1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
24 static struct kmem_cache
*extent_state_cache
;
25 static struct kmem_cache
*extent_buffer_cache
;
26 static struct bio_set
*btrfs_bioset
;
28 static inline bool extent_state_in_tree(const struct extent_state
*state
)
30 return !RB_EMPTY_NODE(&state
->rb_node
);
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers
);
35 static LIST_HEAD(states
);
37 static DEFINE_SPINLOCK(leak_lock
);
40 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
44 spin_lock_irqsave(&leak_lock
, flags
);
46 spin_unlock_irqrestore(&leak_lock
, flags
);
50 void btrfs_leak_debug_del(struct list_head
*entry
)
54 spin_lock_irqsave(&leak_lock
, flags
);
56 spin_unlock_irqrestore(&leak_lock
, flags
);
60 void btrfs_leak_debug_check(void)
62 struct extent_state
*state
;
63 struct extent_buffer
*eb
;
65 while (!list_empty(&states
)) {
66 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 state
->start
, state
->end
, state
->state
,
69 extent_state_in_tree(state
),
70 atomic_read(&state
->refs
));
71 list_del(&state
->leak_list
);
72 kmem_cache_free(extent_state_cache
, state
);
75 while (!list_empty(&buffers
)) {
76 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
77 printk(KERN_ERR
"BTRFS: buffer leak start %llu len %lu "
79 eb
->start
, eb
->len
, atomic_read(&eb
->refs
));
80 list_del(&eb
->leak_list
);
81 kmem_cache_free(extent_buffer_cache
, eb
);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
88 struct extent_io_tree
*tree
, u64 start
, u64 end
)
96 inode
= tree
->mapping
->host
;
97 isize
= i_size_read(inode
);
98 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
99 printk_ratelimited(KERN_DEBUG
100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 caller
, btrfs_ino(inode
), isize
, start
, end
);
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
111 #define BUFFER_LRU_MAX 64
116 struct rb_node rb_node
;
119 struct extent_page_data
{
121 struct extent_io_tree
*tree
;
122 get_extent_t
*get_extent
;
123 unsigned long bio_flags
;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked
:1;
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io
:1;
134 static noinline
void flush_write_bio(void *data
);
135 static inline struct btrfs_fs_info
*
136 tree_fs_info(struct extent_io_tree
*tree
)
140 return btrfs_sb(tree
->mapping
->host
->i_sb
);
143 int __init
extent_io_init(void)
145 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
146 sizeof(struct extent_state
), 0,
147 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
148 if (!extent_state_cache
)
151 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
152 sizeof(struct extent_buffer
), 0,
153 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
154 if (!extent_buffer_cache
)
155 goto free_state_cache
;
157 btrfs_bioset
= bioset_create(BIO_POOL_SIZE
,
158 offsetof(struct btrfs_io_bio
, bio
));
160 goto free_buffer_cache
;
162 if (bioset_integrity_create(btrfs_bioset
, BIO_POOL_SIZE
))
168 bioset_free(btrfs_bioset
);
172 kmem_cache_destroy(extent_buffer_cache
);
173 extent_buffer_cache
= NULL
;
176 kmem_cache_destroy(extent_state_cache
);
177 extent_state_cache
= NULL
;
181 void extent_io_exit(void)
183 btrfs_leak_debug_check();
186 * Make sure all delayed rcu free are flushed before we
190 if (extent_state_cache
)
191 kmem_cache_destroy(extent_state_cache
);
192 if (extent_buffer_cache
)
193 kmem_cache_destroy(extent_buffer_cache
);
195 bioset_free(btrfs_bioset
);
198 void extent_io_tree_init(struct extent_io_tree
*tree
,
199 struct address_space
*mapping
)
201 tree
->state
= RB_ROOT
;
203 tree
->dirty_bytes
= 0;
204 spin_lock_init(&tree
->lock
);
205 tree
->mapping
= mapping
;
208 static struct extent_state
*alloc_extent_state(gfp_t mask
)
210 struct extent_state
*state
;
212 state
= kmem_cache_alloc(extent_state_cache
, mask
);
217 RB_CLEAR_NODE(&state
->rb_node
);
218 btrfs_leak_debug_add(&state
->leak_list
, &states
);
219 atomic_set(&state
->refs
, 1);
220 init_waitqueue_head(&state
->wq
);
221 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
225 void free_extent_state(struct extent_state
*state
)
229 if (atomic_dec_and_test(&state
->refs
)) {
230 WARN_ON(extent_state_in_tree(state
));
231 btrfs_leak_debug_del(&state
->leak_list
);
232 trace_free_extent_state(state
, _RET_IP_
);
233 kmem_cache_free(extent_state_cache
, state
);
237 static struct rb_node
*tree_insert(struct rb_root
*root
,
238 struct rb_node
*search_start
,
240 struct rb_node
*node
,
241 struct rb_node
***p_in
,
242 struct rb_node
**parent_in
)
245 struct rb_node
*parent
= NULL
;
246 struct tree_entry
*entry
;
248 if (p_in
&& parent_in
) {
254 p
= search_start
? &search_start
: &root
->rb_node
;
257 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
259 if (offset
< entry
->start
)
261 else if (offset
> entry
->end
)
268 rb_link_node(node
, parent
, p
);
269 rb_insert_color(node
, root
);
273 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
274 struct rb_node
**prev_ret
,
275 struct rb_node
**next_ret
,
276 struct rb_node
***p_ret
,
277 struct rb_node
**parent_ret
)
279 struct rb_root
*root
= &tree
->state
;
280 struct rb_node
**n
= &root
->rb_node
;
281 struct rb_node
*prev
= NULL
;
282 struct rb_node
*orig_prev
= NULL
;
283 struct tree_entry
*entry
;
284 struct tree_entry
*prev_entry
= NULL
;
288 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
291 if (offset
< entry
->start
)
293 else if (offset
> entry
->end
)
306 while (prev
&& offset
> prev_entry
->end
) {
307 prev
= rb_next(prev
);
308 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
315 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
316 while (prev
&& offset
< prev_entry
->start
) {
317 prev
= rb_prev(prev
);
318 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
325 static inline struct rb_node
*
326 tree_search_for_insert(struct extent_io_tree
*tree
,
328 struct rb_node
***p_ret
,
329 struct rb_node
**parent_ret
)
331 struct rb_node
*prev
= NULL
;
334 ret
= __etree_search(tree
, offset
, &prev
, NULL
, p_ret
, parent_ret
);
340 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
343 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
346 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
347 struct extent_state
*other
)
349 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
350 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
361 * This should be called with the tree lock held.
363 static void merge_state(struct extent_io_tree
*tree
,
364 struct extent_state
*state
)
366 struct extent_state
*other
;
367 struct rb_node
*other_node
;
369 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
372 other_node
= rb_prev(&state
->rb_node
);
374 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
375 if (other
->end
== state
->start
- 1 &&
376 other
->state
== state
->state
) {
377 merge_cb(tree
, state
, other
);
378 state
->start
= other
->start
;
379 rb_erase(&other
->rb_node
, &tree
->state
);
380 RB_CLEAR_NODE(&other
->rb_node
);
381 free_extent_state(other
);
384 other_node
= rb_next(&state
->rb_node
);
386 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
387 if (other
->start
== state
->end
+ 1 &&
388 other
->state
== state
->state
) {
389 merge_cb(tree
, state
, other
);
390 state
->end
= other
->end
;
391 rb_erase(&other
->rb_node
, &tree
->state
);
392 RB_CLEAR_NODE(&other
->rb_node
);
393 free_extent_state(other
);
398 static void set_state_cb(struct extent_io_tree
*tree
,
399 struct extent_state
*state
, unsigned long *bits
)
401 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
402 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
405 static void clear_state_cb(struct extent_io_tree
*tree
,
406 struct extent_state
*state
, unsigned long *bits
)
408 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
409 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
412 static void set_state_bits(struct extent_io_tree
*tree
,
413 struct extent_state
*state
, unsigned long *bits
);
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
425 static int insert_state(struct extent_io_tree
*tree
,
426 struct extent_state
*state
, u64 start
, u64 end
,
428 struct rb_node
**parent
,
431 struct rb_node
*node
;
434 WARN(1, KERN_ERR
"BTRFS: end < start %llu %llu\n",
436 state
->start
= start
;
439 set_state_bits(tree
, state
, bits
);
441 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
443 struct extent_state
*found
;
444 found
= rb_entry(node
, struct extent_state
, rb_node
);
445 printk(KERN_ERR
"BTRFS: found node %llu %llu on insert of "
447 found
->start
, found
->end
, start
, end
);
450 merge_state(tree
, state
);
454 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
457 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
458 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
472 * The tree locks are not taken by this function. They need to be held
475 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
476 struct extent_state
*prealloc
, u64 split
)
478 struct rb_node
*node
;
480 split_cb(tree
, orig
, split
);
482 prealloc
->start
= orig
->start
;
483 prealloc
->end
= split
- 1;
484 prealloc
->state
= orig
->state
;
487 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
488 &prealloc
->rb_node
, NULL
, NULL
);
490 free_extent_state(prealloc
);
496 static struct extent_state
*next_state(struct extent_state
*state
)
498 struct rb_node
*next
= rb_next(&state
->rb_node
);
500 return rb_entry(next
, struct extent_state
, rb_node
);
506 * utility function to clear some bits in an extent state struct.
507 * it will optionally wake up any one waiting on this state (wake == 1).
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
512 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
513 struct extent_state
*state
,
514 unsigned long *bits
, int wake
)
516 struct extent_state
*next
;
517 unsigned long bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
519 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
520 u64 range
= state
->end
- state
->start
+ 1;
521 WARN_ON(range
> tree
->dirty_bytes
);
522 tree
->dirty_bytes
-= range
;
524 clear_state_cb(tree
, state
, bits
);
525 state
->state
&= ~bits_to_clear
;
528 if (state
->state
== 0) {
529 next
= next_state(state
);
530 if (extent_state_in_tree(state
)) {
531 rb_erase(&state
->rb_node
, &tree
->state
);
532 RB_CLEAR_NODE(&state
->rb_node
);
533 free_extent_state(state
);
538 merge_state(tree
, state
);
539 next
= next_state(state
);
544 static struct extent_state
*
545 alloc_extent_state_atomic(struct extent_state
*prealloc
)
548 prealloc
= alloc_extent_state(GFP_ATOMIC
);
553 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
555 btrfs_panic(tree_fs_info(tree
), err
, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
568 * the range [start, end] is inclusive.
570 * This takes the tree lock, and returns 0 on success and < 0 on error.
572 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
573 unsigned long bits
, int wake
, int delete,
574 struct extent_state
**cached_state
,
577 struct extent_state
*state
;
578 struct extent_state
*cached
;
579 struct extent_state
*prealloc
= NULL
;
580 struct rb_node
*node
;
585 btrfs_debug_check_extent_io_range(tree
, start
, end
);
587 if (bits
& EXTENT_DELALLOC
)
588 bits
|= EXTENT_NORESERVE
;
591 bits
|= ~EXTENT_CTLBITS
;
592 bits
|= EXTENT_FIRST_DELALLOC
;
594 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
597 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
598 prealloc
= alloc_extent_state(mask
);
603 spin_lock(&tree
->lock
);
605 cached
= *cached_state
;
608 *cached_state
= NULL
;
612 if (cached
&& extent_state_in_tree(cached
) &&
613 cached
->start
<= start
&& cached
->end
> start
) {
615 atomic_dec(&cached
->refs
);
620 free_extent_state(cached
);
623 * this search will find the extents that end after
626 node
= tree_search(tree
, start
);
629 state
= rb_entry(node
, struct extent_state
, rb_node
);
631 if (state
->start
> end
)
633 WARN_ON(state
->end
< start
);
634 last_end
= state
->end
;
636 /* the state doesn't have the wanted bits, go ahead */
637 if (!(state
->state
& bits
)) {
638 state
= next_state(state
);
643 * | ---- desired range ---- |
645 * | ------------- state -------------- |
647 * We need to split the extent we found, and may flip
648 * bits on second half.
650 * If the extent we found extends past our range, we
651 * just split and search again. It'll get split again
652 * the next time though.
654 * If the extent we found is inside our range, we clear
655 * the desired bit on it.
658 if (state
->start
< start
) {
659 prealloc
= alloc_extent_state_atomic(prealloc
);
661 err
= split_state(tree
, state
, prealloc
, start
);
663 extent_io_tree_panic(tree
, err
);
668 if (state
->end
<= end
) {
669 state
= clear_state_bit(tree
, state
, &bits
, wake
);
675 * | ---- desired range ---- |
677 * We need to split the extent, and clear the bit
680 if (state
->start
<= end
&& state
->end
> end
) {
681 prealloc
= alloc_extent_state_atomic(prealloc
);
683 err
= split_state(tree
, state
, prealloc
, end
+ 1);
685 extent_io_tree_panic(tree
, err
);
690 clear_state_bit(tree
, prealloc
, &bits
, wake
);
696 state
= clear_state_bit(tree
, state
, &bits
, wake
);
698 if (last_end
== (u64
)-1)
700 start
= last_end
+ 1;
701 if (start
<= end
&& state
&& !need_resched())
706 spin_unlock(&tree
->lock
);
708 free_extent_state(prealloc
);
715 spin_unlock(&tree
->lock
);
716 if (mask
& __GFP_WAIT
)
721 static void wait_on_state(struct extent_io_tree
*tree
,
722 struct extent_state
*state
)
723 __releases(tree
->lock
)
724 __acquires(tree
->lock
)
727 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
728 spin_unlock(&tree
->lock
);
730 spin_lock(&tree
->lock
);
731 finish_wait(&state
->wq
, &wait
);
735 * waits for one or more bits to clear on a range in the state tree.
736 * The range [start, end] is inclusive.
737 * The tree lock is taken by this function
739 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
742 struct extent_state
*state
;
743 struct rb_node
*node
;
745 btrfs_debug_check_extent_io_range(tree
, start
, end
);
747 spin_lock(&tree
->lock
);
751 * this search will find all the extents that end after
754 node
= tree_search(tree
, start
);
759 state
= rb_entry(node
, struct extent_state
, rb_node
);
761 if (state
->start
> end
)
764 if (state
->state
& bits
) {
765 start
= state
->start
;
766 atomic_inc(&state
->refs
);
767 wait_on_state(tree
, state
);
768 free_extent_state(state
);
771 start
= state
->end
+ 1;
776 if (!cond_resched_lock(&tree
->lock
)) {
777 node
= rb_next(node
);
782 spin_unlock(&tree
->lock
);
785 static void set_state_bits(struct extent_io_tree
*tree
,
786 struct extent_state
*state
,
789 unsigned long bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
791 set_state_cb(tree
, state
, bits
);
792 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
793 u64 range
= state
->end
- state
->start
+ 1;
794 tree
->dirty_bytes
+= range
;
796 state
->state
|= bits_to_set
;
799 static void cache_state(struct extent_state
*state
,
800 struct extent_state
**cached_ptr
)
802 if (cached_ptr
&& !(*cached_ptr
)) {
803 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
)) {
805 atomic_inc(&state
->refs
);
811 * set some bits on a range in the tree. This may require allocations or
812 * sleeping, so the gfp mask is used to indicate what is allowed.
814 * If any of the exclusive bits are set, this will fail with -EEXIST if some
815 * part of the range already has the desired bits set. The start of the
816 * existing range is returned in failed_start in this case.
818 * [start, end] is inclusive This takes the tree lock.
821 static int __must_check
822 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
823 unsigned long bits
, unsigned long exclusive_bits
,
824 u64
*failed_start
, struct extent_state
**cached_state
,
827 struct extent_state
*state
;
828 struct extent_state
*prealloc
= NULL
;
829 struct rb_node
*node
;
831 struct rb_node
*parent
;
836 btrfs_debug_check_extent_io_range(tree
, start
, end
);
838 bits
|= EXTENT_FIRST_DELALLOC
;
840 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
841 prealloc
= alloc_extent_state(mask
);
845 spin_lock(&tree
->lock
);
846 if (cached_state
&& *cached_state
) {
847 state
= *cached_state
;
848 if (state
->start
<= start
&& state
->end
> start
&&
849 extent_state_in_tree(state
)) {
850 node
= &state
->rb_node
;
855 * this search will find all the extents that end after
858 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
860 prealloc
= alloc_extent_state_atomic(prealloc
);
862 err
= insert_state(tree
, prealloc
, start
, end
,
865 extent_io_tree_panic(tree
, err
);
867 cache_state(prealloc
, cached_state
);
871 state
= rb_entry(node
, struct extent_state
, rb_node
);
873 last_start
= state
->start
;
874 last_end
= state
->end
;
877 * | ---- desired range ---- |
880 * Just lock what we found and keep going
882 if (state
->start
== start
&& state
->end
<= end
) {
883 if (state
->state
& exclusive_bits
) {
884 *failed_start
= state
->start
;
889 set_state_bits(tree
, state
, &bits
);
890 cache_state(state
, cached_state
);
891 merge_state(tree
, state
);
892 if (last_end
== (u64
)-1)
894 start
= last_end
+ 1;
895 state
= next_state(state
);
896 if (start
< end
&& state
&& state
->start
== start
&&
903 * | ---- desired range ---- |
906 * | ------------- state -------------- |
908 * We need to split the extent we found, and may flip bits on
911 * If the extent we found extends past our
912 * range, we just split and search again. It'll get split
913 * again the next time though.
915 * If the extent we found is inside our range, we set the
918 if (state
->start
< start
) {
919 if (state
->state
& exclusive_bits
) {
920 *failed_start
= start
;
925 prealloc
= alloc_extent_state_atomic(prealloc
);
927 err
= split_state(tree
, state
, prealloc
, start
);
929 extent_io_tree_panic(tree
, err
);
934 if (state
->end
<= end
) {
935 set_state_bits(tree
, state
, &bits
);
936 cache_state(state
, cached_state
);
937 merge_state(tree
, state
);
938 if (last_end
== (u64
)-1)
940 start
= last_end
+ 1;
941 state
= next_state(state
);
942 if (start
< end
&& state
&& state
->start
== start
&&
949 * | ---- desired range ---- |
950 * | state | or | state |
952 * There's a hole, we need to insert something in it and
953 * ignore the extent we found.
955 if (state
->start
> start
) {
957 if (end
< last_start
)
960 this_end
= last_start
- 1;
962 prealloc
= alloc_extent_state_atomic(prealloc
);
966 * Avoid to free 'prealloc' if it can be merged with
969 err
= insert_state(tree
, prealloc
, start
, this_end
,
972 extent_io_tree_panic(tree
, err
);
974 cache_state(prealloc
, cached_state
);
976 start
= this_end
+ 1;
980 * | ---- desired range ---- |
982 * We need to split the extent, and set the bit
985 if (state
->start
<= end
&& state
->end
> end
) {
986 if (state
->state
& exclusive_bits
) {
987 *failed_start
= start
;
992 prealloc
= alloc_extent_state_atomic(prealloc
);
994 err
= split_state(tree
, state
, prealloc
, end
+ 1);
996 extent_io_tree_panic(tree
, err
);
998 set_state_bits(tree
, prealloc
, &bits
);
999 cache_state(prealloc
, cached_state
);
1000 merge_state(tree
, prealloc
);
1008 spin_unlock(&tree
->lock
);
1010 free_extent_state(prealloc
);
1017 spin_unlock(&tree
->lock
);
1018 if (mask
& __GFP_WAIT
)
1023 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1024 unsigned long bits
, u64
* failed_start
,
1025 struct extent_state
**cached_state
, gfp_t mask
)
1027 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1028 cached_state
, mask
);
1033 * convert_extent_bit - convert all bits in a given range from one bit to
1035 * @tree: the io tree to search
1036 * @start: the start offset in bytes
1037 * @end: the end offset in bytes (inclusive)
1038 * @bits: the bits to set in this range
1039 * @clear_bits: the bits to clear in this range
1040 * @cached_state: state that we're going to cache
1041 * @mask: the allocation mask
1043 * This will go through and set bits for the given range. If any states exist
1044 * already in this range they are set with the given bit and cleared of the
1045 * clear_bits. This is only meant to be used by things that are mergeable, ie
1046 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1047 * boundary bits like LOCK.
1049 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1050 unsigned long bits
, unsigned long clear_bits
,
1051 struct extent_state
**cached_state
, gfp_t mask
)
1053 struct extent_state
*state
;
1054 struct extent_state
*prealloc
= NULL
;
1055 struct rb_node
*node
;
1057 struct rb_node
*parent
;
1062 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1065 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
1066 prealloc
= alloc_extent_state(mask
);
1071 spin_lock(&tree
->lock
);
1072 if (cached_state
&& *cached_state
) {
1073 state
= *cached_state
;
1074 if (state
->start
<= start
&& state
->end
> start
&&
1075 extent_state_in_tree(state
)) {
1076 node
= &state
->rb_node
;
1082 * this search will find all the extents that end after
1085 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1087 prealloc
= alloc_extent_state_atomic(prealloc
);
1092 err
= insert_state(tree
, prealloc
, start
, end
,
1093 &p
, &parent
, &bits
);
1095 extent_io_tree_panic(tree
, err
);
1096 cache_state(prealloc
, cached_state
);
1100 state
= rb_entry(node
, struct extent_state
, rb_node
);
1102 last_start
= state
->start
;
1103 last_end
= state
->end
;
1106 * | ---- desired range ---- |
1109 * Just lock what we found and keep going
1111 if (state
->start
== start
&& state
->end
<= end
) {
1112 set_state_bits(tree
, state
, &bits
);
1113 cache_state(state
, cached_state
);
1114 state
= clear_state_bit(tree
, state
, &clear_bits
, 0);
1115 if (last_end
== (u64
)-1)
1117 start
= last_end
+ 1;
1118 if (start
< end
&& state
&& state
->start
== start
&&
1125 * | ---- desired range ---- |
1128 * | ------------- state -------------- |
1130 * We need to split the extent we found, and may flip bits on
1133 * If the extent we found extends past our
1134 * range, we just split and search again. It'll get split
1135 * again the next time though.
1137 * If the extent we found is inside our range, we set the
1138 * desired bit on it.
1140 if (state
->start
< start
) {
1141 prealloc
= alloc_extent_state_atomic(prealloc
);
1146 err
= split_state(tree
, state
, prealloc
, start
);
1148 extent_io_tree_panic(tree
, err
);
1152 if (state
->end
<= end
) {
1153 set_state_bits(tree
, state
, &bits
);
1154 cache_state(state
, cached_state
);
1155 state
= clear_state_bit(tree
, state
, &clear_bits
, 0);
1156 if (last_end
== (u64
)-1)
1158 start
= last_end
+ 1;
1159 if (start
< end
&& state
&& state
->start
== start
&&
1166 * | ---- desired range ---- |
1167 * | state | or | state |
1169 * There's a hole, we need to insert something in it and
1170 * ignore the extent we found.
1172 if (state
->start
> start
) {
1174 if (end
< last_start
)
1177 this_end
= last_start
- 1;
1179 prealloc
= alloc_extent_state_atomic(prealloc
);
1186 * Avoid to free 'prealloc' if it can be merged with
1189 err
= insert_state(tree
, prealloc
, start
, this_end
,
1192 extent_io_tree_panic(tree
, err
);
1193 cache_state(prealloc
, cached_state
);
1195 start
= this_end
+ 1;
1199 * | ---- desired range ---- |
1201 * We need to split the extent, and set the bit
1204 if (state
->start
<= end
&& state
->end
> end
) {
1205 prealloc
= alloc_extent_state_atomic(prealloc
);
1211 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1213 extent_io_tree_panic(tree
, err
);
1215 set_state_bits(tree
, prealloc
, &bits
);
1216 cache_state(prealloc
, cached_state
);
1217 clear_state_bit(tree
, prealloc
, &clear_bits
, 0);
1225 spin_unlock(&tree
->lock
);
1227 free_extent_state(prealloc
);
1234 spin_unlock(&tree
->lock
);
1235 if (mask
& __GFP_WAIT
)
1240 /* wrappers around set/clear extent bit */
1241 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1244 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, NULL
,
1248 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1249 unsigned long bits
, gfp_t mask
)
1251 return set_extent_bit(tree
, start
, end
, bits
, NULL
,
1255 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1256 unsigned long bits
, gfp_t mask
)
1258 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
1261 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1262 struct extent_state
**cached_state
, gfp_t mask
)
1264 return set_extent_bit(tree
, start
, end
,
1265 EXTENT_DELALLOC
| EXTENT_UPTODATE
,
1266 NULL
, cached_state
, mask
);
1269 int set_extent_defrag(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1270 struct extent_state
**cached_state
, gfp_t mask
)
1272 return set_extent_bit(tree
, start
, end
,
1273 EXTENT_DELALLOC
| EXTENT_UPTODATE
| EXTENT_DEFRAG
,
1274 NULL
, cached_state
, mask
);
1277 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1280 return clear_extent_bit(tree
, start
, end
,
1281 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1282 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
1285 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1288 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, NULL
,
1292 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1293 struct extent_state
**cached_state
, gfp_t mask
)
1295 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, NULL
,
1296 cached_state
, mask
);
1299 int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1300 struct extent_state
**cached_state
, gfp_t mask
)
1302 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
1303 cached_state
, mask
);
1307 * either insert or lock state struct between start and end use mask to tell
1308 * us if waiting is desired.
1310 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1311 unsigned long bits
, struct extent_state
**cached_state
)
1316 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1317 EXTENT_LOCKED
, &failed_start
,
1318 cached_state
, GFP_NOFS
);
1319 if (err
== -EEXIST
) {
1320 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1321 start
= failed_start
;
1324 WARN_ON(start
> end
);
1329 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1331 return lock_extent_bits(tree
, start
, end
, 0, NULL
);
1334 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1339 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1340 &failed_start
, NULL
, GFP_NOFS
);
1341 if (err
== -EEXIST
) {
1342 if (failed_start
> start
)
1343 clear_extent_bit(tree
, start
, failed_start
- 1,
1344 EXTENT_LOCKED
, 1, 0, NULL
, GFP_NOFS
);
1350 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1351 struct extent_state
**cached
, gfp_t mask
)
1353 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1357 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1359 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1363 int extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1365 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1366 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1369 while (index
<= end_index
) {
1370 page
= find_get_page(inode
->i_mapping
, index
);
1371 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page
);
1373 page_cache_release(page
);
1379 int extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1381 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1382 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1385 while (index
<= end_index
) {
1386 page
= find_get_page(inode
->i_mapping
, index
);
1387 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1388 account_page_redirty(page
);
1389 __set_page_dirty_nobuffers(page
);
1390 page_cache_release(page
);
1397 * helper function to set both pages and extents in the tree writeback
1399 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1401 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1402 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1405 while (index
<= end_index
) {
1406 page
= find_get_page(tree
->mapping
, index
);
1407 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1408 set_page_writeback(page
);
1409 page_cache_release(page
);
1415 /* find the first state struct with 'bits' set after 'start', and
1416 * return it. tree->lock must be held. NULL will returned if
1417 * nothing was found after 'start'
1419 static struct extent_state
*
1420 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1421 u64 start
, unsigned long bits
)
1423 struct rb_node
*node
;
1424 struct extent_state
*state
;
1427 * this search will find all the extents that end after
1430 node
= tree_search(tree
, start
);
1435 state
= rb_entry(node
, struct extent_state
, rb_node
);
1436 if (state
->end
>= start
&& (state
->state
& bits
))
1439 node
= rb_next(node
);
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1452 * If nothing was found, 1 is returned. If found something, return 0.
1454 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1455 u64
*start_ret
, u64
*end_ret
, unsigned long bits
,
1456 struct extent_state
**cached_state
)
1458 struct extent_state
*state
;
1462 spin_lock(&tree
->lock
);
1463 if (cached_state
&& *cached_state
) {
1464 state
= *cached_state
;
1465 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1466 n
= rb_next(&state
->rb_node
);
1468 state
= rb_entry(n
, struct extent_state
,
1470 if (state
->state
& bits
)
1474 free_extent_state(*cached_state
);
1475 *cached_state
= NULL
;
1478 free_extent_state(*cached_state
);
1479 *cached_state
= NULL
;
1482 state
= find_first_extent_bit_state(tree
, start
, bits
);
1485 cache_state(state
, cached_state
);
1486 *start_ret
= state
->start
;
1487 *end_ret
= state
->end
;
1491 spin_unlock(&tree
->lock
);
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'. start and end are used to return the range,
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1501 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1502 u64
*start
, u64
*end
, u64 max_bytes
,
1503 struct extent_state
**cached_state
)
1505 struct rb_node
*node
;
1506 struct extent_state
*state
;
1507 u64 cur_start
= *start
;
1509 u64 total_bytes
= 0;
1511 spin_lock(&tree
->lock
);
1514 * this search will find all the extents that end after
1517 node
= tree_search(tree
, cur_start
);
1525 state
= rb_entry(node
, struct extent_state
, rb_node
);
1526 if (found
&& (state
->start
!= cur_start
||
1527 (state
->state
& EXTENT_BOUNDARY
))) {
1530 if (!(state
->state
& EXTENT_DELALLOC
)) {
1536 *start
= state
->start
;
1537 *cached_state
= state
;
1538 atomic_inc(&state
->refs
);
1542 cur_start
= state
->end
+ 1;
1543 node
= rb_next(node
);
1544 total_bytes
+= state
->end
- state
->start
+ 1;
1545 if (total_bytes
>= max_bytes
)
1551 spin_unlock(&tree
->lock
);
1555 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1556 struct page
*locked_page
,
1560 struct page
*pages
[16];
1561 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1562 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1563 unsigned long nr_pages
= end_index
- index
+ 1;
1566 if (index
== locked_page
->index
&& end_index
== index
)
1569 while (nr_pages
> 0) {
1570 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1571 min_t(unsigned long, nr_pages
,
1572 ARRAY_SIZE(pages
)), pages
);
1573 for (i
= 0; i
< ret
; i
++) {
1574 if (pages
[i
] != locked_page
)
1575 unlock_page(pages
[i
]);
1576 page_cache_release(pages
[i
]);
1584 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1585 struct page
*locked_page
,
1589 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1590 unsigned long start_index
= index
;
1591 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1592 unsigned long pages_locked
= 0;
1593 struct page
*pages
[16];
1594 unsigned long nrpages
;
1598 /* the caller is responsible for locking the start index */
1599 if (index
== locked_page
->index
&& index
== end_index
)
1602 /* skip the page at the start index */
1603 nrpages
= end_index
- index
+ 1;
1604 while (nrpages
> 0) {
1605 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1606 min_t(unsigned long,
1607 nrpages
, ARRAY_SIZE(pages
)), pages
);
1612 /* now we have an array of pages, lock them all */
1613 for (i
= 0; i
< ret
; i
++) {
1615 * the caller is taking responsibility for
1618 if (pages
[i
] != locked_page
) {
1619 lock_page(pages
[i
]);
1620 if (!PageDirty(pages
[i
]) ||
1621 pages
[i
]->mapping
!= inode
->i_mapping
) {
1623 unlock_page(pages
[i
]);
1624 page_cache_release(pages
[i
]);
1628 page_cache_release(pages
[i
]);
1637 if (ret
&& pages_locked
) {
1638 __unlock_for_delalloc(inode
, locked_page
,
1640 ((u64
)(start_index
+ pages_locked
- 1)) <<
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'. start and end are used to return the range,
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1652 STATIC u64
find_lock_delalloc_range(struct inode
*inode
,
1653 struct extent_io_tree
*tree
,
1654 struct page
*locked_page
, u64
*start
,
1655 u64
*end
, u64 max_bytes
)
1660 struct extent_state
*cached_state
= NULL
;
1665 /* step one, find a bunch of delalloc bytes starting at start */
1666 delalloc_start
= *start
;
1668 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1669 max_bytes
, &cached_state
);
1670 if (!found
|| delalloc_end
<= *start
) {
1671 *start
= delalloc_start
;
1672 *end
= delalloc_end
;
1673 free_extent_state(cached_state
);
1678 * start comes from the offset of locked_page. We have to lock
1679 * pages in order, so we can't process delalloc bytes before
1682 if (delalloc_start
< *start
)
1683 delalloc_start
= *start
;
1686 * make sure to limit the number of pages we try to lock down
1688 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1689 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1691 /* step two, lock all the pages after the page that has start */
1692 ret
= lock_delalloc_pages(inode
, locked_page
,
1693 delalloc_start
, delalloc_end
);
1694 if (ret
== -EAGAIN
) {
1695 /* some of the pages are gone, lets avoid looping by
1696 * shortening the size of the delalloc range we're searching
1698 free_extent_state(cached_state
);
1699 cached_state
= NULL
;
1701 max_bytes
= PAGE_CACHE_SIZE
;
1709 BUG_ON(ret
); /* Only valid values are 0 and -EAGAIN */
1711 /* step three, lock the state bits for the whole range */
1712 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, 0, &cached_state
);
1714 /* then test to make sure it is all still delalloc */
1715 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1716 EXTENT_DELALLOC
, 1, cached_state
);
1718 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1719 &cached_state
, GFP_NOFS
);
1720 __unlock_for_delalloc(inode
, locked_page
,
1721 delalloc_start
, delalloc_end
);
1725 free_extent_state(cached_state
);
1726 *start
= delalloc_start
;
1727 *end
= delalloc_end
;
1732 int extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1733 struct page
*locked_page
,
1734 unsigned long clear_bits
,
1735 unsigned long page_ops
)
1737 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1739 struct page
*pages
[16];
1740 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1741 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1742 unsigned long nr_pages
= end_index
- index
+ 1;
1745 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1749 while (nr_pages
> 0) {
1750 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1751 min_t(unsigned long,
1752 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1753 for (i
= 0; i
< ret
; i
++) {
1755 if (page_ops
& PAGE_SET_PRIVATE2
)
1756 SetPagePrivate2(pages
[i
]);
1758 if (pages
[i
] == locked_page
) {
1759 page_cache_release(pages
[i
]);
1762 if (page_ops
& PAGE_CLEAR_DIRTY
)
1763 clear_page_dirty_for_io(pages
[i
]);
1764 if (page_ops
& PAGE_SET_WRITEBACK
)
1765 set_page_writeback(pages
[i
]);
1766 if (page_ops
& PAGE_END_WRITEBACK
)
1767 end_page_writeback(pages
[i
]);
1768 if (page_ops
& PAGE_UNLOCK
)
1769 unlock_page(pages
[i
]);
1770 page_cache_release(pages
[i
]);
1780 * count the number of bytes in the tree that have a given bit(s)
1781 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1782 * cached. The total number found is returned.
1784 u64
count_range_bits(struct extent_io_tree
*tree
,
1785 u64
*start
, u64 search_end
, u64 max_bytes
,
1786 unsigned long bits
, int contig
)
1788 struct rb_node
*node
;
1789 struct extent_state
*state
;
1790 u64 cur_start
= *start
;
1791 u64 total_bytes
= 0;
1795 if (WARN_ON(search_end
<= cur_start
))
1798 spin_lock(&tree
->lock
);
1799 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1800 total_bytes
= tree
->dirty_bytes
;
1804 * this search will find all the extents that end after
1807 node
= tree_search(tree
, cur_start
);
1812 state
= rb_entry(node
, struct extent_state
, rb_node
);
1813 if (state
->start
> search_end
)
1815 if (contig
&& found
&& state
->start
> last
+ 1)
1817 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1818 total_bytes
+= min(search_end
, state
->end
) + 1 -
1819 max(cur_start
, state
->start
);
1820 if (total_bytes
>= max_bytes
)
1823 *start
= max(cur_start
, state
->start
);
1827 } else if (contig
&& found
) {
1830 node
= rb_next(node
);
1835 spin_unlock(&tree
->lock
);
1840 * set the private field for a given byte offset in the tree. If there isn't
1841 * an extent_state there already, this does nothing.
1843 static int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1845 struct rb_node
*node
;
1846 struct extent_state
*state
;
1849 spin_lock(&tree
->lock
);
1851 * this search will find all the extents that end after
1854 node
= tree_search(tree
, start
);
1859 state
= rb_entry(node
, struct extent_state
, rb_node
);
1860 if (state
->start
!= start
) {
1864 state
->private = private;
1866 spin_unlock(&tree
->lock
);
1870 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1872 struct rb_node
*node
;
1873 struct extent_state
*state
;
1876 spin_lock(&tree
->lock
);
1878 * this search will find all the extents that end after
1881 node
= tree_search(tree
, start
);
1886 state
= rb_entry(node
, struct extent_state
, rb_node
);
1887 if (state
->start
!= start
) {
1891 *private = state
->private;
1893 spin_unlock(&tree
->lock
);
1898 * searches a range in the state tree for a given mask.
1899 * If 'filled' == 1, this returns 1 only if every extent in the tree
1900 * has the bits set. Otherwise, 1 is returned if any bit in the
1901 * range is found set.
1903 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1904 unsigned long bits
, int filled
, struct extent_state
*cached
)
1906 struct extent_state
*state
= NULL
;
1907 struct rb_node
*node
;
1910 spin_lock(&tree
->lock
);
1911 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
1912 cached
->end
> start
)
1913 node
= &cached
->rb_node
;
1915 node
= tree_search(tree
, start
);
1916 while (node
&& start
<= end
) {
1917 state
= rb_entry(node
, struct extent_state
, rb_node
);
1919 if (filled
&& state
->start
> start
) {
1924 if (state
->start
> end
)
1927 if (state
->state
& bits
) {
1931 } else if (filled
) {
1936 if (state
->end
== (u64
)-1)
1939 start
= state
->end
+ 1;
1942 node
= rb_next(node
);
1949 spin_unlock(&tree
->lock
);
1954 * helper function to set a given page up to date if all the
1955 * extents in the tree for that page are up to date
1957 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
1959 u64 start
= page_offset(page
);
1960 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1961 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1962 SetPageUptodate(page
);
1965 int free_io_failure(struct inode
*inode
, struct io_failure_record
*rec
)
1969 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1971 set_state_private(failure_tree
, rec
->start
, 0);
1972 ret
= clear_extent_bits(failure_tree
, rec
->start
,
1973 rec
->start
+ rec
->len
- 1,
1974 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1978 ret
= clear_extent_bits(&BTRFS_I(inode
)->io_tree
, rec
->start
,
1979 rec
->start
+ rec
->len
- 1,
1980 EXTENT_DAMAGED
, GFP_NOFS
);
1989 * this bypasses the standard btrfs submit functions deliberately, as
1990 * the standard behavior is to write all copies in a raid setup. here we only
1991 * want to write the one bad copy. so we do the mapping for ourselves and issue
1992 * submit_bio directly.
1993 * to avoid any synchronization issues, wait for the data after writing, which
1994 * actually prevents the read that triggered the error from finishing.
1995 * currently, there can be no more than two copies of every data bit. thus,
1996 * exactly one rewrite is required.
1998 int repair_io_failure(struct inode
*inode
, u64 start
, u64 length
, u64 logical
,
1999 struct page
*page
, unsigned int pg_offset
, int mirror_num
)
2001 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2003 struct btrfs_device
*dev
;
2006 struct btrfs_bio
*bbio
= NULL
;
2007 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
2010 ASSERT(!(fs_info
->sb
->s_flags
& MS_RDONLY
));
2011 BUG_ON(!mirror_num
);
2013 /* we can't repair anything in raid56 yet */
2014 if (btrfs_is_parity_mirror(map_tree
, logical
, length
, mirror_num
))
2017 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2020 bio
->bi_iter
.bi_size
= 0;
2021 map_length
= length
;
2023 ret
= btrfs_map_block(fs_info
, WRITE
, logical
,
2024 &map_length
, &bbio
, mirror_num
);
2029 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2030 sector
= bbio
->stripes
[mirror_num
-1].physical
>> 9;
2031 bio
->bi_iter
.bi_sector
= sector
;
2032 dev
= bbio
->stripes
[mirror_num
-1].dev
;
2034 if (!dev
|| !dev
->bdev
|| !dev
->writeable
) {
2038 bio
->bi_bdev
= dev
->bdev
;
2039 bio_add_page(bio
, page
, length
, pg_offset
);
2041 if (btrfsic_submit_bio_wait(WRITE_SYNC
, bio
)) {
2042 /* try to remap that extent elsewhere? */
2044 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2048 printk_ratelimited_in_rcu(KERN_INFO
2049 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2050 btrfs_ino(inode
), start
,
2051 rcu_str_deref(dev
->name
), sector
);
2056 int repair_eb_io_failure(struct btrfs_root
*root
, struct extent_buffer
*eb
,
2059 u64 start
= eb
->start
;
2060 unsigned long i
, num_pages
= num_extent_pages(eb
->start
, eb
->len
);
2063 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2066 for (i
= 0; i
< num_pages
; i
++) {
2067 struct page
*p
= eb
->pages
[i
];
2069 ret
= repair_io_failure(root
->fs_info
->btree_inode
, start
,
2070 PAGE_CACHE_SIZE
, start
, p
,
2071 start
- page_offset(p
), mirror_num
);
2074 start
+= PAGE_CACHE_SIZE
;
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2084 int clean_io_failure(struct inode
*inode
, u64 start
, struct page
*page
,
2085 unsigned int pg_offset
)
2088 u64 private_failure
;
2089 struct io_failure_record
*failrec
;
2090 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2091 struct extent_state
*state
;
2096 ret
= count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
2097 (u64
)-1, 1, EXTENT_DIRTY
, 0);
2101 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
, start
,
2106 failrec
= (struct io_failure_record
*)(unsigned long) private_failure
;
2107 BUG_ON(!failrec
->this_mirror
);
2109 if (failrec
->in_validation
) {
2110 /* there was no real error, just free the record */
2111 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2115 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
2118 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
2119 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
2122 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
2124 if (state
&& state
->start
<= failrec
->start
&&
2125 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2126 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2128 if (num_copies
> 1) {
2129 repair_io_failure(inode
, start
, failrec
->len
,
2130 failrec
->logical
, page
,
2131 pg_offset
, failrec
->failed_mirror
);
2136 free_io_failure(inode
, failrec
);
2142 * Can be called when
2143 * - hold extent lock
2144 * - under ordered extent
2145 * - the inode is freeing
2147 void btrfs_free_io_failure_record(struct inode
*inode
, u64 start
, u64 end
)
2149 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2150 struct io_failure_record
*failrec
;
2151 struct extent_state
*state
, *next
;
2153 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2156 spin_lock(&failure_tree
->lock
);
2157 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2159 if (state
->start
> end
)
2162 ASSERT(state
->end
<= end
);
2164 next
= next_state(state
);
2166 failrec
= (struct io_failure_record
*)(unsigned long)state
->private;
2167 free_extent_state(state
);
2172 spin_unlock(&failure_tree
->lock
);
2175 int btrfs_get_io_failure_record(struct inode
*inode
, u64 start
, u64 end
,
2176 struct io_failure_record
**failrec_ret
)
2178 struct io_failure_record
*failrec
;
2180 struct extent_map
*em
;
2181 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2182 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2183 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2187 ret
= get_state_private(failure_tree
, start
, &private);
2189 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2193 failrec
->start
= start
;
2194 failrec
->len
= end
- start
+ 1;
2195 failrec
->this_mirror
= 0;
2196 failrec
->bio_flags
= 0;
2197 failrec
->in_validation
= 0;
2199 read_lock(&em_tree
->lock
);
2200 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2202 read_unlock(&em_tree
->lock
);
2207 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2208 free_extent_map(em
);
2211 read_unlock(&em_tree
->lock
);
2217 logical
= start
- em
->start
;
2218 logical
= em
->block_start
+ logical
;
2219 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2220 logical
= em
->block_start
;
2221 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2222 extent_set_compress_type(&failrec
->bio_flags
,
2226 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2227 logical
, start
, failrec
->len
);
2229 failrec
->logical
= logical
;
2230 free_extent_map(em
);
2232 /* set the bits in the private failure tree */
2233 ret
= set_extent_bits(failure_tree
, start
, end
,
2234 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2236 ret
= set_state_private(failure_tree
, start
,
2237 (u64
)(unsigned long)failrec
);
2238 /* set the bits in the inode's tree */
2240 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
,
2247 failrec
= (struct io_failure_record
*)(unsigned long)private;
2248 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2249 failrec
->logical
, failrec
->start
, failrec
->len
,
2250 failrec
->in_validation
);
2252 * when data can be on disk more than twice, add to failrec here
2253 * (e.g. with a list for failed_mirror) to make
2254 * clean_io_failure() clean all those errors at once.
2258 *failrec_ret
= failrec
;
2263 int btrfs_check_repairable(struct inode
*inode
, struct bio
*failed_bio
,
2264 struct io_failure_record
*failrec
, int failed_mirror
)
2268 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
2269 failrec
->logical
, failrec
->len
);
2270 if (num_copies
== 1) {
2272 * we only have a single copy of the data, so don't bother with
2273 * all the retry and error correction code that follows. no
2274 * matter what the error is, it is very likely to persist.
2276 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2277 num_copies
, failrec
->this_mirror
, failed_mirror
);
2282 * there are two premises:
2283 * a) deliver good data to the caller
2284 * b) correct the bad sectors on disk
2286 if (failed_bio
->bi_vcnt
> 1) {
2288 * to fulfill b), we need to know the exact failing sectors, as
2289 * we don't want to rewrite any more than the failed ones. thus,
2290 * we need separate read requests for the failed bio
2292 * if the following BUG_ON triggers, our validation request got
2293 * merged. we need separate requests for our algorithm to work.
2295 BUG_ON(failrec
->in_validation
);
2296 failrec
->in_validation
= 1;
2297 failrec
->this_mirror
= failed_mirror
;
2300 * we're ready to fulfill a) and b) alongside. get a good copy
2301 * of the failed sector and if we succeed, we have setup
2302 * everything for repair_io_failure to do the rest for us.
2304 if (failrec
->in_validation
) {
2305 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2306 failrec
->in_validation
= 0;
2307 failrec
->this_mirror
= 0;
2309 failrec
->failed_mirror
= failed_mirror
;
2310 failrec
->this_mirror
++;
2311 if (failrec
->this_mirror
== failed_mirror
)
2312 failrec
->this_mirror
++;
2315 if (failrec
->this_mirror
> num_copies
) {
2316 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2317 num_copies
, failrec
->this_mirror
, failed_mirror
);
2325 struct bio
*btrfs_create_repair_bio(struct inode
*inode
, struct bio
*failed_bio
,
2326 struct io_failure_record
*failrec
,
2327 struct page
*page
, int pg_offset
, int icsum
,
2328 bio_end_io_t
*endio_func
, void *data
)
2331 struct btrfs_io_bio
*btrfs_failed_bio
;
2332 struct btrfs_io_bio
*btrfs_bio
;
2334 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2338 bio
->bi_end_io
= endio_func
;
2339 bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2340 bio
->bi_bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
2341 bio
->bi_iter
.bi_size
= 0;
2342 bio
->bi_private
= data
;
2344 btrfs_failed_bio
= btrfs_io_bio(failed_bio
);
2345 if (btrfs_failed_bio
->csum
) {
2346 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2347 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2349 btrfs_bio
= btrfs_io_bio(bio
);
2350 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
2352 memcpy(btrfs_bio
->csum
, btrfs_failed_bio
->csum
+ icsum
,
2356 bio_add_page(bio
, page
, failrec
->len
, pg_offset
);
2362 * this is a generic handler for readpage errors (default
2363 * readpage_io_failed_hook). if other copies exist, read those and write back
2364 * good data to the failed position. does not investigate in remapping the
2365 * failed extent elsewhere, hoping the device will be smart enough to do this as
2369 static int bio_readpage_error(struct bio
*failed_bio
, u64 phy_offset
,
2370 struct page
*page
, u64 start
, u64 end
,
2373 struct io_failure_record
*failrec
;
2374 struct inode
*inode
= page
->mapping
->host
;
2375 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2380 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
2382 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
2386 ret
= btrfs_check_repairable(inode
, failed_bio
, failrec
, failed_mirror
);
2388 free_io_failure(inode
, failrec
);
2392 if (failed_bio
->bi_vcnt
> 1)
2393 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
2395 read_mode
= READ_SYNC
;
2397 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2398 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
2399 start
- page_offset(page
),
2400 (int)phy_offset
, failed_bio
->bi_end_io
,
2403 free_io_failure(inode
, failrec
);
2407 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2408 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
2410 ret
= tree
->ops
->submit_bio_hook(inode
, read_mode
, bio
,
2411 failrec
->this_mirror
,
2412 failrec
->bio_flags
, 0);
2414 free_io_failure(inode
, failrec
);
2421 /* lots and lots of room for performance fixes in the end_bio funcs */
2423 int end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2425 int uptodate
= (err
== 0);
2426 struct extent_io_tree
*tree
;
2429 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2431 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
2432 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
2433 end
, NULL
, uptodate
);
2439 ClearPageUptodate(page
);
2441 ret
= ret
< 0 ? ret
: -EIO
;
2442 mapping_set_error(page
->mapping
, ret
);
2448 * after a writepage IO is done, we need to:
2449 * clear the uptodate bits on error
2450 * clear the writeback bits in the extent tree for this IO
2451 * end_page_writeback if the page has no more pending IO
2453 * Scheduling is not allowed, so the extent state tree is expected
2454 * to have one and only one object corresponding to this IO.
2456 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
2458 struct bio_vec
*bvec
;
2463 bio_for_each_segment_all(bvec
, bio
, i
) {
2464 struct page
*page
= bvec
->bv_page
;
2466 /* We always issue full-page reads, but if some block
2467 * in a page fails to read, blk_update_request() will
2468 * advance bv_offset and adjust bv_len to compensate.
2469 * Print a warning for nonzero offsets, and an error
2470 * if they don't add up to a full page. */
2471 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2472 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2473 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2474 "partial page write in btrfs with offset %u and length %u",
2475 bvec
->bv_offset
, bvec
->bv_len
);
2477 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2478 "incomplete page write in btrfs with offset %u and "
2480 bvec
->bv_offset
, bvec
->bv_len
);
2483 start
= page_offset(page
);
2484 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2486 if (end_extent_writepage(page
, err
, start
, end
))
2489 end_page_writeback(page
);
2496 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2499 struct extent_state
*cached
= NULL
;
2500 u64 end
= start
+ len
- 1;
2502 if (uptodate
&& tree
->track_uptodate
)
2503 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2504 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2508 * after a readpage IO is done, we need to:
2509 * clear the uptodate bits on error
2510 * set the uptodate bits if things worked
2511 * set the page up to date if all extents in the tree are uptodate
2512 * clear the lock bit in the extent tree
2513 * unlock the page if there are no other extents locked for it
2515 * Scheduling is not allowed, so the extent state tree is expected
2516 * to have one and only one object corresponding to this IO.
2518 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
2520 struct bio_vec
*bvec
;
2521 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2522 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2523 struct extent_io_tree
*tree
;
2528 u64 extent_start
= 0;
2537 bio_for_each_segment_all(bvec
, bio
, i
) {
2538 struct page
*page
= bvec
->bv_page
;
2539 struct inode
*inode
= page
->mapping
->host
;
2541 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2542 "mirror=%u\n", (u64
)bio
->bi_iter
.bi_sector
, err
,
2543 io_bio
->mirror_num
);
2544 tree
= &BTRFS_I(inode
)->io_tree
;
2546 /* We always issue full-page reads, but if some block
2547 * in a page fails to read, blk_update_request() will
2548 * advance bv_offset and adjust bv_len to compensate.
2549 * Print a warning for nonzero offsets, and an error
2550 * if they don't add up to a full page. */
2551 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2552 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2553 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2554 "partial page read in btrfs with offset %u and length %u",
2555 bvec
->bv_offset
, bvec
->bv_len
);
2557 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2558 "incomplete page read in btrfs with offset %u and "
2560 bvec
->bv_offset
, bvec
->bv_len
);
2563 start
= page_offset(page
);
2564 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2567 mirror
= io_bio
->mirror_num
;
2568 if (likely(uptodate
&& tree
->ops
&&
2569 tree
->ops
->readpage_end_io_hook
)) {
2570 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2576 clean_io_failure(inode
, start
, page
, 0);
2579 if (likely(uptodate
))
2582 if (tree
->ops
&& tree
->ops
->readpage_io_failed_hook
) {
2583 ret
= tree
->ops
->readpage_io_failed_hook(page
, mirror
);
2585 test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
2589 * The generic bio_readpage_error handles errors the
2590 * following way: If possible, new read requests are
2591 * created and submitted and will end up in
2592 * end_bio_extent_readpage as well (if we're lucky, not
2593 * in the !uptodate case). In that case it returns 0 and
2594 * we just go on with the next page in our bio. If it
2595 * can't handle the error it will return -EIO and we
2596 * remain responsible for that page.
2598 ret
= bio_readpage_error(bio
, offset
, page
, start
, end
,
2602 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2610 if (likely(uptodate
)) {
2611 loff_t i_size
= i_size_read(inode
);
2612 pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2615 /* Zero out the end if this page straddles i_size */
2616 off
= i_size
& (PAGE_CACHE_SIZE
-1);
2617 if (page
->index
== end_index
&& off
)
2618 zero_user_segment(page
, off
, PAGE_CACHE_SIZE
);
2619 SetPageUptodate(page
);
2621 ClearPageUptodate(page
);
2627 if (unlikely(!uptodate
)) {
2629 endio_readpage_release_extent(tree
,
2635 endio_readpage_release_extent(tree
, start
,
2636 end
- start
+ 1, 0);
2637 } else if (!extent_len
) {
2638 extent_start
= start
;
2639 extent_len
= end
+ 1 - start
;
2640 } else if (extent_start
+ extent_len
== start
) {
2641 extent_len
+= end
+ 1 - start
;
2643 endio_readpage_release_extent(tree
, extent_start
,
2644 extent_len
, uptodate
);
2645 extent_start
= start
;
2646 extent_len
= end
+ 1 - start
;
2651 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2654 io_bio
->end_io(io_bio
, err
);
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2663 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
2666 struct btrfs_io_bio
*btrfs_bio
;
2669 bio
= bio_alloc_bioset(gfp_flags
, nr_vecs
, btrfs_bioset
);
2671 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
2672 while (!bio
&& (nr_vecs
/= 2)) {
2673 bio
= bio_alloc_bioset(gfp_flags
,
2674 nr_vecs
, btrfs_bioset
);
2679 bio
->bi_bdev
= bdev
;
2680 bio
->bi_iter
.bi_sector
= first_sector
;
2681 btrfs_bio
= btrfs_io_bio(bio
);
2682 btrfs_bio
->csum
= NULL
;
2683 btrfs_bio
->csum_allocated
= NULL
;
2684 btrfs_bio
->end_io
= NULL
;
2689 struct bio
*btrfs_bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
2691 struct btrfs_io_bio
*btrfs_bio
;
2694 new = bio_clone_bioset(bio
, gfp_mask
, btrfs_bioset
);
2696 btrfs_bio
= btrfs_io_bio(new);
2697 btrfs_bio
->csum
= NULL
;
2698 btrfs_bio
->csum_allocated
= NULL
;
2699 btrfs_bio
->end_io
= NULL
;
2704 /* this also allocates from the btrfs_bioset */
2705 struct bio
*btrfs_io_bio_alloc(gfp_t gfp_mask
, unsigned int nr_iovecs
)
2707 struct btrfs_io_bio
*btrfs_bio
;
2710 bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, btrfs_bioset
);
2712 btrfs_bio
= btrfs_io_bio(bio
);
2713 btrfs_bio
->csum
= NULL
;
2714 btrfs_bio
->csum_allocated
= NULL
;
2715 btrfs_bio
->end_io
= NULL
;
2721 static int __must_check
submit_one_bio(int rw
, struct bio
*bio
,
2722 int mirror_num
, unsigned long bio_flags
)
2725 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2726 struct page
*page
= bvec
->bv_page
;
2727 struct extent_io_tree
*tree
= bio
->bi_private
;
2730 start
= page_offset(page
) + bvec
->bv_offset
;
2732 bio
->bi_private
= NULL
;
2736 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
2737 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
2738 mirror_num
, bio_flags
, start
);
2740 btrfsic_submit_bio(rw
, bio
);
2742 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2748 static int merge_bio(int rw
, struct extent_io_tree
*tree
, struct page
*page
,
2749 unsigned long offset
, size_t size
, struct bio
*bio
,
2750 unsigned long bio_flags
)
2753 if (tree
->ops
&& tree
->ops
->merge_bio_hook
)
2754 ret
= tree
->ops
->merge_bio_hook(rw
, page
, offset
, size
, bio
,
2761 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
2762 struct page
*page
, sector_t sector
,
2763 size_t size
, unsigned long offset
,
2764 struct block_device
*bdev
,
2765 struct bio
**bio_ret
,
2766 unsigned long max_pages
,
2767 bio_end_io_t end_io_func
,
2769 unsigned long prev_bio_flags
,
2770 unsigned long bio_flags
,
2771 bool force_bio_submit
)
2777 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
2778 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
2779 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
2781 if (bio_ret
&& *bio_ret
) {
2784 contig
= bio
->bi_iter
.bi_sector
== sector
;
2786 contig
= bio_end_sector(bio
) == sector
;
2788 if (prev_bio_flags
!= bio_flags
|| !contig
||
2790 merge_bio(rw
, tree
, page
, offset
, page_size
, bio
, bio_flags
) ||
2791 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
2792 ret
= submit_one_bio(rw
, bio
, mirror_num
,
2801 if (this_compressed
)
2804 nr
= bio_get_nr_vecs(bdev
);
2806 bio
= btrfs_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
2810 bio_add_page(bio
, page
, page_size
, offset
);
2811 bio
->bi_end_io
= end_io_func
;
2812 bio
->bi_private
= tree
;
2817 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
2822 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
2825 if (!PagePrivate(page
)) {
2826 SetPagePrivate(page
);
2827 page_cache_get(page
);
2828 set_page_private(page
, (unsigned long)eb
);
2830 WARN_ON(page
->private != (unsigned long)eb
);
2834 void set_page_extent_mapped(struct page
*page
)
2836 if (!PagePrivate(page
)) {
2837 SetPagePrivate(page
);
2838 page_cache_get(page
);
2839 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2843 static struct extent_map
*
2844 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
2845 u64 start
, u64 len
, get_extent_t
*get_extent
,
2846 struct extent_map
**em_cached
)
2848 struct extent_map
*em
;
2850 if (em_cached
&& *em_cached
) {
2852 if (extent_map_in_tree(em
) && start
>= em
->start
&&
2853 start
< extent_map_end(em
)) {
2854 atomic_inc(&em
->refs
);
2858 free_extent_map(em
);
2862 em
= get_extent(inode
, page
, pg_offset
, start
, len
, 0);
2863 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
2865 atomic_inc(&em
->refs
);
2871 * basic readpage implementation. Locked extent state structs are inserted
2872 * into the tree that are removed when the IO is done (by the end_io
2874 * XXX JDM: This needs looking at to ensure proper page locking
2876 static int __do_readpage(struct extent_io_tree
*tree
,
2878 get_extent_t
*get_extent
,
2879 struct extent_map
**em_cached
,
2880 struct bio
**bio
, int mirror_num
,
2881 unsigned long *bio_flags
, int rw
,
2884 struct inode
*inode
= page
->mapping
->host
;
2885 u64 start
= page_offset(page
);
2886 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2890 u64 last_byte
= i_size_read(inode
);
2894 struct extent_map
*em
;
2895 struct block_device
*bdev
;
2898 int parent_locked
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
2899 size_t pg_offset
= 0;
2901 size_t disk_io_size
;
2902 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2903 unsigned long this_bio_flag
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
2905 set_page_extent_mapped(page
);
2908 if (!PageUptodate(page
)) {
2909 if (cleancache_get_page(page
) == 0) {
2910 BUG_ON(blocksize
!= PAGE_SIZE
);
2911 unlock_extent(tree
, start
, end
);
2916 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
2918 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
2921 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
2922 userpage
= kmap_atomic(page
);
2923 memset(userpage
+ zero_offset
, 0, iosize
);
2924 flush_dcache_page(page
);
2925 kunmap_atomic(userpage
);
2928 while (cur
<= end
) {
2929 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2930 bool force_bio_submit
= false;
2932 if (cur
>= last_byte
) {
2934 struct extent_state
*cached
= NULL
;
2936 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
2937 userpage
= kmap_atomic(page
);
2938 memset(userpage
+ pg_offset
, 0, iosize
);
2939 flush_dcache_page(page
);
2940 kunmap_atomic(userpage
);
2941 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2944 unlock_extent_cached(tree
, cur
,
2949 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
2950 end
- cur
+ 1, get_extent
, em_cached
);
2951 if (IS_ERR_OR_NULL(em
)) {
2954 unlock_extent(tree
, cur
, end
);
2957 extent_offset
= cur
- em
->start
;
2958 BUG_ON(extent_map_end(em
) <= cur
);
2961 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2962 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
2963 extent_set_compress_type(&this_bio_flag
,
2967 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2968 cur_end
= min(extent_map_end(em
) - 1, end
);
2969 iosize
= ALIGN(iosize
, blocksize
);
2970 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2971 disk_io_size
= em
->block_len
;
2972 sector
= em
->block_start
>> 9;
2974 sector
= (em
->block_start
+ extent_offset
) >> 9;
2975 disk_io_size
= iosize
;
2978 block_start
= em
->block_start
;
2979 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2980 block_start
= EXTENT_MAP_HOLE
;
2983 * If we have a file range that points to a compressed extent
2984 * and it's followed by a consecutive file range that points to
2985 * to the same compressed extent (possibly with a different
2986 * offset and/or length, so it either points to the whole extent
2987 * or only part of it), we must make sure we do not submit a
2988 * single bio to populate the pages for the 2 ranges because
2989 * this makes the compressed extent read zero out the pages
2990 * belonging to the 2nd range. Imagine the following scenario:
2993 * [0 - 8K] [8K - 24K]
2996 * points to extent X, points to extent X,
2997 * offset 4K, length of 8K offset 0, length 16K
2999 * [extent X, compressed length = 4K uncompressed length = 16K]
3001 * If the bio to read the compressed extent covers both ranges,
3002 * it will decompress extent X into the pages belonging to the
3003 * first range and then it will stop, zeroing out the remaining
3004 * pages that belong to the other range that points to extent X.
3005 * So here we make sure we submit 2 bios, one for the first
3006 * range and another one for the third range. Both will target
3007 * the same physical extent from disk, but we can't currently
3008 * make the compressed bio endio callback populate the pages
3009 * for both ranges because each compressed bio is tightly
3010 * coupled with a single extent map, and each range can have
3011 * an extent map with a different offset value relative to the
3012 * uncompressed data of our extent and different lengths. This
3013 * is a corner case so we prioritize correctness over
3014 * non-optimal behavior (submitting 2 bios for the same extent).
3016 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3017 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3018 *prev_em_start
!= em
->orig_start
)
3019 force_bio_submit
= true;
3022 *prev_em_start
= em
->orig_start
;
3024 free_extent_map(em
);
3027 /* we've found a hole, just zero and go on */
3028 if (block_start
== EXTENT_MAP_HOLE
) {
3030 struct extent_state
*cached
= NULL
;
3032 userpage
= kmap_atomic(page
);
3033 memset(userpage
+ pg_offset
, 0, iosize
);
3034 flush_dcache_page(page
);
3035 kunmap_atomic(userpage
);
3037 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3039 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
3042 pg_offset
+= iosize
;
3045 /* the get_extent function already copied into the page */
3046 if (test_range_bit(tree
, cur
, cur_end
,
3047 EXTENT_UPTODATE
, 1, NULL
)) {
3048 check_page_uptodate(tree
, page
);
3050 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3052 pg_offset
+= iosize
;
3055 /* we have an inline extent but it didn't get marked up
3056 * to date. Error out
3058 if (block_start
== EXTENT_MAP_INLINE
) {
3061 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3063 pg_offset
+= iosize
;
3068 ret
= submit_extent_page(rw
, tree
, page
,
3069 sector
, disk_io_size
, pg_offset
,
3071 end_bio_extent_readpage
, mirror_num
,
3077 *bio_flags
= this_bio_flag
;
3081 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3084 pg_offset
+= iosize
;
3088 if (!PageError(page
))
3089 SetPageUptodate(page
);
3095 static inline void __do_contiguous_readpages(struct extent_io_tree
*tree
,
3096 struct page
*pages
[], int nr_pages
,
3098 get_extent_t
*get_extent
,
3099 struct extent_map
**em_cached
,
3100 struct bio
**bio
, int mirror_num
,
3101 unsigned long *bio_flags
, int rw
,
3104 struct inode
*inode
;
3105 struct btrfs_ordered_extent
*ordered
;
3108 inode
= pages
[0]->mapping
->host
;
3110 lock_extent(tree
, start
, end
);
3111 ordered
= btrfs_lookup_ordered_range(inode
, start
,
3115 unlock_extent(tree
, start
, end
);
3116 btrfs_start_ordered_extent(inode
, ordered
, 1);
3117 btrfs_put_ordered_extent(ordered
);
3120 for (index
= 0; index
< nr_pages
; index
++) {
3121 __do_readpage(tree
, pages
[index
], get_extent
, em_cached
, bio
,
3122 mirror_num
, bio_flags
, rw
, prev_em_start
);
3123 page_cache_release(pages
[index
]);
3127 static void __extent_readpages(struct extent_io_tree
*tree
,
3128 struct page
*pages
[],
3129 int nr_pages
, get_extent_t
*get_extent
,
3130 struct extent_map
**em_cached
,
3131 struct bio
**bio
, int mirror_num
,
3132 unsigned long *bio_flags
, int rw
,
3139 int first_index
= 0;
3141 for (index
= 0; index
< nr_pages
; index
++) {
3142 page_start
= page_offset(pages
[index
]);
3145 end
= start
+ PAGE_CACHE_SIZE
- 1;
3146 first_index
= index
;
3147 } else if (end
+ 1 == page_start
) {
3148 end
+= PAGE_CACHE_SIZE
;
3150 __do_contiguous_readpages(tree
, &pages
[first_index
],
3151 index
- first_index
, start
,
3152 end
, get_extent
, em_cached
,
3153 bio
, mirror_num
, bio_flags
,
3156 end
= start
+ PAGE_CACHE_SIZE
- 1;
3157 first_index
= index
;
3162 __do_contiguous_readpages(tree
, &pages
[first_index
],
3163 index
- first_index
, start
,
3164 end
, get_extent
, em_cached
, bio
,
3165 mirror_num
, bio_flags
, rw
,
3169 static int __extent_read_full_page(struct extent_io_tree
*tree
,
3171 get_extent_t
*get_extent
,
3172 struct bio
**bio
, int mirror_num
,
3173 unsigned long *bio_flags
, int rw
)
3175 struct inode
*inode
= page
->mapping
->host
;
3176 struct btrfs_ordered_extent
*ordered
;
3177 u64 start
= page_offset(page
);
3178 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3182 lock_extent(tree
, start
, end
);
3183 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
3186 unlock_extent(tree
, start
, end
);
3187 btrfs_start_ordered_extent(inode
, ordered
, 1);
3188 btrfs_put_ordered_extent(ordered
);
3191 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, bio
, mirror_num
,
3192 bio_flags
, rw
, NULL
);
3196 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3197 get_extent_t
*get_extent
, int mirror_num
)
3199 struct bio
*bio
= NULL
;
3200 unsigned long bio_flags
= 0;
3203 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
3206 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3210 int extent_read_full_page_nolock(struct extent_io_tree
*tree
, struct page
*page
,
3211 get_extent_t
*get_extent
, int mirror_num
)
3213 struct bio
*bio
= NULL
;
3214 unsigned long bio_flags
= EXTENT_BIO_PARENT_LOCKED
;
3217 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, &bio
, mirror_num
,
3218 &bio_flags
, READ
, NULL
);
3220 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3224 static noinline
void update_nr_written(struct page
*page
,
3225 struct writeback_control
*wbc
,
3226 unsigned long nr_written
)
3228 wbc
->nr_to_write
-= nr_written
;
3229 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
3230 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
3231 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
3235 * helper for __extent_writepage, doing all of the delayed allocation setup.
3237 * This returns 1 if our fill_delalloc function did all the work required
3238 * to write the page (copy into inline extent). In this case the IO has
3239 * been started and the page is already unlocked.
3241 * This returns 0 if all went well (page still locked)
3242 * This returns < 0 if there were errors (page still locked)
3244 static noinline_for_stack
int writepage_delalloc(struct inode
*inode
,
3245 struct page
*page
, struct writeback_control
*wbc
,
3246 struct extent_page_data
*epd
,
3248 unsigned long *nr_written
)
3250 struct extent_io_tree
*tree
= epd
->tree
;
3251 u64 page_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
3253 u64 delalloc_to_write
= 0;
3254 u64 delalloc_end
= 0;
3256 int page_started
= 0;
3258 if (epd
->extent_locked
|| !tree
->ops
|| !tree
->ops
->fill_delalloc
)
3261 while (delalloc_end
< page_end
) {
3262 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
3267 if (nr_delalloc
== 0) {
3268 delalloc_start
= delalloc_end
+ 1;
3271 ret
= tree
->ops
->fill_delalloc(inode
, page
,
3276 /* File system has been set read-only */
3279 /* fill_delalloc should be return < 0 for error
3280 * but just in case, we use > 0 here meaning the
3281 * IO is started, so we don't want to return > 0
3282 * unless things are going well.
3284 ret
= ret
< 0 ? ret
: -EIO
;
3288 * delalloc_end is already one less than the total
3289 * length, so we don't subtract one from
3292 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3295 delalloc_start
= delalloc_end
+ 1;
3297 if (wbc
->nr_to_write
< delalloc_to_write
) {
3300 if (delalloc_to_write
< thresh
* 2)
3301 thresh
= delalloc_to_write
;
3302 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3306 /* did the fill delalloc function already unlock and start
3311 * we've unlocked the page, so we can't update
3312 * the mapping's writeback index, just update
3315 wbc
->nr_to_write
-= *nr_written
;
3326 * helper for __extent_writepage. This calls the writepage start hooks,
3327 * and does the loop to map the page into extents and bios.
3329 * We return 1 if the IO is started and the page is unlocked,
3330 * 0 if all went well (page still locked)
3331 * < 0 if there were errors (page still locked)
3333 static noinline_for_stack
int __extent_writepage_io(struct inode
*inode
,
3335 struct writeback_control
*wbc
,
3336 struct extent_page_data
*epd
,
3338 unsigned long nr_written
,
3339 int write_flags
, int *nr_ret
)
3341 struct extent_io_tree
*tree
= epd
->tree
;
3342 u64 start
= page_offset(page
);
3343 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
3350 struct extent_state
*cached_state
= NULL
;
3351 struct extent_map
*em
;
3352 struct block_device
*bdev
;
3353 size_t pg_offset
= 0;
3359 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
3360 ret
= tree
->ops
->writepage_start_hook(page
, start
,
3363 /* Fixup worker will requeue */
3365 wbc
->pages_skipped
++;
3367 redirty_page_for_writepage(wbc
, page
);
3369 update_nr_written(page
, wbc
, nr_written
);
3377 * we don't want to touch the inode after unlocking the page,
3378 * so we update the mapping writeback index now
3380 update_nr_written(page
, wbc
, nr_written
+ 1);
3383 if (i_size
<= start
) {
3384 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3385 tree
->ops
->writepage_end_io_hook(page
, start
,
3390 blocksize
= inode
->i_sb
->s_blocksize
;
3392 while (cur
<= end
) {
3394 if (cur
>= i_size
) {
3395 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3396 tree
->ops
->writepage_end_io_hook(page
, cur
,
3400 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
3402 if (IS_ERR_OR_NULL(em
)) {
3404 ret
= PTR_ERR_OR_ZERO(em
);
3408 extent_offset
= cur
- em
->start
;
3409 em_end
= extent_map_end(em
);
3410 BUG_ON(em_end
<= cur
);
3412 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3413 iosize
= ALIGN(iosize
, blocksize
);
3414 sector
= (em
->block_start
+ extent_offset
) >> 9;
3416 block_start
= em
->block_start
;
3417 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3418 free_extent_map(em
);
3422 * compressed and inline extents are written through other
3425 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3426 block_start
== EXTENT_MAP_INLINE
) {
3428 * end_io notification does not happen here for
3429 * compressed extents
3431 if (!compressed
&& tree
->ops
&&
3432 tree
->ops
->writepage_end_io_hook
)
3433 tree
->ops
->writepage_end_io_hook(page
, cur
,
3436 else if (compressed
) {
3437 /* we don't want to end_page_writeback on
3438 * a compressed extent. this happens
3445 pg_offset
+= iosize
;
3449 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
3450 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
3458 unsigned long max_nr
= (i_size
>> PAGE_CACHE_SHIFT
) + 1;
3460 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3461 if (!PageWriteback(page
)) {
3462 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3463 "page %lu not writeback, cur %llu end %llu",
3464 page
->index
, cur
, end
);
3467 ret
= submit_extent_page(write_flags
, tree
, page
,
3468 sector
, iosize
, pg_offset
,
3469 bdev
, &epd
->bio
, max_nr
,
3470 end_bio_extent_writepage
,
3476 pg_offset
+= iosize
;
3484 /* drop our reference on any cached states */
3485 free_extent_state(cached_state
);
3490 * the writepage semantics are similar to regular writepage. extent
3491 * records are inserted to lock ranges in the tree, and as dirty areas
3492 * are found, they are marked writeback. Then the lock bits are removed
3493 * and the end_io handler clears the writeback ranges
3495 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3498 struct inode
*inode
= page
->mapping
->host
;
3499 struct extent_page_data
*epd
= data
;
3500 u64 start
= page_offset(page
);
3501 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
3504 size_t pg_offset
= 0;
3505 loff_t i_size
= i_size_read(inode
);
3506 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
3508 unsigned long nr_written
= 0;
3510 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3511 write_flags
= WRITE_SYNC
;
3513 write_flags
= WRITE
;
3515 trace___extent_writepage(page
, inode
, wbc
);
3517 WARN_ON(!PageLocked(page
));
3519 ClearPageError(page
);
3521 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
3522 if (page
->index
> end_index
||
3523 (page
->index
== end_index
&& !pg_offset
)) {
3524 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
3529 if (page
->index
== end_index
) {
3532 userpage
= kmap_atomic(page
);
3533 memset(userpage
+ pg_offset
, 0,
3534 PAGE_CACHE_SIZE
- pg_offset
);
3535 kunmap_atomic(userpage
);
3536 flush_dcache_page(page
);
3541 set_page_extent_mapped(page
);
3543 ret
= writepage_delalloc(inode
, page
, wbc
, epd
, start
, &nr_written
);
3549 ret
= __extent_writepage_io(inode
, page
, wbc
, epd
,
3550 i_size
, nr_written
, write_flags
, &nr
);
3556 /* make sure the mapping tag for page dirty gets cleared */
3557 set_page_writeback(page
);
3558 end_page_writeback(page
);
3560 if (PageError(page
)) {
3561 ret
= ret
< 0 ? ret
: -EIO
;
3562 end_extent_writepage(page
, ret
, start
, page_end
);
3571 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3573 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3574 TASK_UNINTERRUPTIBLE
);
3577 static noinline_for_stack
int
3578 lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3579 struct btrfs_fs_info
*fs_info
,
3580 struct extent_page_data
*epd
)
3582 unsigned long i
, num_pages
;
3586 if (!btrfs_try_tree_write_lock(eb
)) {
3588 flush_write_bio(epd
);
3589 btrfs_tree_lock(eb
);
3592 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3593 btrfs_tree_unlock(eb
);
3597 flush_write_bio(epd
);
3601 wait_on_extent_buffer_writeback(eb
);
3602 btrfs_tree_lock(eb
);
3603 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3605 btrfs_tree_unlock(eb
);
3610 * We need to do this to prevent races in people who check if the eb is
3611 * under IO since we can end up having no IO bits set for a short period
3614 spin_lock(&eb
->refs_lock
);
3615 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3616 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3617 spin_unlock(&eb
->refs_lock
);
3618 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3619 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
3621 fs_info
->dirty_metadata_batch
);
3624 spin_unlock(&eb
->refs_lock
);
3627 btrfs_tree_unlock(eb
);
3632 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3633 for (i
= 0; i
< num_pages
; i
++) {
3634 struct page
*p
= eb
->pages
[i
];
3636 if (!trylock_page(p
)) {
3638 flush_write_bio(epd
);
3648 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3650 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3651 smp_mb__after_atomic();
3652 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3655 static void set_btree_ioerr(struct page
*page
)
3657 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3658 struct btrfs_inode
*btree_ino
= BTRFS_I(eb
->fs_info
->btree_inode
);
3661 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3665 * If writeback for a btree extent that doesn't belong to a log tree
3666 * failed, increment the counter transaction->eb_write_errors.
3667 * We do this because while the transaction is running and before it's
3668 * committing (when we call filemap_fdata[write|wait]_range against
3669 * the btree inode), we might have
3670 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3671 * returns an error or an error happens during writeback, when we're
3672 * committing the transaction we wouldn't know about it, since the pages
3673 * can be no longer dirty nor marked anymore for writeback (if a
3674 * subsequent modification to the extent buffer didn't happen before the
3675 * transaction commit), which makes filemap_fdata[write|wait]_range not
3676 * able to find the pages tagged with SetPageError at transaction
3677 * commit time. So if this happens we must abort the transaction,
3678 * otherwise we commit a super block with btree roots that point to
3679 * btree nodes/leafs whose content on disk is invalid - either garbage
3680 * or the content of some node/leaf from a past generation that got
3681 * cowed or deleted and is no longer valid.
3683 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3684 * not be enough - we need to distinguish between log tree extents vs
3685 * non-log tree extents, and the next filemap_fdatawait_range() call
3686 * will catch and clear such errors in the mapping - and that call might
3687 * be from a log sync and not from a transaction commit. Also, checking
3688 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3689 * not done and would not be reliable - the eb might have been released
3690 * from memory and reading it back again means that flag would not be
3691 * set (since it's a runtime flag, not persisted on disk).
3693 * Using the flags below in the btree inode also makes us achieve the
3694 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3695 * writeback for all dirty pages and before filemap_fdatawait_range()
3696 * is called, the writeback for all dirty pages had already finished
3697 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3698 * filemap_fdatawait_range() would return success, as it could not know
3699 * that writeback errors happened (the pages were no longer tagged for
3702 switch (eb
->log_index
) {
3704 set_bit(BTRFS_INODE_BTREE_ERR
, &btree_ino
->runtime_flags
);
3707 set_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
3710 set_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
3713 BUG(); /* unexpected, logic error */
3717 static void end_bio_extent_buffer_writepage(struct bio
*bio
, int err
)
3719 struct bio_vec
*bvec
;
3720 struct extent_buffer
*eb
;
3723 bio_for_each_segment_all(bvec
, bio
, i
) {
3724 struct page
*page
= bvec
->bv_page
;
3726 eb
= (struct extent_buffer
*)page
->private;
3728 done
= atomic_dec_and_test(&eb
->io_pages
);
3730 if (err
|| test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3731 ClearPageUptodate(page
);
3732 set_btree_ioerr(page
);
3735 end_page_writeback(page
);
3740 end_extent_buffer_writeback(eb
);
3746 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3747 struct btrfs_fs_info
*fs_info
,
3748 struct writeback_control
*wbc
,
3749 struct extent_page_data
*epd
)
3751 struct block_device
*bdev
= fs_info
->fs_devices
->latest_bdev
;
3752 struct extent_io_tree
*tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
3753 u64 offset
= eb
->start
;
3754 unsigned long i
, num_pages
;
3755 unsigned long bio_flags
= 0;
3756 int rw
= (epd
->sync_io
? WRITE_SYNC
: WRITE
) | REQ_META
;
3759 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3760 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3761 atomic_set(&eb
->io_pages
, num_pages
);
3762 if (btrfs_header_owner(eb
) == BTRFS_TREE_LOG_OBJECTID
)
3763 bio_flags
= EXTENT_BIO_TREE_LOG
;
3765 for (i
= 0; i
< num_pages
; i
++) {
3766 struct page
*p
= eb
->pages
[i
];
3768 clear_page_dirty_for_io(p
);
3769 set_page_writeback(p
);
3770 ret
= submit_extent_page(rw
, tree
, p
, offset
>> 9,
3771 PAGE_CACHE_SIZE
, 0, bdev
, &epd
->bio
,
3772 -1, end_bio_extent_buffer_writepage
,
3773 0, epd
->bio_flags
, bio_flags
, false);
3774 epd
->bio_flags
= bio_flags
;
3777 end_page_writeback(p
);
3778 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3779 end_extent_buffer_writeback(eb
);
3783 offset
+= PAGE_CACHE_SIZE
;
3784 update_nr_written(p
, wbc
, 1);
3788 if (unlikely(ret
)) {
3789 for (; i
< num_pages
; i
++) {
3790 struct page
*p
= eb
->pages
[i
];
3791 clear_page_dirty_for_io(p
);
3799 int btree_write_cache_pages(struct address_space
*mapping
,
3800 struct writeback_control
*wbc
)
3802 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3803 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
3804 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3805 struct extent_page_data epd
= {
3809 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3814 int nr_to_write_done
= 0;
3815 struct pagevec pvec
;
3818 pgoff_t end
; /* Inclusive */
3822 pagevec_init(&pvec
, 0);
3823 if (wbc
->range_cyclic
) {
3824 index
= mapping
->writeback_index
; /* Start from prev offset */
3827 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
3828 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
3831 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3832 tag
= PAGECACHE_TAG_TOWRITE
;
3834 tag
= PAGECACHE_TAG_DIRTY
;
3836 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3837 tag_pages_for_writeback(mapping
, index
, end
);
3838 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3839 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3840 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3844 for (i
= 0; i
< nr_pages
; i
++) {
3845 struct page
*page
= pvec
.pages
[i
];
3847 if (!PagePrivate(page
))
3850 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3855 spin_lock(&mapping
->private_lock
);
3856 if (!PagePrivate(page
)) {
3857 spin_unlock(&mapping
->private_lock
);
3861 eb
= (struct extent_buffer
*)page
->private;
3864 * Shouldn't happen and normally this would be a BUG_ON
3865 * but no sense in crashing the users box for something
3866 * we can survive anyway.
3869 spin_unlock(&mapping
->private_lock
);
3873 if (eb
== prev_eb
) {
3874 spin_unlock(&mapping
->private_lock
);
3878 ret
= atomic_inc_not_zero(&eb
->refs
);
3879 spin_unlock(&mapping
->private_lock
);
3884 ret
= lock_extent_buffer_for_io(eb
, fs_info
, &epd
);
3886 free_extent_buffer(eb
);
3890 ret
= write_one_eb(eb
, fs_info
, wbc
, &epd
);
3893 free_extent_buffer(eb
);
3896 free_extent_buffer(eb
);
3899 * the filesystem may choose to bump up nr_to_write.
3900 * We have to make sure to honor the new nr_to_write
3903 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3905 pagevec_release(&pvec
);
3908 if (!scanned
&& !done
) {
3910 * We hit the last page and there is more work to be done: wrap
3911 * back to the start of the file
3917 flush_write_bio(&epd
);
3922 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3923 * @mapping: address space structure to write
3924 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3925 * @writepage: function called for each page
3926 * @data: data passed to writepage function
3928 * If a page is already under I/O, write_cache_pages() skips it, even
3929 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3930 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3931 * and msync() need to guarantee that all the data which was dirty at the time
3932 * the call was made get new I/O started against them. If wbc->sync_mode is
3933 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3934 * existing IO to complete.
3936 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
3937 struct address_space
*mapping
,
3938 struct writeback_control
*wbc
,
3939 writepage_t writepage
, void *data
,
3940 void (*flush_fn
)(void *))
3942 struct inode
*inode
= mapping
->host
;
3946 int nr_to_write_done
= 0;
3947 struct pagevec pvec
;
3950 pgoff_t end
; /* Inclusive */
3955 * We have to hold onto the inode so that ordered extents can do their
3956 * work when the IO finishes. The alternative to this is failing to add
3957 * an ordered extent if the igrab() fails there and that is a huge pain
3958 * to deal with, so instead just hold onto the inode throughout the
3959 * writepages operation. If it fails here we are freeing up the inode
3960 * anyway and we'd rather not waste our time writing out stuff that is
3961 * going to be truncated anyway.
3966 pagevec_init(&pvec
, 0);
3967 if (wbc
->range_cyclic
) {
3968 index
= mapping
->writeback_index
; /* Start from prev offset */
3971 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
3972 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
3975 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3976 tag
= PAGECACHE_TAG_TOWRITE
;
3978 tag
= PAGECACHE_TAG_DIRTY
;
3980 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3981 tag_pages_for_writeback(mapping
, index
, end
);
3982 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3983 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3984 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3988 for (i
= 0; i
< nr_pages
; i
++) {
3989 struct page
*page
= pvec
.pages
[i
];
3992 * At this point we hold neither mapping->tree_lock nor
3993 * lock on the page itself: the page may be truncated or
3994 * invalidated (changing page->mapping to NULL), or even
3995 * swizzled back from swapper_space to tmpfs file
3998 if (!trylock_page(page
)) {
4003 if (unlikely(page
->mapping
!= mapping
)) {
4008 if (!wbc
->range_cyclic
&& page
->index
> end
) {
4014 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
4015 if (PageWriteback(page
))
4017 wait_on_page_writeback(page
);
4020 if (PageWriteback(page
) ||
4021 !clear_page_dirty_for_io(page
)) {
4026 ret
= (*writepage
)(page
, wbc
, data
);
4028 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
4032 if (!err
&& ret
< 0)
4036 * the filesystem may choose to bump up nr_to_write.
4037 * We have to make sure to honor the new nr_to_write
4040 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4042 pagevec_release(&pvec
);
4045 if (!scanned
&& !done
&& !err
) {
4047 * We hit the last page and there is more work to be done: wrap
4048 * back to the start of the file
4054 btrfs_add_delayed_iput(inode
);
4058 static void flush_epd_write_bio(struct extent_page_data
*epd
)
4067 ret
= submit_one_bio(rw
, epd
->bio
, 0, epd
->bio_flags
);
4068 BUG_ON(ret
< 0); /* -ENOMEM */
4073 static noinline
void flush_write_bio(void *data
)
4075 struct extent_page_data
*epd
= data
;
4076 flush_epd_write_bio(epd
);
4079 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
4080 get_extent_t
*get_extent
,
4081 struct writeback_control
*wbc
)
4084 struct extent_page_data epd
= {
4087 .get_extent
= get_extent
,
4089 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4093 ret
= __extent_writepage(page
, wbc
, &epd
);
4095 flush_epd_write_bio(&epd
);
4099 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
4100 u64 start
, u64 end
, get_extent_t
*get_extent
,
4104 struct address_space
*mapping
= inode
->i_mapping
;
4106 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
4109 struct extent_page_data epd
= {
4112 .get_extent
= get_extent
,
4114 .sync_io
= mode
== WB_SYNC_ALL
,
4117 struct writeback_control wbc_writepages
= {
4119 .nr_to_write
= nr_pages
* 2,
4120 .range_start
= start
,
4121 .range_end
= end
+ 1,
4124 while (start
<= end
) {
4125 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
4126 if (clear_page_dirty_for_io(page
))
4127 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4129 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
4130 tree
->ops
->writepage_end_io_hook(page
, start
,
4131 start
+ PAGE_CACHE_SIZE
- 1,
4135 page_cache_release(page
);
4136 start
+= PAGE_CACHE_SIZE
;
4139 flush_epd_write_bio(&epd
);
4143 int extent_writepages(struct extent_io_tree
*tree
,
4144 struct address_space
*mapping
,
4145 get_extent_t
*get_extent
,
4146 struct writeback_control
*wbc
)
4149 struct extent_page_data epd
= {
4152 .get_extent
= get_extent
,
4154 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4158 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
4159 __extent_writepage
, &epd
,
4161 flush_epd_write_bio(&epd
);
4165 int extent_readpages(struct extent_io_tree
*tree
,
4166 struct address_space
*mapping
,
4167 struct list_head
*pages
, unsigned nr_pages
,
4168 get_extent_t get_extent
)
4170 struct bio
*bio
= NULL
;
4172 unsigned long bio_flags
= 0;
4173 struct page
*pagepool
[16];
4175 struct extent_map
*em_cached
= NULL
;
4177 u64 prev_em_start
= (u64
)-1;
4179 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
4180 page
= list_entry(pages
->prev
, struct page
, lru
);
4182 prefetchw(&page
->flags
);
4183 list_del(&page
->lru
);
4184 if (add_to_page_cache_lru(page
, mapping
,
4185 page
->index
, GFP_NOFS
)) {
4186 page_cache_release(page
);
4190 pagepool
[nr
++] = page
;
4191 if (nr
< ARRAY_SIZE(pagepool
))
4193 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4194 &bio
, 0, &bio_flags
, READ
, &prev_em_start
);
4198 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4199 &bio
, 0, &bio_flags
, READ
, &prev_em_start
);
4202 free_extent_map(em_cached
);
4204 BUG_ON(!list_empty(pages
));
4206 return submit_one_bio(READ
, bio
, 0, bio_flags
);
4211 * basic invalidatepage code, this waits on any locked or writeback
4212 * ranges corresponding to the page, and then deletes any extent state
4213 * records from the tree
4215 int extent_invalidatepage(struct extent_io_tree
*tree
,
4216 struct page
*page
, unsigned long offset
)
4218 struct extent_state
*cached_state
= NULL
;
4219 u64 start
= page_offset(page
);
4220 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4221 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4223 start
+= ALIGN(offset
, blocksize
);
4227 lock_extent_bits(tree
, start
, end
, 0, &cached_state
);
4228 wait_on_page_writeback(page
);
4229 clear_extent_bit(tree
, start
, end
,
4230 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4231 EXTENT_DO_ACCOUNTING
,
4232 1, 1, &cached_state
, GFP_NOFS
);
4237 * a helper for releasepage, this tests for areas of the page that
4238 * are locked or under IO and drops the related state bits if it is safe
4241 static int try_release_extent_state(struct extent_map_tree
*map
,
4242 struct extent_io_tree
*tree
,
4243 struct page
*page
, gfp_t mask
)
4245 u64 start
= page_offset(page
);
4246 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4249 if (test_range_bit(tree
, start
, end
,
4250 EXTENT_IOBITS
, 0, NULL
))
4253 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
4256 * at this point we can safely clear everything except the
4257 * locked bit and the nodatasum bit
4259 ret
= clear_extent_bit(tree
, start
, end
,
4260 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4263 /* if clear_extent_bit failed for enomem reasons,
4264 * we can't allow the release to continue.
4275 * a helper for releasepage. As long as there are no locked extents
4276 * in the range corresponding to the page, both state records and extent
4277 * map records are removed
4279 int try_release_extent_mapping(struct extent_map_tree
*map
,
4280 struct extent_io_tree
*tree
, struct page
*page
,
4283 struct extent_map
*em
;
4284 u64 start
= page_offset(page
);
4285 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4287 if ((mask
& __GFP_WAIT
) &&
4288 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
4290 while (start
<= end
) {
4291 len
= end
- start
+ 1;
4292 write_lock(&map
->lock
);
4293 em
= lookup_extent_mapping(map
, start
, len
);
4295 write_unlock(&map
->lock
);
4298 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4299 em
->start
!= start
) {
4300 write_unlock(&map
->lock
);
4301 free_extent_map(em
);
4304 if (!test_range_bit(tree
, em
->start
,
4305 extent_map_end(em
) - 1,
4306 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
4308 remove_extent_mapping(map
, em
);
4309 /* once for the rb tree */
4310 free_extent_map(em
);
4312 start
= extent_map_end(em
);
4313 write_unlock(&map
->lock
);
4316 free_extent_map(em
);
4319 return try_release_extent_state(map
, tree
, page
, mask
);
4323 * helper function for fiemap, which doesn't want to see any holes.
4324 * This maps until we find something past 'last'
4326 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4329 get_extent_t
*get_extent
)
4331 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
4332 struct extent_map
*em
;
4339 len
= last
- offset
;
4342 len
= ALIGN(len
, sectorsize
);
4343 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
4344 if (IS_ERR_OR_NULL(em
))
4347 /* if this isn't a hole return it */
4348 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
4349 em
->block_start
!= EXTENT_MAP_HOLE
) {
4353 /* this is a hole, advance to the next extent */
4354 offset
= extent_map_end(em
);
4355 free_extent_map(em
);
4362 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4363 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
4367 u64 max
= start
+ len
;
4371 u64 last_for_get_extent
= 0;
4373 u64 isize
= i_size_read(inode
);
4374 struct btrfs_key found_key
;
4375 struct extent_map
*em
= NULL
;
4376 struct extent_state
*cached_state
= NULL
;
4377 struct btrfs_path
*path
;
4378 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4387 path
= btrfs_alloc_path();
4390 path
->leave_spinning
= 1;
4392 start
= round_down(start
, BTRFS_I(inode
)->root
->sectorsize
);
4393 len
= round_up(max
, BTRFS_I(inode
)->root
->sectorsize
) - start
;
4396 * lookup the last file extent. We're not using i_size here
4397 * because there might be preallocation past i_size
4399 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
), -1,
4402 btrfs_free_path(path
);
4407 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4408 found_type
= found_key
.type
;
4410 /* No extents, but there might be delalloc bits */
4411 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4412 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4413 /* have to trust i_size as the end */
4415 last_for_get_extent
= isize
;
4418 * remember the start of the last extent. There are a
4419 * bunch of different factors that go into the length of the
4420 * extent, so its much less complex to remember where it started
4422 last
= found_key
.offset
;
4423 last_for_get_extent
= last
+ 1;
4425 btrfs_release_path(path
);
4428 * we might have some extents allocated but more delalloc past those
4429 * extents. so, we trust isize unless the start of the last extent is
4434 last_for_get_extent
= isize
;
4437 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1, 0,
4440 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
,
4450 u64 offset_in_extent
= 0;
4452 /* break if the extent we found is outside the range */
4453 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4457 * get_extent may return an extent that starts before our
4458 * requested range. We have to make sure the ranges
4459 * we return to fiemap always move forward and don't
4460 * overlap, so adjust the offsets here
4462 em_start
= max(em
->start
, off
);
4465 * record the offset from the start of the extent
4466 * for adjusting the disk offset below. Only do this if the
4467 * extent isn't compressed since our in ram offset may be past
4468 * what we have actually allocated on disk.
4470 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4471 offset_in_extent
= em_start
- em
->start
;
4472 em_end
= extent_map_end(em
);
4473 em_len
= em_end
- em_start
;
4478 * bump off for our next call to get_extent
4480 off
= extent_map_end(em
);
4484 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4486 flags
|= FIEMAP_EXTENT_LAST
;
4487 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4488 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4489 FIEMAP_EXTENT_NOT_ALIGNED
);
4490 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4491 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4492 FIEMAP_EXTENT_UNKNOWN
);
4493 } else if (fieinfo
->fi_extents_max
) {
4494 u64 bytenr
= em
->block_start
-
4495 (em
->start
- em
->orig_start
);
4497 disko
= em
->block_start
+ offset_in_extent
;
4500 * As btrfs supports shared space, this information
4501 * can be exported to userspace tools via
4502 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4503 * then we're just getting a count and we can skip the
4506 ret
= btrfs_check_shared(NULL
, root
->fs_info
,
4508 btrfs_ino(inode
), bytenr
);
4512 flags
|= FIEMAP_EXTENT_SHARED
;
4515 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4516 flags
|= FIEMAP_EXTENT_ENCODED
;
4518 free_extent_map(em
);
4520 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4521 (last
== (u64
)-1 && isize
<= em_end
)) {
4522 flags
|= FIEMAP_EXTENT_LAST
;
4526 /* now scan forward to see if this is really the last extent. */
4527 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
4534 flags
|= FIEMAP_EXTENT_LAST
;
4537 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
4546 free_extent_map(em
);
4548 btrfs_free_path(path
);
4549 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4550 &cached_state
, GFP_NOFS
);
4554 static void __free_extent_buffer(struct extent_buffer
*eb
)
4556 btrfs_leak_debug_del(&eb
->leak_list
);
4557 kmem_cache_free(extent_buffer_cache
, eb
);
4560 int extent_buffer_under_io(struct extent_buffer
*eb
)
4562 return (atomic_read(&eb
->io_pages
) ||
4563 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4564 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4568 * Helper for releasing extent buffer page.
4570 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
)
4572 unsigned long index
;
4574 int mapped
= !test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4576 BUG_ON(extent_buffer_under_io(eb
));
4578 index
= num_extent_pages(eb
->start
, eb
->len
);
4584 page
= eb
->pages
[index
];
4585 if (page
&& mapped
) {
4586 spin_lock(&page
->mapping
->private_lock
);
4588 * We do this since we'll remove the pages after we've
4589 * removed the eb from the radix tree, so we could race
4590 * and have this page now attached to the new eb. So
4591 * only clear page_private if it's still connected to
4594 if (PagePrivate(page
) &&
4595 page
->private == (unsigned long)eb
) {
4596 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4597 BUG_ON(PageDirty(page
));
4598 BUG_ON(PageWriteback(page
));
4600 * We need to make sure we haven't be attached
4603 ClearPagePrivate(page
);
4604 set_page_private(page
, 0);
4605 /* One for the page private */
4606 page_cache_release(page
);
4608 spin_unlock(&page
->mapping
->private_lock
);
4612 /* One for when we alloced the page */
4613 page_cache_release(page
);
4615 } while (index
!= 0);
4619 * Helper for releasing the extent buffer.
4621 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4623 btrfs_release_extent_buffer_page(eb
);
4624 __free_extent_buffer(eb
);
4627 static struct extent_buffer
*
4628 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4629 unsigned long len
, gfp_t mask
)
4631 struct extent_buffer
*eb
= NULL
;
4633 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
4638 eb
->fs_info
= fs_info
;
4640 rwlock_init(&eb
->lock
);
4641 atomic_set(&eb
->write_locks
, 0);
4642 atomic_set(&eb
->read_locks
, 0);
4643 atomic_set(&eb
->blocking_readers
, 0);
4644 atomic_set(&eb
->blocking_writers
, 0);
4645 atomic_set(&eb
->spinning_readers
, 0);
4646 atomic_set(&eb
->spinning_writers
, 0);
4647 eb
->lock_nested
= 0;
4648 init_waitqueue_head(&eb
->write_lock_wq
);
4649 init_waitqueue_head(&eb
->read_lock_wq
);
4651 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4653 spin_lock_init(&eb
->refs_lock
);
4654 atomic_set(&eb
->refs
, 1);
4655 atomic_set(&eb
->io_pages
, 0);
4658 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4660 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4661 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4662 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4667 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4671 struct extent_buffer
*new;
4672 unsigned long num_pages
= num_extent_pages(src
->start
, src
->len
);
4674 new = __alloc_extent_buffer(NULL
, src
->start
, src
->len
, GFP_NOFS
);
4678 for (i
= 0; i
< num_pages
; i
++) {
4679 p
= alloc_page(GFP_NOFS
);
4681 btrfs_release_extent_buffer(new);
4684 attach_extent_buffer_page(new, p
);
4685 WARN_ON(PageDirty(p
));
4690 copy_extent_buffer(new, src
, 0, 0, src
->len
);
4691 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4692 set_bit(EXTENT_BUFFER_DUMMY
, &new->bflags
);
4697 struct extent_buffer
*alloc_dummy_extent_buffer(u64 start
, unsigned long len
)
4699 struct extent_buffer
*eb
;
4700 unsigned long num_pages
= num_extent_pages(0, len
);
4703 eb
= __alloc_extent_buffer(NULL
, start
, len
, GFP_NOFS
);
4707 for (i
= 0; i
< num_pages
; i
++) {
4708 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
4712 set_extent_buffer_uptodate(eb
);
4713 btrfs_set_header_nritems(eb
, 0);
4714 set_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4719 __free_page(eb
->pages
[i
- 1]);
4720 __free_extent_buffer(eb
);
4724 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4727 /* the ref bit is tricky. We have to make sure it is set
4728 * if we have the buffer dirty. Otherwise the
4729 * code to free a buffer can end up dropping a dirty
4732 * Once the ref bit is set, it won't go away while the
4733 * buffer is dirty or in writeback, and it also won't
4734 * go away while we have the reference count on the
4737 * We can't just set the ref bit without bumping the
4738 * ref on the eb because free_extent_buffer might
4739 * see the ref bit and try to clear it. If this happens
4740 * free_extent_buffer might end up dropping our original
4741 * ref by mistake and freeing the page before we are able
4742 * to add one more ref.
4744 * So bump the ref count first, then set the bit. If someone
4745 * beat us to it, drop the ref we added.
4747 refs
= atomic_read(&eb
->refs
);
4748 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4751 spin_lock(&eb
->refs_lock
);
4752 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4753 atomic_inc(&eb
->refs
);
4754 spin_unlock(&eb
->refs_lock
);
4757 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
4758 struct page
*accessed
)
4760 unsigned long num_pages
, i
;
4762 check_buffer_tree_ref(eb
);
4764 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4765 for (i
= 0; i
< num_pages
; i
++) {
4766 struct page
*p
= eb
->pages
[i
];
4769 mark_page_accessed(p
);
4773 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
4776 struct extent_buffer
*eb
;
4779 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
4780 start
>> PAGE_CACHE_SHIFT
);
4781 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4783 mark_extent_buffer_accessed(eb
, NULL
);
4791 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4792 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
4793 u64 start
, unsigned long len
)
4795 struct extent_buffer
*eb
, *exists
= NULL
;
4798 eb
= find_extent_buffer(fs_info
, start
);
4801 eb
= alloc_dummy_extent_buffer(start
, len
);
4804 eb
->fs_info
= fs_info
;
4806 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
4809 spin_lock(&fs_info
->buffer_lock
);
4810 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4811 start
>> PAGE_CACHE_SHIFT
, eb
);
4812 spin_unlock(&fs_info
->buffer_lock
);
4813 radix_tree_preload_end();
4814 if (ret
== -EEXIST
) {
4815 exists
= find_extent_buffer(fs_info
, start
);
4821 check_buffer_tree_ref(eb
);
4822 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4825 * We will free dummy extent buffer's if they come into
4826 * free_extent_buffer with a ref count of 2, but if we are using this we
4827 * want the buffers to stay in memory until we're done with them, so
4828 * bump the ref count again.
4830 atomic_inc(&eb
->refs
);
4833 btrfs_release_extent_buffer(eb
);
4838 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
4839 u64 start
, unsigned long len
)
4841 unsigned long num_pages
= num_extent_pages(start
, len
);
4843 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
4844 struct extent_buffer
*eb
;
4845 struct extent_buffer
*exists
= NULL
;
4847 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
4851 eb
= find_extent_buffer(fs_info
, start
);
4855 eb
= __alloc_extent_buffer(fs_info
, start
, len
, GFP_NOFS
);
4859 for (i
= 0; i
< num_pages
; i
++, index
++) {
4860 p
= find_or_create_page(mapping
, index
, GFP_NOFS
);
4864 spin_lock(&mapping
->private_lock
);
4865 if (PagePrivate(p
)) {
4867 * We could have already allocated an eb for this page
4868 * and attached one so lets see if we can get a ref on
4869 * the existing eb, and if we can we know it's good and
4870 * we can just return that one, else we know we can just
4871 * overwrite page->private.
4873 exists
= (struct extent_buffer
*)p
->private;
4874 if (atomic_inc_not_zero(&exists
->refs
)) {
4875 spin_unlock(&mapping
->private_lock
);
4877 page_cache_release(p
);
4878 mark_extent_buffer_accessed(exists
, p
);
4883 * Do this so attach doesn't complain and we need to
4884 * drop the ref the old guy had.
4886 ClearPagePrivate(p
);
4887 WARN_ON(PageDirty(p
));
4888 page_cache_release(p
);
4890 attach_extent_buffer_page(eb
, p
);
4891 spin_unlock(&mapping
->private_lock
);
4892 WARN_ON(PageDirty(p
));
4894 if (!PageUptodate(p
))
4898 * see below about how we avoid a nasty race with release page
4899 * and why we unlock later
4903 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4905 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
4909 spin_lock(&fs_info
->buffer_lock
);
4910 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4911 start
>> PAGE_CACHE_SHIFT
, eb
);
4912 spin_unlock(&fs_info
->buffer_lock
);
4913 radix_tree_preload_end();
4914 if (ret
== -EEXIST
) {
4915 exists
= find_extent_buffer(fs_info
, start
);
4921 /* add one reference for the tree */
4922 check_buffer_tree_ref(eb
);
4923 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4926 * there is a race where release page may have
4927 * tried to find this extent buffer in the radix
4928 * but failed. It will tell the VM it is safe to
4929 * reclaim the, and it will clear the page private bit.
4930 * We must make sure to set the page private bit properly
4931 * after the extent buffer is in the radix tree so
4932 * it doesn't get lost
4934 SetPageChecked(eb
->pages
[0]);
4935 for (i
= 1; i
< num_pages
; i
++) {
4937 ClearPageChecked(p
);
4940 unlock_page(eb
->pages
[0]);
4944 for (i
= 0; i
< num_pages
; i
++) {
4946 unlock_page(eb
->pages
[i
]);
4949 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
4950 btrfs_release_extent_buffer(eb
);
4954 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
4956 struct extent_buffer
*eb
=
4957 container_of(head
, struct extent_buffer
, rcu_head
);
4959 __free_extent_buffer(eb
);
4962 /* Expects to have eb->eb_lock already held */
4963 static int release_extent_buffer(struct extent_buffer
*eb
)
4965 WARN_ON(atomic_read(&eb
->refs
) == 0);
4966 if (atomic_dec_and_test(&eb
->refs
)) {
4967 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
4968 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
4970 spin_unlock(&eb
->refs_lock
);
4972 spin_lock(&fs_info
->buffer_lock
);
4973 radix_tree_delete(&fs_info
->buffer_radix
,
4974 eb
->start
>> PAGE_CACHE_SHIFT
);
4975 spin_unlock(&fs_info
->buffer_lock
);
4977 spin_unlock(&eb
->refs_lock
);
4980 /* Should be safe to release our pages at this point */
4981 btrfs_release_extent_buffer_page(eb
);
4982 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
4985 spin_unlock(&eb
->refs_lock
);
4990 void free_extent_buffer(struct extent_buffer
*eb
)
4998 refs
= atomic_read(&eb
->refs
);
5001 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5006 spin_lock(&eb
->refs_lock
);
5007 if (atomic_read(&eb
->refs
) == 2 &&
5008 test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))
5009 atomic_dec(&eb
->refs
);
5011 if (atomic_read(&eb
->refs
) == 2 &&
5012 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5013 !extent_buffer_under_io(eb
) &&
5014 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5015 atomic_dec(&eb
->refs
);
5018 * I know this is terrible, but it's temporary until we stop tracking
5019 * the uptodate bits and such for the extent buffers.
5021 release_extent_buffer(eb
);
5024 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5029 spin_lock(&eb
->refs_lock
);
5030 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5032 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5033 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5034 atomic_dec(&eb
->refs
);
5035 release_extent_buffer(eb
);
5038 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
5041 unsigned long num_pages
;
5044 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5046 for (i
= 0; i
< num_pages
; i
++) {
5047 page
= eb
->pages
[i
];
5048 if (!PageDirty(page
))
5052 WARN_ON(!PagePrivate(page
));
5054 clear_page_dirty_for_io(page
);
5055 spin_lock_irq(&page
->mapping
->tree_lock
);
5056 if (!PageDirty(page
)) {
5057 radix_tree_tag_clear(&page
->mapping
->page_tree
,
5059 PAGECACHE_TAG_DIRTY
);
5061 spin_unlock_irq(&page
->mapping
->tree_lock
);
5062 ClearPageError(page
);
5065 WARN_ON(atomic_read(&eb
->refs
) == 0);
5068 int set_extent_buffer_dirty(struct extent_buffer
*eb
)
5071 unsigned long num_pages
;
5074 check_buffer_tree_ref(eb
);
5076 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5078 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5079 WARN_ON(atomic_read(&eb
->refs
) == 0);
5080 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5082 for (i
= 0; i
< num_pages
; i
++)
5083 set_page_dirty(eb
->pages
[i
]);
5087 int clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5091 unsigned long num_pages
;
5093 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5094 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5095 for (i
= 0; i
< num_pages
; i
++) {
5096 page
= eb
->pages
[i
];
5098 ClearPageUptodate(page
);
5103 int set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5107 unsigned long num_pages
;
5109 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5110 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5111 for (i
= 0; i
< num_pages
; i
++) {
5112 page
= eb
->pages
[i
];
5113 SetPageUptodate(page
);
5118 int extent_buffer_uptodate(struct extent_buffer
*eb
)
5120 return test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5123 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
5124 struct extent_buffer
*eb
, u64 start
, int wait
,
5125 get_extent_t
*get_extent
, int mirror_num
)
5128 unsigned long start_i
;
5132 int locked_pages
= 0;
5133 int all_uptodate
= 1;
5134 unsigned long num_pages
;
5135 unsigned long num_reads
= 0;
5136 struct bio
*bio
= NULL
;
5137 unsigned long bio_flags
= 0;
5139 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5143 WARN_ON(start
< eb
->start
);
5144 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
5145 (eb
->start
>> PAGE_CACHE_SHIFT
);
5150 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5151 for (i
= start_i
; i
< num_pages
; i
++) {
5152 page
= eb
->pages
[i
];
5153 if (wait
== WAIT_NONE
) {
5154 if (!trylock_page(page
))
5160 if (!PageUptodate(page
)) {
5167 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5171 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5172 eb
->read_mirror
= 0;
5173 atomic_set(&eb
->io_pages
, num_reads
);
5174 for (i
= start_i
; i
< num_pages
; i
++) {
5175 page
= eb
->pages
[i
];
5176 if (!PageUptodate(page
)) {
5177 ClearPageError(page
);
5178 err
= __extent_read_full_page(tree
, page
,
5180 mirror_num
, &bio_flags
,
5190 err
= submit_one_bio(READ
| REQ_META
, bio
, mirror_num
,
5196 if (ret
|| wait
!= WAIT_COMPLETE
)
5199 for (i
= start_i
; i
< num_pages
; i
++) {
5200 page
= eb
->pages
[i
];
5201 wait_on_page_locked(page
);
5202 if (!PageUptodate(page
))
5210 while (locked_pages
> 0) {
5211 page
= eb
->pages
[i
];
5219 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
5220 unsigned long start
,
5227 char *dst
= (char *)dstv
;
5228 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5229 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5231 WARN_ON(start
> eb
->len
);
5232 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5234 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5237 page
= eb
->pages
[i
];
5239 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5240 kaddr
= page_address(page
);
5241 memcpy(dst
, kaddr
+ offset
, cur
);
5250 int read_extent_buffer_to_user(struct extent_buffer
*eb
, void __user
*dstv
,
5251 unsigned long start
,
5258 char __user
*dst
= (char __user
*)dstv
;
5259 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5260 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5263 WARN_ON(start
> eb
->len
);
5264 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5266 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5269 page
= eb
->pages
[i
];
5271 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5272 kaddr
= page_address(page
);
5273 if (copy_to_user(dst
, kaddr
+ offset
, cur
)) {
5287 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
5288 unsigned long min_len
, char **map
,
5289 unsigned long *map_start
,
5290 unsigned long *map_len
)
5292 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
5295 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5296 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5297 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
5304 offset
= start_offset
;
5308 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
5311 if (start
+ min_len
> eb
->len
) {
5312 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
5314 eb
->start
, eb
->len
, start
, min_len
);
5319 kaddr
= page_address(p
);
5320 *map
= kaddr
+ offset
;
5321 *map_len
= PAGE_CACHE_SIZE
- offset
;
5325 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
5326 unsigned long start
,
5333 char *ptr
= (char *)ptrv
;
5334 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5335 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5338 WARN_ON(start
> eb
->len
);
5339 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5341 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5344 page
= eb
->pages
[i
];
5346 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5348 kaddr
= page_address(page
);
5349 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5361 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
5362 unsigned long start
, unsigned long len
)
5368 char *src
= (char *)srcv
;
5369 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5370 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5372 WARN_ON(start
> eb
->len
);
5373 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5375 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5378 page
= eb
->pages
[i
];
5379 WARN_ON(!PageUptodate(page
));
5381 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5382 kaddr
= page_address(page
);
5383 memcpy(kaddr
+ offset
, src
, cur
);
5392 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
5393 unsigned long start
, unsigned long len
)
5399 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5400 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5402 WARN_ON(start
> eb
->len
);
5403 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5405 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5408 page
= eb
->pages
[i
];
5409 WARN_ON(!PageUptodate(page
));
5411 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5412 kaddr
= page_address(page
);
5413 memset(kaddr
+ offset
, c
, cur
);
5421 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
5422 unsigned long dst_offset
, unsigned long src_offset
,
5425 u64 dst_len
= dst
->len
;
5430 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5431 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5433 WARN_ON(src
->len
!= dst_len
);
5435 offset
= (start_offset
+ dst_offset
) &
5436 (PAGE_CACHE_SIZE
- 1);
5439 page
= dst
->pages
[i
];
5440 WARN_ON(!PageUptodate(page
));
5442 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
5444 kaddr
= page_address(page
);
5445 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5454 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5456 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5457 return distance
< len
;
5460 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5461 unsigned long dst_off
, unsigned long src_off
,
5464 char *dst_kaddr
= page_address(dst_page
);
5466 int must_memmove
= 0;
5468 if (dst_page
!= src_page
) {
5469 src_kaddr
= page_address(src_page
);
5471 src_kaddr
= dst_kaddr
;
5472 if (areas_overlap(src_off
, dst_off
, len
))
5477 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5479 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5482 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5483 unsigned long src_offset
, unsigned long len
)
5486 size_t dst_off_in_page
;
5487 size_t src_off_in_page
;
5488 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5489 unsigned long dst_i
;
5490 unsigned long src_i
;
5492 if (src_offset
+ len
> dst
->len
) {
5493 printk(KERN_ERR
"BTRFS: memmove bogus src_offset %lu move "
5494 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
5497 if (dst_offset
+ len
> dst
->len
) {
5498 printk(KERN_ERR
"BTRFS: memmove bogus dst_offset %lu move "
5499 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
5504 dst_off_in_page
= (start_offset
+ dst_offset
) &
5505 (PAGE_CACHE_SIZE
- 1);
5506 src_off_in_page
= (start_offset
+ src_offset
) &
5507 (PAGE_CACHE_SIZE
- 1);
5509 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5510 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
5512 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
5514 cur
= min_t(unsigned long, cur
,
5515 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
5517 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5518 dst_off_in_page
, src_off_in_page
, cur
);
5526 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5527 unsigned long src_offset
, unsigned long len
)
5530 size_t dst_off_in_page
;
5531 size_t src_off_in_page
;
5532 unsigned long dst_end
= dst_offset
+ len
- 1;
5533 unsigned long src_end
= src_offset
+ len
- 1;
5534 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5535 unsigned long dst_i
;
5536 unsigned long src_i
;
5538 if (src_offset
+ len
> dst
->len
) {
5539 printk(KERN_ERR
"BTRFS: memmove bogus src_offset %lu move "
5540 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
5543 if (dst_offset
+ len
> dst
->len
) {
5544 printk(KERN_ERR
"BTRFS: memmove bogus dst_offset %lu move "
5545 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
5548 if (dst_offset
< src_offset
) {
5549 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
5553 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
5554 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
5556 dst_off_in_page
= (start_offset
+ dst_end
) &
5557 (PAGE_CACHE_SIZE
- 1);
5558 src_off_in_page
= (start_offset
+ src_end
) &
5559 (PAGE_CACHE_SIZE
- 1);
5561 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
5562 cur
= min(cur
, dst_off_in_page
+ 1);
5563 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5564 dst_off_in_page
- cur
+ 1,
5565 src_off_in_page
- cur
+ 1, cur
);
5573 int try_release_extent_buffer(struct page
*page
)
5575 struct extent_buffer
*eb
;
5578 * We need to make sure noboody is attaching this page to an eb right
5581 spin_lock(&page
->mapping
->private_lock
);
5582 if (!PagePrivate(page
)) {
5583 spin_unlock(&page
->mapping
->private_lock
);
5587 eb
= (struct extent_buffer
*)page
->private;
5591 * This is a little awful but should be ok, we need to make sure that
5592 * the eb doesn't disappear out from under us while we're looking at
5595 spin_lock(&eb
->refs_lock
);
5596 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
5597 spin_unlock(&eb
->refs_lock
);
5598 spin_unlock(&page
->mapping
->private_lock
);
5601 spin_unlock(&page
->mapping
->private_lock
);
5604 * If tree ref isn't set then we know the ref on this eb is a real ref,
5605 * so just return, this page will likely be freed soon anyway.
5607 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
5608 spin_unlock(&eb
->refs_lock
);
5612 return release_extent_buffer(eb
);