2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
22 #include <linux/cleancache.h>
23 #include <linux/rmap.h>
26 static void clear_exceptional_entry(struct address_space
*mapping
,
27 pgoff_t index
, void *entry
)
29 struct radix_tree_node
*node
;
32 /* Handled by shmem itself */
33 if (shmem_mapping(mapping
))
36 spin_lock_irq(&mapping
->tree_lock
);
38 * Regular page slots are stabilized by the page lock even
39 * without the tree itself locked. These unlocked entries
40 * need verification under the tree lock.
42 if (!__radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &slot
))
46 radix_tree_replace_slot(slot
, NULL
);
50 workingset_node_shadows_dec(node
);
52 * Don't track node without shadow entries.
54 * Avoid acquiring the list_lru lock if already untracked.
55 * The list_empty() test is safe as node->private_list is
56 * protected by mapping->tree_lock.
58 if (!workingset_node_shadows(node
) &&
59 !list_empty(&node
->private_list
))
60 list_lru_del(&workingset_shadow_nodes
, &node
->private_list
);
61 __radix_tree_delete_node(&mapping
->page_tree
, node
);
63 spin_unlock_irq(&mapping
->tree_lock
);
67 * do_invalidatepage - invalidate part or all of a page
68 * @page: the page which is affected
69 * @offset: start of the range to invalidate
70 * @length: length of the range to invalidate
72 * do_invalidatepage() is called when all or part of the page has become
73 * invalidated by a truncate operation.
75 * do_invalidatepage() does not have to release all buffers, but it must
76 * ensure that no dirty buffer is left outside @offset and that no I/O
77 * is underway against any of the blocks which are outside the truncation
78 * point. Because the caller is about to free (and possibly reuse) those
81 void do_invalidatepage(struct page
*page
, unsigned int offset
,
84 void (*invalidatepage
)(struct page
*, unsigned int, unsigned int);
86 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
;
89 invalidatepage
= block_invalidatepage
;
92 (*invalidatepage
)(page
, offset
, length
);
96 * If truncate cannot remove the fs-private metadata from the page, the page
97 * becomes orphaned. It will be left on the LRU and may even be mapped into
98 * user pagetables if we're racing with filemap_fault().
100 * We need to bale out if page->mapping is no longer equal to the original
101 * mapping. This happens a) when the VM reclaimed the page while we waited on
102 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
103 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
106 truncate_complete_page(struct address_space
*mapping
, struct page
*page
)
108 if (page
->mapping
!= mapping
)
111 if (page_has_private(page
))
112 do_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
115 * Some filesystems seem to re-dirty the page even after
116 * the VM has canceled the dirty bit (eg ext3 journaling).
117 * Hence dirty accounting check is placed after invalidation.
119 cancel_dirty_page(page
);
120 ClearPageMappedToDisk(page
);
121 delete_from_page_cache(page
);
126 * This is for invalidate_mapping_pages(). That function can be called at
127 * any time, and is not supposed to throw away dirty pages. But pages can
128 * be marked dirty at any time too, so use remove_mapping which safely
129 * discards clean, unused pages.
131 * Returns non-zero if the page was successfully invalidated.
134 invalidate_complete_page(struct address_space
*mapping
, struct page
*page
)
138 if (page
->mapping
!= mapping
)
141 if (page_has_private(page
) && !try_to_release_page(page
, 0))
144 ret
= remove_mapping(mapping
, page
);
149 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
)
151 if (page_mapped(page
)) {
152 unmap_mapping_range(mapping
,
153 (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
,
156 return truncate_complete_page(mapping
, page
);
160 * Used to get rid of pages on hardware memory corruption.
162 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
)
167 * Only punch for normal data pages for now.
168 * Handling other types like directories would need more auditing.
170 if (!S_ISREG(mapping
->host
->i_mode
))
172 return truncate_inode_page(mapping
, page
);
174 EXPORT_SYMBOL(generic_error_remove_page
);
177 * Safely invalidate one page from its pagecache mapping.
178 * It only drops clean, unused pages. The page must be locked.
180 * Returns 1 if the page is successfully invalidated, otherwise 0.
182 int invalidate_inode_page(struct page
*page
)
184 struct address_space
*mapping
= page_mapping(page
);
187 if (PageDirty(page
) || PageWriteback(page
))
189 if (page_mapped(page
))
191 return invalidate_complete_page(mapping
, page
);
195 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
196 * @mapping: mapping to truncate
197 * @lstart: offset from which to truncate
198 * @lend: offset to which to truncate (inclusive)
200 * Truncate the page cache, removing the pages that are between
201 * specified offsets (and zeroing out partial pages
202 * if lstart or lend + 1 is not page aligned).
204 * Truncate takes two passes - the first pass is nonblocking. It will not
205 * block on page locks and it will not block on writeback. The second pass
206 * will wait. This is to prevent as much IO as possible in the affected region.
207 * The first pass will remove most pages, so the search cost of the second pass
210 * We pass down the cache-hot hint to the page freeing code. Even if the
211 * mapping is large, it is probably the case that the final pages are the most
212 * recently touched, and freeing happens in ascending file offset order.
214 * Note that since ->invalidatepage() accepts range to invalidate
215 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
216 * page aligned properly.
218 void truncate_inode_pages_range(struct address_space
*mapping
,
219 loff_t lstart
, loff_t lend
)
221 pgoff_t start
; /* inclusive */
222 pgoff_t end
; /* exclusive */
223 unsigned int partial_start
; /* inclusive */
224 unsigned int partial_end
; /* exclusive */
226 pgoff_t indices
[PAGEVEC_SIZE
];
230 cleancache_invalidate_inode(mapping
);
231 if (mapping
->nrpages
== 0 && mapping
->nrshadows
== 0)
234 /* Offsets within partial pages */
235 partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
236 partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
239 * 'start' and 'end' always covers the range of pages to be fully
240 * truncated. Partial pages are covered with 'partial_start' at the
241 * start of the range and 'partial_end' at the end of the range.
242 * Note that 'end' is exclusive while 'lend' is inclusive.
244 start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
247 * lend == -1 indicates end-of-file so we have to set 'end'
248 * to the highest possible pgoff_t and since the type is
249 * unsigned we're using -1.
253 end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
255 pagevec_init(&pvec
, 0);
257 while (index
< end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
258 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
260 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
261 struct page
*page
= pvec
.pages
[i
];
263 /* We rely upon deletion not changing page->index */
268 if (radix_tree_exceptional_entry(page
)) {
269 clear_exceptional_entry(mapping
, index
, page
);
273 if (!trylock_page(page
))
275 WARN_ON(page
->index
!= index
);
276 if (PageWriteback(page
)) {
280 truncate_inode_page(mapping
, page
);
283 pagevec_remove_exceptionals(&pvec
);
284 pagevec_release(&pvec
);
290 struct page
*page
= find_lock_page(mapping
, start
- 1);
292 unsigned int top
= PAGE_CACHE_SIZE
;
294 /* Truncation within a single page */
298 wait_on_page_writeback(page
);
299 zero_user_segment(page
, partial_start
, top
);
300 cleancache_invalidate_page(mapping
, page
);
301 if (page_has_private(page
))
302 do_invalidatepage(page
, partial_start
,
303 top
- partial_start
);
305 page_cache_release(page
);
309 struct page
*page
= find_lock_page(mapping
, end
);
311 wait_on_page_writeback(page
);
312 zero_user_segment(page
, 0, partial_end
);
313 cleancache_invalidate_page(mapping
, page
);
314 if (page_has_private(page
))
315 do_invalidatepage(page
, 0,
318 page_cache_release(page
);
322 * If the truncation happened within a single page no pages
323 * will be released, just zeroed, so we can bail out now.
331 if (!pagevec_lookup_entries(&pvec
, mapping
, index
,
332 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
), indices
)) {
333 /* If all gone from start onwards, we're done */
336 /* Otherwise restart to make sure all gone */
340 if (index
== start
&& indices
[0] >= end
) {
341 /* All gone out of hole to be punched, we're done */
342 pagevec_remove_exceptionals(&pvec
);
343 pagevec_release(&pvec
);
346 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
347 struct page
*page
= pvec
.pages
[i
];
349 /* We rely upon deletion not changing page->index */
352 /* Restart punch to make sure all gone */
357 if (radix_tree_exceptional_entry(page
)) {
358 clear_exceptional_entry(mapping
, index
, page
);
363 WARN_ON(page
->index
!= index
);
364 wait_on_page_writeback(page
);
365 truncate_inode_page(mapping
, page
);
368 pagevec_remove_exceptionals(&pvec
);
369 pagevec_release(&pvec
);
372 cleancache_invalidate_inode(mapping
);
374 EXPORT_SYMBOL(truncate_inode_pages_range
);
377 * truncate_inode_pages - truncate *all* the pages from an offset
378 * @mapping: mapping to truncate
379 * @lstart: offset from which to truncate
381 * Called under (and serialised by) inode->i_mutex.
383 * Note: When this function returns, there can be a page in the process of
384 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
385 * mapping->nrpages can be non-zero when this function returns even after
386 * truncation of the whole mapping.
388 void truncate_inode_pages(struct address_space
*mapping
, loff_t lstart
)
390 truncate_inode_pages_range(mapping
, lstart
, (loff_t
)-1);
392 EXPORT_SYMBOL(truncate_inode_pages
);
395 * truncate_inode_pages_final - truncate *all* pages before inode dies
396 * @mapping: mapping to truncate
398 * Called under (and serialized by) inode->i_mutex.
400 * Filesystems have to use this in the .evict_inode path to inform the
401 * VM that this is the final truncate and the inode is going away.
403 void truncate_inode_pages_final(struct address_space
*mapping
)
405 unsigned long nrshadows
;
406 unsigned long nrpages
;
409 * Page reclaim can not participate in regular inode lifetime
410 * management (can't call iput()) and thus can race with the
411 * inode teardown. Tell it when the address space is exiting,
412 * so that it does not install eviction information after the
413 * final truncate has begun.
415 mapping_set_exiting(mapping
);
418 * When reclaim installs eviction entries, it increases
419 * nrshadows first, then decreases nrpages. Make sure we see
420 * this in the right order or we might miss an entry.
422 nrpages
= mapping
->nrpages
;
424 nrshadows
= mapping
->nrshadows
;
426 if (nrpages
|| nrshadows
) {
428 * As truncation uses a lockless tree lookup, cycle
429 * the tree lock to make sure any ongoing tree
430 * modification that does not see AS_EXITING is
431 * completed before starting the final truncate.
433 spin_lock_irq(&mapping
->tree_lock
);
434 spin_unlock_irq(&mapping
->tree_lock
);
436 truncate_inode_pages(mapping
, 0);
439 EXPORT_SYMBOL(truncate_inode_pages_final
);
442 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
443 * @mapping: the address_space which holds the pages to invalidate
444 * @start: the offset 'from' which to invalidate
445 * @end: the offset 'to' which to invalidate (inclusive)
447 * This function only removes the unlocked pages, if you want to
448 * remove all the pages of one inode, you must call truncate_inode_pages.
450 * invalidate_mapping_pages() will not block on IO activity. It will not
451 * invalidate pages which are dirty, locked, under writeback or mapped into
454 unsigned long invalidate_mapping_pages(struct address_space
*mapping
,
455 pgoff_t start
, pgoff_t end
)
457 pgoff_t indices
[PAGEVEC_SIZE
];
459 pgoff_t index
= start
;
461 unsigned long count
= 0;
464 pagevec_init(&pvec
, 0);
465 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
466 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
468 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
469 struct page
*page
= pvec
.pages
[i
];
471 /* We rely upon deletion not changing page->index */
476 if (radix_tree_exceptional_entry(page
)) {
477 clear_exceptional_entry(mapping
, index
, page
);
481 if (!trylock_page(page
))
483 WARN_ON(page
->index
!= index
);
484 ret
= invalidate_inode_page(page
);
487 * Invalidation is a hint that the page is no longer
488 * of interest and try to speed up its reclaim.
491 deactivate_file_page(page
);
494 pagevec_remove_exceptionals(&pvec
);
495 pagevec_release(&pvec
);
501 EXPORT_SYMBOL(invalidate_mapping_pages
);
504 * This is like invalidate_complete_page(), except it ignores the page's
505 * refcount. We do this because invalidate_inode_pages2() needs stronger
506 * invalidation guarantees, and cannot afford to leave pages behind because
507 * shrink_page_list() has a temp ref on them, or because they're transiently
508 * sitting in the lru_cache_add() pagevecs.
511 invalidate_complete_page2(struct address_space
*mapping
, struct page
*page
)
513 struct mem_cgroup
*memcg
;
516 if (page
->mapping
!= mapping
)
519 if (page_has_private(page
) && !try_to_release_page(page
, GFP_KERNEL
))
522 memcg
= mem_cgroup_begin_page_stat(page
);
523 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
527 BUG_ON(page_has_private(page
));
528 __delete_from_page_cache(page
, NULL
, memcg
);
529 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
530 mem_cgroup_end_page_stat(memcg
);
532 if (mapping
->a_ops
->freepage
)
533 mapping
->a_ops
->freepage(page
);
535 page_cache_release(page
); /* pagecache ref */
538 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
539 mem_cgroup_end_page_stat(memcg
);
543 static int do_launder_page(struct address_space
*mapping
, struct page
*page
)
545 if (!PageDirty(page
))
547 if (page
->mapping
!= mapping
|| mapping
->a_ops
->launder_page
== NULL
)
549 return mapping
->a_ops
->launder_page(page
);
553 * invalidate_inode_pages2_range - remove range of pages from an address_space
554 * @mapping: the address_space
555 * @start: the page offset 'from' which to invalidate
556 * @end: the page offset 'to' which to invalidate (inclusive)
558 * Any pages which are found to be mapped into pagetables are unmapped prior to
561 * Returns -EBUSY if any pages could not be invalidated.
563 int invalidate_inode_pages2_range(struct address_space
*mapping
,
564 pgoff_t start
, pgoff_t end
)
566 pgoff_t indices
[PAGEVEC_SIZE
];
572 int did_range_unmap
= 0;
574 cleancache_invalidate_inode(mapping
);
575 pagevec_init(&pvec
, 0);
577 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
578 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
580 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
581 struct page
*page
= pvec
.pages
[i
];
583 /* We rely upon deletion not changing page->index */
588 if (radix_tree_exceptional_entry(page
)) {
589 clear_exceptional_entry(mapping
, index
, page
);
594 WARN_ON(page
->index
!= index
);
595 if (page
->mapping
!= mapping
) {
599 wait_on_page_writeback(page
);
600 if (page_mapped(page
)) {
601 if (!did_range_unmap
) {
603 * Zap the rest of the file in one hit.
605 unmap_mapping_range(mapping
,
606 (loff_t
)index
<< PAGE_CACHE_SHIFT
,
607 (loff_t
)(1 + end
- index
)
615 unmap_mapping_range(mapping
,
616 (loff_t
)index
<< PAGE_CACHE_SHIFT
,
620 BUG_ON(page_mapped(page
));
621 ret2
= do_launder_page(mapping
, page
);
623 if (!invalidate_complete_page2(mapping
, page
))
630 pagevec_remove_exceptionals(&pvec
);
631 pagevec_release(&pvec
);
635 cleancache_invalidate_inode(mapping
);
638 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range
);
641 * invalidate_inode_pages2 - remove all pages from an address_space
642 * @mapping: the address_space
644 * Any pages which are found to be mapped into pagetables are unmapped prior to
647 * Returns -EBUSY if any pages could not be invalidated.
649 int invalidate_inode_pages2(struct address_space
*mapping
)
651 return invalidate_inode_pages2_range(mapping
, 0, -1);
653 EXPORT_SYMBOL_GPL(invalidate_inode_pages2
);
656 * truncate_pagecache - unmap and remove pagecache that has been truncated
658 * @newsize: new file size
660 * inode's new i_size must already be written before truncate_pagecache
663 * This function should typically be called before the filesystem
664 * releases resources associated with the freed range (eg. deallocates
665 * blocks). This way, pagecache will always stay logically coherent
666 * with on-disk format, and the filesystem would not have to deal with
667 * situations such as writepage being called for a page that has already
668 * had its underlying blocks deallocated.
670 void truncate_pagecache(struct inode
*inode
, loff_t newsize
)
672 struct address_space
*mapping
= inode
->i_mapping
;
673 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
676 * unmap_mapping_range is called twice, first simply for
677 * efficiency so that truncate_inode_pages does fewer
678 * single-page unmaps. However after this first call, and
679 * before truncate_inode_pages finishes, it is possible for
680 * private pages to be COWed, which remain after
681 * truncate_inode_pages finishes, hence the second
682 * unmap_mapping_range call must be made for correctness.
684 unmap_mapping_range(mapping
, holebegin
, 0, 1);
685 truncate_inode_pages(mapping
, newsize
);
686 unmap_mapping_range(mapping
, holebegin
, 0, 1);
688 EXPORT_SYMBOL(truncate_pagecache
);
691 * truncate_setsize - update inode and pagecache for a new file size
693 * @newsize: new file size
695 * truncate_setsize updates i_size and performs pagecache truncation (if
696 * necessary) to @newsize. It will be typically be called from the filesystem's
697 * setattr function when ATTR_SIZE is passed in.
699 * Must be called with a lock serializing truncates and writes (generally
700 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
701 * specific block truncation has been performed.
703 void truncate_setsize(struct inode
*inode
, loff_t newsize
)
705 loff_t oldsize
= inode
->i_size
;
707 i_size_write(inode
, newsize
);
708 if (newsize
> oldsize
)
709 pagecache_isize_extended(inode
, oldsize
, newsize
);
710 truncate_pagecache(inode
, newsize
);
712 EXPORT_SYMBOL(truncate_setsize
);
715 * pagecache_isize_extended - update pagecache after extension of i_size
716 * @inode: inode for which i_size was extended
717 * @from: original inode size
718 * @to: new inode size
720 * Handle extension of inode size either caused by extending truncate or by
721 * write starting after current i_size. We mark the page straddling current
722 * i_size RO so that page_mkwrite() is called on the nearest write access to
723 * the page. This way filesystem can be sure that page_mkwrite() is called on
724 * the page before user writes to the page via mmap after the i_size has been
727 * The function must be called after i_size is updated so that page fault
728 * coming after we unlock the page will already see the new i_size.
729 * The function must be called while we still hold i_mutex - this not only
730 * makes sure i_size is stable but also that userspace cannot observe new
731 * i_size value before we are prepared to store mmap writes at new inode size.
733 void pagecache_isize_extended(struct inode
*inode
, loff_t from
, loff_t to
)
735 int bsize
= 1 << inode
->i_blkbits
;
740 WARN_ON(to
> inode
->i_size
);
742 if (from
>= to
|| bsize
== PAGE_CACHE_SIZE
)
744 /* Page straddling @from will not have any hole block created? */
745 rounded_from
= round_up(from
, bsize
);
746 if (to
<= rounded_from
|| !(rounded_from
& (PAGE_CACHE_SIZE
- 1)))
749 index
= from
>> PAGE_CACHE_SHIFT
;
750 page
= find_lock_page(inode
->i_mapping
, index
);
751 /* Page not cached? Nothing to do */
755 * See clear_page_dirty_for_io() for details why set_page_dirty()
758 if (page_mkclean(page
))
759 set_page_dirty(page
);
761 page_cache_release(page
);
763 EXPORT_SYMBOL(pagecache_isize_extended
);
766 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
768 * @lstart: offset of beginning of hole
769 * @lend: offset of last byte of hole
771 * This function should typically be called before the filesystem
772 * releases resources associated with the freed range (eg. deallocates
773 * blocks). This way, pagecache will always stay logically coherent
774 * with on-disk format, and the filesystem would not have to deal with
775 * situations such as writepage being called for a page that has already
776 * had its underlying blocks deallocated.
778 void truncate_pagecache_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
780 struct address_space
*mapping
= inode
->i_mapping
;
781 loff_t unmap_start
= round_up(lstart
, PAGE_SIZE
);
782 loff_t unmap_end
= round_down(1 + lend
, PAGE_SIZE
) - 1;
784 * This rounding is currently just for example: unmap_mapping_range
785 * expands its hole outwards, whereas we want it to contract the hole
786 * inwards. However, existing callers of truncate_pagecache_range are
787 * doing their own page rounding first. Note that unmap_mapping_range
788 * allows holelen 0 for all, and we allow lend -1 for end of file.
792 * Unlike in truncate_pagecache, unmap_mapping_range is called only
793 * once (before truncating pagecache), and without "even_cows" flag:
794 * hole-punching should not remove private COWed pages from the hole.
796 if ((u64
)unmap_end
> (u64
)unmap_start
)
797 unmap_mapping_range(mapping
, unmap_start
,
798 1 + unmap_end
- unmap_start
, 0);
799 truncate_inode_pages_range(mapping
, lstart
, lend
);
801 EXPORT_SYMBOL(truncate_pagecache_range
);