2 * Timer device implementation for SGI SN platforms.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer. The code below is currently specific to the SGI Altix
14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 * support via the posix timer interface
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
29 #include <linux/mmtimer.h>
30 #include <linux/miscdevice.h>
31 #include <linux/posix-timers.h>
32 #include <linux/interrupt.h>
33 #include <linux/time.h>
34 #include <linux/math64.h>
35 #include <linux/mutex.h>
36 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/intr.h>
41 #include <asm/sn/shub_mmr.h>
42 #include <asm/sn/nodepda.h>
43 #include <asm/sn/shubio.h>
45 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
46 MODULE_DESCRIPTION("SGI Altix RTC Timer");
47 MODULE_LICENSE("GPL");
49 /* name of the device, usually in /dev */
50 #define MMTIMER_NAME "mmtimer"
51 #define MMTIMER_DESC "SGI Altix RTC Timer"
52 #define MMTIMER_VERSION "2.1"
54 #define RTC_BITS 55 /* 55 bits for this implementation */
56 static struct k_clock sgi_clock
;
58 extern unsigned long sn_rtc_cycles_per_second
;
60 #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
62 #define rtc_time() (*RTC_COUNTER_ADDR)
64 static DEFINE_MUTEX(mmtimer_mutex
);
65 static long mmtimer_ioctl(struct file
*file
, unsigned int cmd
,
67 static int mmtimer_mmap(struct file
*file
, struct vm_area_struct
*vma
);
70 * Period in femtoseconds (10^-15 s)
72 static unsigned long mmtimer_femtoperiod
= 0;
74 static const struct file_operations mmtimer_fops
= {
77 .unlocked_ioctl
= mmtimer_ioctl
,
78 .llseek
= noop_llseek
,
82 * We only have comparison registers RTC1-4 currently available per
83 * node. RTC0 is used by SAL.
85 /* Check for an RTC interrupt pending */
86 static int mmtimer_int_pending(int comparator
)
88 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED
)) &
89 SH_EVENT_OCCURRED_RTC1_INT_MASK
<< comparator
)
95 /* Clear the RTC interrupt pending bit */
96 static void mmtimer_clr_int_pending(int comparator
)
98 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS
),
99 SH_EVENT_OCCURRED_RTC1_INT_MASK
<< comparator
);
102 /* Setup timer on comparator RTC1 */
103 static void mmtimer_setup_int_0(int cpu
, u64 expires
)
107 /* Disable interrupt */
108 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
), 0UL);
110 /* Initialize comparator value */
111 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPB
), -1L);
113 /* Clear pending bit */
114 mmtimer_clr_int_pending(0);
116 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC1_INT_CONFIG_IDX_SHFT
) |
117 ((u64
)cpu_physical_id(cpu
) <<
118 SH_RTC1_INT_CONFIG_PID_SHFT
);
120 /* Set configuration */
121 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG
), val
);
123 /* Enable RTC interrupts */
124 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
), 1UL);
126 /* Initialize comparator value */
127 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPB
), expires
);
132 /* Setup timer on comparator RTC2 */
133 static void mmtimer_setup_int_1(int cpu
, u64 expires
)
137 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
), 0UL);
139 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPC
), -1L);
141 mmtimer_clr_int_pending(1);
143 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC2_INT_CONFIG_IDX_SHFT
) |
144 ((u64
)cpu_physical_id(cpu
) <<
145 SH_RTC2_INT_CONFIG_PID_SHFT
);
147 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG
), val
);
149 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
), 1UL);
151 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPC
), expires
);
154 /* Setup timer on comparator RTC3 */
155 static void mmtimer_setup_int_2(int cpu
, u64 expires
)
159 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
), 0UL);
161 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPD
), -1L);
163 mmtimer_clr_int_pending(2);
165 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC3_INT_CONFIG_IDX_SHFT
) |
166 ((u64
)cpu_physical_id(cpu
) <<
167 SH_RTC3_INT_CONFIG_PID_SHFT
);
169 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG
), val
);
171 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
), 1UL);
173 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPD
), expires
);
177 * This function must be called with interrupts disabled and preemption off
178 * in order to insure that the setup succeeds in a deterministic time frame.
179 * It will check if the interrupt setup succeeded.
181 static int mmtimer_setup(int cpu
, int comparator
, unsigned long expires
,
182 u64
*set_completion_time
)
184 switch (comparator
) {
186 mmtimer_setup_int_0(cpu
, expires
);
189 mmtimer_setup_int_1(cpu
, expires
);
192 mmtimer_setup_int_2(cpu
, expires
);
195 /* We might've missed our expiration time */
196 *set_completion_time
= rtc_time();
197 if (*set_completion_time
<= expires
)
201 * If an interrupt is already pending then its okay
202 * if not then we failed
204 return mmtimer_int_pending(comparator
);
207 static int mmtimer_disable_int(long nasid
, int comparator
)
209 switch (comparator
) {
211 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
),
212 0UL) : REMOTE_HUB_S(nasid
, SH_RTC1_INT_ENABLE
, 0UL);
215 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
),
216 0UL) : REMOTE_HUB_S(nasid
, SH_RTC2_INT_ENABLE
, 0UL);
219 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
),
220 0UL) : REMOTE_HUB_S(nasid
, SH_RTC3_INT_ENABLE
, 0UL);
228 #define COMPARATOR 1 /* The comparator to use */
230 #define TIMER_OFF 0xbadcabLL /* Timer is not setup */
231 #define TIMER_SET 0 /* Comparator is set for this timer */
233 #define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
235 /* There is one of these for each timer */
238 struct k_itimer
*timer
;
242 struct mmtimer_node
{
243 spinlock_t lock ____cacheline_aligned
;
244 struct rb_root timer_head
;
245 struct rb_node
*next
;
246 struct tasklet_struct tasklet
;
248 static struct mmtimer_node
*timers
;
250 static unsigned mmtimer_interval_retry_increment
=
251 MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT
;
252 module_param(mmtimer_interval_retry_increment
, uint
, 0644);
253 MODULE_PARM_DESC(mmtimer_interval_retry_increment
,
254 "RTC ticks to add to expiration on interval retry (default 40)");
257 * Add a new mmtimer struct to the node's mmtimer list.
258 * This function assumes the struct mmtimer_node is locked.
260 static void mmtimer_add_list(struct mmtimer
*n
)
262 int nodeid
= n
->timer
->it
.mmtimer
.node
;
263 unsigned long expires
= n
->timer
->it
.mmtimer
.expires
;
264 struct rb_node
**link
= &timers
[nodeid
].timer_head
.rb_node
;
265 struct rb_node
*parent
= NULL
;
269 * Find the right place in the rbtree:
273 x
= rb_entry(parent
, struct mmtimer
, list
);
275 if (expires
< x
->timer
->it
.mmtimer
.expires
)
276 link
= &(*link
)->rb_left
;
278 link
= &(*link
)->rb_right
;
282 * Insert the timer to the rbtree and check whether it
283 * replaces the first pending timer
285 rb_link_node(&n
->list
, parent
, link
);
286 rb_insert_color(&n
->list
, &timers
[nodeid
].timer_head
);
288 if (!timers
[nodeid
].next
|| expires
< rb_entry(timers
[nodeid
].next
,
289 struct mmtimer
, list
)->timer
->it
.mmtimer
.expires
)
290 timers
[nodeid
].next
= &n
->list
;
294 * Set the comparator for the next timer.
295 * This function assumes the struct mmtimer_node is locked.
297 static void mmtimer_set_next_timer(int nodeid
)
299 struct mmtimer_node
*n
= &timers
[nodeid
];
302 u64 expires
, exp
, set_completion_time
;
309 x
= rb_entry(n
->next
, struct mmtimer
, list
);
311 if (!t
->it
.mmtimer
.incr
) {
312 /* Not an interval timer */
313 if (!mmtimer_setup(x
->cpu
, COMPARATOR
,
314 t
->it
.mmtimer
.expires
,
315 &set_completion_time
)) {
316 /* Late setup, fire now */
317 tasklet_schedule(&n
->tasklet
);
324 expires
= exp
= t
->it
.mmtimer
.expires
;
325 while (!mmtimer_setup(x
->cpu
, COMPARATOR
, expires
,
326 &set_completion_time
)) {
330 expires
= set_completion_time
+
331 mmtimer_interval_retry_increment
+ (1 << i
);
332 /* Calculate overruns as we go. */
333 to
= ((u64
)(expires
- exp
) / t
->it
.mmtimer
.incr
);
336 t
->it
.mmtimer
.expires
+= t
->it
.mmtimer
.incr
* to
;
337 exp
= t
->it
.mmtimer
.expires
;
340 printk(KERN_ALERT
"mmtimer: cannot reschedule timer\n");
341 t
->it
.mmtimer
.clock
= TIMER_OFF
;
342 n
->next
= rb_next(&x
->list
);
343 rb_erase(&x
->list
, &n
->timer_head
);
351 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
352 * @file: file structure for the device
353 * @cmd: command to execute
354 * @arg: optional argument to command
356 * Executes the command specified by @cmd. Returns 0 for success, < 0 for
361 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
362 * of the page where the registers are mapped) for the counter in question.
364 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
367 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
370 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
372 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
374 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
375 * in the address specified by @arg.
377 static long mmtimer_ioctl(struct file
*file
, unsigned int cmd
,
382 mutex_lock(&mmtimer_mutex
);
385 case MMTIMER_GETOFFSET
: /* offset of the counter */
387 * SN RTC registers are on their own 64k page
389 if(PAGE_SIZE
<= (1 << 16))
390 ret
= (((long)RTC_COUNTER_ADDR
) & (PAGE_SIZE
-1)) / 8;
395 case MMTIMER_GETRES
: /* resolution of the clock in 10^-15 s */
396 if(copy_to_user((unsigned long __user
*)arg
,
397 &mmtimer_femtoperiod
, sizeof(unsigned long)))
401 case MMTIMER_GETFREQ
: /* frequency in Hz */
402 if(copy_to_user((unsigned long __user
*)arg
,
403 &sn_rtc_cycles_per_second
,
404 sizeof(unsigned long)))
408 case MMTIMER_GETBITS
: /* number of bits in the clock */
412 case MMTIMER_MMAPAVAIL
: /* can we mmap the clock into userspace? */
413 ret
= (PAGE_SIZE
<= (1 << 16)) ? 1 : 0;
416 case MMTIMER_GETCOUNTER
:
417 if(copy_to_user((unsigned long __user
*)arg
,
418 RTC_COUNTER_ADDR
, sizeof(unsigned long)))
425 mutex_unlock(&mmtimer_mutex
);
430 * mmtimer_mmap - maps the clock's registers into userspace
431 * @file: file structure for the device
432 * @vma: VMA to map the registers into
434 * Calls remap_pfn_range() to map the clock's registers into
435 * the calling process' address space.
437 static int mmtimer_mmap(struct file
*file
, struct vm_area_struct
*vma
)
439 unsigned long mmtimer_addr
;
441 if (vma
->vm_end
- vma
->vm_start
!= PAGE_SIZE
)
444 if (vma
->vm_flags
& VM_WRITE
)
447 if (PAGE_SIZE
> (1 << 16))
450 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
452 mmtimer_addr
= __pa(RTC_COUNTER_ADDR
);
453 mmtimer_addr
&= ~(PAGE_SIZE
- 1);
454 mmtimer_addr
&= 0xfffffffffffffffUL
;
456 if (remap_pfn_range(vma
, vma
->vm_start
, mmtimer_addr
>> PAGE_SHIFT
,
457 PAGE_SIZE
, vma
->vm_page_prot
)) {
458 printk(KERN_ERR
"remap_pfn_range failed in mmtimer.c\n");
465 static struct miscdevice mmtimer_miscdev
= {
466 .minor
= SGI_MMTIMER
,
467 .name
= MMTIMER_NAME
,
468 .fops
= &mmtimer_fops
471 static struct timespec sgi_clock_offset
;
472 static int sgi_clock_period
;
475 * Posix Timer Interface
478 static struct timespec sgi_clock_offset
;
479 static int sgi_clock_period
;
481 static int sgi_clock_get(clockid_t clockid
, struct timespec64
*tp
)
485 nsec
= rtc_time() * sgi_clock_period
486 + sgi_clock_offset
.tv_nsec
;
487 *tp
= ns_to_timespec64(nsec
);
488 tp
->tv_sec
+= sgi_clock_offset
.tv_sec
;
492 static int sgi_clock_set(const clockid_t clockid
, const struct timespec64
*tp
)
498 nsec
= rtc_time() * sgi_clock_period
;
500 sgi_clock_offset
.tv_sec
= tp
->tv_sec
- div_u64_rem(nsec
, NSEC_PER_SEC
, &rem
);
502 if (rem
<= tp
->tv_nsec
)
503 sgi_clock_offset
.tv_nsec
= tp
->tv_sec
- rem
;
505 sgi_clock_offset
.tv_nsec
= tp
->tv_sec
+ NSEC_PER_SEC
- rem
;
506 sgi_clock_offset
.tv_sec
--;
512 * mmtimer_interrupt - timer interrupt handler
514 * @dev_id: device the irq came from
516 * Called when one of the comarators matches the counter, This
517 * routine will send signals to processes that have requested
520 * This interrupt is run in an interrupt context
521 * by the SHUB. It is therefore safe to locally access SHub
525 mmtimer_interrupt(int irq
, void *dev_id
)
527 unsigned long expires
= 0;
528 int result
= IRQ_NONE
;
529 unsigned indx
= cpu_to_node(smp_processor_id());
530 struct mmtimer
*base
;
532 spin_lock(&timers
[indx
].lock
);
533 base
= rb_entry(timers
[indx
].next
, struct mmtimer
, list
);
535 spin_unlock(&timers
[indx
].lock
);
539 if (base
->cpu
== smp_processor_id()) {
541 expires
= base
->timer
->it
.mmtimer
.expires
;
542 /* expires test won't work with shared irqs */
543 if ((mmtimer_int_pending(COMPARATOR
) > 0) ||
544 (expires
&& (expires
<= rtc_time()))) {
545 mmtimer_clr_int_pending(COMPARATOR
);
546 tasklet_schedule(&timers
[indx
].tasklet
);
547 result
= IRQ_HANDLED
;
550 spin_unlock(&timers
[indx
].lock
);
554 static void mmtimer_tasklet(unsigned long data
)
557 struct mmtimer_node
*mn
= &timers
[nodeid
];
562 /* Send signal and deal with periodic signals */
563 spin_lock_irqsave(&mn
->lock
, flags
);
567 x
= rb_entry(mn
->next
, struct mmtimer
, list
);
570 if (t
->it
.mmtimer
.clock
== TIMER_OFF
)
575 mn
->next
= rb_next(&x
->list
);
576 rb_erase(&x
->list
, &mn
->timer_head
);
578 if (posix_timer_event(t
, 0) != 0)
581 if(t
->it
.mmtimer
.incr
) {
582 t
->it
.mmtimer
.expires
+= t
->it
.mmtimer
.incr
;
585 /* Ensure we don't false trigger in mmtimer_interrupt */
586 t
->it
.mmtimer
.clock
= TIMER_OFF
;
587 t
->it
.mmtimer
.expires
= 0;
590 /* Set comparator for next timer, if there is one */
591 mmtimer_set_next_timer(nodeid
);
593 t
->it_overrun_last
= t
->it_overrun
;
595 spin_unlock_irqrestore(&mn
->lock
, flags
);
598 static int sgi_timer_create(struct k_itimer
*timer
)
600 /* Insure that a newly created timer is off */
601 timer
->it
.mmtimer
.clock
= TIMER_OFF
;
605 /* This does not really delete a timer. It just insures
606 * that the timer is not active
608 * Assumption: it_lock is already held with irq's disabled
610 static int sgi_timer_del(struct k_itimer
*timr
)
612 cnodeid_t nodeid
= timr
->it
.mmtimer
.node
;
613 unsigned long irqflags
;
615 spin_lock_irqsave(&timers
[nodeid
].lock
, irqflags
);
616 if (timr
->it
.mmtimer
.clock
!= TIMER_OFF
) {
617 unsigned long expires
= timr
->it
.mmtimer
.expires
;
618 struct rb_node
*n
= timers
[nodeid
].timer_head
.rb_node
;
619 struct mmtimer
*uninitialized_var(t
);
622 timr
->it
.mmtimer
.clock
= TIMER_OFF
;
623 timr
->it
.mmtimer
.expires
= 0;
626 t
= rb_entry(n
, struct mmtimer
, list
);
627 if (t
->timer
== timr
)
630 if (expires
< t
->timer
->it
.mmtimer
.expires
)
637 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
641 if (timers
[nodeid
].next
== n
) {
642 timers
[nodeid
].next
= rb_next(n
);
646 rb_erase(n
, &timers
[nodeid
].timer_head
);
650 mmtimer_disable_int(cnodeid_to_nasid(nodeid
),
652 mmtimer_set_next_timer(nodeid
);
655 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
659 /* Assumption: it_lock is already held with irq's disabled */
660 static void sgi_timer_get(struct k_itimer
*timr
, struct itimerspec64
*cur_setting
)
663 if (timr
->it
.mmtimer
.clock
== TIMER_OFF
) {
664 cur_setting
->it_interval
.tv_nsec
= 0;
665 cur_setting
->it_interval
.tv_sec
= 0;
666 cur_setting
->it_value
.tv_nsec
= 0;
667 cur_setting
->it_value
.tv_sec
=0;
671 cur_setting
->it_interval
= ns_to_timespec64(timr
->it
.mmtimer
.incr
* sgi_clock_period
);
672 cur_setting
->it_value
= ns_to_timespec64((timr
->it
.mmtimer
.expires
- rtc_time()) * sgi_clock_period
);
676 static int sgi_timer_set(struct k_itimer
*timr
, int flags
,
677 struct itimerspec64
*new_setting
,
678 struct itimerspec64
*old_setting
)
680 unsigned long when
, period
, irqflags
;
683 struct mmtimer
*base
;
687 sgi_timer_get(timr
, old_setting
);
690 when
= timespec64_to_ns(&new_setting
->it_value
);
691 period
= timespec64_to_ns(&new_setting
->it_interval
);
697 base
= kmalloc(sizeof(struct mmtimer
), GFP_KERNEL
);
701 if (flags
& TIMER_ABSTIME
) {
705 getnstimeofday64(&n
);
706 now
= timespec64_to_ns(&n
);
710 /* Fire the timer immediately */
715 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
716 * to getnstimeofday() in order to be as faithful as possible to the time
719 when
= (when
+ sgi_clock_period
- 1) / sgi_clock_period
+ rtc_time();
720 period
= (period
+ sgi_clock_period
- 1) / sgi_clock_period
;
723 * We are allocating a local SHub comparator. If we would be moved to another
724 * cpu then another SHub may be local to us. Prohibit that by switching off
729 nodeid
= cpu_to_node(smp_processor_id());
731 /* Lock the node timer structure */
732 spin_lock_irqsave(&timers
[nodeid
].lock
, irqflags
);
735 base
->cpu
= smp_processor_id();
737 timr
->it
.mmtimer
.clock
= TIMER_SET
;
738 timr
->it
.mmtimer
.node
= nodeid
;
739 timr
->it
.mmtimer
.incr
= period
;
740 timr
->it
.mmtimer
.expires
= when
;
742 n
= timers
[nodeid
].next
;
744 /* Add the new struct mmtimer to node's timer list */
745 mmtimer_add_list(base
);
747 if (timers
[nodeid
].next
== n
) {
748 /* No need to reprogram comparator for now */
749 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
754 /* We need to reprogram the comparator */
756 mmtimer_disable_int(cnodeid_to_nasid(nodeid
), COMPARATOR
);
758 mmtimer_set_next_timer(nodeid
);
760 /* Unlock the node timer structure */
761 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
768 static int sgi_clock_getres(const clockid_t which_clock
, struct timespec64
*tp
)
771 tp
->tv_nsec
= sgi_clock_period
;
775 static struct k_clock sgi_clock
= {
776 .clock_set
= sgi_clock_set
,
777 .clock_get
= sgi_clock_get
,
778 .clock_getres
= sgi_clock_getres
,
779 .timer_create
= sgi_timer_create
,
780 .timer_set
= sgi_timer_set
,
781 .timer_del
= sgi_timer_del
,
782 .timer_get
= sgi_timer_get
786 * mmtimer_init - device initialization routine
788 * Does initial setup for the mmtimer device.
790 static int __init
mmtimer_init(void)
792 cnodeid_t node
, maxn
= -1;
794 if (!ia64_platform_is("sn2"))
798 * Sanity check the cycles/sec variable
800 if (sn_rtc_cycles_per_second
< 100000) {
801 printk(KERN_ERR
"%s: unable to determine clock frequency\n",
806 mmtimer_femtoperiod
= ((unsigned long)1E15
+ sn_rtc_cycles_per_second
/
807 2) / sn_rtc_cycles_per_second
;
809 if (request_irq(SGI_MMTIMER_VECTOR
, mmtimer_interrupt
, IRQF_PERCPU
, MMTIMER_NAME
, NULL
)) {
810 printk(KERN_WARNING
"%s: unable to allocate interrupt.",
815 if (misc_register(&mmtimer_miscdev
)) {
816 printk(KERN_ERR
"%s: failed to register device\n",
821 /* Get max numbered node, calculate slots needed */
822 for_each_online_node(node
) {
827 /* Allocate list of node ptrs to mmtimer_t's */
828 timers
= kzalloc(sizeof(struct mmtimer_node
)*maxn
, GFP_KERNEL
);
830 printk(KERN_ERR
"%s: failed to allocate memory for device\n",
835 /* Initialize struct mmtimer's for each online node */
836 for_each_online_node(node
) {
837 spin_lock_init(&timers
[node
].lock
);
838 tasklet_init(&timers
[node
].tasklet
, mmtimer_tasklet
,
839 (unsigned long) node
);
842 sgi_clock_period
= NSEC_PER_SEC
/ sn_rtc_cycles_per_second
;
843 posix_timers_register_clock(CLOCK_SGI_CYCLE
, &sgi_clock
);
845 printk(KERN_INFO
"%s: v%s, %ld MHz\n", MMTIMER_DESC
, MMTIMER_VERSION
,
846 sn_rtc_cycles_per_second
/(unsigned long)1E6
);
851 misc_deregister(&mmtimer_miscdev
);
853 free_irq(SGI_MMTIMER_VECTOR
, NULL
);
858 module_init(mmtimer_init
);