQ
, inbuf
, sizeof(inbuf
),
1732 outbuf
, sizeof(outbuf
), &outlen
);
1734 if (rc
&& rc
!= -EALREADY
)
1740 efx_mcdi_display_error(efx
, MC_CMD_FINI_EVQ
, MC_CMD_FINI_EVQ_IN_LEN
,
1741 outbuf
, outlen
, rc
);
1744 static void efx_ef10_ev_remove(struct efx_channel
*channel
)
1746 efx_nic_free_buffer(channel
->efx
, &channel
->eventq
.buf
);
1749 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue
*rx_queue
,
1750 unsigned int rx_queue_label
)
1752 struct efx_nic
*efx
= rx_queue
->efx
;
1754 netif_info(efx
, hw
, efx
->net_dev
,
1755 "rx event arrived on queue %d labeled as queue %u\n",
1756 efx_rx_queue_index(rx_queue
), rx_queue_label
);
1758 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1762 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue
*rx_queue
,
1763 unsigned int actual
, unsigned int expected
)
1765 unsigned int dropped
= (actual
- expected
) & rx_queue
->ptr_mask
;
1766 struct efx_nic
*efx
= rx_queue
->efx
;
1768 netif_info(efx
, hw
, efx
->net_dev
,
1769 "dropped %d events (index=%d expected=%d)\n",
1770 dropped
, actual
, expected
);
1772 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1775 /* partially received RX was aborted. clean up. */
1776 static void efx_ef10_handle_rx_abort(struct efx_rx_queue
*rx_queue
)
1778 unsigned int rx_desc_ptr
;
1780 netif_dbg(rx_queue
->efx
, hw
, rx_queue
->efx
->net_dev
,
1781 "scattered RX aborted (dropping %u buffers)\n",
1782 rx_queue
->scatter_n
);
1784 rx_desc_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
1786 efx_rx_packet(rx_queue
, rx_desc_ptr
, rx_queue
->scatter_n
,
1787 0, EFX_RX_PKT_DISCARD
);
1789 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1790 rx_queue
->scatter_n
= 0;
1791 rx_queue
->scatter_len
= 0;
1792 ++efx_rx_queue_channel(rx_queue
)->n_rx_nodesc_trunc
;
1795 static int efx_ef10_handle_rx_event(struct efx_channel
*channel
,
1796 const efx_qword_t
*event
)
1798 unsigned int rx_bytes
, next_ptr_lbits
, rx_queue_label
, rx_l4_class
;
1799 unsigned int n_descs
, n_packets
, i
;
1800 struct efx_nic
*efx
= channel
->efx
;
1801 struct efx_rx_queue
*rx_queue
;
1805 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
1808 /* Basic packet information */
1809 rx_bytes
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_BYTES
);
1810 next_ptr_lbits
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DSC_PTR_LBITS
);
1811 rx_queue_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_QLABEL
);
1812 rx_l4_class
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_L4_CLASS
);
1813 rx_cont
= EFX_QWORD_FIELD(*event
, ESF_DZ_RX_CONT
);
1815 if (EFX_QWORD_FIELD(*event
, ESF_DZ_RX_DROP_EVENT
))
1816 netdev_WARN(efx
->net_dev
, "saw RX_DROP_EVENT: event="
1818 EFX_QWORD_VAL(*event
));
1820 rx_queue
= efx_channel_get_rx_queue(channel
);
1822 if (unlikely(rx_queue_label
!= efx_rx_queue_index(rx_queue
)))
1823 efx_ef10_handle_rx_wrong_queue(rx_queue
, rx_queue_label
);
1825 n_descs
= ((next_ptr_lbits
- rx_queue
->removed_count
) &
1826 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
1828 if (n_descs
!= rx_queue
->scatter_n
+ 1) {
1829 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1831 /* detect rx abort */
1832 if (unlikely(n_descs
== rx_queue
->scatter_n
)) {
1833 if (rx_queue
->scatter_n
== 0 || rx_bytes
!= 0)
1834 netdev_WARN(efx
->net_dev
,
1835 "invalid RX abort: scatter_n=%u event="
1837 rx_queue
->scatter_n
,
1838 EFX_QWORD_VAL(*event
));
1839 efx_ef10_handle_rx_abort(rx_queue
);
1843 /* Check that RX completion merging is valid, i.e.
1844 * the current firmware supports it and this is a
1845 * non-scattered packet.
1847 if (!(nic_data
->datapath_caps
&
1848 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN
)) ||
1849 rx_queue
->scatter_n
!= 0 || rx_cont
) {
1850 efx_ef10_handle_rx_bad_lbits(
1851 rx_queue
, next_ptr_lbits
,
1852 (rx_queue
->removed_count
+
1853 rx_queue
->scatter_n
+ 1) &
1854 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH
) - 1));
1858 /* Merged completion for multiple non-scattered packets */
1859 rx_queue
->scatter_n
= 1;
1860 rx_queue
->scatter_len
= 0;
1861 n_packets
= n_descs
;
1862 ++channel
->n_rx_merge_events
;
1863 channel
->n_rx_merge_packets
+= n_packets
;
1864 flags
|= EFX_RX_PKT_PREFIX_LEN
;
1866 ++rx_queue
->scatter_n
;
1867 rx_queue
->scatter_len
+= rx_bytes
;
1873 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_RX_ECRC_ERR
)))
1874 flags
|= EFX_RX_PKT_DISCARD
;
1876 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_RX_IPCKSUM_ERR
))) {
1877 channel
->n_rx_ip_hdr_chksum_err
+= n_packets
;
1878 } else if (unlikely(EFX_QWORD_FIELD(*event
,
1879 ESF_DZ_RX_TCPUDP_CKSUM_ERR
))) {
1880 channel
->n_rx_tcp_udp_chksum_err
+= n_packets
;
1881 } else if (rx_l4_class
== ESE_DZ_L4_CLASS_TCP
||
1882 rx_l4_class
== ESE_DZ_L4_CLASS_UDP
) {
1883 flags
|= EFX_RX_PKT_CSUMMED
;
1886 if (rx_l4_class
== ESE_DZ_L4_CLASS_TCP
)
1887 flags
|= EFX_RX_PKT_TCP
;
1889 channel
->irq_mod_score
+= 2 * n_packets
;
1891 /* Handle received packet(s) */
1892 for (i
= 0; i
< n_packets
; i
++) {
1893 efx_rx_packet(rx_queue
,
1894 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1895 rx_queue
->scatter_n
, rx_queue
->scatter_len
,
1897 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1900 rx_queue
->scatter_n
= 0;
1901 rx_queue
->scatter_len
= 0;
1907 efx_ef10_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1909 struct efx_nic
*efx
= channel
->efx
;
1910 struct efx_tx_queue
*tx_queue
;
1911 unsigned int tx_ev_desc_ptr
;
1912 unsigned int tx_ev_q_label
;
1915 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
1918 if (unlikely(EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DROP_EVENT
)))
1921 /* Transmit completion */
1922 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_DESCR_INDX
);
1923 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, ESF_DZ_TX_QLABEL
);
1924 tx_queue
= efx_channel_get_tx_queue(channel
,
1925 tx_ev_q_label
% EFX_TXQ_TYPES
);
1926 tx_descs
= ((tx_ev_desc_ptr
+ 1 - tx_queue
->read_count
) &
1927 tx_queue
->ptr_mask
);
1928 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
& tx_queue
->ptr_mask
);
1934 efx_ef10_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1936 struct efx_nic
*efx
= channel
->efx
;
1939 subcode
= EFX_QWORD_FIELD(*event
, ESF_DZ_DRV_SUB_CODE
);
1942 case ESE_DZ_DRV_TIMER_EV
:
1943 case ESE_DZ_DRV_WAKE_UP_EV
:
1945 case ESE_DZ_DRV_START_UP_EV
:
1946 /* event queue init complete. ok. */
1949 netif_err(efx
, hw
, efx
->net_dev
,
1950 "channel %d unknown driver event type %d"
1951 " (data " EFX_QWORD_FMT
")\n",
1952 channel
->channel
, subcode
,
1953 EFX_QWORD_VAL(*event
));
1958 static void efx_ef10_handle_driver_generated_event(struct efx_channel
*channel
,
1961 struct efx_nic
*efx
= channel
->efx
;
1964 subcode
= EFX_QWORD_FIELD(*event
, EFX_DWORD_0
);
1968 channel
->event_test_cpu
= raw_smp_processor_id();
1970 case EFX_EF10_REFILL
:
1971 /* The queue must be empty, so we won't receive any rx
1972 * events, so efx_process_channel() won't refill the
1973 * queue. Refill it here
1975 efx_fast_push_rx_descriptors(&channel
->rx_queue
, true);
1978 netif_err(efx
, hw
, efx
->net_dev
,
1979 "channel %d unknown driver event type %u"
1980 " (data " EFX_QWORD_FMT
")\n",
1981 channel
->channel
, (unsigned) subcode
,
1982 EFX_QWORD_VAL(*event
));
1986 static int efx_ef10_ev_process(struct efx_channel
*channel
, int quota
)
1988 struct efx_nic
*efx
= channel
->efx
;
1989 efx_qword_t event
, *p_event
;
1990 unsigned int read_ptr
;
1998 read_ptr
= channel
->eventq_read_ptr
;
2001 p_event
= efx_event(channel
, read_ptr
);
2004 if (!efx_event_present(&event
))
2007 EFX_SET_QWORD(*p_event
);
2011 ev_code
= EFX_QWORD_FIELD(event
, ESF_DZ_EV_CODE
);
2013 netif_vdbg(efx
, drv
, efx
->net_dev
,
2014 "processing event on %d " EFX_QWORD_FMT
"\n",
2015 channel
->channel
, EFX_QWORD_VAL(event
));
2018 case ESE_DZ_EV_CODE_MCDI_EV
:
2019 efx_mcdi_process_event(channel
, &event
);
2021 case ESE_DZ_EV_CODE_RX_EV
:
2022 spent
+= efx_ef10_handle_rx_event(channel
, &event
);
2023 if (spent
>= quota
) {
2024 /* XXX can we split a merged event to
2025 * avoid going over-quota?
2031 case ESE_DZ_EV_CODE_TX_EV
:
2032 tx_descs
+= efx_ef10_handle_tx_event(channel
, &event
);
2033 if (tx_descs
> efx
->txq_entries
) {
2036 } else if (++spent
== quota
) {
2040 case ESE_DZ_EV_CODE_DRIVER_EV
:
2041 efx_ef10_handle_driver_event(channel
, &event
);
2042 if (++spent
== quota
)
2045 case EFX_EF10_DRVGEN_EV
:
2046 efx_ef10_handle_driver_generated_event(channel
, &event
);
2049 netif_err(efx
, hw
, efx
->net_dev
,
2050 "channel %d unknown event type %d"
2051 " (data " EFX_QWORD_FMT
")\n",
2052 channel
->channel
, ev_code
,
2053 EFX_QWORD_VAL(event
));
2058 channel
->eventq_read_ptr
= read_ptr
;
2062 static void efx_ef10_ev_read_ack(struct efx_channel
*channel
)
2064 struct efx_nic
*efx
= channel
->efx
;
2067 if (EFX_EF10_WORKAROUND_35388(efx
)) {
2068 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE
<
2069 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH
));
2070 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE
>
2071 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH
));
2073 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
2074 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH
,
2075 ERF_DD_EVQ_IND_RPTR
,
2076 (channel
->eventq_read_ptr
&
2077 channel
->eventq_mask
) >>
2078 ERF_DD_EVQ_IND_RPTR_WIDTH
);
2079 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
2081 EFX_POPULATE_DWORD_2(rptr
, ERF_DD_EVQ_IND_RPTR_FLAGS
,
2082 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW
,
2083 ERF_DD_EVQ_IND_RPTR
,
2084 channel
->eventq_read_ptr
&
2085 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH
) - 1));
2086 efx_writed_page(efx
, &rptr
, ER_DD_EVQ_INDIRECT
,
2089 EFX_POPULATE_DWORD_1(rptr
, ERF_DZ_EVQ_RPTR
,
2090 channel
->eventq_read_ptr
&
2091 channel
->eventq_mask
);
2092 efx_writed_page(efx
, &rptr
, ER_DZ_EVQ_RPTR
, channel
->channel
);
2096 static void efx_ef10_ev_test_generate(struct efx_channel
*channel
)
2098 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRIVER_EVENT_IN_LEN
);
2099 struct efx_nic
*efx
= channel
->efx
;
2103 EFX_POPULATE_QWORD_2(event
,
2104 ESF_DZ_EV_CODE
, EFX_EF10_DRVGEN_EV
,
2105 ESF_DZ_EV_DATA
, EFX_EF10_TEST
);
2107 MCDI_SET_DWORD(inbuf
, DRIVER_EVENT_IN_EVQ
, channel
->channel
);
2109 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2110 * already swapped the data to little-endian order.
2112 memcpy(MCDI_PTR(inbuf
, DRIVER_EVENT_IN_DATA
), &event
.u64
[0],
2113 sizeof(efx_qword_t
));
2115 rc
= efx_mcdi_rpc(efx
, MC_CMD_DRIVER_EVENT
, inbuf
, sizeof(inbuf
),
2124 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
2127 void efx_ef10_handle_drain_event(struct efx_nic
*efx
)
2129 if (atomic_dec_and_test(&efx
->active_queues
))
2130 wake_up(&efx
->flush_wq
);
2132 WARN_ON(atomic_read(&efx
->active_queues
) < 0);
2135 static int efx_ef10_fini_dmaq(struct efx_nic
*efx
)
2137 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2138 struct efx_channel
*channel
;
2139 struct efx_tx_queue
*tx_queue
;
2140 struct efx_rx_queue
*rx_queue
;
2143 /* If the MC has just rebooted, the TX/RX queues will have already been
2144 * torn down, but efx->active_queues needs to be set to zero.
2146 if (nic_data
->must_realloc_vis
) {
2147 atomic_set(&efx
->active_queues
, 0);
2151 /* Do not attempt to write to the NIC during EEH recovery */
2152 if (efx
->state
!= STATE_RECOVERY
) {
2153 efx_for_each_channel(channel
, efx
) {
2154 efx_for_each_channel_rx_queue(rx_queue
, channel
)
2155 efx_ef10_rx_fini(rx_queue
);
2156 efx_for_each_channel_tx_queue(tx_queue
, channel
)
2157 efx_ef10_tx_fini(tx_queue
);
2160 wait_event_timeout(efx
->flush_wq
,
2161 atomic_read(&efx
->active_queues
) == 0,
2162 msecs_to_jiffies(EFX_MAX_FLUSH_TIME
));
2163 pending
= atomic_read(&efx
->active_queues
);
2165 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues\n",
2174 static void efx_ef10_prepare_flr(struct efx_nic
*efx
)
2176 atomic_set(&efx
->active_queues
, 0);
2179 static bool efx_ef10_filter_equal(const struct efx_filter_spec
*left
,
2180 const struct efx_filter_spec
*right
)
2182 if ((left
->match_flags
^ right
->match_flags
) |
2183 ((left
->flags
^ right
->flags
) &
2184 (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_TX
)))
2187 return memcmp(&left
->outer_vid
, &right
->outer_vid
,
2188 sizeof(struct efx_filter_spec
) -
2189 offsetof(struct efx_filter_spec
, outer_vid
)) == 0;
2192 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec
*spec
)
2194 BUILD_BUG_ON(offsetof(struct efx_filter_spec
, outer_vid
) & 3);
2195 return jhash2((const u32
*)&spec
->outer_vid
,
2196 (sizeof(struct efx_filter_spec
) -
2197 offsetof(struct efx_filter_spec
, outer_vid
)) / 4,
2199 /* XXX should we randomise the initval? */
2202 /* Decide whether a filter should be exclusive or else should allow
2203 * delivery to additional recipients. Currently we decide that
2204 * filters for specific local unicast MAC and IP addresses are
2207 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec
*spec
)
2209 if (spec
->match_flags
& EFX_FILTER_MATCH_LOC_MAC
&&
2210 !is_multicast_ether_addr(spec
->loc_mac
))
2213 if ((spec
->match_flags
&
2214 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) ==
2215 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) {
2216 if (spec
->ether_type
== htons(ETH_P_IP
) &&
2217 !ipv4_is_multicast(spec
->loc_host
[0]))
2219 if (spec
->ether_type
== htons(ETH_P_IPV6
) &&
2220 ((const u8
*)spec
->loc_host
)[0] != 0xff)
2227 static struct efx_filter_spec
*
2228 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table
*table
,
2229 unsigned int filter_idx
)
2231 return (struct efx_filter_spec
*)(table
->entry
[filter_idx
].spec
&
2232 ~EFX_EF10_FILTER_FLAGS
);
2236 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table
*table
,
2237 unsigned int filter_idx
)
2239 return table
->entry
[filter_idx
].spec
& EFX_EF10_FILTER_FLAGS
;
2243 efx_ef10_filter_set_entry(struct efx_ef10_filter_table
*table
,
2244 unsigned int filter_idx
,
2245 const struct efx_filter_spec
*spec
,
2248 table
->entry
[filter_idx
].spec
= (unsigned long)spec
| flags
;
2251 static void efx_ef10_filter_push_prep(struct efx_nic
*efx
,
2252 const struct efx_filter_spec
*spec
,
2253 efx_dword_t
*inbuf
, u64 handle
,
2256 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
2258 memset(inbuf
, 0, MC_CMD_FILTER_OP_IN_LEN
);
2261 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
2262 MC_CMD_FILTER_OP_IN_OP_REPLACE
);
2263 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
, handle
);
2265 u32 match_fields
= 0;
2267 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
2268 efx_ef10_filter_is_exclusive(spec
) ?
2269 MC_CMD_FILTER_OP_IN_OP_INSERT
:
2270 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE
);
2272 /* Convert match flags and values. Unlike almost
2273 * everything else in MCDI, these fields are in
2274 * network byte order.
2276 if (spec
->match_flags
& EFX_FILTER_MATCH_LOC_MAC_IG
)
2278 is_multicast_ether_addr(spec
->loc_mac
) ?
2279 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN
:
2280 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN
;
2281 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2282 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2284 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2285 mcdi_field ## _LBN; \
2287 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2288 sizeof(spec->gen_field)); \
2289 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2290 &spec->gen_field, sizeof(spec->gen_field)); \
2292 COPY_FIELD(REM_HOST
, rem_host
, SRC_IP
);
2293 COPY_FIELD(LOC_HOST
, loc_host
, DST_IP
);
2294 COPY_FIELD(REM_MAC
, rem_mac
, SRC_MAC
);
2295 COPY_FIELD(REM_PORT
, rem_port
, SRC_PORT
);
2296 COPY_FIELD(LOC_MAC
, loc_mac
, DST_MAC
);
2297 COPY_FIELD(LOC_PORT
, loc_port
, DST_PORT
);
2298 COPY_FIELD(ETHER_TYPE
, ether_type
, ETHER_TYPE
);
2299 COPY_FIELD(INNER_VID
, inner_vid
, INNER_VLAN
);
2300 COPY_FIELD(OUTER_VID
, outer_vid
, OUTER_VLAN
);
2301 COPY_FIELD(IP_PROTO
, ip_proto
, IP_PROTO
);
2303 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_MATCH_FIELDS
,
2307 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_PORT_ID
, EVB_PORT_ID_ASSIGNED
);
2308 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_DEST
,
2309 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
?
2310 MC_CMD_FILTER_OP_IN_RX_DEST_DROP
:
2311 MC_CMD_FILTER_OP_IN_RX_DEST_HOST
);
2312 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_TX_DEST
,
2313 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT
);
2314 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_QUEUE
,
2315 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
?
2317 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_MODE
,
2318 (spec
->flags
& EFX_FILTER_FLAG_RX_RSS
) ?
2319 MC_CMD_FILTER_OP_IN_RX_MODE_RSS
:
2320 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE
);
2321 if (spec
->flags
& EFX_FILTER_FLAG_RX_RSS
)
2322 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_RX_CONTEXT
,
2323 spec
->rss_context
!=
2324 EFX_FILTER_RSS_CONTEXT_DEFAULT
?
2325 spec
->rss_context
: nic_data
->rx_rss_context
);
2328 static int efx_ef10_filter_push(struct efx_nic
*efx
,
2329 const struct efx_filter_spec
*spec
,
2330 u64
*handle
, bool replacing
)
2332 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
2333 MCDI_DECLARE_BUF(outbuf
, MC_CMD_FILTER_OP_OUT_LEN
);
2336 efx_ef10_filter_push_prep(efx
, spec
, inbuf
, *handle
, replacing
);
2337 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
),
2338 outbuf
, sizeof(outbuf
), NULL
);
2340 *handle
= MCDI_QWORD(outbuf
, FILTER_OP_OUT_HANDLE
);
2342 rc
= -EBUSY
; /* to match efx_farch_filter_insert() */
2346 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table
*table
,
2347 enum efx_filter_match_flags match_flags
)
2349 unsigned int match_pri
;
2352 match_pri
< table
->rx_match_count
;
2354 if (table
->rx_match_flags
[match_pri
] == match_flags
)
2357 return -EPROTONOSUPPORT
;
2360 static s32
efx_ef10_filter_insert(struct efx_nic
*efx
,
2361 struct efx_filter_spec
*spec
,
2364 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2365 DECLARE_BITMAP(mc_rem_map
, EFX_EF10_FILTER_SEARCH_LIMIT
);
2366 struct efx_filter_spec
*saved_spec
;
2367 unsigned int match_pri
, hash
;
2368 unsigned int priv_flags
;
2369 bool replacing
= false;
2375 /* For now, only support RX filters */
2376 if ((spec
->flags
& (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_TX
)) !=
2380 rc
= efx_ef10_filter_rx_match_pri(table
, spec
->match_flags
);
2385 hash
= efx_ef10_filter_hash(spec
);
2386 is_mc_recip
= efx_filter_is_mc_recipient(spec
);
2388 bitmap_zero(mc_rem_map
, EFX_EF10_FILTER_SEARCH_LIMIT
);
2390 /* Find any existing filters with the same match tuple or
2391 * else a free slot to insert at. If any of them are busy,
2392 * we have to wait and retry.
2395 unsigned int depth
= 1;
2398 spin_lock_bh(&efx
->filter_lock
);
2401 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
2402 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
2407 } else if (efx_ef10_filter_equal(spec
, saved_spec
)) {
2408 if (table
->entry
[i
].spec
&
2409 EFX_EF10_FILTER_FLAG_BUSY
)
2411 if (spec
->priority
< saved_spec
->priority
&&
2412 spec
->priority
!= EFX_FILTER_PRI_AUTO
) {
2417 /* This is the only one */
2418 if (spec
->priority
==
2419 saved_spec
->priority
&&
2426 } else if (spec
->priority
>
2427 saved_spec
->priority
||
2429 saved_spec
->priority
&&
2434 __set_bit(depth
, mc_rem_map
);
2438 /* Once we reach the maximum search depth, use
2439 * the first suitable slot or return -EBUSY if
2442 if (depth
== EFX_EF10_FILTER_SEARCH_LIMIT
) {
2443 if (ins_index
< 0) {
2453 prepare_to_wait(&table
->waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
2454 spin_unlock_bh(&efx
->filter_lock
);
2459 /* Create a software table entry if necessary, and mark it
2460 * busy. We might yet fail to insert, but any attempt to
2461 * insert a conflicting filter while we're waiting for the
2462 * firmware must find the busy entry.
2464 saved_spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
2466 if (spec
->priority
== EFX_FILTER_PRI_AUTO
&&
2467 saved_spec
->priority
>= EFX_FILTER_PRI_AUTO
) {
2468 /* Just make sure it won't be removed */
2469 if (saved_spec
->priority
> EFX_FILTER_PRI_AUTO
)
2470 saved_spec
->flags
|= EFX_FILTER_FLAG_RX_OVER_AUTO
;
2471 table
->entry
[ins_index
].spec
&=
2472 ~EFX_EF10_FILTER_FLAG_AUTO_OLD
;
2477 priv_flags
= efx_ef10_filter_entry_flags(table
, ins_index
);
2479 saved_spec
= kmalloc(sizeof(*spec
), GFP_ATOMIC
);
2484 *saved_spec
= *spec
;
2487 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
,
2488 priv_flags
| EFX_EF10_FILTER_FLAG_BUSY
);
2490 /* Mark lower-priority multicast recipients busy prior to removal */
2492 unsigned int depth
, i
;
2494 for (depth
= 0; depth
< EFX_EF10_FILTER_SEARCH_LIMIT
; depth
++) {
2495 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
2496 if (test_bit(depth
, mc_rem_map
))
2497 table
->entry
[i
].spec
|=
2498 EFX_EF10_FILTER_FLAG_BUSY
;
2502 spin_unlock_bh(&efx
->filter_lock
);
2504 rc
= efx_ef10_filter_push(efx
, spec
, &table
->entry
[ins_index
].handle
,
2507 /* Finalise the software table entry */
2508 spin_lock_bh(&efx
->filter_lock
);
2511 /* Update the fields that may differ */
2512 if (saved_spec
->priority
== EFX_FILTER_PRI_AUTO
)
2513 saved_spec
->flags
|=
2514 EFX_FILTER_FLAG_RX_OVER_AUTO
;
2515 saved_spec
->priority
= spec
->priority
;
2516 saved_spec
->flags
&= EFX_FILTER_FLAG_RX_OVER_AUTO
;
2517 saved_spec
->flags
|= spec
->flags
;
2518 saved_spec
->rss_context
= spec
->rss_context
;
2519 saved_spec
->dmaq_id
= spec
->dmaq_id
;
2521 } else if (!replacing
) {
2525 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
, priv_flags
);
2527 /* Remove and finalise entries for lower-priority multicast
2531 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
2532 unsigned int depth
, i
;
2534 memset(inbuf
, 0, sizeof(inbuf
));
2536 for (depth
= 0; depth
< EFX_EF10_FILTER_SEARCH_LIMIT
; depth
++) {
2537 if (!test_bit(depth
, mc_rem_map
))
2540 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
2541 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
2542 priv_flags
= efx_ef10_filter_entry_flags(table
, i
);
2545 spin_unlock_bh(&efx
->filter_lock
);
2546 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
2547 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
2548 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
2549 table
->entry
[i
].handle
);
2550 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
,
2551 inbuf
, sizeof(inbuf
),
2553 spin_lock_bh(&efx
->filter_lock
);
2561 priv_flags
&= ~EFX_EF10_FILTER_FLAG_BUSY
;
2563 efx_ef10_filter_set_entry(table
, i
, saved_spec
,
2568 /* If successful, return the inserted filter ID */
2570 rc
= match_pri
* HUNT_FILTER_TBL_ROWS
+ ins_index
;
2572 wake_up_all(&table
->waitq
);
2574 spin_unlock_bh(&efx
->filter_lock
);
2575 finish_wait(&table
->waitq
, &wait
);
2579 static void efx_ef10_filter_update_rx_scatter(struct efx_nic
*efx
)
2581 /* no need to do anything here on EF10 */
2585 * If !by_index, remove by ID
2586 * If by_index, remove by index
2587 * Filter ID may come from userland and must be range-checked.
2589 static int efx_ef10_filter_remove_internal(struct efx_nic
*efx
,
2590 unsigned int priority_mask
,
2591 u32 filter_id
, bool by_index
)
2593 unsigned int filter_idx
= filter_id
% HUNT_FILTER_TBL_ROWS
;
2594 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2595 MCDI_DECLARE_BUF(inbuf
,
2596 MC_CMD_FILTER_OP_IN_HANDLE_OFST
+
2597 MC_CMD_FILTER_OP_IN_HANDLE_LEN
);
2598 struct efx_filter_spec
*spec
;
2602 /* Find the software table entry and mark it busy. Don't
2603 * remove it yet; any attempt to update while we're waiting
2604 * for the firmware must find the busy entry.
2607 spin_lock_bh(&efx
->filter_lock
);
2608 if (!(table
->entry
[filter_idx
].spec
&
2609 EFX_EF10_FILTER_FLAG_BUSY
))
2611 prepare_to_wait(&table
->waitq
, &wait
, TASK_UNINTERRUPTIBLE
);
2612 spin_unlock_bh(&efx
->filter_lock
);
2616 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
2619 efx_ef10_filter_rx_match_pri(table
, spec
->match_flags
) !=
2620 filter_id
/ HUNT_FILTER_TBL_ROWS
)) {
2625 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
&&
2626 priority_mask
== (1U << EFX_FILTER_PRI_AUTO
)) {
2627 /* Just remove flags */
2628 spec
->flags
&= ~EFX_FILTER_FLAG_RX_OVER_AUTO
;
2629 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_AUTO_OLD
;
2634 if (!(priority_mask
& (1U << spec
->priority
))) {
2639 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_BUSY
;
2640 spin_unlock_bh(&efx
->filter_lock
);
2642 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
) {
2643 /* Reset to an automatic filter */
2645 struct efx_filter_spec new_spec
= *spec
;
2647 new_spec
.priority
= EFX_FILTER_PRI_AUTO
;
2648 new_spec
.flags
= (EFX_FILTER_FLAG_RX
|
2649 EFX_FILTER_FLAG_RX_RSS
);
2650 new_spec
.dmaq_id
= 0;
2651 new_spec
.rss_context
= EFX_FILTER_RSS_CONTEXT_DEFAULT
;
2652 rc
= efx_ef10_filter_push(efx
, &new_spec
,
2653 &table
->entry
[filter_idx
].handle
,
2656 spin_lock_bh(&efx
->filter_lock
);
2660 /* Really remove the filter */
2662 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
2663 efx_ef10_filter_is_exclusive(spec
) ?
2664 MC_CMD_FILTER_OP_IN_OP_REMOVE
:
2665 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
2666 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
2667 table
->entry
[filter_idx
].handle
);
2668 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
,
2669 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
2671 spin_lock_bh(&efx
->filter_lock
);
2674 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
2678 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_BUSY
;
2679 wake_up_all(&table
->waitq
);
2681 spin_unlock_bh(&efx
->filter_lock
);
2682 finish_wait(&table
->waitq
, &wait
);
2686 static int efx_ef10_filter_remove_safe(struct efx_nic
*efx
,
2687 enum efx_filter_priority priority
,
2690 return efx_ef10_filter_remove_internal(efx
, 1U << priority
,
2694 static int efx_ef10_filter_get_safe(struct efx_nic
*efx
,
2695 enum efx_filter_priority priority
,
2696 u32 filter_id
, struct efx_filter_spec
*spec
)
2698 unsigned int filter_idx
= filter_id
% HUNT_FILTER_TBL_ROWS
;
2699 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2700 const struct efx_filter_spec
*saved_spec
;
2703 spin_lock_bh(&efx
->filter_lock
);
2704 saved_spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
2705 if (saved_spec
&& saved_spec
->priority
== priority
&&
2706 efx_ef10_filter_rx_match_pri(table
, saved_spec
->match_flags
) ==
2707 filter_id
/ HUNT_FILTER_TBL_ROWS
) {
2708 *spec
= *saved_spec
;
2713 spin_unlock_bh(&efx
->filter_lock
);
2717 static int efx_ef10_filter_clear_rx(struct efx_nic
*efx
,
2718 enum efx_filter_priority priority
)
2720 unsigned int priority_mask
;
2724 priority_mask
= (((1U << (priority
+ 1)) - 1) &
2725 ~(1U << EFX_FILTER_PRI_AUTO
));
2727 for (i
= 0; i
< HUNT_FILTER_TBL_ROWS
; i
++) {
2728 rc
= efx_ef10_filter_remove_internal(efx
, priority_mask
,
2730 if (rc
&& rc
!= -ENOENT
)
2737 static u32
efx_ef10_filter_count_rx_used(struct efx_nic
*efx
,
2738 enum efx_filter_priority priority
)
2740 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2741 unsigned int filter_idx
;
2744 spin_lock_bh(&efx
->filter_lock
);
2745 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
2746 if (table
->entry
[filter_idx
].spec
&&
2747 efx_ef10_filter_entry_spec(table
, filter_idx
)->priority
==
2751 spin_unlock_bh(&efx
->filter_lock
);
2755 static u32
efx_ef10_filter_get_rx_id_limit(struct efx_nic
*efx
)
2757 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2759 return table
->rx_match_count
* HUNT_FILTER_TBL_ROWS
;
2762 static s32
efx_ef10_filter_get_rx_ids(struct efx_nic
*efx
,
2763 enum efx_filter_priority priority
,
2766 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2767 struct efx_filter_spec
*spec
;
2768 unsigned int filter_idx
;
2771 spin_lock_bh(&efx
->filter_lock
);
2772 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
2773 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
2774 if (spec
&& spec
->priority
== priority
) {
2775 if (count
== size
) {
2779 buf
[count
++] = (efx_ef10_filter_rx_match_pri(
2780 table
, spec
->match_flags
) *
2781 HUNT_FILTER_TBL_ROWS
+
2785 spin_unlock_bh(&efx
->filter_lock
);
2789 #ifdef CONFIG_RFS_ACCEL
2791 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete
;
2793 static s32
efx_ef10_filter_rfs_insert(struct efx_nic
*efx
,
2794 struct efx_filter_spec
*spec
)
2796 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2797 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
2798 struct efx_filter_spec
*saved_spec
;
2799 unsigned int hash
, i
, depth
= 1;
2800 bool replacing
= false;
2805 /* Must be an RX filter without RSS and not for a multicast
2806 * destination address (RFS only works for connected sockets).
2807 * These restrictions allow us to pass only a tiny amount of
2808 * data through to the completion function.
2810 EFX_WARN_ON_PARANOID(spec
->flags
!=
2811 (EFX_FILTER_FLAG_RX
| EFX_FILTER_FLAG_RX_SCATTER
));
2812 EFX_WARN_ON_PARANOID(spec
->priority
!= EFX_FILTER_PRI_HINT
);
2813 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec
));
2815 hash
= efx_ef10_filter_hash(spec
);
2817 spin_lock_bh(&efx
->filter_lock
);
2819 /* Find any existing filter with the same match tuple or else
2820 * a free slot to insert at. If an existing filter is busy,
2821 * we have to give up.
2824 i
= (hash
+ depth
) & (HUNT_FILTER_TBL_ROWS
- 1);
2825 saved_spec
= efx_ef10_filter_entry_spec(table
, i
);
2830 } else if (efx_ef10_filter_equal(spec
, saved_spec
)) {
2831 if (table
->entry
[i
].spec
& EFX_EF10_FILTER_FLAG_BUSY
) {
2835 if (spec
->priority
< saved_spec
->priority
) {
2843 /* Once we reach the maximum search depth, use the
2844 * first suitable slot or return -EBUSY if there was
2847 if (depth
== EFX_EF10_FILTER_SEARCH_LIMIT
) {
2848 if (ins_index
< 0) {
2858 /* Create a software table entry if necessary, and mark it
2859 * busy. We might yet fail to insert, but any attempt to
2860 * insert a conflicting filter while we're waiting for the
2861 * firmware must find the busy entry.
2863 saved_spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
2867 saved_spec
= kmalloc(sizeof(*spec
), GFP_ATOMIC
);
2872 *saved_spec
= *spec
;
2874 efx_ef10_filter_set_entry(table
, ins_index
, saved_spec
,
2875 EFX_EF10_FILTER_FLAG_BUSY
);
2877 spin_unlock_bh(&efx
->filter_lock
);
2879 /* Pack up the variables needed on completion */
2880 cookie
= replacing
<< 31 | ins_index
<< 16 | spec
->dmaq_id
;
2882 efx_ef10_filter_push_prep(efx
, spec
, inbuf
,
2883 table
->entry
[ins_index
].handle
, replacing
);
2884 efx_mcdi_rpc_async(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
),
2885 MC_CMD_FILTER_OP_OUT_LEN
,
2886 efx_ef10_filter_rfs_insert_complete
, cookie
);
2891 spin_unlock_bh(&efx
->filter_lock
);
2896 efx_ef10_filter_rfs_insert_complete(struct efx_nic
*efx
, unsigned long cookie
,
2897 int rc
, efx_dword_t
*outbuf
,
2898 size_t outlen_actual
)
2900 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2901 unsigned int ins_index
, dmaq_id
;
2902 struct efx_filter_spec
*spec
;
2905 /* Unpack the cookie */
2906 replacing
= cookie
>> 31;
2907 ins_index
= (cookie
>> 16) & (HUNT_FILTER_TBL_ROWS
- 1);
2908 dmaq_id
= cookie
& 0xffff;
2910 spin_lock_bh(&efx
->filter_lock
);
2911 spec
= efx_ef10_filter_entry_spec(table
, ins_index
);
2913 table
->entry
[ins_index
].handle
=
2914 MCDI_QWORD(outbuf
, FILTER_OP_OUT_HANDLE
);
2916 spec
->dmaq_id
= dmaq_id
;
2917 } else if (!replacing
) {
2921 efx_ef10_filter_set_entry(table
, ins_index
, spec
, 0);
2922 spin_unlock_bh(&efx
->filter_lock
);
2924 wake_up_all(&table
->waitq
);
2928 efx_ef10_filter_rfs_expire_complete(struct efx_nic
*efx
,
2929 unsigned long filter_idx
,
2930 int rc
, efx_dword_t
*outbuf
,
2931 size_t outlen_actual
);
2933 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
2934 unsigned int filter_idx
)
2936 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2937 struct efx_filter_spec
*spec
=
2938 efx_ef10_filter_entry_spec(table
, filter_idx
);
2939 MCDI_DECLARE_BUF(inbuf
,
2940 MC_CMD_FILTER_OP_IN_HANDLE_OFST
+
2941 MC_CMD_FILTER_OP_IN_HANDLE_LEN
);
2944 (table
->entry
[filter_idx
].spec
& EFX_EF10_FILTER_FLAG_BUSY
) ||
2945 spec
->priority
!= EFX_FILTER_PRI_HINT
||
2946 !rps_may_expire_flow(efx
->net_dev
, spec
->dmaq_id
,
2947 flow_id
, filter_idx
))
2950 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
2951 MC_CMD_FILTER_OP_IN_OP_REMOVE
);
2952 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
2953 table
->entry
[filter_idx
].handle
);
2954 if (efx_mcdi_rpc_async(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
), 0,
2955 efx_ef10_filter_rfs_expire_complete
, filter_idx
))
2958 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_BUSY
;
2963 efx_ef10_filter_rfs_expire_complete(struct efx_nic
*efx
,
2964 unsigned long filter_idx
,
2965 int rc
, efx_dword_t
*outbuf
,
2966 size_t outlen_actual
)
2968 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
2969 struct efx_filter_spec
*spec
=
2970 efx_ef10_filter_entry_spec(table
, filter_idx
);
2972 spin_lock_bh(&efx
->filter_lock
);
2975 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
2977 table
->entry
[filter_idx
].spec
&= ~EFX_EF10_FILTER_FLAG_BUSY
;
2978 wake_up_all(&table
->waitq
);
2979 spin_unlock_bh(&efx
->filter_lock
);
2982 #endif /* CONFIG_RFS_ACCEL */
2984 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags
)
2986 int match_flags
= 0;
2988 #define MAP_FLAG(gen_flag, mcdi_field) { \
2989 u32 old_mcdi_flags = mcdi_flags; \
2990 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2991 mcdi_field ## _LBN); \
2992 if (mcdi_flags != old_mcdi_flags) \
2993 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
2995 MAP_FLAG(LOC_MAC_IG
, UNKNOWN_UCAST_DST
);
2996 MAP_FLAG(LOC_MAC_IG
, UNKNOWN_MCAST_DST
);
2997 MAP_FLAG(REM_HOST
, SRC_IP
);
2998 MAP_FLAG(LOC_HOST
, DST_IP
);
2999 MAP_FLAG(REM_MAC
, SRC_MAC
);
3000 MAP_FLAG(REM_PORT
, SRC_PORT
);
3001 MAP_FLAG(LOC_MAC
, DST_MAC
);
3002 MAP_FLAG(LOC_PORT
, DST_PORT
);
3003 MAP_FLAG(ETHER_TYPE
, ETHER_TYPE
);
3004 MAP_FLAG(INNER_VID
, INNER_VLAN
);
3005 MAP_FLAG(OUTER_VID
, OUTER_VLAN
);
3006 MAP_FLAG(IP_PROTO
, IP_PROTO
);
3009 /* Did we map them all? */
3016 static int efx_ef10_filter_table_probe(struct efx_nic
*efx
)
3018 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN
);
3019 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX
);
3020 unsigned int pd_match_pri
, pd_match_count
;
3021 struct efx_ef10_filter_table
*table
;
3025 table
= kzalloc(sizeof(*table
), GFP_KERNEL
);
3029 /* Find out which RX filter types are supported, and their priorities */
3030 MCDI_SET_DWORD(inbuf
, GET_PARSER_DISP_INFO_IN_OP
,
3031 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES
);
3032 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_PARSER_DISP_INFO
,
3033 inbuf
, sizeof(inbuf
), outbuf
, sizeof(outbuf
),
3037 pd_match_count
= MCDI_VAR_ARRAY_LEN(
3038 outlen
, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES
);
3039 table
->rx_match_count
= 0;
3041 for (pd_match_pri
= 0; pd_match_pri
< pd_match_count
; pd_match_pri
++) {
3045 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES
,
3047 rc
= efx_ef10_filter_match_flags_from_mcdi(mcdi_flags
);
3049 netif_dbg(efx
, probe
, efx
->net_dev
,
3050 "%s: fw flags %#x pri %u not supported in driver\n",
3051 __func__
, mcdi_flags
, pd_match_pri
);
3053 netif_dbg(efx
, probe
, efx
->net_dev
,
3054 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3055 __func__
, mcdi_flags
, pd_match_pri
,
3056 rc
, table
->rx_match_count
);
3057 table
->rx_match_flags
[table
->rx_match_count
++] = rc
;
3061 table
->entry
= vzalloc(HUNT_FILTER_TBL_ROWS
* sizeof(*table
->entry
));
3062 if (!table
->entry
) {
3067 efx
->filter_state
= table
;
3068 init_waitqueue_head(&table
->waitq
);
3076 static void efx_ef10_filter_table_restore(struct efx_nic
*efx
)
3078 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3079 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
3080 struct efx_filter_spec
*spec
;
3081 unsigned int filter_idx
;
3082 bool failed
= false;
3085 if (!nic_data
->must_restore_filters
)
3088 spin_lock_bh(&efx
->filter_lock
);
3090 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3091 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3095 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_BUSY
;
3096 spin_unlock_bh(&efx
->filter_lock
);
3098 rc
= efx_ef10_filter_push(efx
, spec
,
3099 &table
->entry
[filter_idx
].handle
,
3104 spin_lock_bh(&efx
->filter_lock
);
3107 efx_ef10_filter_set_entry(table
, filter_idx
, NULL
, 0);
3109 table
->entry
[filter_idx
].spec
&=
3110 ~EFX_EF10_FILTER_FLAG_BUSY
;
3114 spin_unlock_bh(&efx
->filter_lock
);
3117 netif_err(efx
, hw
, efx
->net_dev
,
3118 "unable to restore all filters\n");
3120 nic_data
->must_restore_filters
= false;
3123 static void efx_ef10_filter_table_remove(struct efx_nic
*efx
)
3125 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3126 MCDI_DECLARE_BUF(inbuf
, MC_CMD_FILTER_OP_IN_LEN
);
3127 struct efx_filter_spec
*spec
;
3128 unsigned int filter_idx
;
3131 for (filter_idx
= 0; filter_idx
< HUNT_FILTER_TBL_ROWS
; filter_idx
++) {
3132 spec
= efx_ef10_filter_entry_spec(table
, filter_idx
);
3136 MCDI_SET_DWORD(inbuf
, FILTER_OP_IN_OP
,
3137 efx_ef10_filter_is_exclusive(spec
) ?
3138 MC_CMD_FILTER_OP_IN_OP_REMOVE
:
3139 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE
);
3140 MCDI_SET_QWORD(inbuf
, FILTER_OP_IN_HANDLE
,
3141 table
->entry
[filter_idx
].handle
);
3142 rc
= efx_mcdi_rpc(efx
, MC_CMD_FILTER_OP
, inbuf
, sizeof(inbuf
),
3145 netdev_WARN(efx
->net_dev
,
3146 "filter_idx=%#x handle=%#llx\n",
3148 table
->entry
[filter_idx
].handle
);
3152 vfree(table
->entry
);
3156 static void efx_ef10_filter_sync_rx_mode(struct efx_nic
*efx
)
3158 struct efx_ef10_filter_table
*table
= efx
->filter_state
;
3159 struct net_device
*net_dev
= efx
->net_dev
;
3160 struct efx_filter_spec spec
;
3161 bool remove_failed
= false;
3162 struct netdev_hw_addr
*uc
;
3163 struct netdev_hw_addr
*mc
;
3164 unsigned int filter_idx
;
3167 if (!efx_dev_registered(efx
))
3170 /* Mark old filters that may need to be removed */
3171 spin_lock_bh(&efx
->filter_lock
);
3172 n
= table
->dev_uc_count
< 0 ? 1 : table
->dev_uc_count
;
3173 for (i
= 0; i
< n
; i
++) {
3174 filter_idx
= table
->dev_uc_list
[i
].id
% HUNT_FILTER_TBL_ROWS
;
3175 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_AUTO_OLD
;
3177 n
= table
->dev_mc_count
< 0 ? 1 : table
->dev_mc_count
;
3178 for (i
= 0; i
< n
; i
++) {
3179 filter_idx
= table
->dev_mc_list
[i
].id
% HUNT_FILTER_TBL_ROWS
;
3180 table
->entry
[filter_idx
].spec
|= EFX_EF10_FILTER_FLAG_AUTO_OLD
;
3182 spin_unlock_bh(&efx
->filter_lock
);
3184 /* Copy/convert the address lists; add the primary station
3185 * address and broadcast address
3187 netif_addr_lock_bh(net_dev
);
3188 if (net_dev
->flags
& IFF_PROMISC
||
3189 netdev_uc_count(net_dev
) >= EFX_EF10_FILTER_DEV_UC_MAX
) {
3190 table
->dev_uc_count
= -1;
3192 table
->dev_uc_count
= 1 + netdev_uc_count(net_dev
);
3193 ether_addr_copy(table
->dev_uc_list
[0].addr
, net_dev
->dev_addr
);
3195 netdev_for_each_uc_addr(uc
, net_dev
) {
3196 ether_addr_copy(table
->dev_uc_list
[i
].addr
, uc
->addr
);
3200 if (net_dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
) ||
3201 netdev_mc_count(net_dev
) >= EFX_EF10_FILTER_DEV_MC_MAX
) {
3202 table
->dev_mc_count
= -1;
3204 table
->dev_mc_count
= 1 + netdev_mc_count(net_dev
);
3205 eth_broadcast_addr(table
->dev_mc_list
[0].addr
);
3207 netdev_for_each_mc_addr(mc
, net_dev
) {
3208 ether_addr_copy(table
->dev_mc_list
[i
].addr
, mc
->addr
);
3212 netif_addr_unlock_bh(net_dev
);
3214 /* Insert/renew unicast filters */
3215 if (table
->dev_uc_count
>= 0) {
3216 for (i
= 0; i
< table
->dev_uc_count
; i
++) {
3217 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
3218 EFX_FILTER_FLAG_RX_RSS
,
3220 efx_filter_set_eth_local(&spec
, EFX_FILTER_VID_UNSPEC
,
3221 table
->dev_uc_list
[i
].addr
);
3222 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
3224 /* Fall back to unicast-promisc */
3226 efx_ef10_filter_remove_safe(
3227 efx
, EFX_FILTER_PRI_AUTO
,
3228 table
->dev_uc_list
[i
].id
);
3229 table
->dev_uc_count
= -1;
3232 table
->dev_uc_list
[i
].id
= rc
;
3235 if (table
->dev_uc_count
< 0) {
3236 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
3237 EFX_FILTER_FLAG_RX_RSS
,
3239 efx_filter_set_uc_def(&spec
);
3240 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
3243 table
->dev_uc_count
= 0;
3245 table
->dev_uc_list
[0].id
= rc
;
3249 /* Insert/renew multicast filters */
3250 if (table
->dev_mc_count
>= 0) {
3251 for (i
= 0; i
< table
->dev_mc_count
; i
++) {
3252 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
3253 EFX_FILTER_FLAG_RX_RSS
,
3255 efx_filter_set_eth_local(&spec
, EFX_FILTER_VID_UNSPEC
,
3256 table
->dev_mc_list
[i
].addr
);
3257 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
3259 /* Fall back to multicast-promisc */
3261 efx_ef10_filter_remove_safe(
3262 efx
, EFX_FILTER_PRI_AUTO
,
3263 table
->dev_mc_list
[i
].id
);
3264 table
->dev_mc_count
= -1;
3267 table
->dev_mc_list
[i
].id
= rc
;
3270 if (table
->dev_mc_count
< 0) {
3271 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_AUTO
,
3272 EFX_FILTER_FLAG_RX_RSS
,
3274 efx_filter_set_mc_def(&spec
);
3275 rc
= efx_ef10_filter_insert(efx
, &spec
, true);
3278 table
->dev_mc_count
= 0;
3280 table
->dev_mc_list
[0].id
= rc
;
3284 /* Remove filters that weren't renewed. Since nothing else
3285 * changes the AUTO_OLD flag or removes these filters, we
3286 * don't need to hold the filter_lock while scanning for
3289 for (i
= 0; i
< HUNT_FILTER_TBL_ROWS
; i
++) {
3290 if (ACCESS_ONCE(table
->entry
[i
].spec
) &
3291 EFX_EF10_FILTER_FLAG_AUTO_OLD
) {
3292 if (efx_ef10_filter_remove_internal(
3293 efx
, 1U << EFX_FILTER_PRI_AUTO
,
3295 remove_failed
= true;
3298 WARN_ON(remove_failed
);
3301 static int efx_ef10_mac_reconfigure(struct efx_nic
*efx
)
3303 efx_ef10_filter_sync_rx_mode(efx
);
3305 return efx_mcdi_set_mac(efx
);
3308 static int efx_ef10_start_bist(struct efx_nic
*efx
, u32 bist_type
)
3310 MCDI_DECLARE_BUF(inbuf
, MC_CMD_START_BIST_IN_LEN
);
3312 MCDI_SET_DWORD(inbuf
, START_BIST_IN_TYPE
, bist_type
);
3313 return efx_mcdi_rpc(efx
, MC_CMD_START_BIST
, inbuf
, sizeof(inbuf
),
3317 /* MC BISTs follow a different poll mechanism to phy BISTs.
3318 * The BIST is done in the poll handler on the MC, and the MCDI command
3319 * will block until the BIST is done.
3321 static int efx_ef10_poll_bist(struct efx_nic
*efx
)
3324 MCDI_DECLARE_BUF(outbuf
, MC_CMD_POLL_BIST_OUT_LEN
);
3328 rc
= efx_mcdi_rpc(efx
, MC_CMD_POLL_BIST
, NULL
, 0,
3329 outbuf
, sizeof(outbuf
), &outlen
);
3333 if (outlen
< MC_CMD_POLL_BIST_OUT_LEN
)
3336 result
= MCDI_DWORD(outbuf
, POLL_BIST_OUT_RESULT
);
3338 case MC_CMD_POLL_BIST_PASSED
:
3339 netif_dbg(efx
, hw
, efx
->net_dev
, "BIST passed.\n");
3341 case MC_CMD_POLL_BIST_TIMEOUT
:
3342 netif_err(efx
, hw
, efx
->net_dev
, "BIST timed out\n");
3344 case MC_CMD_POLL_BIST_FAILED
:
3345 netif_err(efx
, hw
, efx
->net_dev
, "BIST failed.\n");
3348 netif_err(efx
, hw
, efx
->net_dev
,
3349 "BIST returned unknown result %u", result
);
3354 static int efx_ef10_run_bist(struct efx_nic
*efx
, u32 bist_type
)
3358 netif_dbg(efx
, drv
, efx
->net_dev
, "starting BIST type %u\n", bist_type
);
3360 rc
= efx_ef10_start_bist(efx
, bist_type
);
3364 return efx_ef10_poll_bist(efx
);
3368 efx_ef10_test_chip(struct efx_nic
*efx
, struct efx_self_tests
*tests
)
3372 efx_reset_down(efx
, RESET_TYPE_WORLD
);
3374 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENABLE_OFFLINE_BIST
,
3375 NULL
, 0, NULL
, 0, NULL
);
3379 tests
->memory
= efx_ef10_run_bist(efx
, MC_CMD_MC_MEM_BIST
) ? -1 : 1;
3380 tests
->registers
= efx_ef10_run_bist(efx
, MC_CMD_REG_BIST
) ? -1 : 1;
3382 rc
= efx_mcdi_reset(efx
, RESET_TYPE_WORLD
);
3385 rc2
= efx_reset_up(efx
, RESET_TYPE_WORLD
, rc
== 0);
3386 return rc
? rc
: rc2
;
3389 #ifdef CONFIG_SFC_MTD
3391 struct efx_ef10_nvram_type_info
{
3392 u16 type
, type_mask
;
3397 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types
[] = {
3398 { NVRAM_PARTITION_TYPE_MC_FIRMWARE
, 0, 0, "sfc_mcfw" },
3399 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP
, 0, 0, "sfc_mcfw_backup" },
3400 { NVRAM_PARTITION_TYPE_EXPANSION_ROM
, 0, 0, "sfc_exp_rom" },
3401 { NVRAM_PARTITION_TYPE_STATIC_CONFIG
, 0, 0, "sfc_static_cfg" },
3402 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG
, 0, 0, "sfc_dynamic_cfg" },
3403 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0
, 0, 0, "sfc_exp_rom_cfg" },
3404 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1
, 0, 1, "sfc_exp_rom_cfg" },
3405 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2
, 0, 2, "sfc_exp_rom_cfg" },
3406 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3
, 0, 3, "sfc_exp_rom_cfg" },
3407 { NVRAM_PARTITION_TYPE_LICENSE
, 0, 0, "sfc_license" },
3408 { NVRAM_PARTITION_TYPE_PHY_MIN
, 0xff, 0, "sfc_phy_fw" },
3411 static int efx_ef10_mtd_probe_partition(struct efx_nic
*efx
,
3412 struct efx_mcdi_mtd_partition
*part
,
3415 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_METADATA_IN_LEN
);
3416 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_METADATA_OUT_LENMAX
);
3417 const struct efx_ef10_nvram_type_info
*info
;
3418 size_t size
, erase_size
, outlen
;
3422 for (info
= efx_ef10_nvram_types
; ; info
++) {
3424 efx_ef10_nvram_types
+ ARRAY_SIZE(efx_ef10_nvram_types
))
3426 if ((type
& ~info
->type_mask
) == info
->type
)
3429 if (info
->port
!= efx_port_num(efx
))
3432 rc
= efx_mcdi_nvram_info(efx
, type
, &size
, &erase_size
, &protected);
3436 return -ENODEV
; /* hide it */
3438 part
->nvram_type
= type
;
3440 MCDI_SET_DWORD(inbuf
, NVRAM_METADATA_IN_TYPE
, type
);
3441 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_METADATA
, inbuf
, sizeof(inbuf
),
3442 outbuf
, sizeof(outbuf
), &outlen
);
3445 if (outlen
< MC_CMD_NVRAM_METADATA_OUT_LENMIN
)
3447 if (MCDI_DWORD(outbuf
, NVRAM_METADATA_OUT_FLAGS
) &
3448 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN
))
3449 part
->fw_subtype
= MCDI_DWORD(outbuf
,
3450 NVRAM_METADATA_OUT_SUBTYPE
);
3452 part
->common
.dev_type_name
= "EF10 NVRAM manager";
3453 part
->common
.type_name
= info
->name
;
3455 part
->common
.mtd
.type
= MTD_NORFLASH
;
3456 part
->common
.mtd
.flags
= MTD_CAP_NORFLASH
;
3457 part
->common
.mtd
.size
= size
;
3458 part
->common
.mtd
.erasesize
= erase_size
;
3463 static int efx_ef10_mtd_probe(struct efx_nic
*efx
)
3465 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX
);
3466 struct efx_mcdi_mtd_partition
*parts
;
3467 size_t outlen
, n_parts_total
, i
, n_parts
;
3473 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN
!= 0);
3474 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_PARTITIONS
, NULL
, 0,
3475 outbuf
, sizeof(outbuf
), &outlen
);
3478 if (outlen
< MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN
)
3481 n_parts_total
= MCDI_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS
);
3483 MCDI_VAR_ARRAY_LEN(outlen
, NVRAM_PARTITIONS_OUT_TYPE_ID
))
3486 parts
= kcalloc(n_parts_total
, sizeof(*parts
), GFP_KERNEL
);
3491 for (i
= 0; i
< n_parts_total
; i
++) {
3492 type
= MCDI_ARRAY_DWORD(outbuf
, NVRAM_PARTITIONS_OUT_TYPE_ID
,
3494 rc
= efx_ef10_mtd_probe_partition(efx
, &parts
[n_parts
], type
);
3497 else if (rc
!= -ENODEV
)
3501 rc
= efx_mtd_add(efx
, &parts
[0].common
, n_parts
, sizeof(*parts
));
3508 #endif /* CONFIG_SFC_MTD */
3510 static void efx_ef10_ptp_write_host_time(struct efx_nic
*efx
, u32 host_time
)
3512 _efx_writed(efx
, cpu_to_le32(host_time
), ER_DZ_MC_DB_LWRD
);
3515 static int efx_ef10_rx_enable_timestamping(struct efx_channel
*channel
,
3518 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN
);
3521 if (channel
->sync_events_state
== SYNC_EVENTS_REQUESTED
||
3522 channel
->sync_events_state
== SYNC_EVENTS_VALID
||
3523 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_DISABLED
))
3525 channel
->sync_events_state
= SYNC_EVENTS_REQUESTED
;
3527 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE
);
3528 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
3529 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE
,
3532 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
3533 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
3536 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
3537 SYNC_EVENTS_DISABLED
;
3542 static int efx_ef10_rx_disable_timestamping(struct efx_channel
*channel
,
3545 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN
);
3548 if (channel
->sync_events_state
== SYNC_EVENTS_DISABLED
||
3549 (temp
&& channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
))
3551 if (channel
->sync_events_state
== SYNC_EVENTS_QUIESCENT
) {
3552 channel
->sync_events_state
= SYNC_EVENTS_DISABLED
;
3555 channel
->sync_events_state
= temp
? SYNC_EVENTS_QUIESCENT
:
3556 SYNC_EVENTS_DISABLED
;
3558 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE
);
3559 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
3560 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL
,
3561 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE
);
3562 MCDI_SET_DWORD(inbuf
, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE
,
3565 rc
= efx_mcdi_rpc(channel
->efx
, MC_CMD_PTP
,
3566 inbuf
, sizeof(inbuf
), NULL
, 0, NULL
);
3571 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic
*efx
, bool en
,
3574 int (*set
)(struct efx_channel
*channel
, bool temp
);
3575 struct efx_channel
*channel
;
3578 efx_ef10_rx_enable_timestamping
:
3579 efx_ef10_rx_disable_timestamping
;
3581 efx_for_each_channel(channel
, efx
) {
3582 int rc
= set(channel
, temp
);
3583 if (en
&& rc
!= 0) {
3584 efx_ef10_ptp_set_ts_sync_events(efx
, false, temp
);
3592 static int efx_ef10_ptp_set_ts_config(struct efx_nic
*efx
,
3593 struct hwtstamp_config
*init
)
3597 switch (init
->rx_filter
) {
3598 case HWTSTAMP_FILTER_NONE
:
3599 efx_ef10_ptp_set_ts_sync_events(efx
, false, false);
3600 /* if TX timestamping is still requested then leave PTP on */
3601 return efx_ptp_change_mode(efx
,
3602 init
->tx_type
!= HWTSTAMP_TX_OFF
, 0);
3603 case HWTSTAMP_FILTER_ALL
:
3604 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3605 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3606 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3607 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3608 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3609 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3610 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3611 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3612 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3613 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3614 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3615 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3616 init
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3617 rc
= efx_ptp_change_mode(efx
, true, 0);
3619 rc
= efx_ef10_ptp_set_ts_sync_events(efx
, true, false);
3621 efx_ptp_change_mode(efx
, false, 0);
3628 const struct efx_nic_type efx_hunt_a0_nic_type
= {
3629 .mem_map_size
= efx_ef10_mem_map_size
,
3630 .probe
= efx_ef10_probe
,
3631 .remove
= efx_ef10_remove
,
3632 .dimension_resources
= efx_ef10_dimension_resources
,
3633 .init
= efx_ef10_init_nic
,
3634 .fini
= efx_port_dummy_op_void
,
3635 .map_reset_reason
= efx_mcdi_map_reset_reason
,
3636 .map_reset_flags
= efx_ef10_map_reset_flags
,
3637 .reset
= efx_ef10_reset
,
3638 .probe_port
= efx_mcdi_port_probe
,
3639 .remove_port
= efx_mcdi_port_remove
,
3640 .fini_dmaq
= efx_ef10_fini_dmaq
,
3641 .prepare_flr
= efx_ef10_prepare_flr
,
3642 .finish_flr
= efx_port_dummy_op_void
,
3643 .describe_stats
= efx_ef10_describe_stats
,
3644 .update_stats
= efx_ef10_update_stats
,
3645 .start_stats
= efx_mcdi_mac_start_stats
,
3646 .pull_stats
= efx_mcdi_mac_pull_stats
,
3647 .stop_stats
= efx_mcdi_mac_stop_stats
,
3648 .set_id_led
= efx_mcdi_set_id_led
,
3649 .push_irq_moderation
= efx_ef10_push_irq_moderation
,
3650 .reconfigure_mac
= efx_ef10_mac_reconfigure
,
3651 .check_mac_fault
= efx_mcdi_mac_check_fault
,
3652 .reconfigure_port
= efx_mcdi_port_reconfigure
,
3653 .get_wol
= efx_ef10_get_wol
,
3654 .set_wol
= efx_ef10_set_wol
,
3655 .resume_wol
= efx_port_dummy_op_void
,
3656 .test_chip
= efx_ef10_test_chip
,
3657 .test_nvram
= efx_mcdi_nvram_test_all
,
3658 .mcdi_request
= efx_ef10_mcdi_request
,
3659 .mcdi_poll_response
= efx_ef10_mcdi_poll_response
,
3660 .mcdi_read_response
= efx_ef10_mcdi_read_response
,
3661 .mcdi_poll_reboot
= efx_ef10_mcdi_poll_reboot
,
3662 .irq_enable_master
= efx_port_dummy_op_void
,
3663 .irq_test_generate
= efx_ef10_irq_test_generate
,
3664 .irq_disable_non_ev
= efx_port_dummy_op_void
,
3665 .irq_handle_msi
= efx_ef10_msi_interrupt
,
3666 .irq_handle_legacy
= efx_ef10_legacy_interrupt
,
3667 .tx_probe
= efx_ef10_tx_probe
,
3668 .tx_init
= efx_ef10_tx_init
,
3669 .tx_remove
= efx_ef10_tx_remove
,
3670 .tx_write
= efx_ef10_tx_write
,
3671 .rx_push_rss_config
= efx_ef10_rx_push_rss_config
,
3672 .rx_probe
= efx_ef10_rx_probe
,
3673 .rx_init
= efx_ef10_rx_init
,
3674 .rx_remove
= efx_ef10_rx_remove
,
3675 .rx_write
= efx_ef10_rx_write
,
3676 .rx_defer_refill
= efx_ef10_rx_defer_refill
,
3677 .ev_probe
= efx_ef10_ev_probe
,
3678 .ev_init
= efx_ef10_ev_init
,
3679 .ev_fini
= efx_ef10_ev_fini
,
3680 .ev_remove
= efx_ef10_ev_remove
,
3681 .ev_process
= efx_ef10_ev_process
,
3682 .ev_read_ack
= efx_ef10_ev_read_ack
,
3683 .ev_test_generate
= efx_ef10_ev_test_generate
,
3684 .filter_table_probe
= efx_ef10_filter_table_probe
,
3685 .filter_table_restore
= efx_ef10_filter_table_restore
,
3686 .filter_table_remove
= efx_ef10_filter_table_remove
,
3687 .filter_update_rx_scatter
= efx_ef10_filter_update_rx_scatter
,
3688 .filter_insert
= efx_ef10_filter_insert
,
3689 .filter_remove_safe
= efx_ef10_filter_remove_safe
,
3690 .filter_get_safe
= efx_ef10_filter_get_safe
,
3691 .filter_clear_rx
= efx_ef10_filter_clear_rx
,
3692 .filter_count_rx_used
= efx_ef10_filter_count_rx_used
,
3693 .filter_get_rx_id_limit
= efx_ef10_filter_get_rx_id_limit
,
3694 .filter_get_rx_ids
= efx_ef10_filter_get_rx_ids
,
3695 #ifdef CONFIG_RFS_ACCEL
3696 .filter_rfs_insert
= efx_ef10_filter_rfs_insert
,
3697 .filter_rfs_expire_one
= efx_ef10_filter_rfs_expire_one
,
3699 #ifdef CONFIG_SFC_MTD
3700 .mtd_probe
= efx_ef10_mtd_probe
,
3701 .mtd_rename
= efx_mcdi_mtd_rename
,
3702 .mtd_read
= efx_mcdi_mtd_read
,
3703 .mtd_erase
= efx_mcdi_mtd_erase
,
3704 .mtd_write
= efx_mcdi_mtd_write
,
3705 .mtd_sync
= efx_mcdi_mtd_sync
,
3707 .ptp_write_host_time
= efx_ef10_ptp_write_host_time
,
3708 .ptp_set_ts_sync_events
= efx_ef10_ptp_set_ts_sync_events
,
3709 .ptp_set_ts_config
= efx_ef10_ptp_set_ts_config
,
3711 .revision
= EFX_REV_HUNT_A0
,
3712 .max_dma_mask
= DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH
),
3713 .rx_prefix_size
= ES_DZ_RX_PREFIX_SIZE
,
3714 .rx_hash_offset
= ES_DZ_RX_PREFIX_HASH_OFST
,
3715 .rx_ts_offset
= ES_DZ_RX_PREFIX_TSTAMP_OFST
,
3716 .can_rx_scatter
= true,
3717 .always_rx_scatter
= true,
3718 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
3719 .timer_period_max
= 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH
,
3720 .offload_features
= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
3721 NETIF_F_RXHASH
| NETIF_F_NTUPLE
),
3723 .max_rx_ip_filters
= HUNT_FILTER_TBL_ROWS
,
3724 .hwtstamp_filters
= 1 << HWTSTAMP_FILTER_NONE
|
3725 1 << HWTSTAMP_FILTER_ALL
,