Linux 3.18.86
[linux/fpc-iii.git] / fs / splice.c
blobcf0cb768a1a749f3899cc01d997e8de2eb3c8ce1
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include "internal.h"
39 * Attempt to steal a page from a pipe buffer. This should perhaps go into
40 * a vm helper function, it's already simplified quite a bit by the
41 * addition of remove_mapping(). If success is returned, the caller may
42 * attempt to reuse this page for another destination.
44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45 struct pipe_buffer *buf)
47 struct page *page = buf->page;
48 struct address_space *mapping;
50 lock_page(page);
52 mapping = page_mapping(page);
53 if (mapping) {
54 WARN_ON(!PageUptodate(page));
57 * At least for ext2 with nobh option, we need to wait on
58 * writeback completing on this page, since we'll remove it
59 * from the pagecache. Otherwise truncate wont wait on the
60 * page, allowing the disk blocks to be reused by someone else
61 * before we actually wrote our data to them. fs corruption
62 * ensues.
64 wait_on_page_writeback(page);
66 if (page_has_private(page) &&
67 !try_to_release_page(page, GFP_KERNEL))
68 goto out_unlock;
71 * If we succeeded in removing the mapping, set LRU flag
72 * and return good.
74 if (remove_mapping(mapping, page)) {
75 buf->flags |= PIPE_BUF_FLAG_LRU;
76 return 0;
81 * Raced with truncate or failed to remove page from current
82 * address space, unlock and return failure.
84 out_unlock:
85 unlock_page(page);
86 return 1;
89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 page_cache_release(buf->page);
93 buf->flags &= ~PIPE_BUF_FLAG_LRU;
97 * Check whether the contents of buf is OK to access. Since the content
98 * is a page cache page, IO may be in flight.
100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101 struct pipe_buffer *buf)
103 struct page *page = buf->page;
104 int err;
106 if (!PageUptodate(page)) {
107 lock_page(page);
110 * Page got truncated/unhashed. This will cause a 0-byte
111 * splice, if this is the first page.
113 if (!page->mapping) {
114 err = -ENODATA;
115 goto error;
119 * Uh oh, read-error from disk.
121 if (!PageUptodate(page)) {
122 err = -EIO;
123 goto error;
127 * Page is ok afterall, we are done.
129 unlock_page(page);
132 return 0;
133 error:
134 unlock_page(page);
135 return err;
138 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 .can_merge = 0,
140 .confirm = page_cache_pipe_buf_confirm,
141 .release = page_cache_pipe_buf_release,
142 .steal = page_cache_pipe_buf_steal,
143 .get = generic_pipe_buf_get,
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 struct pipe_buffer *buf)
149 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 return 1;
152 buf->flags |= PIPE_BUF_FLAG_LRU;
153 return generic_pipe_buf_steal(pipe, buf);
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .can_merge = 0,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 smp_mb();
167 if (waitqueue_active(&pipe->wait))
168 wake_up_interruptible(&pipe->wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
175 * @spd: data to fill
177 * Description:
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
186 unsigned int spd_pages = spd->nr_pages;
187 int ret, do_wakeup, page_nr;
189 if (!spd_pages)
190 return 0;
192 ret = 0;
193 do_wakeup = 0;
194 page_nr = 0;
196 pipe_lock(pipe);
198 for (;;) {
199 if (!pipe->readers) {
200 send_sig(SIGPIPE, current, 0);
201 if (!ret)
202 ret = -EPIPE;
203 break;
206 if (pipe->nrbufs < pipe->buffers) {
207 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
208 struct pipe_buffer *buf = pipe->bufs + newbuf;
210 buf->page = spd->pages[page_nr];
211 buf->offset = spd->partial[page_nr].offset;
212 buf->len = spd->partial[page_nr].len;
213 buf->private = spd->partial[page_nr].private;
214 buf->ops = spd->ops;
215 if (spd->flags & SPLICE_F_GIFT)
216 buf->flags |= PIPE_BUF_FLAG_GIFT;
218 pipe->nrbufs++;
219 page_nr++;
220 ret += buf->len;
222 if (pipe->files)
223 do_wakeup = 1;
225 if (!--spd->nr_pages)
226 break;
227 if (pipe->nrbufs < pipe->buffers)
228 continue;
230 break;
233 if (spd->flags & SPLICE_F_NONBLOCK) {
234 if (!ret)
235 ret = -EAGAIN;
236 break;
239 if (signal_pending(current)) {
240 if (!ret)
241 ret = -ERESTARTSYS;
242 break;
245 if (do_wakeup) {
246 smp_mb();
247 if (waitqueue_active(&pipe->wait))
248 wake_up_interruptible_sync(&pipe->wait);
249 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
250 do_wakeup = 0;
253 pipe->waiting_writers++;
254 pipe_wait(pipe);
255 pipe->waiting_writers--;
258 pipe_unlock(pipe);
260 if (do_wakeup)
261 wakeup_pipe_readers(pipe);
263 while (page_nr < spd_pages)
264 spd->spd_release(spd, page_nr++);
266 return ret;
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
271 page_cache_release(spd->pages[i]);
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
289 if (spd->pages && spd->partial)
290 return 0;
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
302 kfree(spd->pages);
303 kfree(spd->partial);
306 static int
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
331 index = *ppos >> PAGE_CACHE_SHIFT;
332 loff = *ppos & ~PAGE_CACHE_MASK;
333 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
337 * Lookup the (hopefully) full range of pages we need.
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
356 page = find_get_page(mapping, index);
357 if (!page) {
359 * page didn't exist, allocate one.
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
365 error = add_to_page_cache_lru(page, mapping, index,
366 GFP_KERNEL);
367 if (unlikely(error)) {
368 page_cache_release(page);
369 if (error == -EEXIST)
370 continue;
371 break;
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
377 unlock_page(page);
380 spd.pages[spd.nr_pages++] = page;
381 index++;
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
388 index = *ppos >> PAGE_CACHE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
394 if (!len)
395 break;
398 * this_len is the max we'll use from this page
400 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
401 page = spd.pages[page_nr];
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
408 * If the page isn't uptodate, we may need to start io on it
410 if (!PageUptodate(page)) {
411 lock_page(page);
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
419 if (!page->mapping) {
420 unlock_page(page);
421 page = find_or_create_page(mapping, index,
422 mapping_gfp_mask(mapping));
424 if (!page) {
425 error = -ENOMEM;
426 break;
428 page_cache_release(spd.pages[page_nr]);
429 spd.pages[page_nr] = page;
432 * page was already under io and is now done, great
434 if (PageUptodate(page)) {
435 unlock_page(page);
436 goto fill_it;
440 * need to read in the page
442 error = mapping->a_ops->readpage(in, page);
443 if (unlikely(error)) {
445 * We really should re-lookup the page here,
446 * but it complicates things a lot. Instead
447 * lets just do what we already stored, and
448 * we'll get it the next time we are called.
450 if (error == AOP_TRUNCATED_PAGE)
451 error = 0;
453 break;
456 fill_it:
458 * i_size must be checked after PageUptodate.
460 isize = i_size_read(mapping->host);
461 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
462 if (unlikely(!isize || index > end_index))
463 break;
466 * if this is the last page, see if we need to shrink
467 * the length and stop
469 if (end_index == index) {
470 unsigned int plen;
473 * max good bytes in this page
475 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
476 if (plen <= loff)
477 break;
480 * force quit after adding this page
482 this_len = min(this_len, plen - loff);
483 len = this_len;
486 spd.partial[page_nr].offset = loff;
487 spd.partial[page_nr].len = this_len;
488 len -= this_len;
489 loff = 0;
490 spd.nr_pages++;
491 index++;
495 * Release any pages at the end, if we quit early. 'page_nr' is how far
496 * we got, 'nr_pages' is how many pages are in the map.
498 while (page_nr < nr_pages)
499 page_cache_release(spd.pages[page_nr++]);
500 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
502 if (spd.nr_pages)
503 error = splice_to_pipe(pipe, &spd);
505 splice_shrink_spd(&spd);
506 return error;
510 * generic_file_splice_read - splice data from file to a pipe
511 * @in: file to splice from
512 * @ppos: position in @in
513 * @pipe: pipe to splice to
514 * @len: number of bytes to splice
515 * @flags: splice modifier flags
517 * Description:
518 * Will read pages from given file and fill them into a pipe. Can be
519 * used as long as the address_space operations for the source implements
520 * a readpage() hook.
523 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
524 struct pipe_inode_info *pipe, size_t len,
525 unsigned int flags)
527 loff_t isize, left;
528 int ret;
530 isize = i_size_read(in->f_mapping->host);
531 if (unlikely(*ppos >= isize))
532 return 0;
534 left = isize - *ppos;
535 if (unlikely(left < len))
536 len = left;
538 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
539 if (ret > 0) {
540 *ppos += ret;
541 file_accessed(in);
544 return ret;
546 EXPORT_SYMBOL(generic_file_splice_read);
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
549 .can_merge = 0,
550 .confirm = generic_pipe_buf_confirm,
551 .release = generic_pipe_buf_release,
552 .steal = generic_pipe_buf_steal,
553 .get = generic_pipe_buf_get,
556 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
557 struct pipe_buffer *buf)
559 return 1;
562 /* Pipe buffer operations for a socket and similar. */
563 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
564 .can_merge = 0,
565 .confirm = generic_pipe_buf_confirm,
566 .release = generic_pipe_buf_release,
567 .steal = generic_pipe_buf_nosteal,
568 .get = generic_pipe_buf_get,
570 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
572 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
573 unsigned long vlen, loff_t offset)
575 mm_segment_t old_fs;
576 loff_t pos = offset;
577 ssize_t res;
579 old_fs = get_fs();
580 set_fs(get_ds());
581 /* The cast to a user pointer is valid due to the set_fs() */
582 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
583 set_fs(old_fs);
585 return res;
588 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
589 loff_t pos)
591 mm_segment_t old_fs;
592 ssize_t res;
594 old_fs = get_fs();
595 set_fs(get_ds());
596 /* The cast to a user pointer is valid due to the set_fs() */
597 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
598 set_fs(old_fs);
600 return res;
602 EXPORT_SYMBOL(kernel_write);
604 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
605 struct pipe_inode_info *pipe, size_t len,
606 unsigned int flags)
608 unsigned int nr_pages;
609 unsigned int nr_freed;
610 size_t offset;
611 struct page *pages[PIPE_DEF_BUFFERS];
612 struct partial_page partial[PIPE_DEF_BUFFERS];
613 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
614 ssize_t res;
615 size_t this_len;
616 int error;
617 int i;
618 struct splice_pipe_desc spd = {
619 .pages = pages,
620 .partial = partial,
621 .nr_pages_max = PIPE_DEF_BUFFERS,
622 .flags = flags,
623 .ops = &default_pipe_buf_ops,
624 .spd_release = spd_release_page,
627 if (splice_grow_spd(pipe, &spd))
628 return -ENOMEM;
630 res = -ENOMEM;
631 vec = __vec;
632 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
633 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
634 if (!vec)
635 goto shrink_ret;
638 offset = *ppos & ~PAGE_CACHE_MASK;
639 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
641 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
642 struct page *page;
644 page = alloc_page(GFP_USER);
645 error = -ENOMEM;
646 if (!page)
647 goto err;
649 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
650 vec[i].iov_base = (void __user *) page_address(page);
651 vec[i].iov_len = this_len;
652 spd.pages[i] = page;
653 spd.nr_pages++;
654 len -= this_len;
655 offset = 0;
658 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
659 if (res < 0) {
660 error = res;
661 goto err;
664 error = 0;
665 if (!res)
666 goto err;
668 nr_freed = 0;
669 for (i = 0; i < spd.nr_pages; i++) {
670 this_len = min_t(size_t, vec[i].iov_len, res);
671 spd.partial[i].offset = 0;
672 spd.partial[i].len = this_len;
673 if (!this_len) {
674 __free_page(spd.pages[i]);
675 spd.pages[i] = NULL;
676 nr_freed++;
678 res -= this_len;
680 spd.nr_pages -= nr_freed;
682 res = splice_to_pipe(pipe, &spd);
683 if (res > 0)
684 *ppos += res;
686 shrink_ret:
687 if (vec != __vec)
688 kfree(vec);
689 splice_shrink_spd(&spd);
690 return res;
692 err:
693 for (i = 0; i < spd.nr_pages; i++)
694 __free_page(spd.pages[i]);
696 res = error;
697 goto shrink_ret;
699 EXPORT_SYMBOL(default_file_splice_read);
702 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
703 * using sendpage(). Return the number of bytes sent.
705 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
706 struct pipe_buffer *buf, struct splice_desc *sd)
708 struct file *file = sd->u.file;
709 loff_t pos = sd->pos;
710 int more;
712 if (!likely(file->f_op->sendpage))
713 return -EINVAL;
715 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
717 if (sd->len < sd->total_len && pipe->nrbufs > 1)
718 more |= MSG_SENDPAGE_NOTLAST;
720 return file->f_op->sendpage(file, buf->page, buf->offset,
721 sd->len, &pos, more);
724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726 smp_mb();
727 if (waitqueue_active(&pipe->wait))
728 wake_up_interruptible(&pipe->wait);
729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
733 * splice_from_pipe_feed - feed available data from a pipe to a file
734 * @pipe: pipe to splice from
735 * @sd: information to @actor
736 * @actor: handler that splices the data
738 * Description:
739 * This function loops over the pipe and calls @actor to do the
740 * actual moving of a single struct pipe_buffer to the desired
741 * destination. It returns when there's no more buffers left in
742 * the pipe or if the requested number of bytes (@sd->total_len)
743 * have been copied. It returns a positive number (one) if the
744 * pipe needs to be filled with more data, zero if the required
745 * number of bytes have been copied and -errno on error.
747 * This, together with splice_from_pipe_{begin,end,next}, may be
748 * used to implement the functionality of __splice_from_pipe() when
749 * locking is required around copying the pipe buffers to the
750 * destination.
752 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
753 splice_actor *actor)
755 int ret;
757 while (pipe->nrbufs) {
758 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
759 const struct pipe_buf_operations *ops = buf->ops;
761 sd->len = buf->len;
762 if (sd->len > sd->total_len)
763 sd->len = sd->total_len;
765 ret = buf->ops->confirm(pipe, buf);
766 if (unlikely(ret)) {
767 if (ret == -ENODATA)
768 ret = 0;
769 return ret;
772 ret = actor(pipe, buf, sd);
773 if (ret <= 0)
774 return ret;
776 buf->offset += ret;
777 buf->len -= ret;
779 sd->num_spliced += ret;
780 sd->len -= ret;
781 sd->pos += ret;
782 sd->total_len -= ret;
784 if (!buf->len) {
785 buf->ops = NULL;
786 ops->release(pipe, buf);
787 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
788 pipe->nrbufs--;
789 if (pipe->files)
790 sd->need_wakeup = true;
793 if (!sd->total_len)
794 return 0;
797 return 1;
801 * splice_from_pipe_next - wait for some data to splice from
802 * @pipe: pipe to splice from
803 * @sd: information about the splice operation
805 * Description:
806 * This function will wait for some data and return a positive
807 * value (one) if pipe buffers are available. It will return zero
808 * or -errno if no more data needs to be spliced.
810 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812 while (!pipe->nrbufs) {
813 if (!pipe->writers)
814 return 0;
816 if (!pipe->waiting_writers && sd->num_spliced)
817 return 0;
819 if (sd->flags & SPLICE_F_NONBLOCK)
820 return -EAGAIN;
822 if (signal_pending(current))
823 return -ERESTARTSYS;
825 if (sd->need_wakeup) {
826 wakeup_pipe_writers(pipe);
827 sd->need_wakeup = false;
830 pipe_wait(pipe);
833 return 1;
837 * splice_from_pipe_begin - start splicing from pipe
838 * @sd: information about the splice operation
840 * Description:
841 * This function should be called before a loop containing
842 * splice_from_pipe_next() and splice_from_pipe_feed() to
843 * initialize the necessary fields of @sd.
845 static void splice_from_pipe_begin(struct splice_desc *sd)
847 sd->num_spliced = 0;
848 sd->need_wakeup = false;
852 * splice_from_pipe_end - finish splicing from pipe
853 * @pipe: pipe to splice from
854 * @sd: information about the splice operation
856 * Description:
857 * This function will wake up pipe writers if necessary. It should
858 * be called after a loop containing splice_from_pipe_next() and
859 * splice_from_pipe_feed().
861 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
863 if (sd->need_wakeup)
864 wakeup_pipe_writers(pipe);
868 * __splice_from_pipe - splice data from a pipe to given actor
869 * @pipe: pipe to splice from
870 * @sd: information to @actor
871 * @actor: handler that splices the data
873 * Description:
874 * This function does little more than loop over the pipe and call
875 * @actor to do the actual moving of a single struct pipe_buffer to
876 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
877 * pipe_to_user.
880 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
881 splice_actor *actor)
883 int ret;
885 splice_from_pipe_begin(sd);
886 do {
887 ret = splice_from_pipe_next(pipe, sd);
888 if (ret > 0)
889 ret = splice_from_pipe_feed(pipe, sd, actor);
890 } while (ret > 0);
891 splice_from_pipe_end(pipe, sd);
893 return sd->num_spliced ? sd->num_spliced : ret;
895 EXPORT_SYMBOL(__splice_from_pipe);
898 * splice_from_pipe - splice data from a pipe to a file
899 * @pipe: pipe to splice from
900 * @out: file to splice to
901 * @ppos: position in @out
902 * @len: how many bytes to splice
903 * @flags: splice modifier flags
904 * @actor: handler that splices the data
906 * Description:
907 * See __splice_from_pipe. This function locks the pipe inode,
908 * otherwise it's identical to __splice_from_pipe().
911 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
912 loff_t *ppos, size_t len, unsigned int flags,
913 splice_actor *actor)
915 ssize_t ret;
916 struct splice_desc sd = {
917 .total_len = len,
918 .flags = flags,
919 .pos = *ppos,
920 .u.file = out,
923 pipe_lock(pipe);
924 ret = __splice_from_pipe(pipe, &sd, actor);
925 pipe_unlock(pipe);
927 return ret;
931 * iter_file_splice_write - splice data from a pipe to a file
932 * @pipe: pipe info
933 * @out: file to write to
934 * @ppos: position in @out
935 * @len: number of bytes to splice
936 * @flags: splice modifier flags
938 * Description:
939 * Will either move or copy pages (determined by @flags options) from
940 * the given pipe inode to the given file.
941 * This one is ->write_iter-based.
944 ssize_t
945 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
946 loff_t *ppos, size_t len, unsigned int flags)
948 struct splice_desc sd = {
949 .total_len = len,
950 .flags = flags,
951 .pos = *ppos,
952 .u.file = out,
954 int nbufs = pipe->buffers;
955 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
956 GFP_KERNEL);
957 ssize_t ret;
959 if (unlikely(!array))
960 return -ENOMEM;
962 pipe_lock(pipe);
964 splice_from_pipe_begin(&sd);
965 while (sd.total_len) {
966 struct iov_iter from;
967 struct kiocb kiocb;
968 size_t left;
969 int n, idx;
971 ret = splice_from_pipe_next(pipe, &sd);
972 if (ret <= 0)
973 break;
975 if (unlikely(nbufs < pipe->buffers)) {
976 kfree(array);
977 nbufs = pipe->buffers;
978 array = kcalloc(nbufs, sizeof(struct bio_vec),
979 GFP_KERNEL);
980 if (!array) {
981 ret = -ENOMEM;
982 break;
986 /* build the vector */
987 left = sd.total_len;
988 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
989 struct pipe_buffer *buf = pipe->bufs + idx;
990 size_t this_len = buf->len;
992 if (this_len > left)
993 this_len = left;
995 if (idx == pipe->buffers - 1)
996 idx = -1;
998 ret = buf->ops->confirm(pipe, buf);
999 if (unlikely(ret)) {
1000 if (ret == -ENODATA)
1001 ret = 0;
1002 goto done;
1005 array[n].bv_page = buf->page;
1006 array[n].bv_len = this_len;
1007 array[n].bv_offset = buf->offset;
1008 left -= this_len;
1011 /* ... iov_iter */
1012 from.type = ITER_BVEC | WRITE;
1013 from.bvec = array;
1014 from.nr_segs = n;
1015 from.count = sd.total_len - left;
1016 from.iov_offset = 0;
1018 /* ... and iocb */
1019 init_sync_kiocb(&kiocb, out);
1020 kiocb.ki_pos = sd.pos;
1021 kiocb.ki_nbytes = sd.total_len - left;
1023 /* now, send it */
1024 ret = out->f_op->write_iter(&kiocb, &from);
1025 if (-EIOCBQUEUED == ret)
1026 ret = wait_on_sync_kiocb(&kiocb);
1028 if (ret <= 0)
1029 break;
1031 sd.num_spliced += ret;
1032 sd.total_len -= ret;
1033 *ppos = sd.pos = kiocb.ki_pos;
1035 /* dismiss the fully eaten buffers, adjust the partial one */
1036 while (ret) {
1037 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1038 if (ret >= buf->len) {
1039 const struct pipe_buf_operations *ops = buf->ops;
1040 ret -= buf->len;
1041 buf->len = 0;
1042 buf->ops = NULL;
1043 ops->release(pipe, buf);
1044 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1045 pipe->nrbufs--;
1046 if (pipe->files)
1047 sd.need_wakeup = true;
1048 } else {
1049 buf->offset += ret;
1050 buf->len -= ret;
1051 ret = 0;
1055 done:
1056 kfree(array);
1057 splice_from_pipe_end(pipe, &sd);
1059 pipe_unlock(pipe);
1061 if (sd.num_spliced)
1062 ret = sd.num_spliced;
1064 return ret;
1067 EXPORT_SYMBOL(iter_file_splice_write);
1069 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1070 struct splice_desc *sd)
1072 int ret;
1073 void *data;
1074 loff_t tmp = sd->pos;
1076 data = kmap(buf->page);
1077 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1078 kunmap(buf->page);
1080 return ret;
1083 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1084 struct file *out, loff_t *ppos,
1085 size_t len, unsigned int flags)
1087 ssize_t ret;
1089 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1090 if (ret > 0)
1091 *ppos += ret;
1093 return ret;
1097 * generic_splice_sendpage - splice data from a pipe to a socket
1098 * @pipe: pipe to splice from
1099 * @out: socket to write to
1100 * @ppos: position in @out
1101 * @len: number of bytes to splice
1102 * @flags: splice modifier flags
1104 * Description:
1105 * Will send @len bytes from the pipe to a network socket. No data copying
1106 * is involved.
1109 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1110 loff_t *ppos, size_t len, unsigned int flags)
1112 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1115 EXPORT_SYMBOL(generic_splice_sendpage);
1118 * Attempt to initiate a splice from pipe to file.
1120 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1121 loff_t *ppos, size_t len, unsigned int flags)
1123 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1124 loff_t *, size_t, unsigned int);
1126 if (out->f_op->splice_write)
1127 splice_write = out->f_op->splice_write;
1128 else
1129 splice_write = default_file_splice_write;
1131 return splice_write(pipe, out, ppos, len, flags);
1135 * Attempt to initiate a splice from a file to a pipe.
1137 static long do_splice_to(struct file *in, loff_t *ppos,
1138 struct pipe_inode_info *pipe, size_t len,
1139 unsigned int flags)
1141 ssize_t (*splice_read)(struct file *, loff_t *,
1142 struct pipe_inode_info *, size_t, unsigned int);
1143 int ret;
1145 if (unlikely(!(in->f_mode & FMODE_READ)))
1146 return -EBADF;
1148 ret = rw_verify_area(READ, in, ppos, len);
1149 if (unlikely(ret < 0))
1150 return ret;
1152 if (in->f_op->splice_read)
1153 splice_read = in->f_op->splice_read;
1154 else
1155 splice_read = default_file_splice_read;
1157 return splice_read(in, ppos, pipe, len, flags);
1161 * splice_direct_to_actor - splices data directly between two non-pipes
1162 * @in: file to splice from
1163 * @sd: actor information on where to splice to
1164 * @actor: handles the data splicing
1166 * Description:
1167 * This is a special case helper to splice directly between two
1168 * points, without requiring an explicit pipe. Internally an allocated
1169 * pipe is cached in the process, and reused during the lifetime of
1170 * that process.
1173 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1174 splice_direct_actor *actor)
1176 struct pipe_inode_info *pipe;
1177 long ret, bytes;
1178 umode_t i_mode;
1179 size_t len;
1180 int i, flags;
1183 * We require the input being a regular file, as we don't want to
1184 * randomly drop data for eg socket -> socket splicing. Use the
1185 * piped splicing for that!
1187 i_mode = file_inode(in)->i_mode;
1188 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1189 return -EINVAL;
1192 * neither in nor out is a pipe, setup an internal pipe attached to
1193 * 'out' and transfer the wanted data from 'in' to 'out' through that
1195 pipe = current->splice_pipe;
1196 if (unlikely(!pipe)) {
1197 pipe = alloc_pipe_info();
1198 if (!pipe)
1199 return -ENOMEM;
1202 * We don't have an immediate reader, but we'll read the stuff
1203 * out of the pipe right after the splice_to_pipe(). So set
1204 * PIPE_READERS appropriately.
1206 pipe->readers = 1;
1208 current->splice_pipe = pipe;
1212 * Do the splice.
1214 ret = 0;
1215 bytes = 0;
1216 len = sd->total_len;
1217 flags = sd->flags;
1220 * Don't block on output, we have to drain the direct pipe.
1222 sd->flags &= ~SPLICE_F_NONBLOCK;
1224 while (len) {
1225 size_t read_len;
1226 loff_t pos = sd->pos, prev_pos = pos;
1228 ret = do_splice_to(in, &pos, pipe, len, flags);
1229 if (unlikely(ret <= 0))
1230 goto out_release;
1232 read_len = ret;
1233 sd->total_len = read_len;
1236 * NOTE: nonblocking mode only applies to the input. We
1237 * must not do the output in nonblocking mode as then we
1238 * could get stuck data in the internal pipe:
1240 ret = actor(pipe, sd);
1241 if (unlikely(ret <= 0)) {
1242 sd->pos = prev_pos;
1243 goto out_release;
1246 bytes += ret;
1247 len -= ret;
1248 sd->pos = pos;
1250 if (ret < read_len) {
1251 sd->pos = prev_pos + ret;
1252 goto out_release;
1256 done:
1257 pipe->nrbufs = pipe->curbuf = 0;
1258 file_accessed(in);
1259 return bytes;
1261 out_release:
1263 * If we did an incomplete transfer we must release
1264 * the pipe buffers in question:
1266 for (i = 0; i < pipe->buffers; i++) {
1267 struct pipe_buffer *buf = pipe->bufs + i;
1269 if (buf->ops) {
1270 buf->ops->release(pipe, buf);
1271 buf->ops = NULL;
1275 if (!bytes)
1276 bytes = ret;
1278 goto done;
1280 EXPORT_SYMBOL(splice_direct_to_actor);
1282 static int direct_splice_actor(struct pipe_inode_info *pipe,
1283 struct splice_desc *sd)
1285 struct file *file = sd->u.file;
1287 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1288 sd->flags);
1292 * do_splice_direct - splices data directly between two files
1293 * @in: file to splice from
1294 * @ppos: input file offset
1295 * @out: file to splice to
1296 * @opos: output file offset
1297 * @len: number of bytes to splice
1298 * @flags: splice modifier flags
1300 * Description:
1301 * For use by do_sendfile(). splice can easily emulate sendfile, but
1302 * doing it in the application would incur an extra system call
1303 * (splice in + splice out, as compared to just sendfile()). So this helper
1304 * can splice directly through a process-private pipe.
1307 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1308 loff_t *opos, size_t len, unsigned int flags)
1310 struct splice_desc sd = {
1311 .len = len,
1312 .total_len = len,
1313 .flags = flags,
1314 .pos = *ppos,
1315 .u.file = out,
1316 .opos = opos,
1318 long ret;
1320 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1321 return -EBADF;
1323 if (unlikely(out->f_flags & O_APPEND))
1324 return -EINVAL;
1326 ret = rw_verify_area(WRITE, out, opos, len);
1327 if (unlikely(ret < 0))
1328 return ret;
1330 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1331 if (ret > 0)
1332 *ppos = sd.pos;
1334 return ret;
1336 EXPORT_SYMBOL(do_splice_direct);
1338 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1339 struct pipe_inode_info *opipe,
1340 size_t len, unsigned int flags);
1343 * Determine where to splice to/from.
1345 static long do_splice(struct file *in, loff_t __user *off_in,
1346 struct file *out, loff_t __user *off_out,
1347 size_t len, unsigned int flags)
1349 struct pipe_inode_info *ipipe;
1350 struct pipe_inode_info *opipe;
1351 loff_t offset;
1352 long ret;
1354 ipipe = get_pipe_info(in);
1355 opipe = get_pipe_info(out);
1357 if (ipipe && opipe) {
1358 if (off_in || off_out)
1359 return -ESPIPE;
1361 if (!(in->f_mode & FMODE_READ))
1362 return -EBADF;
1364 if (!(out->f_mode & FMODE_WRITE))
1365 return -EBADF;
1367 /* Splicing to self would be fun, but... */
1368 if (ipipe == opipe)
1369 return -EINVAL;
1371 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1374 if (ipipe) {
1375 if (off_in)
1376 return -ESPIPE;
1377 if (off_out) {
1378 if (!(out->f_mode & FMODE_PWRITE))
1379 return -EINVAL;
1380 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1381 return -EFAULT;
1382 } else {
1383 offset = out->f_pos;
1386 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1387 return -EBADF;
1389 if (unlikely(out->f_flags & O_APPEND))
1390 return -EINVAL;
1392 ret = rw_verify_area(WRITE, out, &offset, len);
1393 if (unlikely(ret < 0))
1394 return ret;
1396 file_start_write(out);
1397 ret = do_splice_from(ipipe, out, &offset, len, flags);
1398 file_end_write(out);
1400 if (!off_out)
1401 out->f_pos = offset;
1402 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1403 ret = -EFAULT;
1405 return ret;
1408 if (opipe) {
1409 if (off_out)
1410 return -ESPIPE;
1411 if (off_in) {
1412 if (!(in->f_mode & FMODE_PREAD))
1413 return -EINVAL;
1414 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1415 return -EFAULT;
1416 } else {
1417 offset = in->f_pos;
1420 ret = do_splice_to(in, &offset, opipe, len, flags);
1422 if (!off_in)
1423 in->f_pos = offset;
1424 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1425 ret = -EFAULT;
1427 return ret;
1430 return -EINVAL;
1434 * Map an iov into an array of pages and offset/length tupples. With the
1435 * partial_page structure, we can map several non-contiguous ranges into
1436 * our ones pages[] map instead of splitting that operation into pieces.
1437 * Could easily be exported as a generic helper for other users, in which
1438 * case one would probably want to add a 'max_nr_pages' parameter as well.
1440 static int get_iovec_page_array(const struct iovec __user *iov,
1441 unsigned int nr_vecs, struct page **pages,
1442 struct partial_page *partial, bool aligned,
1443 unsigned int pipe_buffers)
1445 int buffers = 0, error = 0;
1447 while (nr_vecs) {
1448 unsigned long off, npages;
1449 struct iovec entry;
1450 void __user *base;
1451 size_t len;
1452 int i;
1454 error = -EFAULT;
1455 if (copy_from_user(&entry, iov, sizeof(entry)))
1456 break;
1458 base = entry.iov_base;
1459 len = entry.iov_len;
1462 * Sanity check this iovec. 0 read succeeds.
1464 error = 0;
1465 if (unlikely(!len))
1466 break;
1467 error = -EFAULT;
1468 if (!access_ok(VERIFY_READ, base, len))
1469 break;
1472 * Get this base offset and number of pages, then map
1473 * in the user pages.
1475 off = (unsigned long) base & ~PAGE_MASK;
1478 * If asked for alignment, the offset must be zero and the
1479 * length a multiple of the PAGE_SIZE.
1481 error = -EINVAL;
1482 if (aligned && (off || len & ~PAGE_MASK))
1483 break;
1485 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1486 if (npages > pipe_buffers - buffers)
1487 npages = pipe_buffers - buffers;
1489 error = get_user_pages_fast((unsigned long)base, npages,
1490 0, &pages[buffers]);
1492 if (unlikely(error <= 0))
1493 break;
1496 * Fill this contiguous range into the partial page map.
1498 for (i = 0; i < error; i++) {
1499 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1501 partial[buffers].offset = off;
1502 partial[buffers].len = plen;
1504 off = 0;
1505 len -= plen;
1506 buffers++;
1510 * We didn't complete this iov, stop here since it probably
1511 * means we have to move some of this into a pipe to
1512 * be able to continue.
1514 if (len)
1515 break;
1518 * Don't continue if we mapped fewer pages than we asked for,
1519 * or if we mapped the max number of pages that we have
1520 * room for.
1522 if (error < npages || buffers == pipe_buffers)
1523 break;
1525 nr_vecs--;
1526 iov++;
1529 if (buffers)
1530 return buffers;
1532 return error;
1535 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1536 struct splice_desc *sd)
1538 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1539 return n == sd->len ? n : -EFAULT;
1543 * For lack of a better implementation, implement vmsplice() to userspace
1544 * as a simple copy of the pipes pages to the user iov.
1546 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1547 unsigned long nr_segs, unsigned int flags)
1549 struct pipe_inode_info *pipe;
1550 struct splice_desc sd;
1551 long ret;
1552 struct iovec iovstack[UIO_FASTIOV];
1553 struct iovec *iov = iovstack;
1554 struct iov_iter iter;
1555 ssize_t count;
1557 pipe = get_pipe_info(file);
1558 if (!pipe)
1559 return -EBADF;
1561 ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1562 ARRAY_SIZE(iovstack), iovstack, &iov);
1563 if (ret <= 0)
1564 goto out;
1566 count = ret;
1567 iov_iter_init(&iter, READ, iov, nr_segs, count);
1569 sd.len = 0;
1570 sd.total_len = count;
1571 sd.flags = flags;
1572 sd.u.data = &iter;
1573 sd.pos = 0;
1575 pipe_lock(pipe);
1576 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1577 pipe_unlock(pipe);
1579 out:
1580 if (iov != iovstack)
1581 kfree(iov);
1583 return ret;
1587 * vmsplice splices a user address range into a pipe. It can be thought of
1588 * as splice-from-memory, where the regular splice is splice-from-file (or
1589 * to file). In both cases the output is a pipe, naturally.
1591 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1592 unsigned long nr_segs, unsigned int flags)
1594 struct pipe_inode_info *pipe;
1595 struct page *pages[PIPE_DEF_BUFFERS];
1596 struct partial_page partial[PIPE_DEF_BUFFERS];
1597 struct splice_pipe_desc spd = {
1598 .pages = pages,
1599 .partial = partial,
1600 .nr_pages_max = PIPE_DEF_BUFFERS,
1601 .flags = flags,
1602 .ops = &user_page_pipe_buf_ops,
1603 .spd_release = spd_release_page,
1605 long ret;
1607 pipe = get_pipe_info(file);
1608 if (!pipe)
1609 return -EBADF;
1611 if (splice_grow_spd(pipe, &spd))
1612 return -ENOMEM;
1614 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1615 spd.partial, false,
1616 spd.nr_pages_max);
1617 if (spd.nr_pages <= 0)
1618 ret = spd.nr_pages;
1619 else
1620 ret = splice_to_pipe(pipe, &spd);
1622 splice_shrink_spd(&spd);
1623 return ret;
1627 * Note that vmsplice only really supports true splicing _from_ user memory
1628 * to a pipe, not the other way around. Splicing from user memory is a simple
1629 * operation that can be supported without any funky alignment restrictions
1630 * or nasty vm tricks. We simply map in the user memory and fill them into
1631 * a pipe. The reverse isn't quite as easy, though. There are two possible
1632 * solutions for that:
1634 * - memcpy() the data internally, at which point we might as well just
1635 * do a regular read() on the buffer anyway.
1636 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1637 * has restriction limitations on both ends of the pipe).
1639 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1642 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1643 unsigned long, nr_segs, unsigned int, flags)
1645 struct fd f;
1646 long error;
1648 if (unlikely(nr_segs > UIO_MAXIOV))
1649 return -EINVAL;
1650 else if (unlikely(!nr_segs))
1651 return 0;
1653 error = -EBADF;
1654 f = fdget(fd);
1655 if (f.file) {
1656 if (f.file->f_mode & FMODE_WRITE)
1657 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1658 else if (f.file->f_mode & FMODE_READ)
1659 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1661 fdput(f);
1664 return error;
1667 #ifdef CONFIG_COMPAT
1668 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1669 unsigned int, nr_segs, unsigned int, flags)
1671 unsigned i;
1672 struct iovec __user *iov;
1673 if (nr_segs > UIO_MAXIOV)
1674 return -EINVAL;
1675 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1676 for (i = 0; i < nr_segs; i++) {
1677 struct compat_iovec v;
1678 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1679 get_user(v.iov_len, &iov32[i].iov_len) ||
1680 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1681 put_user(v.iov_len, &iov[i].iov_len))
1682 return -EFAULT;
1684 return sys_vmsplice(fd, iov, nr_segs, flags);
1686 #endif
1688 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1689 int, fd_out, loff_t __user *, off_out,
1690 size_t, len, unsigned int, flags)
1692 struct fd in, out;
1693 long error;
1695 if (unlikely(!len))
1696 return 0;
1698 error = -EBADF;
1699 in = fdget(fd_in);
1700 if (in.file) {
1701 if (in.file->f_mode & FMODE_READ) {
1702 out = fdget(fd_out);
1703 if (out.file) {
1704 if (out.file->f_mode & FMODE_WRITE)
1705 error = do_splice(in.file, off_in,
1706 out.file, off_out,
1707 len, flags);
1708 fdput(out);
1711 fdput(in);
1713 return error;
1717 * Make sure there's data to read. Wait for input if we can, otherwise
1718 * return an appropriate error.
1720 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1722 int ret;
1725 * Check ->nrbufs without the inode lock first. This function
1726 * is speculative anyways, so missing one is ok.
1728 if (pipe->nrbufs)
1729 return 0;
1731 ret = 0;
1732 pipe_lock(pipe);
1734 while (!pipe->nrbufs) {
1735 if (signal_pending(current)) {
1736 ret = -ERESTARTSYS;
1737 break;
1739 if (!pipe->writers)
1740 break;
1741 if (!pipe->waiting_writers) {
1742 if (flags & SPLICE_F_NONBLOCK) {
1743 ret = -EAGAIN;
1744 break;
1747 pipe_wait(pipe);
1750 pipe_unlock(pipe);
1751 return ret;
1755 * Make sure there's writeable room. Wait for room if we can, otherwise
1756 * return an appropriate error.
1758 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1760 int ret;
1763 * Check ->nrbufs without the inode lock first. This function
1764 * is speculative anyways, so missing one is ok.
1766 if (pipe->nrbufs < pipe->buffers)
1767 return 0;
1769 ret = 0;
1770 pipe_lock(pipe);
1772 while (pipe->nrbufs >= pipe->buffers) {
1773 if (!pipe->readers) {
1774 send_sig(SIGPIPE, current, 0);
1775 ret = -EPIPE;
1776 break;
1778 if (flags & SPLICE_F_NONBLOCK) {
1779 ret = -EAGAIN;
1780 break;
1782 if (signal_pending(current)) {
1783 ret = -ERESTARTSYS;
1784 break;
1786 pipe->waiting_writers++;
1787 pipe_wait(pipe);
1788 pipe->waiting_writers--;
1791 pipe_unlock(pipe);
1792 return ret;
1796 * Splice contents of ipipe to opipe.
1798 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1799 struct pipe_inode_info *opipe,
1800 size_t len, unsigned int flags)
1802 struct pipe_buffer *ibuf, *obuf;
1803 int ret = 0, nbuf;
1804 bool input_wakeup = false;
1807 retry:
1808 ret = ipipe_prep(ipipe, flags);
1809 if (ret)
1810 return ret;
1812 ret = opipe_prep(opipe, flags);
1813 if (ret)
1814 return ret;
1817 * Potential ABBA deadlock, work around it by ordering lock
1818 * grabbing by pipe info address. Otherwise two different processes
1819 * could deadlock (one doing tee from A -> B, the other from B -> A).
1821 pipe_double_lock(ipipe, opipe);
1823 do {
1824 if (!opipe->readers) {
1825 send_sig(SIGPIPE, current, 0);
1826 if (!ret)
1827 ret = -EPIPE;
1828 break;
1831 if (!ipipe->nrbufs && !ipipe->writers)
1832 break;
1835 * Cannot make any progress, because either the input
1836 * pipe is empty or the output pipe is full.
1838 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1839 /* Already processed some buffers, break */
1840 if (ret)
1841 break;
1843 if (flags & SPLICE_F_NONBLOCK) {
1844 ret = -EAGAIN;
1845 break;
1849 * We raced with another reader/writer and haven't
1850 * managed to process any buffers. A zero return
1851 * value means EOF, so retry instead.
1853 pipe_unlock(ipipe);
1854 pipe_unlock(opipe);
1855 goto retry;
1858 ibuf = ipipe->bufs + ipipe->curbuf;
1859 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1860 obuf = opipe->bufs + nbuf;
1862 if (len >= ibuf->len) {
1864 * Simply move the whole buffer from ipipe to opipe
1866 *obuf = *ibuf;
1867 ibuf->ops = NULL;
1868 opipe->nrbufs++;
1869 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1870 ipipe->nrbufs--;
1871 input_wakeup = true;
1872 } else {
1874 * Get a reference to this pipe buffer,
1875 * so we can copy the contents over.
1877 ibuf->ops->get(ipipe, ibuf);
1878 *obuf = *ibuf;
1881 * Don't inherit the gift flag, we need to
1882 * prevent multiple steals of this page.
1884 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1886 obuf->len = len;
1887 opipe->nrbufs++;
1888 ibuf->offset += obuf->len;
1889 ibuf->len -= obuf->len;
1891 ret += obuf->len;
1892 len -= obuf->len;
1893 } while (len);
1895 pipe_unlock(ipipe);
1896 pipe_unlock(opipe);
1899 * If we put data in the output pipe, wakeup any potential readers.
1901 if (ret > 0)
1902 wakeup_pipe_readers(opipe);
1904 if (input_wakeup)
1905 wakeup_pipe_writers(ipipe);
1907 return ret;
1911 * Link contents of ipipe to opipe.
1913 static int link_pipe(struct pipe_inode_info *ipipe,
1914 struct pipe_inode_info *opipe,
1915 size_t len, unsigned int flags)
1917 struct pipe_buffer *ibuf, *obuf;
1918 int ret = 0, i = 0, nbuf;
1921 * Potential ABBA deadlock, work around it by ordering lock
1922 * grabbing by pipe info address. Otherwise two different processes
1923 * could deadlock (one doing tee from A -> B, the other from B -> A).
1925 pipe_double_lock(ipipe, opipe);
1927 do {
1928 if (!opipe->readers) {
1929 send_sig(SIGPIPE, current, 0);
1930 if (!ret)
1931 ret = -EPIPE;
1932 break;
1936 * If we have iterated all input buffers or ran out of
1937 * output room, break.
1939 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1940 break;
1942 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1943 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946 * Get a reference to this pipe buffer,
1947 * so we can copy the contents over.
1949 ibuf->ops->get(ipipe, ibuf);
1951 obuf = opipe->bufs + nbuf;
1952 *obuf = *ibuf;
1955 * Don't inherit the gift flag, we need to
1956 * prevent multiple steals of this page.
1958 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1960 if (obuf->len > len)
1961 obuf->len = len;
1963 opipe->nrbufs++;
1964 ret += obuf->len;
1965 len -= obuf->len;
1966 i++;
1967 } while (len);
1970 * return EAGAIN if we have the potential of some data in the
1971 * future, otherwise just return 0
1973 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1974 ret = -EAGAIN;
1976 pipe_unlock(ipipe);
1977 pipe_unlock(opipe);
1980 * If we put data in the output pipe, wakeup any potential readers.
1982 if (ret > 0)
1983 wakeup_pipe_readers(opipe);
1985 return ret;
1989 * This is a tee(1) implementation that works on pipes. It doesn't copy
1990 * any data, it simply references the 'in' pages on the 'out' pipe.
1991 * The 'flags' used are the SPLICE_F_* variants, currently the only
1992 * applicable one is SPLICE_F_NONBLOCK.
1994 static long do_tee(struct file *in, struct file *out, size_t len,
1995 unsigned int flags)
1997 struct pipe_inode_info *ipipe = get_pipe_info(in);
1998 struct pipe_inode_info *opipe = get_pipe_info(out);
1999 int ret = -EINVAL;
2002 * Duplicate the contents of ipipe to opipe without actually
2003 * copying the data.
2005 if (ipipe && opipe && ipipe != opipe) {
2007 * Keep going, unless we encounter an error. The ipipe/opipe
2008 * ordering doesn't really matter.
2010 ret = ipipe_prep(ipipe, flags);
2011 if (!ret) {
2012 ret = opipe_prep(opipe, flags);
2013 if (!ret)
2014 ret = link_pipe(ipipe, opipe, len, flags);
2018 return ret;
2021 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2023 struct fd in;
2024 int error;
2026 if (unlikely(!len))
2027 return 0;
2029 error = -EBADF;
2030 in = fdget(fdin);
2031 if (in.file) {
2032 if (in.file->f_mode & FMODE_READ) {
2033 struct fd out = fdget(fdout);
2034 if (out.file) {
2035 if (out.file->f_mode & FMODE_WRITE)
2036 error = do_tee(in.file, out.file,
2037 len, flags);
2038 fdput(out);
2041 fdput(in);
2044 return error;