1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
22 #include "farch_regs.h"
24 #include "workarounds.h"
26 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
28 /**************************************************************************
32 **************************************************************************
35 /* This is set to 16 for a good reason. In summary, if larger than
36 * 16, the descriptor cache holds more than a default socket
37 * buffer's worth of packets (for UDP we can only have at most one
38 * socket buffer's worth outstanding). This combined with the fact
39 * that we only get 1 TX event per descriptor cache means the NIC
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
64 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
67 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
74 efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
76 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
79 static void efx_farch_magic_event(struct efx_channel
*channel
, u32 magic
);
81 /**************************************************************************
85 **************************************************************************/
87 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
90 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
94 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
95 const efx_oword_t
*mask
)
97 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
98 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
101 int efx_farch_test_registers(struct efx_nic
*efx
,
102 const struct efx_farch_register_test
*regs
,
105 unsigned address
= 0, i
, j
;
106 efx_oword_t mask
, imask
, original
, reg
, buf
;
108 for (i
= 0; i
< n_regs
; ++i
) {
109 address
= regs
[i
].address
;
110 mask
= imask
= regs
[i
].mask
;
111 EFX_INVERT_OWORD(imask
);
113 efx_reado(efx
, &original
, address
);
115 /* bit sweep on and off */
116 for (j
= 0; j
< 128; j
++) {
117 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
120 /* Test this testable bit can be set in isolation */
121 EFX_AND_OWORD(reg
, original
, mask
);
122 EFX_SET_OWORD32(reg
, j
, j
, 1);
124 efx_writeo(efx
, ®
, address
);
125 efx_reado(efx
, &buf
, address
);
127 if (efx_masked_compare_oword(®
, &buf
, &mask
))
130 /* Test this testable bit can be cleared in isolation */
131 EFX_OR_OWORD(reg
, original
, mask
);
132 EFX_SET_OWORD32(reg
, j
, j
, 0);
134 efx_writeo(efx
, ®
, address
);
135 efx_reado(efx
, &buf
, address
);
137 if (efx_masked_compare_oword(®
, &buf
, &mask
))
141 efx_writeo(efx
, &original
, address
);
147 netif_err(efx
, hw
, efx
->net_dev
,
148 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
149 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
150 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
154 /**************************************************************************
156 * Special buffer handling
157 * Special buffers are used for event queues and the TX and RX
160 *************************************************************************/
163 * Initialise a special buffer
165 * This will define a buffer (previously allocated via
166 * efx_alloc_special_buffer()) in the buffer table, allowing
167 * it to be used for event queues, descriptor rings etc.
170 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
172 efx_qword_t buf_desc
;
177 EFX_BUG_ON_PARANOID(!buffer
->buf
.addr
);
179 /* Write buffer descriptors to NIC */
180 for (i
= 0; i
< buffer
->entries
; i
++) {
181 index
= buffer
->index
+ i
;
182 dma_addr
= buffer
->buf
.dma_addr
+ (i
* EFX_BUF_SIZE
);
183 netif_dbg(efx
, probe
, efx
->net_dev
,
184 "mapping special buffer %d at %llx\n",
185 index
, (unsigned long long)dma_addr
);
186 EFX_POPULATE_QWORD_3(buf_desc
,
187 FRF_AZ_BUF_ADR_REGION
, 0,
188 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
189 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
190 efx_write_buf_tbl(efx
, &buf_desc
, index
);
194 /* Unmaps a buffer and clears the buffer table entries */
196 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
198 efx_oword_t buf_tbl_upd
;
199 unsigned int start
= buffer
->index
;
200 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
202 if (!buffer
->entries
)
205 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
206 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
208 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
209 FRF_AZ_BUF_UPD_CMD
, 0,
210 FRF_AZ_BUF_CLR_CMD
, 1,
211 FRF_AZ_BUF_CLR_END_ID
, end
,
212 FRF_AZ_BUF_CLR_START_ID
, start
);
213 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
217 * Allocate a new special buffer
219 * This allocates memory for a new buffer, clears it and allocates a
220 * new buffer ID range. It does not write into the buffer table.
222 * This call will allocate 4KB buffers, since 8KB buffers can't be
223 * used for event queues and descriptor rings.
225 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
226 struct efx_special_buffer
*buffer
,
229 len
= ALIGN(len
, EFX_BUF_SIZE
);
231 if (efx_nic_alloc_buffer(efx
, &buffer
->buf
, len
, GFP_KERNEL
))
233 buffer
->entries
= len
/ EFX_BUF_SIZE
;
234 BUG_ON(buffer
->buf
.dma_addr
& (EFX_BUF_SIZE
- 1));
236 /* Select new buffer ID */
237 buffer
->index
= efx
->next_buffer_table
;
238 efx
->next_buffer_table
+= buffer
->entries
;
239 #ifdef CONFIG_SFC_SRIOV
240 BUG_ON(efx_sriov_enabled(efx
) &&
241 efx
->vf_buftbl_base
< efx
->next_buffer_table
);
244 netif_dbg(efx
, probe
, efx
->net_dev
,
245 "allocating special buffers %d-%d at %llx+%x "
246 "(virt %p phys %llx)\n", buffer
->index
,
247 buffer
->index
+ buffer
->entries
- 1,
248 (u64
)buffer
->buf
.dma_addr
, len
,
249 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
255 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
257 if (!buffer
->buf
.addr
)
260 netif_dbg(efx
, hw
, efx
->net_dev
,
261 "deallocating special buffers %d-%d at %llx+%x "
262 "(virt %p phys %llx)\n", buffer
->index
,
263 buffer
->index
+ buffer
->entries
- 1,
264 (u64
)buffer
->buf
.dma_addr
, buffer
->buf
.len
,
265 buffer
->buf
.addr
, (u64
)virt_to_phys(buffer
->buf
.addr
));
267 efx_nic_free_buffer(efx
, &buffer
->buf
);
271 /**************************************************************************
275 **************************************************************************/
277 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
278 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
283 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
284 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
285 efx_writed_page(tx_queue
->efx
, ®
,
286 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
289 /* Write pointer and first descriptor for TX descriptor ring */
290 static inline void efx_farch_push_tx_desc(struct efx_tx_queue
*tx_queue
,
291 const efx_qword_t
*txd
)
296 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
297 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
299 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
300 EFX_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
301 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
303 efx_writeo_page(tx_queue
->efx
, ®
,
304 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
308 /* For each entry inserted into the software descriptor ring, create a
309 * descriptor in the hardware TX descriptor ring (in host memory), and
312 void efx_farch_tx_write(struct efx_tx_queue
*tx_queue
)
314 struct efx_tx_buffer
*buffer
;
317 unsigned old_write_count
= tx_queue
->write_count
;
319 tx_queue
->xmit_more_available
= false;
320 if (unlikely(tx_queue
->write_count
== tx_queue
->insert_count
))
324 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
325 buffer
= &tx_queue
->buffer
[write_ptr
];
326 txd
= efx_tx_desc(tx_queue
, write_ptr
);
327 ++tx_queue
->write_count
;
329 EFX_BUG_ON_PARANOID(buffer
->flags
& EFX_TX_BUF_OPTION
);
331 /* Create TX descriptor ring entry */
332 BUILD_BUG_ON(EFX_TX_BUF_CONT
!= 1);
333 EFX_POPULATE_QWORD_4(*txd
,
335 buffer
->flags
& EFX_TX_BUF_CONT
,
336 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
337 FSF_AZ_TX_KER_BUF_REGION
, 0,
338 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
339 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
341 wmb(); /* Ensure descriptors are written before they are fetched */
343 if (efx_nic_may_push_tx_desc(tx_queue
, old_write_count
)) {
344 txd
= efx_tx_desc(tx_queue
,
345 old_write_count
& tx_queue
->ptr_mask
);
346 efx_farch_push_tx_desc(tx_queue
, txd
);
349 efx_farch_notify_tx_desc(tx_queue
);
353 /* Allocate hardware resources for a TX queue */
354 int efx_farch_tx_probe(struct efx_tx_queue
*tx_queue
)
356 struct efx_nic
*efx
= tx_queue
->efx
;
359 entries
= tx_queue
->ptr_mask
+ 1;
360 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
361 entries
* sizeof(efx_qword_t
));
364 void efx_farch_tx_init(struct efx_tx_queue
*tx_queue
)
366 struct efx_nic
*efx
= tx_queue
->efx
;
369 /* Pin TX descriptor ring */
370 efx_init_special_buffer(efx
, &tx_queue
->txd
);
372 /* Push TX descriptor ring to card */
373 EFX_POPULATE_OWORD_10(reg
,
374 FRF_AZ_TX_DESCQ_EN
, 1,
375 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
376 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
377 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
378 FRF_AZ_TX_DESCQ_EVQ_ID
,
379 tx_queue
->channel
->channel
,
380 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
381 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
382 FRF_AZ_TX_DESCQ_SIZE
,
383 __ffs(tx_queue
->txd
.entries
),
384 FRF_AZ_TX_DESCQ_TYPE
, 0,
385 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
387 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
388 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
389 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
390 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
,
394 efx_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
397 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
398 /* Only 128 bits in this register */
399 BUILD_BUG_ON(EFX_MAX_TX_QUEUES
> 128);
401 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
402 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
)
403 __clear_bit_le(tx_queue
->queue
, ®
);
405 __set_bit_le(tx_queue
->queue
, ®
);
406 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
409 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
410 EFX_POPULATE_OWORD_1(reg
,
412 (tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
414 FFE_BZ_TX_PACE_RESERVED
);
415 efx_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
,
420 static void efx_farch_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
422 struct efx_nic
*efx
= tx_queue
->efx
;
423 efx_oword_t tx_flush_descq
;
425 WARN_ON(atomic_read(&tx_queue
->flush_outstanding
));
426 atomic_set(&tx_queue
->flush_outstanding
, 1);
428 EFX_POPULATE_OWORD_2(tx_flush_descq
,
429 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
430 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
431 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
434 void efx_farch_tx_fini(struct efx_tx_queue
*tx_queue
)
436 struct efx_nic
*efx
= tx_queue
->efx
;
437 efx_oword_t tx_desc_ptr
;
439 /* Remove TX descriptor ring from card */
440 EFX_ZERO_OWORD(tx_desc_ptr
);
441 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
444 /* Unpin TX descriptor ring */
445 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
448 /* Free buffers backing TX queue */
449 void efx_farch_tx_remove(struct efx_tx_queue
*tx_queue
)
451 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
454 /**************************************************************************
458 **************************************************************************/
460 /* This creates an entry in the RX descriptor queue */
462 efx_farch_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
464 struct efx_rx_buffer
*rx_buf
;
467 rxd
= efx_rx_desc(rx_queue
, index
);
468 rx_buf
= efx_rx_buffer(rx_queue
, index
);
469 EFX_POPULATE_QWORD_3(*rxd
,
470 FSF_AZ_RX_KER_BUF_SIZE
,
472 rx_queue
->efx
->type
->rx_buffer_padding
,
473 FSF_AZ_RX_KER_BUF_REGION
, 0,
474 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
477 /* This writes to the RX_DESC_WPTR register for the specified receive
480 void efx_farch_rx_write(struct efx_rx_queue
*rx_queue
)
482 struct efx_nic
*efx
= rx_queue
->efx
;
486 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
487 efx_farch_build_rx_desc(
489 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
490 ++rx_queue
->notified_count
;
494 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
495 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
496 efx_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
497 efx_rx_queue_index(rx_queue
));
500 int efx_farch_rx_probe(struct efx_rx_queue
*rx_queue
)
502 struct efx_nic
*efx
= rx_queue
->efx
;
505 entries
= rx_queue
->ptr_mask
+ 1;
506 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
507 entries
* sizeof(efx_qword_t
));
510 void efx_farch_rx_init(struct efx_rx_queue
*rx_queue
)
512 efx_oword_t rx_desc_ptr
;
513 struct efx_nic
*efx
= rx_queue
->efx
;
514 bool is_b0
= efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
;
515 bool iscsi_digest_en
= is_b0
;
518 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
519 * DMA to continue after a PCIe page boundary (and scattering
520 * is not possible). In Falcon B0 and Siena, it enables
523 jumbo_en
= !is_b0
|| efx
->rx_scatter
;
525 netif_dbg(efx
, hw
, efx
->net_dev
,
526 "RX queue %d ring in special buffers %d-%d\n",
527 efx_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
528 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
530 rx_queue
->scatter_n
= 0;
532 /* Pin RX descriptor ring */
533 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
535 /* Push RX descriptor ring to card */
536 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
537 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
538 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
539 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
540 FRF_AZ_RX_DESCQ_EVQ_ID
,
541 efx_rx_queue_channel(rx_queue
)->channel
,
542 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
543 FRF_AZ_RX_DESCQ_LABEL
,
544 efx_rx_queue_index(rx_queue
),
545 FRF_AZ_RX_DESCQ_SIZE
,
546 __ffs(rx_queue
->rxd
.entries
),
547 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
548 FRF_AZ_RX_DESCQ_JUMBO
, jumbo_en
,
549 FRF_AZ_RX_DESCQ_EN
, 1);
550 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
551 efx_rx_queue_index(rx_queue
));
554 static void efx_farch_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
556 struct efx_nic
*efx
= rx_queue
->efx
;
557 efx_oword_t rx_flush_descq
;
559 EFX_POPULATE_OWORD_2(rx_flush_descq
,
560 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
561 FRF_AZ_RX_FLUSH_DESCQ
,
562 efx_rx_queue_index(rx_queue
));
563 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
566 void efx_farch_rx_fini(struct efx_rx_queue
*rx_queue
)
568 efx_oword_t rx_desc_ptr
;
569 struct efx_nic
*efx
= rx_queue
->efx
;
571 /* Remove RX descriptor ring from card */
572 EFX_ZERO_OWORD(rx_desc_ptr
);
573 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
574 efx_rx_queue_index(rx_queue
));
576 /* Unpin RX descriptor ring */
577 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
580 /* Free buffers backing RX queue */
581 void efx_farch_rx_remove(struct efx_rx_queue
*rx_queue
)
583 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
586 /**************************************************************************
590 **************************************************************************/
592 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
593 * or more RX flushes can be kicked off.
595 static bool efx_farch_flush_wake(struct efx_nic
*efx
)
597 /* Ensure that all updates are visible to efx_farch_flush_queues() */
600 return (atomic_read(&efx
->active_queues
) == 0 ||
601 (atomic_read(&efx
->rxq_flush_outstanding
) < EFX_RX_FLUSH_COUNT
602 && atomic_read(&efx
->rxq_flush_pending
) > 0));
605 static bool efx_check_tx_flush_complete(struct efx_nic
*efx
)
608 efx_oword_t txd_ptr_tbl
;
609 struct efx_channel
*channel
;
610 struct efx_tx_queue
*tx_queue
;
612 efx_for_each_channel(channel
, efx
) {
613 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
614 efx_reado_table(efx
, &txd_ptr_tbl
,
615 FR_BZ_TX_DESC_PTR_TBL
, tx_queue
->queue
);
616 if (EFX_OWORD_FIELD(txd_ptr_tbl
,
617 FRF_AZ_TX_DESCQ_FLUSH
) ||
618 EFX_OWORD_FIELD(txd_ptr_tbl
,
619 FRF_AZ_TX_DESCQ_EN
)) {
620 netif_dbg(efx
, hw
, efx
->net_dev
,
621 "flush did not complete on TXQ %d\n",
624 } else if (atomic_cmpxchg(&tx_queue
->flush_outstanding
,
626 /* The flush is complete, but we didn't
627 * receive a flush completion event
629 netif_dbg(efx
, hw
, efx
->net_dev
,
630 "flush complete on TXQ %d, so drain "
631 "the queue\n", tx_queue
->queue
);
632 /* Don't need to increment active_queues as it
633 * has already been incremented for the queues
634 * which did not drain
636 efx_farch_magic_event(channel
,
637 EFX_CHANNEL_MAGIC_TX_DRAIN(
646 /* Flush all the transmit queues, and continue flushing receive queues until
647 * they're all flushed. Wait for the DRAIN events to be recieved so that there
648 * are no more RX and TX events left on any channel. */
649 static int efx_farch_do_flush(struct efx_nic
*efx
)
651 unsigned timeout
= msecs_to_jiffies(5000); /* 5s for all flushes and drains */
652 struct efx_channel
*channel
;
653 struct efx_rx_queue
*rx_queue
;
654 struct efx_tx_queue
*tx_queue
;
657 efx_for_each_channel(channel
, efx
) {
658 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
659 efx_farch_flush_tx_queue(tx_queue
);
661 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
662 rx_queue
->flush_pending
= true;
663 atomic_inc(&efx
->rxq_flush_pending
);
667 while (timeout
&& atomic_read(&efx
->active_queues
) > 0) {
668 /* If SRIOV is enabled, then offload receive queue flushing to
669 * the firmware (though we will still have to poll for
670 * completion). If that fails, fall back to the old scheme.
672 if (efx_sriov_enabled(efx
)) {
673 rc
= efx_mcdi_flush_rxqs(efx
);
678 /* The hardware supports four concurrent rx flushes, each of
679 * which may need to be retried if there is an outstanding
682 efx_for_each_channel(channel
, efx
) {
683 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
684 if (atomic_read(&efx
->rxq_flush_outstanding
) >=
688 if (rx_queue
->flush_pending
) {
689 rx_queue
->flush_pending
= false;
690 atomic_dec(&efx
->rxq_flush_pending
);
691 atomic_inc(&efx
->rxq_flush_outstanding
);
692 efx_farch_flush_rx_queue(rx_queue
);
698 timeout
= wait_event_timeout(efx
->flush_wq
,
699 efx_farch_flush_wake(efx
),
703 if (atomic_read(&efx
->active_queues
) &&
704 !efx_check_tx_flush_complete(efx
)) {
705 netif_err(efx
, hw
, efx
->net_dev
, "failed to flush %d queues "
706 "(rx %d+%d)\n", atomic_read(&efx
->active_queues
),
707 atomic_read(&efx
->rxq_flush_outstanding
),
708 atomic_read(&efx
->rxq_flush_pending
));
711 atomic_set(&efx
->active_queues
, 0);
712 atomic_set(&efx
->rxq_flush_pending
, 0);
713 atomic_set(&efx
->rxq_flush_outstanding
, 0);
719 int efx_farch_fini_dmaq(struct efx_nic
*efx
)
721 struct efx_channel
*channel
;
722 struct efx_tx_queue
*tx_queue
;
723 struct efx_rx_queue
*rx_queue
;
726 /* Do not attempt to write to the NIC during EEH recovery */
727 if (efx
->state
!= STATE_RECOVERY
) {
728 /* Only perform flush if DMA is enabled */
729 if (efx
->pci_dev
->is_busmaster
) {
730 efx
->type
->prepare_flush(efx
);
731 rc
= efx_farch_do_flush(efx
);
732 efx
->type
->finish_flush(efx
);
735 efx_for_each_channel(channel
, efx
) {
736 efx_for_each_channel_rx_queue(rx_queue
, channel
)
737 efx_farch_rx_fini(rx_queue
);
738 efx_for_each_channel_tx_queue(tx_queue
, channel
)
739 efx_farch_tx_fini(tx_queue
);
746 /* Reset queue and flush accounting after FLR
748 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
749 * mastering was disabled), in which case we don't receive (RXQ) flush
750 * completion events. This means that efx->rxq_flush_outstanding remained at 4
751 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
752 * events were received, and we didn't go through efx_check_tx_flush_complete())
753 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
754 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
755 * for batched flush requests; and the efx->active_queues gets messed up because
756 * we keep incrementing for the newly initialised queues, but it never went to
757 * zero previously. Then we get a timeout every time we try to restart the
758 * queues, as it doesn't go back to zero when we should be flushing the queues.
760 void efx_farch_finish_flr(struct efx_nic
*efx
)
762 atomic_set(&efx
->rxq_flush_pending
, 0);
763 atomic_set(&efx
->rxq_flush_outstanding
, 0);
764 atomic_set(&efx
->active_queues
, 0);
768 /**************************************************************************
770 * Event queue processing
771 * Event queues are processed by per-channel tasklets.
773 **************************************************************************/
775 /* Update a channel's event queue's read pointer (RPTR) register
777 * This writes the EVQ_RPTR_REG register for the specified channel's
780 void efx_farch_ev_read_ack(struct efx_channel
*channel
)
783 struct efx_nic
*efx
= channel
->efx
;
785 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
,
786 channel
->eventq_read_ptr
& channel
->eventq_mask
);
788 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
789 * of 4 bytes, but it is really 16 bytes just like later revisions.
791 efx_writed(efx
, ®
,
792 efx
->type
->evq_rptr_tbl_base
+
793 FR_BZ_EVQ_RPTR_STEP
* channel
->channel
);
796 /* Use HW to insert a SW defined event */
797 void efx_farch_generate_event(struct efx_nic
*efx
, unsigned int evq
,
800 efx_oword_t drv_ev_reg
;
802 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
803 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
804 drv_ev_reg
.u32
[0] = event
->u32
[0];
805 drv_ev_reg
.u32
[1] = event
->u32
[1];
806 drv_ev_reg
.u32
[2] = 0;
807 drv_ev_reg
.u32
[3] = 0;
808 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, evq
);
809 efx_writeo(efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
812 static void efx_farch_magic_event(struct efx_channel
*channel
, u32 magic
)
816 EFX_POPULATE_QWORD_2(event
, FSF_AZ_EV_CODE
,
817 FSE_AZ_EV_CODE_DRV_GEN_EV
,
818 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
819 efx_farch_generate_event(channel
->efx
, channel
->channel
, &event
);
822 /* Handle a transmit completion event
824 * The NIC batches TX completion events; the message we receive is of
825 * the form "complete all TX events up to this index".
828 efx_farch_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
830 unsigned int tx_ev_desc_ptr
;
831 unsigned int tx_ev_q_label
;
832 struct efx_tx_queue
*tx_queue
;
833 struct efx_nic
*efx
= channel
->efx
;
836 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
839 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
840 /* Transmit completion */
841 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
842 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
843 tx_queue
= efx_channel_get_tx_queue(
844 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
845 tx_packets
= ((tx_ev_desc_ptr
- tx_queue
->read_count
) &
847 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
848 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
849 /* Rewrite the FIFO write pointer */
850 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
851 tx_queue
= efx_channel_get_tx_queue(
852 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
854 netif_tx_lock(efx
->net_dev
);
855 efx_farch_notify_tx_desc(tx_queue
);
856 netif_tx_unlock(efx
->net_dev
);
857 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
)) {
858 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
860 netif_err(efx
, tx_err
, efx
->net_dev
,
861 "channel %d unexpected TX event "
862 EFX_QWORD_FMT
"\n", channel
->channel
,
863 EFX_QWORD_VAL(*event
));
869 /* Detect errors included in the rx_evt_pkt_ok bit. */
870 static u16
efx_farch_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
871 const efx_qword_t
*event
)
873 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
874 struct efx_nic
*efx
= rx_queue
->efx
;
875 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
876 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
877 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
878 bool rx_ev_other_err
, rx_ev_pause_frm
;
879 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
880 unsigned rx_ev_pkt_type
;
882 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
883 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
884 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
885 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
886 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
887 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
888 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
889 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
890 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
891 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
892 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
893 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
894 rx_ev_drib_nib
= ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) ?
895 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
896 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
898 /* Every error apart from tobe_disc and pause_frm */
899 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
900 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
901 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
903 /* Count errors that are not in MAC stats. Ignore expected
904 * checksum errors during self-test. */
906 ++channel
->n_rx_frm_trunc
;
907 else if (rx_ev_tobe_disc
)
908 ++channel
->n_rx_tobe_disc
;
909 else if (!efx
->loopback_selftest
) {
910 if (rx_ev_ip_hdr_chksum_err
)
911 ++channel
->n_rx_ip_hdr_chksum_err
;
912 else if (rx_ev_tcp_udp_chksum_err
)
913 ++channel
->n_rx_tcp_udp_chksum_err
;
916 /* TOBE_DISC is expected on unicast mismatches; don't print out an
917 * error message. FRM_TRUNC indicates RXDP dropped the packet due
918 * to a FIFO overflow.
921 if (rx_ev_other_err
&& net_ratelimit()) {
922 netif_dbg(efx
, rx_err
, efx
->net_dev
,
923 " RX queue %d unexpected RX event "
924 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
925 efx_rx_queue_index(rx_queue
), EFX_QWORD_VAL(*event
),
926 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
927 rx_ev_ip_hdr_chksum_err
?
928 " [IP_HDR_CHKSUM_ERR]" : "",
929 rx_ev_tcp_udp_chksum_err
?
930 " [TCP_UDP_CHKSUM_ERR]" : "",
931 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
932 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
933 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
934 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
935 rx_ev_pause_frm
? " [PAUSE]" : "");
939 /* The frame must be discarded if any of these are true. */
940 return (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
941 rx_ev_tobe_disc
| rx_ev_pause_frm
) ?
942 EFX_RX_PKT_DISCARD
: 0;
945 /* Handle receive events that are not in-order. Return true if this
946 * can be handled as a partial packet discard, false if it's more
950 efx_farch_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
952 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
953 struct efx_nic
*efx
= rx_queue
->efx
;
954 unsigned expected
, dropped
;
956 if (rx_queue
->scatter_n
&&
957 index
== ((rx_queue
->removed_count
+ rx_queue
->scatter_n
- 1) &
958 rx_queue
->ptr_mask
)) {
959 ++channel
->n_rx_nodesc_trunc
;
963 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
964 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
965 netif_info(efx
, rx_err
, efx
->net_dev
,
966 "dropped %d events (index=%d expected=%d)\n",
967 dropped
, index
, expected
);
969 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
970 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
974 /* Handle a packet received event
976 * The NIC gives a "discard" flag if it's a unicast packet with the
977 * wrong destination address
978 * Also "is multicast" and "matches multicast filter" flags can be used to
979 * discard non-matching multicast packets.
982 efx_farch_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
984 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
985 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
986 unsigned expected_ptr
;
987 bool rx_ev_pkt_ok
, rx_ev_sop
, rx_ev_cont
;
989 struct efx_rx_queue
*rx_queue
;
990 struct efx_nic
*efx
= channel
->efx
;
992 if (unlikely(ACCESS_ONCE(efx
->reset_pending
)))
995 rx_ev_cont
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
);
996 rx_ev_sop
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
);
997 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
1000 rx_queue
= efx_channel_get_rx_queue(channel
);
1002 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
1003 expected_ptr
= ((rx_queue
->removed_count
+ rx_queue
->scatter_n
) &
1004 rx_queue
->ptr_mask
);
1006 /* Check for partial drops and other errors */
1007 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
) ||
1008 unlikely(rx_ev_sop
!= (rx_queue
->scatter_n
== 0))) {
1009 if (rx_ev_desc_ptr
!= expected_ptr
&&
1010 !efx_farch_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
))
1013 /* Discard all pending fragments */
1014 if (rx_queue
->scatter_n
) {
1017 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1018 rx_queue
->scatter_n
, 0, EFX_RX_PKT_DISCARD
);
1019 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1020 rx_queue
->scatter_n
= 0;
1023 /* Return if there is no new fragment */
1024 if (rx_ev_desc_ptr
!= expected_ptr
)
1027 /* Discard new fragment if not SOP */
1031 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1032 1, 0, EFX_RX_PKT_DISCARD
);
1033 ++rx_queue
->removed_count
;
1038 ++rx_queue
->scatter_n
;
1042 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
1043 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
1044 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
1046 if (likely(rx_ev_pkt_ok
)) {
1047 /* If packet is marked as OK then we can rely on the
1048 * hardware checksum and classification.
1051 switch (rx_ev_hdr_type
) {
1052 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
:
1053 flags
|= EFX_RX_PKT_TCP
;
1055 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
:
1056 flags
|= EFX_RX_PKT_CSUMMED
;
1058 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER
:
1059 case FSE_AZ_RX_EV_HDR_TYPE_OTHER
:
1063 flags
= efx_farch_handle_rx_not_ok(rx_queue
, event
);
1066 /* Detect multicast packets that didn't match the filter */
1067 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
1068 if (rx_ev_mcast_pkt
) {
1069 unsigned int rx_ev_mcast_hash_match
=
1070 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
1072 if (unlikely(!rx_ev_mcast_hash_match
)) {
1073 ++channel
->n_rx_mcast_mismatch
;
1074 flags
|= EFX_RX_PKT_DISCARD
;
1078 channel
->irq_mod_score
+= 2;
1080 /* Handle received packet */
1081 efx_rx_packet(rx_queue
,
1082 rx_queue
->removed_count
& rx_queue
->ptr_mask
,
1083 rx_queue
->scatter_n
, rx_ev_byte_cnt
, flags
);
1084 rx_queue
->removed_count
+= rx_queue
->scatter_n
;
1085 rx_queue
->scatter_n
= 0;
1088 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1089 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1090 * of all transmit completions.
1093 efx_farch_handle_tx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1095 struct efx_tx_queue
*tx_queue
;
1098 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1099 if (qid
< EFX_TXQ_TYPES
* efx
->n_tx_channels
) {
1100 tx_queue
= efx_get_tx_queue(efx
, qid
/ EFX_TXQ_TYPES
,
1101 qid
% EFX_TXQ_TYPES
);
1102 if (atomic_cmpxchg(&tx_queue
->flush_outstanding
, 1, 0)) {
1103 efx_farch_magic_event(tx_queue
->channel
,
1104 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue
));
1109 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1110 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1111 * the RX queue back to the mask of RX queues in need of flushing.
1114 efx_farch_handle_rx_flush_done(struct efx_nic
*efx
, efx_qword_t
*event
)
1116 struct efx_channel
*channel
;
1117 struct efx_rx_queue
*rx_queue
;
1121 qid
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1122 failed
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1123 if (qid
>= efx
->n_channels
)
1125 channel
= efx_get_channel(efx
, qid
);
1126 if (!efx_channel_has_rx_queue(channel
))
1128 rx_queue
= efx_channel_get_rx_queue(channel
);
1131 netif_info(efx
, hw
, efx
->net_dev
,
1132 "RXQ %d flush retry\n", qid
);
1133 rx_queue
->flush_pending
= true;
1134 atomic_inc(&efx
->rxq_flush_pending
);
1136 efx_farch_magic_event(efx_rx_queue_channel(rx_queue
),
1137 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
));
1139 atomic_dec(&efx
->rxq_flush_outstanding
);
1140 if (efx_farch_flush_wake(efx
))
1141 wake_up(&efx
->flush_wq
);
1145 efx_farch_handle_drain_event(struct efx_channel
*channel
)
1147 struct efx_nic
*efx
= channel
->efx
;
1149 WARN_ON(atomic_read(&efx
->active_queues
) == 0);
1150 atomic_dec(&efx
->active_queues
);
1151 if (efx_farch_flush_wake(efx
))
1152 wake_up(&efx
->flush_wq
);
1155 static void efx_farch_handle_generated_event(struct efx_channel
*channel
,
1158 struct efx_nic
*efx
= channel
->efx
;
1159 struct efx_rx_queue
*rx_queue
=
1160 efx_channel_has_rx_queue(channel
) ?
1161 efx_channel_get_rx_queue(channel
) : NULL
;
1162 unsigned magic
, code
;
1164 magic
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
1165 code
= _EFX_CHANNEL_MAGIC_CODE(magic
);
1167 if (magic
== EFX_CHANNEL_MAGIC_TEST(channel
)) {
1168 channel
->event_test_cpu
= raw_smp_processor_id();
1169 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_FILL(rx_queue
)) {
1170 /* The queue must be empty, so we won't receive any rx
1171 * events, so efx_process_channel() won't refill the
1172 * queue. Refill it here */
1173 efx_fast_push_rx_descriptors(rx_queue
, true);
1174 } else if (rx_queue
&& magic
== EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue
)) {
1175 efx_farch_handle_drain_event(channel
);
1176 } else if (code
== _EFX_CHANNEL_MAGIC_TX_DRAIN
) {
1177 efx_farch_handle_drain_event(channel
);
1179 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
1180 "generated event "EFX_QWORD_FMT
"\n",
1181 channel
->channel
, EFX_QWORD_VAL(*event
));
1186 efx_farch_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
1188 struct efx_nic
*efx
= channel
->efx
;
1189 unsigned int ev_sub_code
;
1190 unsigned int ev_sub_data
;
1192 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
1193 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
1195 switch (ev_sub_code
) {
1196 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
1197 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
1198 channel
->channel
, ev_sub_data
);
1199 efx_farch_handle_tx_flush_done(efx
, event
);
1200 efx_sriov_tx_flush_done(efx
, event
);
1202 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
1203 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
1204 channel
->channel
, ev_sub_data
);
1205 efx_farch_handle_rx_flush_done(efx
, event
);
1206 efx_sriov_rx_flush_done(efx
, event
);
1208 case FSE_AZ_EVQ_INIT_DONE_EV
:
1209 netif_dbg(efx
, hw
, efx
->net_dev
,
1210 "channel %d EVQ %d initialised\n",
1211 channel
->channel
, ev_sub_data
);
1213 case FSE_AZ_SRM_UPD_DONE_EV
:
1214 netif_vdbg(efx
, hw
, efx
->net_dev
,
1215 "channel %d SRAM update done\n", channel
->channel
);
1217 case FSE_AZ_WAKE_UP_EV
:
1218 netif_vdbg(efx
, hw
, efx
->net_dev
,
1219 "channel %d RXQ %d wakeup event\n",
1220 channel
->channel
, ev_sub_data
);
1222 case FSE_AZ_TIMER_EV
:
1223 netif_vdbg(efx
, hw
, efx
->net_dev
,
1224 "channel %d RX queue %d timer expired\n",
1225 channel
->channel
, ev_sub_data
);
1227 case FSE_AA_RX_RECOVER_EV
:
1228 netif_err(efx
, rx_err
, efx
->net_dev
,
1229 "channel %d seen DRIVER RX_RESET event. "
1230 "Resetting.\n", channel
->channel
);
1231 atomic_inc(&efx
->rx_reset
);
1232 efx_schedule_reset(efx
,
1233 EFX_WORKAROUND_6555(efx
) ?
1234 RESET_TYPE_RX_RECOVERY
:
1235 RESET_TYPE_DISABLE
);
1237 case FSE_BZ_RX_DSC_ERROR_EV
:
1238 if (ev_sub_data
< EFX_VI_BASE
) {
1239 netif_err(efx
, rx_err
, efx
->net_dev
,
1240 "RX DMA Q %d reports descriptor fetch error."
1241 " RX Q %d is disabled.\n", ev_sub_data
,
1243 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1245 efx_sriov_desc_fetch_err(efx
, ev_sub_data
);
1247 case FSE_BZ_TX_DSC_ERROR_EV
:
1248 if (ev_sub_data
< EFX_VI_BASE
) {
1249 netif_err(efx
, tx_err
, efx
->net_dev
,
1250 "TX DMA Q %d reports descriptor fetch error."
1251 " TX Q %d is disabled.\n", ev_sub_data
,
1253 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1255 efx_sriov_desc_fetch_err(efx
, ev_sub_data
);
1258 netif_vdbg(efx
, hw
, efx
->net_dev
,
1259 "channel %d unknown driver event code %d "
1260 "data %04x\n", channel
->channel
, ev_sub_code
,
1266 int efx_farch_ev_process(struct efx_channel
*channel
, int budget
)
1268 struct efx_nic
*efx
= channel
->efx
;
1269 unsigned int read_ptr
;
1270 efx_qword_t event
, *p_event
;
1278 read_ptr
= channel
->eventq_read_ptr
;
1281 p_event
= efx_event(channel
, read_ptr
);
1284 if (!efx_event_present(&event
))
1288 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1289 "channel %d event is "EFX_QWORD_FMT
"\n",
1290 channel
->channel
, EFX_QWORD_VAL(event
));
1292 /* Clear this event by marking it all ones */
1293 EFX_SET_QWORD(*p_event
);
1297 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1300 case FSE_AZ_EV_CODE_RX_EV
:
1301 efx_farch_handle_rx_event(channel
, &event
);
1302 if (++spent
== budget
)
1305 case FSE_AZ_EV_CODE_TX_EV
:
1306 tx_packets
+= efx_farch_handle_tx_event(channel
,
1308 if (tx_packets
> efx
->txq_entries
) {
1313 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1314 efx_farch_handle_generated_event(channel
, &event
);
1316 case FSE_AZ_EV_CODE_DRIVER_EV
:
1317 efx_farch_handle_driver_event(channel
, &event
);
1319 case FSE_CZ_EV_CODE_USER_EV
:
1320 efx_sriov_event(channel
, &event
);
1322 case FSE_CZ_EV_CODE_MCDI_EV
:
1323 efx_mcdi_process_event(channel
, &event
);
1325 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1326 if (efx
->type
->handle_global_event
&&
1327 efx
->type
->handle_global_event(channel
, &event
))
1329 /* else fall through */
1331 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1332 "channel %d unknown event type %d (data "
1333 EFX_QWORD_FMT
")\n", channel
->channel
,
1334 ev_code
, EFX_QWORD_VAL(event
));
1339 channel
->eventq_read_ptr
= read_ptr
;
1343 /* Allocate buffer table entries for event queue */
1344 int efx_farch_ev_probe(struct efx_channel
*channel
)
1346 struct efx_nic
*efx
= channel
->efx
;
1349 entries
= channel
->eventq_mask
+ 1;
1350 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1351 entries
* sizeof(efx_qword_t
));
1354 int efx_farch_ev_init(struct efx_channel
*channel
)
1357 struct efx_nic
*efx
= channel
->efx
;
1359 netif_dbg(efx
, hw
, efx
->net_dev
,
1360 "channel %d event queue in special buffers %d-%d\n",
1361 channel
->channel
, channel
->eventq
.index
,
1362 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1364 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1365 EFX_POPULATE_OWORD_3(reg
,
1366 FRF_CZ_TIMER_Q_EN
, 1,
1367 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1368 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1369 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1372 /* Pin event queue buffer */
1373 efx_init_special_buffer(efx
, &channel
->eventq
);
1375 /* Fill event queue with all ones (i.e. empty events) */
1376 memset(channel
->eventq
.buf
.addr
, 0xff, channel
->eventq
.buf
.len
);
1378 /* Push event queue to card */
1379 EFX_POPULATE_OWORD_3(reg
,
1381 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1382 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1383 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1389 void efx_farch_ev_fini(struct efx_channel
*channel
)
1392 struct efx_nic
*efx
= channel
->efx
;
1394 /* Remove event queue from card */
1395 EFX_ZERO_OWORD(reg
);
1396 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1398 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1399 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1401 /* Unpin event queue */
1402 efx_fini_special_buffer(efx
, &channel
->eventq
);
1405 /* Free buffers backing event queue */
1406 void efx_farch_ev_remove(struct efx_channel
*channel
)
1408 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1412 void efx_farch_ev_test_generate(struct efx_channel
*channel
)
1414 efx_farch_magic_event(channel
, EFX_CHANNEL_MAGIC_TEST(channel
));
1417 void efx_farch_rx_defer_refill(struct efx_rx_queue
*rx_queue
)
1419 efx_farch_magic_event(efx_rx_queue_channel(rx_queue
),
1420 EFX_CHANNEL_MAGIC_FILL(rx_queue
));
1423 /**************************************************************************
1425 * Hardware interrupts
1426 * The hardware interrupt handler does very little work; all the event
1427 * queue processing is carried out by per-channel tasklets.
1429 **************************************************************************/
1431 /* Enable/disable/generate interrupts */
1432 static inline void efx_farch_interrupts(struct efx_nic
*efx
,
1433 bool enabled
, bool force
)
1435 efx_oword_t int_en_reg_ker
;
1437 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1438 FRF_AZ_KER_INT_LEVE_SEL
, efx
->irq_level
,
1439 FRF_AZ_KER_INT_KER
, force
,
1440 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1441 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1444 void efx_farch_irq_enable_master(struct efx_nic
*efx
)
1446 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1447 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1449 efx_farch_interrupts(efx
, true, false);
1452 void efx_farch_irq_disable_master(struct efx_nic
*efx
)
1454 /* Disable interrupts */
1455 efx_farch_interrupts(efx
, false, false);
1458 /* Generate a test interrupt
1459 * Interrupt must already have been enabled, otherwise nasty things
1462 void efx_farch_irq_test_generate(struct efx_nic
*efx
)
1464 efx_farch_interrupts(efx
, true, true);
1467 /* Process a fatal interrupt
1468 * Disable bus mastering ASAP and schedule a reset
1470 irqreturn_t
efx_farch_fatal_interrupt(struct efx_nic
*efx
)
1472 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1473 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1474 efx_oword_t fatal_intr
;
1475 int error
, mem_perr
;
1477 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1478 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1480 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1481 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1482 EFX_OWORD_VAL(fatal_intr
),
1483 error
? "disabling bus mastering" : "no recognised error");
1485 /* If this is a memory parity error dump which blocks are offending */
1486 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1487 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1490 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1491 netif_err(efx
, hw
, efx
->net_dev
,
1492 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1493 EFX_OWORD_VAL(reg
));
1496 /* Disable both devices */
1497 pci_clear_master(efx
->pci_dev
);
1498 if (efx_nic_is_dual_func(efx
))
1499 pci_clear_master(nic_data
->pci_dev2
);
1500 efx_farch_irq_disable_master(efx
);
1502 /* Count errors and reset or disable the NIC accordingly */
1503 if (efx
->int_error_count
== 0 ||
1504 time_after(jiffies
, efx
->int_error_expire
)) {
1505 efx
->int_error_count
= 0;
1506 efx
->int_error_expire
=
1507 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1509 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1510 netif_err(efx
, hw
, efx
->net_dev
,
1511 "SYSTEM ERROR - reset scheduled\n");
1512 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1514 netif_err(efx
, hw
, efx
->net_dev
,
1515 "SYSTEM ERROR - max number of errors seen."
1516 "NIC will be disabled\n");
1517 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1523 /* Handle a legacy interrupt
1524 * Acknowledges the interrupt and schedule event queue processing.
1526 irqreturn_t
efx_farch_legacy_interrupt(int irq
, void *dev_id
)
1528 struct efx_nic
*efx
= dev_id
;
1529 bool soft_enabled
= ACCESS_ONCE(efx
->irq_soft_enabled
);
1530 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1531 irqreturn_t result
= IRQ_NONE
;
1532 struct efx_channel
*channel
;
1537 /* Read the ISR which also ACKs the interrupts */
1538 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1539 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1541 /* Legacy interrupts are disabled too late by the EEH kernel
1542 * code. Disable them earlier.
1543 * If an EEH error occurred, the read will have returned all ones.
1545 if (EFX_DWORD_IS_ALL_ONES(reg
) && efx_try_recovery(efx
) &&
1546 !efx
->eeh_disabled_legacy_irq
) {
1547 disable_irq_nosync(efx
->legacy_irq
);
1548 efx
->eeh_disabled_legacy_irq
= true;
1551 /* Handle non-event-queue sources */
1552 if (queues
& (1U << efx
->irq_level
) && soft_enabled
) {
1553 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1554 if (unlikely(syserr
))
1555 return efx_farch_fatal_interrupt(efx
);
1556 efx
->last_irq_cpu
= raw_smp_processor_id();
1560 efx
->irq_zero_count
= 0;
1562 /* Schedule processing of any interrupting queues */
1563 if (likely(soft_enabled
)) {
1564 efx_for_each_channel(channel
, efx
) {
1566 efx_schedule_channel_irq(channel
);
1570 result
= IRQ_HANDLED
;
1575 /* Legacy ISR read can return zero once (SF bug 15783) */
1577 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1578 * because this might be a shared interrupt. */
1579 if (efx
->irq_zero_count
++ == 0)
1580 result
= IRQ_HANDLED
;
1582 /* Ensure we schedule or rearm all event queues */
1583 if (likely(soft_enabled
)) {
1584 efx_for_each_channel(channel
, efx
) {
1585 event
= efx_event(channel
,
1586 channel
->eventq_read_ptr
);
1587 if (efx_event_present(event
))
1588 efx_schedule_channel_irq(channel
);
1590 efx_farch_ev_read_ack(channel
);
1595 if (result
== IRQ_HANDLED
)
1596 netif_vdbg(efx
, intr
, efx
->net_dev
,
1597 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1598 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1603 /* Handle an MSI interrupt
1605 * Handle an MSI hardware interrupt. This routine schedules event
1606 * queue processing. No interrupt acknowledgement cycle is necessary.
1607 * Also, we never need to check that the interrupt is for us, since
1608 * MSI interrupts cannot be shared.
1610 irqreturn_t
efx_farch_msi_interrupt(int irq
, void *dev_id
)
1612 struct efx_msi_context
*context
= dev_id
;
1613 struct efx_nic
*efx
= context
->efx
;
1614 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1617 netif_vdbg(efx
, intr
, efx
->net_dev
,
1618 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1619 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1621 if (!likely(ACCESS_ONCE(efx
->irq_soft_enabled
)))
1624 /* Handle non-event-queue sources */
1625 if (context
->index
== efx
->irq_level
) {
1626 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1627 if (unlikely(syserr
))
1628 return efx_farch_fatal_interrupt(efx
);
1629 efx
->last_irq_cpu
= raw_smp_processor_id();
1632 /* Schedule processing of the channel */
1633 efx_schedule_channel_irq(efx
->channel
[context
->index
]);
1638 /* Setup RSS indirection table.
1639 * This maps from the hash value of the packet to RXQ
1641 void efx_farch_rx_push_indir_table(struct efx_nic
*efx
)
1646 BUG_ON(efx_nic_rev(efx
) < EFX_REV_FALCON_B0
);
1648 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1649 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1651 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1652 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1653 efx
->rx_indir_table
[i
]);
1654 efx_writed(efx
, &dword
,
1655 FR_BZ_RX_INDIRECTION_TBL
+
1656 FR_BZ_RX_INDIRECTION_TBL_STEP
* i
);
1660 /* Looks at available SRAM resources and works out how many queues we
1661 * can support, and where things like descriptor caches should live.
1663 * SRAM is split up as follows:
1664 * 0 buftbl entries for channels
1665 * efx->vf_buftbl_base buftbl entries for SR-IOV
1666 * efx->rx_dc_base RX descriptor caches
1667 * efx->tx_dc_base TX descriptor caches
1669 void efx_farch_dimension_resources(struct efx_nic
*efx
, unsigned sram_lim_qw
)
1671 unsigned vi_count
, buftbl_min
;
1673 /* Account for the buffer table entries backing the datapath channels
1674 * and the descriptor caches for those channels.
1676 buftbl_min
= ((efx
->n_rx_channels
* EFX_MAX_DMAQ_SIZE
+
1677 efx
->n_tx_channels
* EFX_TXQ_TYPES
* EFX_MAX_DMAQ_SIZE
+
1678 efx
->n_channels
* EFX_MAX_EVQ_SIZE
)
1679 * sizeof(efx_qword_t
) / EFX_BUF_SIZE
);
1680 vi_count
= max(efx
->n_channels
, efx
->n_tx_channels
* EFX_TXQ_TYPES
);
1682 #ifdef CONFIG_SFC_SRIOV
1683 if (efx_sriov_wanted(efx
)) {
1684 unsigned vi_dc_entries
, buftbl_free
, entries_per_vf
, vf_limit
;
1686 efx
->vf_buftbl_base
= buftbl_min
;
1688 vi_dc_entries
= RX_DC_ENTRIES
+ TX_DC_ENTRIES
;
1689 vi_count
= max(vi_count
, EFX_VI_BASE
);
1690 buftbl_free
= (sram_lim_qw
- buftbl_min
-
1691 vi_count
* vi_dc_entries
);
1693 entries_per_vf
= ((vi_dc_entries
+ EFX_VF_BUFTBL_PER_VI
) *
1695 vf_limit
= min(buftbl_free
/ entries_per_vf
,
1696 (1024U - EFX_VI_BASE
) >> efx
->vi_scale
);
1698 if (efx
->vf_count
> vf_limit
) {
1699 netif_err(efx
, probe
, efx
->net_dev
,
1700 "Reducing VF count from from %d to %d\n",
1701 efx
->vf_count
, vf_limit
);
1702 efx
->vf_count
= vf_limit
;
1704 vi_count
+= efx
->vf_count
* efx_vf_size(efx
);
1708 efx
->tx_dc_base
= sram_lim_qw
- vi_count
* TX_DC_ENTRIES
;
1709 efx
->rx_dc_base
= efx
->tx_dc_base
- vi_count
* RX_DC_ENTRIES
;
1712 u32
efx_farch_fpga_ver(struct efx_nic
*efx
)
1714 efx_oword_t altera_build
;
1715 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1716 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1719 void efx_farch_init_common(struct efx_nic
*efx
)
1723 /* Set positions of descriptor caches in SRAM. */
1724 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
, efx
->tx_dc_base
);
1725 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1726 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
, efx
->rx_dc_base
);
1727 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1729 /* Set TX descriptor cache size. */
1730 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1731 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1732 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1734 /* Set RX descriptor cache size. Set low watermark to size-8, as
1735 * this allows most efficient prefetching.
1737 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1738 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1739 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1740 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1741 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1743 /* Program INT_KER address */
1744 EFX_POPULATE_OWORD_2(temp
,
1745 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1746 EFX_INT_MODE_USE_MSI(efx
),
1747 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1748 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1750 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1751 /* Use an interrupt level unused by event queues */
1752 efx
->irq_level
= 0x1f;
1754 /* Use a valid MSI-X vector */
1757 /* Enable all the genuinely fatal interrupts. (They are still
1758 * masked by the overall interrupt mask, controlled by
1759 * falcon_interrupts()).
1761 * Note: All other fatal interrupts are enabled
1763 EFX_POPULATE_OWORD_3(temp
,
1764 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1765 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1766 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1767 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1768 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1769 EFX_INVERT_OWORD(temp
);
1770 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1772 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1773 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1775 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1776 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1777 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1778 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1779 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1780 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1781 /* Enable SW_EV to inherit in char driver - assume harmless here */
1782 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1783 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1784 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1785 /* Disable hardware watchdog which can misfire */
1786 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1787 /* Squash TX of packets of 16 bytes or less */
1788 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1789 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1790 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1792 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1793 EFX_POPULATE_OWORD_4(temp
,
1794 /* Default values */
1795 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1796 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1797 FRF_BZ_TX_PACE_FB_BASE
, 0,
1798 /* Allow large pace values in the
1800 FRF_BZ_TX_PACE_BIN_TH
,
1801 FFE_BZ_TX_PACE_RESERVED
);
1802 efx_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1806 /**************************************************************************
1810 **************************************************************************
1813 /* "Fudge factors" - difference between programmed value and actual depth.
1814 * Due to pipelined implementation we need to program H/W with a value that
1815 * is larger than the hop limit we want.
1817 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1818 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1820 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1821 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1824 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1826 /* Don't try very hard to find space for performance hints, as this is
1827 * counter-productive. */
1828 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1830 enum efx_farch_filter_type
{
1831 EFX_FARCH_FILTER_TCP_FULL
= 0,
1832 EFX_FARCH_FILTER_TCP_WILD
,
1833 EFX_FARCH_FILTER_UDP_FULL
,
1834 EFX_FARCH_FILTER_UDP_WILD
,
1835 EFX_FARCH_FILTER_MAC_FULL
= 4,
1836 EFX_FARCH_FILTER_MAC_WILD
,
1837 EFX_FARCH_FILTER_UC_DEF
= 8,
1838 EFX_FARCH_FILTER_MC_DEF
,
1839 EFX_FARCH_FILTER_TYPE_COUNT
, /* number of specific types */
1842 enum efx_farch_filter_table_id
{
1843 EFX_FARCH_FILTER_TABLE_RX_IP
= 0,
1844 EFX_FARCH_FILTER_TABLE_RX_MAC
,
1845 EFX_FARCH_FILTER_TABLE_RX_DEF
,
1846 EFX_FARCH_FILTER_TABLE_TX_MAC
,
1847 EFX_FARCH_FILTER_TABLE_COUNT
,
1850 enum efx_farch_filter_index
{
1851 EFX_FARCH_FILTER_INDEX_UC_DEF
,
1852 EFX_FARCH_FILTER_INDEX_MC_DEF
,
1853 EFX_FARCH_FILTER_SIZE_RX_DEF
,
1856 struct efx_farch_filter_spec
{
1864 struct efx_farch_filter_table
{
1865 enum efx_farch_filter_table_id id
;
1866 u32 offset
; /* address of table relative to BAR */
1867 unsigned size
; /* number of entries */
1868 unsigned step
; /* step between entries */
1869 unsigned used
; /* number currently used */
1870 unsigned long *used_bitmap
;
1871 struct efx_farch_filter_spec
*spec
;
1872 unsigned search_limit
[EFX_FARCH_FILTER_TYPE_COUNT
];
1875 struct efx_farch_filter_state
{
1876 struct efx_farch_filter_table table
[EFX_FARCH_FILTER_TABLE_COUNT
];
1880 efx_farch_filter_table_clear_entry(struct efx_nic
*efx
,
1881 struct efx_farch_filter_table
*table
,
1882 unsigned int filter_idx
);
1884 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1885 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1886 static u16
efx_farch_filter_hash(u32 key
)
1890 /* First 16 rounds */
1891 tmp
= 0x1fff ^ key
>> 16;
1892 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1893 tmp
= tmp
^ tmp
>> 9;
1894 /* Last 16 rounds */
1895 tmp
= tmp
^ tmp
<< 13 ^ key
;
1896 tmp
= tmp
^ tmp
>> 3 ^ tmp
>> 6;
1897 return tmp
^ tmp
>> 9;
1900 /* To allow for hash collisions, filter search continues at these
1901 * increments from the first possible entry selected by the hash. */
1902 static u16
efx_farch_filter_increment(u32 key
)
1907 static enum efx_farch_filter_table_id
1908 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec
*spec
)
1910 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1911 (EFX_FARCH_FILTER_TCP_FULL
>> 2));
1912 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1913 (EFX_FARCH_FILTER_TCP_WILD
>> 2));
1914 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1915 (EFX_FARCH_FILTER_UDP_FULL
>> 2));
1916 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP
!=
1917 (EFX_FARCH_FILTER_UDP_WILD
>> 2));
1918 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC
!=
1919 (EFX_FARCH_FILTER_MAC_FULL
>> 2));
1920 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC
!=
1921 (EFX_FARCH_FILTER_MAC_WILD
>> 2));
1922 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC
!=
1923 EFX_FARCH_FILTER_TABLE_RX_MAC
+ 2);
1924 return (spec
->type
>> 2) + ((spec
->flags
& EFX_FILTER_FLAG_TX
) ? 2 : 0);
1927 static void efx_farch_filter_push_rx_config(struct efx_nic
*efx
)
1929 struct efx_farch_filter_state
*state
= efx
->filter_state
;
1930 struct efx_farch_filter_table
*table
;
1931 efx_oword_t filter_ctl
;
1933 efx_reado(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
1935 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
1936 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_FULL_SRCH_LIMIT
,
1937 table
->search_limit
[EFX_FARCH_FILTER_TCP_FULL
] +
1938 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1939 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_TCP_WILD_SRCH_LIMIT
,
1940 table
->search_limit
[EFX_FARCH_FILTER_TCP_WILD
] +
1941 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1942 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_FULL_SRCH_LIMIT
,
1943 table
->search_limit
[EFX_FARCH_FILTER_UDP_FULL
] +
1944 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1945 EFX_SET_OWORD_FIELD(filter_ctl
, FRF_BZ_UDP_WILD_SRCH_LIMIT
,
1946 table
->search_limit
[EFX_FARCH_FILTER_UDP_WILD
] +
1947 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1949 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_MAC
];
1951 EFX_SET_OWORD_FIELD(
1952 filter_ctl
, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT
,
1953 table
->search_limit
[EFX_FARCH_FILTER_MAC_FULL
] +
1954 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
1955 EFX_SET_OWORD_FIELD(
1956 filter_ctl
, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT
,
1957 table
->search_limit
[EFX_FARCH_FILTER_MAC_WILD
] +
1958 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
1961 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
1963 EFX_SET_OWORD_FIELD(
1964 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_Q_ID
,
1965 table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].dmaq_id
);
1966 EFX_SET_OWORD_FIELD(
1967 filter_ctl
, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED
,
1968 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].flags
&
1969 EFX_FILTER_FLAG_RX_RSS
));
1970 EFX_SET_OWORD_FIELD(
1971 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_Q_ID
,
1972 table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].dmaq_id
);
1973 EFX_SET_OWORD_FIELD(
1974 filter_ctl
, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED
,
1975 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].flags
&
1976 EFX_FILTER_FLAG_RX_RSS
));
1978 /* There is a single bit to enable RX scatter for all
1979 * unmatched packets. Only set it if scatter is
1980 * enabled in both filter specs.
1982 EFX_SET_OWORD_FIELD(
1983 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
1984 !!(table
->spec
[EFX_FARCH_FILTER_INDEX_UC_DEF
].flags
&
1985 table
->spec
[EFX_FARCH_FILTER_INDEX_MC_DEF
].flags
&
1986 EFX_FILTER_FLAG_RX_SCATTER
));
1987 } else if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1988 /* We don't expose 'default' filters because unmatched
1989 * packets always go to the queue number found in the
1990 * RSS table. But we still need to set the RX scatter
1993 EFX_SET_OWORD_FIELD(
1994 filter_ctl
, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q
,
1998 efx_writeo(efx
, &filter_ctl
, FR_BZ_RX_FILTER_CTL
);
2001 static void efx_farch_filter_push_tx_limits(struct efx_nic
*efx
)
2003 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2004 struct efx_farch_filter_table
*table
;
2007 efx_reado(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
2009 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_TX_MAC
];
2011 EFX_SET_OWORD_FIELD(
2012 tx_cfg
, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE
,
2013 table
->search_limit
[EFX_FARCH_FILTER_MAC_FULL
] +
2014 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL
);
2015 EFX_SET_OWORD_FIELD(
2016 tx_cfg
, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE
,
2017 table
->search_limit
[EFX_FARCH_FILTER_MAC_WILD
] +
2018 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD
);
2021 efx_writeo(efx
, &tx_cfg
, FR_AZ_TX_CFG
);
2025 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec
*spec
,
2026 const struct efx_filter_spec
*gen_spec
)
2028 bool is_full
= false;
2030 if ((gen_spec
->flags
& EFX_FILTER_FLAG_RX_RSS
) &&
2031 gen_spec
->rss_context
!= EFX_FILTER_RSS_CONTEXT_DEFAULT
)
2034 spec
->priority
= gen_spec
->priority
;
2035 spec
->flags
= gen_spec
->flags
;
2036 spec
->dmaq_id
= gen_spec
->dmaq_id
;
2038 switch (gen_spec
->match_flags
) {
2039 case (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
2040 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
|
2041 EFX_FILTER_MATCH_REM_HOST
| EFX_FILTER_MATCH_REM_PORT
):
2044 case (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
2045 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
): {
2046 __be32 rhost
, host1
, host2
;
2047 __be16 rport
, port1
, port2
;
2049 EFX_BUG_ON_PARANOID(!(gen_spec
->flags
& EFX_FILTER_FLAG_RX
));
2051 if (gen_spec
->ether_type
!= htons(ETH_P_IP
))
2052 return -EPROTONOSUPPORT
;
2053 if (gen_spec
->loc_port
== 0 ||
2054 (is_full
&& gen_spec
->rem_port
== 0))
2055 return -EADDRNOTAVAIL
;
2056 switch (gen_spec
->ip_proto
) {
2058 spec
->type
= (is_full
? EFX_FARCH_FILTER_TCP_FULL
:
2059 EFX_FARCH_FILTER_TCP_WILD
);
2062 spec
->type
= (is_full
? EFX_FARCH_FILTER_UDP_FULL
:
2063 EFX_FARCH_FILTER_UDP_WILD
);
2066 return -EPROTONOSUPPORT
;
2069 /* Filter is constructed in terms of source and destination,
2070 * with the odd wrinkle that the ports are swapped in a UDP
2071 * wildcard filter. We need to convert from local and remote
2072 * (= zero for wildcard) addresses.
2074 rhost
= is_full
? gen_spec
->rem_host
[0] : 0;
2075 rport
= is_full
? gen_spec
->rem_port
: 0;
2077 host2
= gen_spec
->loc_host
[0];
2078 if (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
) {
2079 port1
= gen_spec
->loc_port
;
2083 port2
= gen_spec
->loc_port
;
2085 spec
->data
[0] = ntohl(host1
) << 16 | ntohs(port1
);
2086 spec
->data
[1] = ntohs(port2
) << 16 | ntohl(host1
) >> 16;
2087 spec
->data
[2] = ntohl(host2
);
2092 case EFX_FILTER_MATCH_LOC_MAC
| EFX_FILTER_MATCH_OUTER_VID
:
2095 case EFX_FILTER_MATCH_LOC_MAC
:
2096 spec
->type
= (is_full
? EFX_FARCH_FILTER_MAC_FULL
:
2097 EFX_FARCH_FILTER_MAC_WILD
);
2098 spec
->data
[0] = is_full
? ntohs(gen_spec
->outer_vid
) : 0;
2099 spec
->data
[1] = (gen_spec
->loc_mac
[2] << 24 |
2100 gen_spec
->loc_mac
[3] << 16 |
2101 gen_spec
->loc_mac
[4] << 8 |
2102 gen_spec
->loc_mac
[5]);
2103 spec
->data
[2] = (gen_spec
->loc_mac
[0] << 8 |
2104 gen_spec
->loc_mac
[1]);
2107 case EFX_FILTER_MATCH_LOC_MAC_IG
:
2108 spec
->type
= (is_multicast_ether_addr(gen_spec
->loc_mac
) ?
2109 EFX_FARCH_FILTER_MC_DEF
:
2110 EFX_FARCH_FILTER_UC_DEF
);
2111 memset(spec
->data
, 0, sizeof(spec
->data
)); /* ensure equality */
2115 return -EPROTONOSUPPORT
;
2122 efx_farch_filter_to_gen_spec(struct efx_filter_spec
*gen_spec
,
2123 const struct efx_farch_filter_spec
*spec
)
2125 bool is_full
= false;
2127 /* *gen_spec should be completely initialised, to be consistent
2128 * with efx_filter_init_{rx,tx}() and in case we want to copy
2129 * it back to userland.
2131 memset(gen_spec
, 0, sizeof(*gen_spec
));
2133 gen_spec
->priority
= spec
->priority
;
2134 gen_spec
->flags
= spec
->flags
;
2135 gen_spec
->dmaq_id
= spec
->dmaq_id
;
2137 switch (spec
->type
) {
2138 case EFX_FARCH_FILTER_TCP_FULL
:
2139 case EFX_FARCH_FILTER_UDP_FULL
:
2142 case EFX_FARCH_FILTER_TCP_WILD
:
2143 case EFX_FARCH_FILTER_UDP_WILD
: {
2144 __be32 host1
, host2
;
2145 __be16 port1
, port2
;
2147 gen_spec
->match_flags
=
2148 EFX_FILTER_MATCH_ETHER_TYPE
|
2149 EFX_FILTER_MATCH_IP_PROTO
|
2150 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
;
2152 gen_spec
->match_flags
|= (EFX_FILTER_MATCH_REM_HOST
|
2153 EFX_FILTER_MATCH_REM_PORT
);
2154 gen_spec
->ether_type
= htons(ETH_P_IP
);
2155 gen_spec
->ip_proto
=
2156 (spec
->type
== EFX_FARCH_FILTER_TCP_FULL
||
2157 spec
->type
== EFX_FARCH_FILTER_TCP_WILD
) ?
2158 IPPROTO_TCP
: IPPROTO_UDP
;
2160 host1
= htonl(spec
->data
[0] >> 16 | spec
->data
[1] << 16);
2161 port1
= htons(spec
->data
[0]);
2162 host2
= htonl(spec
->data
[2]);
2163 port2
= htons(spec
->data
[1] >> 16);
2164 if (spec
->flags
& EFX_FILTER_FLAG_TX
) {
2165 gen_spec
->loc_host
[0] = host1
;
2166 gen_spec
->rem_host
[0] = host2
;
2168 gen_spec
->loc_host
[0] = host2
;
2169 gen_spec
->rem_host
[0] = host1
;
2171 if (!!(gen_spec
->flags
& EFX_FILTER_FLAG_TX
) ^
2172 (!is_full
&& gen_spec
->ip_proto
== IPPROTO_UDP
)) {
2173 gen_spec
->loc_port
= port1
;
2174 gen_spec
->rem_port
= port2
;
2176 gen_spec
->loc_port
= port2
;
2177 gen_spec
->rem_port
= port1
;
2183 case EFX_FARCH_FILTER_MAC_FULL
:
2186 case EFX_FARCH_FILTER_MAC_WILD
:
2187 gen_spec
->match_flags
= EFX_FILTER_MATCH_LOC_MAC
;
2189 gen_spec
->match_flags
|= EFX_FILTER_MATCH_OUTER_VID
;
2190 gen_spec
->loc_mac
[0] = spec
->data
[2] >> 8;
2191 gen_spec
->loc_mac
[1] = spec
->data
[2];
2192 gen_spec
->loc_mac
[2] = spec
->data
[1] >> 24;
2193 gen_spec
->loc_mac
[3] = spec
->data
[1] >> 16;
2194 gen_spec
->loc_mac
[4] = spec
->data
[1] >> 8;
2195 gen_spec
->loc_mac
[5] = spec
->data
[1];
2196 gen_spec
->outer_vid
= htons(spec
->data
[0]);
2199 case EFX_FARCH_FILTER_UC_DEF
:
2200 case EFX_FARCH_FILTER_MC_DEF
:
2201 gen_spec
->match_flags
= EFX_FILTER_MATCH_LOC_MAC_IG
;
2202 gen_spec
->loc_mac
[0] = spec
->type
== EFX_FARCH_FILTER_MC_DEF
;
2212 efx_farch_filter_init_rx_auto(struct efx_nic
*efx
,
2213 struct efx_farch_filter_spec
*spec
)
2215 /* If there's only one channel then disable RSS for non VF
2216 * traffic, thereby allowing VFs to use RSS when the PF can't.
2218 spec
->priority
= EFX_FILTER_PRI_AUTO
;
2219 spec
->flags
= (EFX_FILTER_FLAG_RX
|
2220 (efx
->n_rx_channels
> 1 ? EFX_FILTER_FLAG_RX_RSS
: 0) |
2221 (efx
->rx_scatter
? EFX_FILTER_FLAG_RX_SCATTER
: 0));
2225 /* Build a filter entry and return its n-tuple key. */
2226 static u32
efx_farch_filter_build(efx_oword_t
*filter
,
2227 struct efx_farch_filter_spec
*spec
)
2231 switch (efx_farch_filter_spec_table_id(spec
)) {
2232 case EFX_FARCH_FILTER_TABLE_RX_IP
: {
2233 bool is_udp
= (spec
->type
== EFX_FARCH_FILTER_UDP_FULL
||
2234 spec
->type
== EFX_FARCH_FILTER_UDP_WILD
);
2235 EFX_POPULATE_OWORD_7(
2238 !!(spec
->flags
& EFX_FILTER_FLAG_RX_RSS
),
2240 !!(spec
->flags
& EFX_FILTER_FLAG_RX_SCATTER
),
2241 FRF_BZ_TCP_UDP
, is_udp
,
2242 FRF_BZ_RXQ_ID
, spec
->dmaq_id
,
2243 EFX_DWORD_2
, spec
->data
[2],
2244 EFX_DWORD_1
, spec
->data
[1],
2245 EFX_DWORD_0
, spec
->data
[0]);
2250 case EFX_FARCH_FILTER_TABLE_RX_MAC
: {
2251 bool is_wild
= spec
->type
== EFX_FARCH_FILTER_MAC_WILD
;
2252 EFX_POPULATE_OWORD_7(
2255 !!(spec
->flags
& EFX_FILTER_FLAG_RX_RSS
),
2256 FRF_CZ_RMFT_SCATTER_EN
,
2257 !!(spec
->flags
& EFX_FILTER_FLAG_RX_SCATTER
),
2258 FRF_CZ_RMFT_RXQ_ID
, spec
->dmaq_id
,
2259 FRF_CZ_RMFT_WILDCARD_MATCH
, is_wild
,
2260 FRF_CZ_RMFT_DEST_MAC_HI
, spec
->data
[2],
2261 FRF_CZ_RMFT_DEST_MAC_LO
, spec
->data
[1],
2262 FRF_CZ_RMFT_VLAN_ID
, spec
->data
[0]);
2267 case EFX_FARCH_FILTER_TABLE_TX_MAC
: {
2268 bool is_wild
= spec
->type
== EFX_FARCH_FILTER_MAC_WILD
;
2269 EFX_POPULATE_OWORD_5(*filter
,
2270 FRF_CZ_TMFT_TXQ_ID
, spec
->dmaq_id
,
2271 FRF_CZ_TMFT_WILDCARD_MATCH
, is_wild
,
2272 FRF_CZ_TMFT_SRC_MAC_HI
, spec
->data
[2],
2273 FRF_CZ_TMFT_SRC_MAC_LO
, spec
->data
[1],
2274 FRF_CZ_TMFT_VLAN_ID
, spec
->data
[0]);
2275 data3
= is_wild
| spec
->dmaq_id
<< 1;
2283 return spec
->data
[0] ^ spec
->data
[1] ^ spec
->data
[2] ^ data3
;
2286 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec
*left
,
2287 const struct efx_farch_filter_spec
*right
)
2289 if (left
->type
!= right
->type
||
2290 memcmp(left
->data
, right
->data
, sizeof(left
->data
)))
2293 if (left
->flags
& EFX_FILTER_FLAG_TX
&&
2294 left
->dmaq_id
!= right
->dmaq_id
)
2301 * Construct/deconstruct external filter IDs. At least the RX filter
2302 * IDs must be ordered by matching priority, for RX NFC semantics.
2304 * Deconstruction needs to be robust against invalid IDs so that
2305 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2306 * accept user-provided IDs.
2309 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2311 static const u8 efx_farch_filter_type_match_pri
[EFX_FARCH_FILTER_TYPE_COUNT
] = {
2312 [EFX_FARCH_FILTER_TCP_FULL
] = 0,
2313 [EFX_FARCH_FILTER_UDP_FULL
] = 0,
2314 [EFX_FARCH_FILTER_TCP_WILD
] = 1,
2315 [EFX_FARCH_FILTER_UDP_WILD
] = 1,
2316 [EFX_FARCH_FILTER_MAC_FULL
] = 2,
2317 [EFX_FARCH_FILTER_MAC_WILD
] = 3,
2318 [EFX_FARCH_FILTER_UC_DEF
] = 4,
2319 [EFX_FARCH_FILTER_MC_DEF
] = 4,
2322 static const enum efx_farch_filter_table_id efx_farch_filter_range_table
[] = {
2323 EFX_FARCH_FILTER_TABLE_RX_IP
, /* RX match pri 0 */
2324 EFX_FARCH_FILTER_TABLE_RX_IP
,
2325 EFX_FARCH_FILTER_TABLE_RX_MAC
,
2326 EFX_FARCH_FILTER_TABLE_RX_MAC
,
2327 EFX_FARCH_FILTER_TABLE_RX_DEF
, /* RX match pri 4 */
2328 EFX_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 0 */
2329 EFX_FARCH_FILTER_TABLE_TX_MAC
, /* TX match pri 1 */
2332 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2333 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2336 efx_farch_filter_make_id(const struct efx_farch_filter_spec
*spec
,
2341 range
= efx_farch_filter_type_match_pri
[spec
->type
];
2342 if (!(spec
->flags
& EFX_FILTER_FLAG_RX
))
2343 range
+= EFX_FARCH_FILTER_MATCH_PRI_COUNT
;
2345 return range
<< EFX_FARCH_FILTER_INDEX_WIDTH
| index
;
2348 static inline enum efx_farch_filter_table_id
2349 efx_farch_filter_id_table_id(u32 id
)
2351 unsigned int range
= id
>> EFX_FARCH_FILTER_INDEX_WIDTH
;
2353 if (range
< ARRAY_SIZE(efx_farch_filter_range_table
))
2354 return efx_farch_filter_range_table
[range
];
2356 return EFX_FARCH_FILTER_TABLE_COUNT
; /* invalid */
2359 static inline unsigned int efx_farch_filter_id_index(u32 id
)
2361 return id
& EFX_FARCH_FILTER_INDEX_MASK
;
2364 u32
efx_farch_filter_get_rx_id_limit(struct efx_nic
*efx
)
2366 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2367 unsigned int range
= EFX_FARCH_FILTER_MATCH_PRI_COUNT
- 1;
2368 enum efx_farch_filter_table_id table_id
;
2371 table_id
= efx_farch_filter_range_table
[range
];
2372 if (state
->table
[table_id
].size
!= 0)
2373 return range
<< EFX_FARCH_FILTER_INDEX_WIDTH
|
2374 state
->table
[table_id
].size
;
2380 s32
efx_farch_filter_insert(struct efx_nic
*efx
,
2381 struct efx_filter_spec
*gen_spec
,
2384 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2385 struct efx_farch_filter_table
*table
;
2386 struct efx_farch_filter_spec spec
;
2388 int rep_index
, ins_index
;
2389 unsigned int depth
= 0;
2392 rc
= efx_farch_filter_from_gen_spec(&spec
, gen_spec
);
2396 table
= &state
->table
[efx_farch_filter_spec_table_id(&spec
)];
2397 if (table
->size
== 0)
2400 netif_vdbg(efx
, hw
, efx
->net_dev
,
2401 "%s: type %d search_limit=%d", __func__
, spec
.type
,
2402 table
->search_limit
[spec
.type
]);
2404 if (table
->id
== EFX_FARCH_FILTER_TABLE_RX_DEF
) {
2405 /* One filter spec per type */
2406 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF
!= 0);
2407 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF
!=
2408 EFX_FARCH_FILTER_MC_DEF
- EFX_FARCH_FILTER_UC_DEF
);
2409 rep_index
= spec
.type
- EFX_FARCH_FILTER_UC_DEF
;
2410 ins_index
= rep_index
;
2412 spin_lock_bh(&efx
->filter_lock
);
2414 /* Search concurrently for
2415 * (1) a filter to be replaced (rep_index): any filter
2416 * with the same match values, up to the current
2417 * search depth for this type, and
2418 * (2) the insertion point (ins_index): (1) or any
2419 * free slot before it or up to the maximum search
2420 * depth for this priority
2421 * We fail if we cannot find (2).
2423 * We can stop once either
2424 * (a) we find (1), in which case we have definitely
2425 * found (2) as well; or
2426 * (b) we have searched exhaustively for (1), and have
2427 * either found (2) or searched exhaustively for it
2429 u32 key
= efx_farch_filter_build(&filter
, &spec
);
2430 unsigned int hash
= efx_farch_filter_hash(key
);
2431 unsigned int incr
= efx_farch_filter_increment(key
);
2432 unsigned int max_rep_depth
= table
->search_limit
[spec
.type
];
2433 unsigned int max_ins_depth
=
2434 spec
.priority
<= EFX_FILTER_PRI_HINT
?
2435 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX
:
2436 EFX_FARCH_FILTER_CTL_SRCH_MAX
;
2437 unsigned int i
= hash
& (table
->size
- 1);
2442 spin_lock_bh(&efx
->filter_lock
);
2445 if (!test_bit(i
, table
->used_bitmap
)) {
2448 } else if (efx_farch_filter_equal(&spec
,
2457 if (depth
>= max_rep_depth
&&
2458 (ins_index
>= 0 || depth
>= max_ins_depth
)) {
2460 if (ins_index
< 0) {
2468 i
= (i
+ incr
) & (table
->size
- 1);
2473 /* If we found a filter to be replaced, check whether we
2476 if (rep_index
>= 0) {
2477 struct efx_farch_filter_spec
*saved_spec
=
2478 &table
->spec
[rep_index
];
2480 if (spec
.priority
== saved_spec
->priority
&& !replace_equal
) {
2484 if (spec
.priority
< saved_spec
->priority
) {
2488 if (saved_spec
->priority
== EFX_FILTER_PRI_AUTO
||
2489 saved_spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
)
2490 spec
.flags
|= EFX_FILTER_FLAG_RX_OVER_AUTO
;
2493 /* Insert the filter */
2494 if (ins_index
!= rep_index
) {
2495 __set_bit(ins_index
, table
->used_bitmap
);
2498 table
->spec
[ins_index
] = spec
;
2500 if (table
->id
== EFX_FARCH_FILTER_TABLE_RX_DEF
) {
2501 efx_farch_filter_push_rx_config(efx
);
2503 if (table
->search_limit
[spec
.type
] < depth
) {
2504 table
->search_limit
[spec
.type
] = depth
;
2505 if (spec
.flags
& EFX_FILTER_FLAG_TX
)
2506 efx_farch_filter_push_tx_limits(efx
);
2508 efx_farch_filter_push_rx_config(efx
);
2511 efx_writeo(efx
, &filter
,
2512 table
->offset
+ table
->step
* ins_index
);
2514 /* If we were able to replace a filter by inserting
2515 * at a lower depth, clear the replaced filter
2517 if (ins_index
!= rep_index
&& rep_index
>= 0)
2518 efx_farch_filter_table_clear_entry(efx
, table
,
2522 netif_vdbg(efx
, hw
, efx
->net_dev
,
2523 "%s: filter type %d index %d rxq %u set",
2524 __func__
, spec
.type
, ins_index
, spec
.dmaq_id
);
2525 rc
= efx_farch_filter_make_id(&spec
, ins_index
);
2528 spin_unlock_bh(&efx
->filter_lock
);
2533 efx_farch_filter_table_clear_entry(struct efx_nic
*efx
,
2534 struct efx_farch_filter_table
*table
,
2535 unsigned int filter_idx
)
2537 static efx_oword_t filter
;
2539 EFX_WARN_ON_PARANOID(!test_bit(filter_idx
, table
->used_bitmap
));
2540 BUG_ON(table
->offset
== 0); /* can't clear MAC default filters */
2542 __clear_bit(filter_idx
, table
->used_bitmap
);
2544 memset(&table
->spec
[filter_idx
], 0, sizeof(table
->spec
[0]));
2546 efx_writeo(efx
, &filter
, table
->offset
+ table
->step
* filter_idx
);
2548 /* If this filter required a greater search depth than
2549 * any other, the search limit for its type can now be
2550 * decreased. However, it is hard to determine that
2551 * unless the table has become completely empty - in
2552 * which case, all its search limits can be set to 0.
2554 if (unlikely(table
->used
== 0)) {
2555 memset(table
->search_limit
, 0, sizeof(table
->search_limit
));
2556 if (table
->id
== EFX_FARCH_FILTER_TABLE_TX_MAC
)
2557 efx_farch_filter_push_tx_limits(efx
);
2559 efx_farch_filter_push_rx_config(efx
);
2563 static int efx_farch_filter_remove(struct efx_nic
*efx
,
2564 struct efx_farch_filter_table
*table
,
2565 unsigned int filter_idx
,
2566 enum efx_filter_priority priority
)
2568 struct efx_farch_filter_spec
*spec
= &table
->spec
[filter_idx
];
2570 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2571 spec
->priority
!= priority
)
2574 if (spec
->flags
& EFX_FILTER_FLAG_RX_OVER_AUTO
) {
2575 efx_farch_filter_init_rx_auto(efx
, spec
);
2576 efx_farch_filter_push_rx_config(efx
);
2578 efx_farch_filter_table_clear_entry(efx
, table
, filter_idx
);
2584 int efx_farch_filter_remove_safe(struct efx_nic
*efx
,
2585 enum efx_filter_priority priority
,
2588 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2589 enum efx_farch_filter_table_id table_id
;
2590 struct efx_farch_filter_table
*table
;
2591 unsigned int filter_idx
;
2592 struct efx_farch_filter_spec
*spec
;
2595 table_id
= efx_farch_filter_id_table_id(filter_id
);
2596 if ((unsigned int)table_id
>= EFX_FARCH_FILTER_TABLE_COUNT
)
2598 table
= &state
->table
[table_id
];
2600 filter_idx
= efx_farch_filter_id_index(filter_id
);
2601 if (filter_idx
>= table
->size
)
2603 spec
= &table
->spec
[filter_idx
];
2605 spin_lock_bh(&efx
->filter_lock
);
2606 rc
= efx_farch_filter_remove(efx
, table
, filter_idx
, priority
);
2607 spin_unlock_bh(&efx
->filter_lock
);
2612 int efx_farch_filter_get_safe(struct efx_nic
*efx
,
2613 enum efx_filter_priority priority
,
2614 u32 filter_id
, struct efx_filter_spec
*spec_buf
)
2616 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2617 enum efx_farch_filter_table_id table_id
;
2618 struct efx_farch_filter_table
*table
;
2619 struct efx_farch_filter_spec
*spec
;
2620 unsigned int filter_idx
;
2623 table_id
= efx_farch_filter_id_table_id(filter_id
);
2624 if ((unsigned int)table_id
>= EFX_FARCH_FILTER_TABLE_COUNT
)
2626 table
= &state
->table
[table_id
];
2628 filter_idx
= efx_farch_filter_id_index(filter_id
);
2629 if (filter_idx
>= table
->size
)
2631 spec
= &table
->spec
[filter_idx
];
2633 spin_lock_bh(&efx
->filter_lock
);
2635 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2636 spec
->priority
== priority
) {
2637 efx_farch_filter_to_gen_spec(spec_buf
, spec
);
2643 spin_unlock_bh(&efx
->filter_lock
);
2649 efx_farch_filter_table_clear(struct efx_nic
*efx
,
2650 enum efx_farch_filter_table_id table_id
,
2651 enum efx_filter_priority priority
)
2653 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2654 struct efx_farch_filter_table
*table
= &state
->table
[table_id
];
2655 unsigned int filter_idx
;
2657 spin_lock_bh(&efx
->filter_lock
);
2658 for (filter_idx
= 0; filter_idx
< table
->size
; ++filter_idx
) {
2659 if (table
->spec
[filter_idx
].priority
!= EFX_FILTER_PRI_AUTO
)
2660 efx_farch_filter_remove(efx
, table
,
2661 filter_idx
, priority
);
2663 spin_unlock_bh(&efx
->filter_lock
);
2666 int efx_farch_filter_clear_rx(struct efx_nic
*efx
,
2667 enum efx_filter_priority priority
)
2669 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_IP
,
2671 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_MAC
,
2673 efx_farch_filter_table_clear(efx
, EFX_FARCH_FILTER_TABLE_RX_DEF
,
2678 u32
efx_farch_filter_count_rx_used(struct efx_nic
*efx
,
2679 enum efx_filter_priority priority
)
2681 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2682 enum efx_farch_filter_table_id table_id
;
2683 struct efx_farch_filter_table
*table
;
2684 unsigned int filter_idx
;
2687 spin_lock_bh(&efx
->filter_lock
);
2689 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2690 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2692 table
= &state
->table
[table_id
];
2693 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2694 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2695 table
->spec
[filter_idx
].priority
== priority
)
2700 spin_unlock_bh(&efx
->filter_lock
);
2705 s32
efx_farch_filter_get_rx_ids(struct efx_nic
*efx
,
2706 enum efx_filter_priority priority
,
2709 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2710 enum efx_farch_filter_table_id table_id
;
2711 struct efx_farch_filter_table
*table
;
2712 unsigned int filter_idx
;
2715 spin_lock_bh(&efx
->filter_lock
);
2717 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2718 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2720 table
= &state
->table
[table_id
];
2721 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2722 if (test_bit(filter_idx
, table
->used_bitmap
) &&
2723 table
->spec
[filter_idx
].priority
== priority
) {
2724 if (count
== size
) {
2728 buf
[count
++] = efx_farch_filter_make_id(
2729 &table
->spec
[filter_idx
], filter_idx
);
2734 spin_unlock_bh(&efx
->filter_lock
);
2739 /* Restore filter stater after reset */
2740 void efx_farch_filter_table_restore(struct efx_nic
*efx
)
2742 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2743 enum efx_farch_filter_table_id table_id
;
2744 struct efx_farch_filter_table
*table
;
2746 unsigned int filter_idx
;
2748 spin_lock_bh(&efx
->filter_lock
);
2750 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2751 table
= &state
->table
[table_id
];
2753 /* Check whether this is a regular register table */
2754 if (table
->step
== 0)
2757 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2758 if (!test_bit(filter_idx
, table
->used_bitmap
))
2760 efx_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2761 efx_writeo(efx
, &filter
,
2762 table
->offset
+ table
->step
* filter_idx
);
2766 efx_farch_filter_push_rx_config(efx
);
2767 efx_farch_filter_push_tx_limits(efx
);
2769 spin_unlock_bh(&efx
->filter_lock
);
2772 void efx_farch_filter_table_remove(struct efx_nic
*efx
)
2774 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2775 enum efx_farch_filter_table_id table_id
;
2777 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2778 kfree(state
->table
[table_id
].used_bitmap
);
2779 vfree(state
->table
[table_id
].spec
);
2784 int efx_farch_filter_table_probe(struct efx_nic
*efx
)
2786 struct efx_farch_filter_state
*state
;
2787 struct efx_farch_filter_table
*table
;
2790 state
= kzalloc(sizeof(struct efx_farch_filter_state
), GFP_KERNEL
);
2793 efx
->filter_state
= state
;
2795 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
2796 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
2797 table
->id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2798 table
->offset
= FR_BZ_RX_FILTER_TBL0
;
2799 table
->size
= FR_BZ_RX_FILTER_TBL0_ROWS
;
2800 table
->step
= FR_BZ_RX_FILTER_TBL0_STEP
;
2803 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
2804 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_MAC
];
2805 table
->id
= EFX_FARCH_FILTER_TABLE_RX_MAC
;
2806 table
->offset
= FR_CZ_RX_MAC_FILTER_TBL0
;
2807 table
->size
= FR_CZ_RX_MAC_FILTER_TBL0_ROWS
;
2808 table
->step
= FR_CZ_RX_MAC_FILTER_TBL0_STEP
;
2810 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
2811 table
->id
= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2812 table
->size
= EFX_FARCH_FILTER_SIZE_RX_DEF
;
2814 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_TX_MAC
];
2815 table
->id
= EFX_FARCH_FILTER_TABLE_TX_MAC
;
2816 table
->offset
= FR_CZ_TX_MAC_FILTER_TBL0
;
2817 table
->size
= FR_CZ_TX_MAC_FILTER_TBL0_ROWS
;
2818 table
->step
= FR_CZ_TX_MAC_FILTER_TBL0_STEP
;
2821 for (table_id
= 0; table_id
< EFX_FARCH_FILTER_TABLE_COUNT
; table_id
++) {
2822 table
= &state
->table
[table_id
];
2823 if (table
->size
== 0)
2825 table
->used_bitmap
= kcalloc(BITS_TO_LONGS(table
->size
),
2826 sizeof(unsigned long),
2828 if (!table
->used_bitmap
)
2830 table
->spec
= vzalloc(table
->size
* sizeof(*table
->spec
));
2835 table
= &state
->table
[EFX_FARCH_FILTER_TABLE_RX_DEF
];
2837 /* RX default filters must always exist */
2838 struct efx_farch_filter_spec
*spec
;
2841 for (i
= 0; i
< EFX_FARCH_FILTER_SIZE_RX_DEF
; i
++) {
2842 spec
= &table
->spec
[i
];
2843 spec
->type
= EFX_FARCH_FILTER_UC_DEF
+ i
;
2844 efx_farch_filter_init_rx_auto(efx
, spec
);
2845 __set_bit(i
, table
->used_bitmap
);
2849 efx_farch_filter_push_rx_config(efx
);
2854 efx_farch_filter_table_remove(efx
);
2858 /* Update scatter enable flags for filters pointing to our own RX queues */
2859 void efx_farch_filter_update_rx_scatter(struct efx_nic
*efx
)
2861 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2862 enum efx_farch_filter_table_id table_id
;
2863 struct efx_farch_filter_table
*table
;
2865 unsigned int filter_idx
;
2867 spin_lock_bh(&efx
->filter_lock
);
2869 for (table_id
= EFX_FARCH_FILTER_TABLE_RX_IP
;
2870 table_id
<= EFX_FARCH_FILTER_TABLE_RX_DEF
;
2872 table
= &state
->table
[table_id
];
2874 for (filter_idx
= 0; filter_idx
< table
->size
; filter_idx
++) {
2875 if (!test_bit(filter_idx
, table
->used_bitmap
) ||
2876 table
->spec
[filter_idx
].dmaq_id
>=
2880 if (efx
->rx_scatter
)
2881 table
->spec
[filter_idx
].flags
|=
2882 EFX_FILTER_FLAG_RX_SCATTER
;
2884 table
->spec
[filter_idx
].flags
&=
2885 ~EFX_FILTER_FLAG_RX_SCATTER
;
2887 if (table_id
== EFX_FARCH_FILTER_TABLE_RX_DEF
)
2888 /* Pushed by efx_farch_filter_push_rx_config() */
2891 efx_farch_filter_build(&filter
, &table
->spec
[filter_idx
]);
2892 efx_writeo(efx
, &filter
,
2893 table
->offset
+ table
->step
* filter_idx
);
2897 efx_farch_filter_push_rx_config(efx
);
2899 spin_unlock_bh(&efx
->filter_lock
);
2902 #ifdef CONFIG_RFS_ACCEL
2904 s32
efx_farch_filter_rfs_insert(struct efx_nic
*efx
,
2905 struct efx_filter_spec
*gen_spec
)
2907 return efx_farch_filter_insert(efx
, gen_spec
, true);
2910 bool efx_farch_filter_rfs_expire_one(struct efx_nic
*efx
, u32 flow_id
,
2913 struct efx_farch_filter_state
*state
= efx
->filter_state
;
2914 struct efx_farch_filter_table
*table
=
2915 &state
->table
[EFX_FARCH_FILTER_TABLE_RX_IP
];
2917 if (test_bit(index
, table
->used_bitmap
) &&
2918 table
->spec
[index
].priority
== EFX_FILTER_PRI_HINT
&&
2919 rps_may_expire_flow(efx
->net_dev
, table
->spec
[index
].dmaq_id
,
2921 efx_farch_filter_table_clear_entry(efx
, table
, index
);
2928 #endif /* CONFIG_RFS_ACCEL */
2930 void efx_farch_filter_sync_rx_mode(struct efx_nic
*efx
)
2932 struct net_device
*net_dev
= efx
->net_dev
;
2933 struct netdev_hw_addr
*ha
;
2934 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
2938 if (!efx_dev_registered(efx
))
2941 netif_addr_lock_bh(net_dev
);
2943 efx
->unicast_filter
= !(net_dev
->flags
& IFF_PROMISC
);
2945 /* Build multicast hash table */
2946 if (net_dev
->flags
& (IFF_PROMISC
| IFF_ALLMULTI
)) {
2947 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
2949 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
2950 netdev_for_each_mc_addr(ha
, net_dev
) {
2951 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2952 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
2953 __set_bit_le(bit
, mc_hash
);
2956 /* Broadcast packets go through the multicast hash filter.
2957 * ether_crc_le() of the broadcast address is 0xbe2612ff
2958 * so we always add bit 0xff to the mask.
2960 __set_bit_le(0xff, mc_hash
);
2963 netif_addr_unlock_bh(net_dev
);