2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
79 int sysctl_tcp_timestamps __read_mostly
= 1;
80 int sysctl_tcp_window_scaling __read_mostly
= 1;
81 int sysctl_tcp_sack __read_mostly
= 1;
82 int sysctl_tcp_fack __read_mostly
;
83 int sysctl_tcp_max_reordering __read_mostly
= 300;
84 int sysctl_tcp_dsack __read_mostly
= 1;
85 int sysctl_tcp_app_win __read_mostly
= 31;
86 int sysctl_tcp_adv_win_scale __read_mostly
= 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale
);
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit
= 1000;
92 int sysctl_tcp_stdurg __read_mostly
;
93 int sysctl_tcp_rfc1337 __read_mostly
;
94 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
95 int sysctl_tcp_frto __read_mostly
= 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly
= 300;
97 int sysctl_tcp_moderate_rcvbuf __read_mostly
= 1;
98 int sysctl_tcp_early_retrans __read_mostly
= 3;
99 int sysctl_tcp_invalid_ratelimit __read_mostly
= HZ
/2;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 #define REXMIT_NONE 0 /* no loss recovery to do */
125 #define REXMIT_LOST 1 /* retransmit packets marked lost */
126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
128 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
131 static bool __once __read_mostly
;
134 struct net_device
*dev
;
139 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
140 if (!dev
|| len
>= dev
->mtu
)
141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 dev
? dev
->name
: "Unknown driver");
147 /* Adapt the MSS value used to make delayed ack decision to the
150 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
152 struct inet_connection_sock
*icsk
= inet_csk(sk
);
153 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
156 icsk
->icsk_ack
.last_seg_size
= 0;
158 /* skb->len may jitter because of SACKs, even if peer
159 * sends good full-sized frames.
161 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
162 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
163 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
165 /* Account for possibly-removed options */
166 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
167 MAX_TCP_OPTION_SPACE
))
168 tcp_gro_dev_warn(sk
, skb
, len
);
170 /* Otherwise, we make more careful check taking into account,
171 * that SACKs block is variable.
173 * "len" is invariant segment length, including TCP header.
175 len
+= skb
->data
- skb_transport_header(skb
);
176 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
177 /* If PSH is not set, packet should be
178 * full sized, provided peer TCP is not badly broken.
179 * This observation (if it is correct 8)) allows
180 * to handle super-low mtu links fairly.
182 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
183 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
184 /* Subtract also invariant (if peer is RFC compliant),
185 * tcp header plus fixed timestamp option length.
186 * Resulting "len" is MSS free of SACK jitter.
188 len
-= tcp_sk(sk
)->tcp_header_len
;
189 icsk
->icsk_ack
.last_seg_size
= len
;
191 icsk
->icsk_ack
.rcv_mss
= len
;
195 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
196 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
197 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
201 static void tcp_incr_quickack(struct sock
*sk
)
203 struct inet_connection_sock
*icsk
= inet_csk(sk
);
204 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
208 if (quickacks
> icsk
->icsk_ack
.quick
)
209 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
212 static void tcp_enter_quickack_mode(struct sock
*sk
)
214 struct inet_connection_sock
*icsk
= inet_csk(sk
);
215 tcp_incr_quickack(sk
);
216 icsk
->icsk_ack
.pingpong
= 0;
217 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
220 /* Send ACKs quickly, if "quick" count is not exhausted
221 * and the session is not interactive.
224 static bool tcp_in_quickack_mode(struct sock
*sk
)
226 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
227 const struct dst_entry
*dst
= __sk_dst_get(sk
);
229 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
230 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
233 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
235 if (tp
->ecn_flags
& TCP_ECN_OK
)
236 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
239 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
241 if (tcp_hdr(skb
)->cwr
)
242 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
247 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
250 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
252 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
253 case INET_ECN_NOT_ECT
:
254 /* Funny extension: if ECT is not set on a segment,
255 * and we already seen ECT on a previous segment,
256 * it is probably a retransmit.
258 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
259 tcp_enter_quickack_mode((struct sock
*)tp
);
262 if (tcp_ca_needs_ecn((struct sock
*)tp
))
263 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
265 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
266 /* Better not delay acks, sender can have a very low cwnd */
267 tcp_enter_quickack_mode((struct sock
*)tp
);
268 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
270 tp
->ecn_flags
|= TCP_ECN_SEEN
;
273 if (tcp_ca_needs_ecn((struct sock
*)tp
))
274 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
275 tp
->ecn_flags
|= TCP_ECN_SEEN
;
280 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
282 if (tp
->ecn_flags
& TCP_ECN_OK
)
283 __tcp_ecn_check_ce(tp
, skb
);
286 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
288 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
289 tp
->ecn_flags
&= ~TCP_ECN_OK
;
292 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
294 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
295 tp
->ecn_flags
&= ~TCP_ECN_OK
;
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
300 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
305 /* Buffer size and advertised window tuning.
307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
310 static void tcp_sndbuf_expand(struct sock
*sk
)
312 const struct tcp_sock
*tp
= tcp_sk(sk
);
313 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
317 /* Worst case is non GSO/TSO : each frame consumes one skb
318 * and skb->head is kmalloced using power of two area of memory
320 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
324 per_mss
= roundup_pow_of_two(per_mss
) +
325 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
327 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
328 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
330 /* Fast Recovery (RFC 5681 3.2) :
331 * Cubic needs 1.7 factor, rounded to 2 to include
332 * extra cushion (application might react slowly to POLLOUT)
334 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
335 sndmem
*= nr_segs
* per_mss
;
337 if (sk
->sk_sndbuf
< sndmem
)
338 sk
->sk_sndbuf
= min(sndmem
, sysctl_tcp_wmem
[2]);
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
344 * forward and advertised in receiver window (tp->rcv_wnd) and
345 * "application buffer", required to isolate scheduling/application
346 * latencies from network.
347 * window_clamp is maximal advertised window. It can be less than
348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
349 * is reserved for "application" buffer. The less window_clamp is
350 * the smoother our behaviour from viewpoint of network, but the lower
351 * throughput and the higher sensitivity of the connection to losses. 8)
353 * rcv_ssthresh is more strict window_clamp used at "slow start"
354 * phase to predict further behaviour of this connection.
355 * It is used for two goals:
356 * - to enforce header prediction at sender, even when application
357 * requires some significant "application buffer". It is check #1.
358 * - to prevent pruning of receive queue because of misprediction
359 * of receiver window. Check #2.
361 * The scheme does not work when sender sends good segments opening
362 * window and then starts to feed us spaghetti. But it should work
363 * in common situations. Otherwise, we have to rely on queue collapsing.
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
369 struct tcp_sock
*tp
= tcp_sk(sk
);
371 int truesize
= tcp_win_from_space(skb
->truesize
) >> 1;
372 int window
= tcp_win_from_space(sysctl_tcp_rmem
[2]) >> 1;
374 while (tp
->rcv_ssthresh
<= window
) {
375 if (truesize
<= skb
->len
)
376 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
384 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
386 struct tcp_sock
*tp
= tcp_sk(sk
);
389 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
390 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
391 !tcp_under_memory_pressure(sk
)) {
394 /* Check #2. Increase window, if skb with such overhead
395 * will fit to rcvbuf in future.
397 if (tcp_win_from_space(skb
->truesize
) <= skb
->len
)
398 incr
= 2 * tp
->advmss
;
400 incr
= __tcp_grow_window(sk
, skb
);
403 incr
= max_t(int, incr
, 2 * skb
->len
);
404 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
406 inet_csk(sk
)->icsk_ack
.quick
|= 1;
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock
*sk
)
414 u32 mss
= tcp_sk(sk
)->advmss
;
417 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
418 tcp_default_init_rwnd(mss
);
420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 * Allow enough cushion so that sender is not limited by our window
423 if (sysctl_tcp_moderate_rcvbuf
)
426 if (sk
->sk_rcvbuf
< rcvmem
)
427 sk
->sk_rcvbuf
= min(rcvmem
, sysctl_tcp_rmem
[2]);
430 /* 4. Try to fixup all. It is made immediately after connection enters
433 void tcp_init_buffer_space(struct sock
*sk
)
435 struct tcp_sock
*tp
= tcp_sk(sk
);
438 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
439 tcp_fixup_rcvbuf(sk
);
440 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
441 tcp_sndbuf_expand(sk
);
443 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
444 skb_mstamp_get(&tp
->tcp_mstamp
);
445 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
446 tp
->rcvq_space
.seq
= tp
->copied_seq
;
448 maxwin
= tcp_full_space(sk
);
450 if (tp
->window_clamp
>= maxwin
) {
451 tp
->window_clamp
= maxwin
;
453 if (sysctl_tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
454 tp
->window_clamp
= max(maxwin
-
455 (maxwin
>> sysctl_tcp_app_win
),
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win
&&
461 tp
->window_clamp
> 2 * tp
->advmss
&&
462 tp
->window_clamp
+ tp
->advmss
> maxwin
)
463 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
465 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
466 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock
*sk
)
472 struct tcp_sock
*tp
= tcp_sk(sk
);
473 struct inet_connection_sock
*icsk
= inet_csk(sk
);
475 icsk
->icsk_ack
.quick
= 0;
477 if (sk
->sk_rcvbuf
< sysctl_tcp_rmem
[2] &&
478 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
479 !tcp_under_memory_pressure(sk
) &&
480 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
481 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
484 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
485 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
488 /* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
495 void tcp_initialize_rcv_mss(struct sock
*sk
)
497 const struct tcp_sock
*tp
= tcp_sk(sk
);
498 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
500 hint
= min(hint
, tp
->rcv_wnd
/ 2);
501 hint
= min(hint
, TCP_MSS_DEFAULT
);
502 hint
= max(hint
, TCP_MIN_MSS
);
504 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
508 /* Receiver "autotuning" code.
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
514 * More detail on this code can be found at
515 * <http://staff.psc.edu/jheffner/>,
516 * though this reference is out of date. A new paper
519 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
521 u32 new_sample
= tp
->rcv_rtt_est
.rtt_us
;
527 if (new_sample
!= 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
533 * Also, since we are only going for a minimum in the
534 * non-timestamp case, we do not smooth things out
535 * else with timestamps disabled convergence takes too
539 m
-= (new_sample
>> 3);
547 /* No previous measure. */
551 tp
->rcv_rtt_est
.rtt_us
= new_sample
;
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
558 if (tp
->rcv_rtt_est
.time
.v64
== 0)
560 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
562 delta_us
= skb_mstamp_us_delta(&tp
->tcp_mstamp
, &tp
->rcv_rtt_est
.time
);
563 tcp_rcv_rtt_update(tp
, delta_us
, 1);
566 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
567 tp
->rcv_rtt_est
.time
= tp
->tcp_mstamp
;
570 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
571 const struct sk_buff
*skb
)
573 struct tcp_sock
*tp
= tcp_sk(sk
);
574 if (tp
->rx_opt
.rcv_tsecr
&&
575 (TCP_SKB_CB(skb
)->end_seq
-
576 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
))
577 tcp_rcv_rtt_update(tp
,
578 jiffies_to_usecs(tcp_time_stamp
-
579 tp
->rx_opt
.rcv_tsecr
),
584 * This function should be called every time data is copied to user space.
585 * It calculates the appropriate TCP receive buffer space.
587 void tcp_rcv_space_adjust(struct sock
*sk
)
589 struct tcp_sock
*tp
= tcp_sk(sk
);
593 time
= skb_mstamp_us_delta(&tp
->tcp_mstamp
, &tp
->rcvq_space
.time
);
594 if (time
< (tp
->rcv_rtt_est
.rtt_us
>> 3) || tp
->rcv_rtt_est
.rtt_us
== 0)
597 /* Number of bytes copied to user in last RTT */
598 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
599 if (copied
<= tp
->rcvq_space
.space
)
603 * copied = bytes received in previous RTT, our base window
604 * To cope with packet losses, we need a 2x factor
605 * To cope with slow start, and sender growing its cwin by 100 %
606 * every RTT, we need a 4x factor, because the ACK we are sending
607 * now is for the next RTT, not the current one :
608 * <prev RTT . ><current RTT .. ><next RTT .... >
611 if (sysctl_tcp_moderate_rcvbuf
&&
612 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
613 int rcvwin
, rcvmem
, rcvbuf
;
615 /* minimal window to cope with packet losses, assuming
616 * steady state. Add some cushion because of small variations.
618 rcvwin
= (copied
<< 1) + 16 * tp
->advmss
;
620 /* If rate increased by 25%,
621 * assume slow start, rcvwin = 3 * copied
622 * If rate increased by 50%,
623 * assume sender can use 2x growth, rcvwin = 4 * copied
626 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 2)) {
628 tp
->rcvq_space
.space
+ (tp
->rcvq_space
.space
>> 1))
631 rcvwin
+= (rcvwin
>> 1);
634 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
635 while (tcp_win_from_space(rcvmem
) < tp
->advmss
)
638 rcvbuf
= min(rcvwin
/ tp
->advmss
* rcvmem
, sysctl_tcp_rmem
[2]);
639 if (rcvbuf
> sk
->sk_rcvbuf
) {
640 sk
->sk_rcvbuf
= rcvbuf
;
642 /* Make the window clamp follow along. */
643 tp
->window_clamp
= rcvwin
;
646 tp
->rcvq_space
.space
= copied
;
649 tp
->rcvq_space
.seq
= tp
->copied_seq
;
650 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
653 /* There is something which you must keep in mind when you analyze the
654 * behavior of the tp->ato delayed ack timeout interval. When a
655 * connection starts up, we want to ack as quickly as possible. The
656 * problem is that "good" TCP's do slow start at the beginning of data
657 * transmission. The means that until we send the first few ACK's the
658 * sender will sit on his end and only queue most of his data, because
659 * he can only send snd_cwnd unacked packets at any given time. For
660 * each ACK we send, he increments snd_cwnd and transmits more of his
663 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
665 struct tcp_sock
*tp
= tcp_sk(sk
);
666 struct inet_connection_sock
*icsk
= inet_csk(sk
);
669 inet_csk_schedule_ack(sk
);
671 tcp_measure_rcv_mss(sk
, skb
);
673 tcp_rcv_rtt_measure(tp
);
675 now
= tcp_time_stamp
;
677 if (!icsk
->icsk_ack
.ato
) {
678 /* The _first_ data packet received, initialize
679 * delayed ACK engine.
681 tcp_incr_quickack(sk
);
682 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
684 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
686 if (m
<= TCP_ATO_MIN
/ 2) {
687 /* The fastest case is the first. */
688 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
689 } else if (m
< icsk
->icsk_ack
.ato
) {
690 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
691 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
692 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
693 } else if (m
> icsk
->icsk_rto
) {
694 /* Too long gap. Apparently sender failed to
695 * restart window, so that we send ACKs quickly.
697 tcp_incr_quickack(sk
);
701 icsk
->icsk_ack
.lrcvtime
= now
;
703 tcp_ecn_check_ce(tp
, skb
);
706 tcp_grow_window(sk
, skb
);
709 /* Called to compute a smoothed rtt estimate. The data fed to this
710 * routine either comes from timestamps, or from segments that were
711 * known _not_ to have been retransmitted [see Karn/Partridge
712 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
713 * piece by Van Jacobson.
714 * NOTE: the next three routines used to be one big routine.
715 * To save cycles in the RFC 1323 implementation it was better to break
716 * it up into three procedures. -- erics
718 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
720 struct tcp_sock
*tp
= tcp_sk(sk
);
721 long m
= mrtt_us
; /* RTT */
722 u32 srtt
= tp
->srtt_us
;
724 /* The following amusing code comes from Jacobson's
725 * article in SIGCOMM '88. Note that rtt and mdev
726 * are scaled versions of rtt and mean deviation.
727 * This is designed to be as fast as possible
728 * m stands for "measurement".
730 * On a 1990 paper the rto value is changed to:
731 * RTO = rtt + 4 * mdev
733 * Funny. This algorithm seems to be very broken.
734 * These formulae increase RTO, when it should be decreased, increase
735 * too slowly, when it should be increased quickly, decrease too quickly
736 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
737 * does not matter how to _calculate_ it. Seems, it was trap
738 * that VJ failed to avoid. 8)
741 m
-= (srtt
>> 3); /* m is now error in rtt est */
742 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
744 m
= -m
; /* m is now abs(error) */
745 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
746 /* This is similar to one of Eifel findings.
747 * Eifel blocks mdev updates when rtt decreases.
748 * This solution is a bit different: we use finer gain
749 * for mdev in this case (alpha*beta).
750 * Like Eifel it also prevents growth of rto,
751 * but also it limits too fast rto decreases,
752 * happening in pure Eifel.
757 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
759 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
760 if (tp
->mdev_us
> tp
->mdev_max_us
) {
761 tp
->mdev_max_us
= tp
->mdev_us
;
762 if (tp
->mdev_max_us
> tp
->rttvar_us
)
763 tp
->rttvar_us
= tp
->mdev_max_us
;
765 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
766 if (tp
->mdev_max_us
< tp
->rttvar_us
)
767 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
768 tp
->rtt_seq
= tp
->snd_nxt
;
769 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
772 /* no previous measure. */
773 srtt
= m
<< 3; /* take the measured time to be rtt */
774 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
775 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
776 tp
->mdev_max_us
= tp
->rttvar_us
;
777 tp
->rtt_seq
= tp
->snd_nxt
;
779 tp
->srtt_us
= max(1U, srtt
);
782 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
783 * Note: TCP stack does not yet implement pacing.
784 * FQ packet scheduler can be used to implement cheap but effective
785 * TCP pacing, to smooth the burst on large writes when packets
786 * in flight is significantly lower than cwnd (or rwin)
788 int sysctl_tcp_pacing_ss_ratio __read_mostly
= 200;
789 int sysctl_tcp_pacing_ca_ratio __read_mostly
= 120;
791 static void tcp_update_pacing_rate(struct sock
*sk
)
793 const struct tcp_sock
*tp
= tcp_sk(sk
);
796 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
797 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
799 /* current rate is (cwnd * mss) / srtt
800 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
801 * In Congestion Avoidance phase, set it to 120 % the current rate.
803 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
804 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
805 * end of slow start and should slow down.
807 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
808 rate
*= sysctl_tcp_pacing_ss_ratio
;
810 rate
*= sysctl_tcp_pacing_ca_ratio
;
812 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
814 if (likely(tp
->srtt_us
))
815 do_div(rate
, tp
->srtt_us
);
817 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
818 * without any lock. We want to make sure compiler wont store
819 * intermediate values in this location.
821 ACCESS_ONCE(sk
->sk_pacing_rate
) = min_t(u64
, rate
,
822 sk
->sk_max_pacing_rate
);
825 /* Calculate rto without backoff. This is the second half of Van Jacobson's
826 * routine referred to above.
828 static void tcp_set_rto(struct sock
*sk
)
830 const struct tcp_sock
*tp
= tcp_sk(sk
);
831 /* Old crap is replaced with new one. 8)
834 * 1. If rtt variance happened to be less 50msec, it is hallucination.
835 * It cannot be less due to utterly erratic ACK generation made
836 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
837 * to do with delayed acks, because at cwnd>2 true delack timeout
838 * is invisible. Actually, Linux-2.4 also generates erratic
839 * ACKs in some circumstances.
841 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
843 /* 2. Fixups made earlier cannot be right.
844 * If we do not estimate RTO correctly without them,
845 * all the algo is pure shit and should be replaced
846 * with correct one. It is exactly, which we pretend to do.
849 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
850 * guarantees that rto is higher.
855 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
857 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
860 cwnd
= TCP_INIT_CWND
;
861 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
865 * Packet counting of FACK is based on in-order assumptions, therefore TCP
866 * disables it when reordering is detected
868 void tcp_disable_fack(struct tcp_sock
*tp
)
870 /* RFC3517 uses different metric in lost marker => reset on change */
872 tp
->lost_skb_hint
= NULL
;
873 tp
->rx_opt
.sack_ok
&= ~TCP_FACK_ENABLED
;
876 /* Take a notice that peer is sending D-SACKs */
877 static void tcp_dsack_seen(struct tcp_sock
*tp
)
879 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
882 static void tcp_update_reordering(struct sock
*sk
, const int metric
,
885 struct tcp_sock
*tp
= tcp_sk(sk
);
888 if (metric
> tp
->reordering
) {
889 tp
->reordering
= min(sysctl_tcp_max_reordering
, metric
);
891 #if FASTRETRANS_DEBUG > 1
892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
897 tp
->undo_marker
? tp
->undo_retrans
: 0);
899 tcp_disable_fack(tp
);
904 /* This exciting event is worth to be remembered. 8) */
906 mib_idx
= LINUX_MIB_TCPTSREORDER
;
907 else if (tcp_is_reno(tp
))
908 mib_idx
= LINUX_MIB_TCPRENOREORDER
;
909 else if (tcp_is_fack(tp
))
910 mib_idx
= LINUX_MIB_TCPFACKREORDER
;
912 mib_idx
= LINUX_MIB_TCPSACKREORDER
;
914 NET_INC_STATS(sock_net(sk
), mib_idx
);
917 /* This must be called before lost_out is incremented */
918 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
920 if (!tp
->retransmit_skb_hint
||
921 before(TCP_SKB_CB(skb
)->seq
,
922 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
923 tp
->retransmit_skb_hint
= skb
;
926 /* Sum the number of packets on the wire we have marked as lost.
927 * There are two cases we care about here:
928 * a) Packet hasn't been marked lost (nor retransmitted),
929 * and this is the first loss.
930 * b) Packet has been marked both lost and retransmitted,
931 * and this means we think it was lost again.
933 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
935 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
937 if (!(sacked
& TCPCB_LOST
) ||
938 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
939 tp
->lost
+= tcp_skb_pcount(skb
);
942 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
944 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
945 tcp_verify_retransmit_hint(tp
, skb
);
947 tp
->lost_out
+= tcp_skb_pcount(skb
);
948 tcp_sum_lost(tp
, skb
);
949 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
955 tcp_verify_retransmit_hint(tp
, skb
);
957 tcp_sum_lost(tp
, skb
);
958 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
959 tp
->lost_out
+= tcp_skb_pcount(skb
);
960 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
964 /* This procedure tags the retransmission queue when SACKs arrive.
966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967 * Packets in queue with these bits set are counted in variables
968 * sacked_out, retrans_out and lost_out, correspondingly.
970 * Valid combinations are:
971 * Tag InFlight Description
972 * 0 1 - orig segment is in flight.
973 * S 0 - nothing flies, orig reached receiver.
974 * L 0 - nothing flies, orig lost by net.
975 * R 2 - both orig and retransmit are in flight.
976 * L|R 1 - orig is lost, retransmit is in flight.
977 * S|R 1 - orig reached receiver, retrans is still in flight.
978 * (L|S|R is logically valid, it could occur when L|R is sacked,
979 * but it is equivalent to plain S and code short-curcuits it to S.
980 * L|S is logically invalid, it would mean -1 packet in flight 8))
982 * These 6 states form finite state machine, controlled by the following events:
983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985 * 3. Loss detection event of two flavors:
986 * A. Scoreboard estimator decided the packet is lost.
987 * A'. Reno "three dupacks" marks head of queue lost.
988 * A''. Its FACK modification, head until snd.fack is lost.
989 * B. SACK arrives sacking SND.NXT at the moment, when the
990 * segment was retransmitted.
991 * 4. D-SACK added new rule: D-SACK changes any tag to S.
993 * It is pleasant to note, that state diagram turns out to be commutative,
994 * so that we are allowed not to be bothered by order of our actions,
995 * when multiple events arrive simultaneously. (see the function below).
997 * Reordering detection.
998 * --------------------
999 * Reordering metric is maximal distance, which a packet can be displaced
1000 * in packet stream. With SACKs we can estimate it:
1002 * 1. SACK fills old hole and the corresponding segment was not
1003 * ever retransmitted -> reordering. Alas, we cannot use it
1004 * when segment was retransmitted.
1005 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1006 * for retransmitted and already SACKed segment -> reordering..
1007 * Both of these heuristics are not used in Loss state, when we cannot
1008 * account for retransmits accurately.
1010 * SACK block validation.
1011 * ----------------------
1013 * SACK block range validation checks that the received SACK block fits to
1014 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1015 * Note that SND.UNA is not included to the range though being valid because
1016 * it means that the receiver is rather inconsistent with itself reporting
1017 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1018 * perfectly valid, however, in light of RFC2018 which explicitly states
1019 * that "SACK block MUST reflect the newest segment. Even if the newest
1020 * segment is going to be discarded ...", not that it looks very clever
1021 * in case of head skb. Due to potentional receiver driven attacks, we
1022 * choose to avoid immediate execution of a walk in write queue due to
1023 * reneging and defer head skb's loss recovery to standard loss recovery
1024 * procedure that will eventually trigger (nothing forbids us doing this).
1026 * Implements also blockage to start_seq wrap-around. Problem lies in the
1027 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1028 * there's no guarantee that it will be before snd_nxt (n). The problem
1029 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1032 * <- outs wnd -> <- wrapzone ->
1033 * u e n u_w e_w s n_w
1035 * |<------------+------+----- TCP seqno space --------------+---------->|
1036 * ...-- <2^31 ->| |<--------...
1037 * ...---- >2^31 ------>| |<--------...
1039 * Current code wouldn't be vulnerable but it's better still to discard such
1040 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1041 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1042 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1043 * equal to the ideal case (infinite seqno space without wrap caused issues).
1045 * With D-SACK the lower bound is extended to cover sequence space below
1046 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1047 * again, D-SACK block must not to go across snd_una (for the same reason as
1048 * for the normal SACK blocks, explained above). But there all simplicity
1049 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1050 * fully below undo_marker they do not affect behavior in anyway and can
1051 * therefore be safely ignored. In rare cases (which are more or less
1052 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1053 * fragmentation and packet reordering past skb's retransmission. To consider
1054 * them correctly, the acceptable range must be extended even more though
1055 * the exact amount is rather hard to quantify. However, tp->max_window can
1056 * be used as an exaggerated estimate.
1058 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1059 u32 start_seq
, u32 end_seq
)
1061 /* Too far in future, or reversed (interpretation is ambiguous) */
1062 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1065 /* Nasty start_seq wrap-around check (see comments above) */
1066 if (!before(start_seq
, tp
->snd_nxt
))
1069 /* In outstanding window? ...This is valid exit for D-SACKs too.
1070 * start_seq == snd_una is non-sensical (see comments above)
1072 if (after(start_seq
, tp
->snd_una
))
1075 if (!is_dsack
|| !tp
->undo_marker
)
1078 /* ...Then it's D-SACK, and must reside below snd_una completely */
1079 if (after(end_seq
, tp
->snd_una
))
1082 if (!before(start_seq
, tp
->undo_marker
))
1086 if (!after(end_seq
, tp
->undo_marker
))
1089 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1090 * start_seq < undo_marker and end_seq >= undo_marker.
1092 return !before(start_seq
, end_seq
- tp
->max_window
);
1095 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1096 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1099 struct tcp_sock
*tp
= tcp_sk(sk
);
1100 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1101 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1102 bool dup_sack
= false;
1104 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1107 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1108 } else if (num_sacks
> 1) {
1109 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1110 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1112 if (!after(end_seq_0
, end_seq_1
) &&
1113 !before(start_seq_0
, start_seq_1
)) {
1116 NET_INC_STATS(sock_net(sk
),
1117 LINUX_MIB_TCPDSACKOFORECV
);
1121 /* D-SACK for already forgotten data... Do dumb counting. */
1122 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1123 !after(end_seq_0
, prior_snd_una
) &&
1124 after(end_seq_0
, tp
->undo_marker
))
1130 struct tcp_sacktag_state
{
1133 /* Timestamps for earliest and latest never-retransmitted segment
1134 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 * but congestion control should still get an accurate delay signal.
1137 struct skb_mstamp first_sackt
;
1138 struct skb_mstamp last_sackt
;
1139 struct rate_sample
*rate
;
1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144 * the incoming SACK may not exactly match but we can find smaller MSS
1145 * aligned portion of it that matches. Therefore we might need to fragment
1146 * which may fail and creates some hassle (caller must handle error case
1149 * FIXME: this could be merged to shift decision code
1151 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1152 u32 start_seq
, u32 end_seq
)
1156 unsigned int pkt_len
;
1159 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1160 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1162 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1163 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1164 mss
= tcp_skb_mss(skb
);
1165 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1168 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1172 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1177 /* Round if necessary so that SACKs cover only full MSSes
1178 * and/or the remaining small portion (if present)
1180 if (pkt_len
> mss
) {
1181 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1182 if (!in_sack
&& new_len
< pkt_len
)
1187 if (pkt_len
>= skb
->len
&& !in_sack
)
1190 err
= tcp_fragment(sk
, skb
, pkt_len
, mss
, GFP_ATOMIC
);
1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1199 static u8
tcp_sacktag_one(struct sock
*sk
,
1200 struct tcp_sacktag_state
*state
, u8 sacked
,
1201 u32 start_seq
, u32 end_seq
,
1202 int dup_sack
, int pcount
,
1203 const struct skb_mstamp
*xmit_time
)
1205 struct tcp_sock
*tp
= tcp_sk(sk
);
1206 int fack_count
= state
->fack_count
;
1208 /* Account D-SACK for retransmitted packet. */
1209 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1210 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1211 after(end_seq
, tp
->undo_marker
))
1213 if (sacked
& TCPCB_SACKED_ACKED
)
1214 state
->reord
= min(fack_count
, state
->reord
);
1217 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1218 if (!after(end_seq
, tp
->snd_una
))
1221 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1222 tcp_rack_advance(tp
, sacked
, end_seq
, xmit_time
);
1224 if (sacked
& TCPCB_SACKED_RETRANS
) {
1225 /* If the segment is not tagged as lost,
1226 * we do not clear RETRANS, believing
1227 * that retransmission is still in flight.
1229 if (sacked
& TCPCB_LOST
) {
1230 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1231 tp
->lost_out
-= pcount
;
1232 tp
->retrans_out
-= pcount
;
1235 if (!(sacked
& TCPCB_RETRANS
)) {
1236 /* New sack for not retransmitted frame,
1237 * which was in hole. It is reordering.
1239 if (before(start_seq
,
1240 tcp_highest_sack_seq(tp
)))
1241 state
->reord
= min(fack_count
,
1243 if (!after(end_seq
, tp
->high_seq
))
1244 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1245 if (state
->first_sackt
.v64
== 0)
1246 state
->first_sackt
= *xmit_time
;
1247 state
->last_sackt
= *xmit_time
;
1250 if (sacked
& TCPCB_LOST
) {
1251 sacked
&= ~TCPCB_LOST
;
1252 tp
->lost_out
-= pcount
;
1256 sacked
|= TCPCB_SACKED_ACKED
;
1257 state
->flag
|= FLAG_DATA_SACKED
;
1258 tp
->sacked_out
+= pcount
;
1259 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1261 fack_count
+= pcount
;
1263 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1264 if (!tcp_is_fack(tp
) && tp
->lost_skb_hint
&&
1265 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1266 tp
->lost_cnt_hint
+= pcount
;
1268 if (fack_count
> tp
->fackets_out
)
1269 tp
->fackets_out
= fack_count
;
1272 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1273 * frames and clear it. undo_retrans is decreased above, L|R frames
1274 * are accounted above as well.
1276 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1277 sacked
&= ~TCPCB_SACKED_RETRANS
;
1278 tp
->retrans_out
-= pcount
;
1284 /* Shift newly-SACKed bytes from this skb to the immediately previous
1285 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1287 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*skb
,
1288 struct tcp_sacktag_state
*state
,
1289 unsigned int pcount
, int shifted
, int mss
,
1292 struct tcp_sock
*tp
= tcp_sk(sk
);
1293 struct sk_buff
*prev
= tcp_write_queue_prev(sk
, skb
);
1294 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1295 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1299 /* Adjust counters and hints for the newly sacked sequence
1300 * range but discard the return value since prev is already
1301 * marked. We must tag the range first because the seq
1302 * advancement below implicitly advances
1303 * tcp_highest_sack_seq() when skb is highest_sack.
1305 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1306 start_seq
, end_seq
, dup_sack
, pcount
,
1308 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1310 if (skb
== tp
->lost_skb_hint
)
1311 tp
->lost_cnt_hint
+= pcount
;
1313 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1314 TCP_SKB_CB(skb
)->seq
+= shifted
;
1316 tcp_skb_pcount_add(prev
, pcount
);
1317 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1318 tcp_skb_pcount_add(skb
, -pcount
);
1320 /* When we're adding to gso_segs == 1, gso_size will be zero,
1321 * in theory this shouldn't be necessary but as long as DSACK
1322 * code can come after this skb later on it's better to keep
1323 * setting gso_size to something.
1325 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1326 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1328 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1329 if (tcp_skb_pcount(skb
) <= 1)
1330 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1332 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1333 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1336 BUG_ON(!tcp_skb_pcount(skb
));
1337 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1341 /* Whole SKB was eaten :-) */
1343 if (skb
== tp
->retransmit_skb_hint
)
1344 tp
->retransmit_skb_hint
= prev
;
1345 if (skb
== tp
->lost_skb_hint
) {
1346 tp
->lost_skb_hint
= prev
;
1347 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1350 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1351 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1352 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1353 TCP_SKB_CB(prev
)->end_seq
++;
1355 if (skb
== tcp_highest_sack(sk
))
1356 tcp_advance_highest_sack(sk
, skb
);
1358 tcp_skb_collapse_tstamp(prev
, skb
);
1359 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
))
1360 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
.v64
= 0;
1362 tcp_unlink_write_queue(skb
, sk
);
1363 sk_wmem_free_skb(sk
, skb
);
1365 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1370 /* I wish gso_size would have a bit more sane initialization than
1371 * something-or-zero which complicates things
1373 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1375 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1378 /* Shifting pages past head area doesn't work */
1379 static int skb_can_shift(const struct sk_buff
*skb
)
1381 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1384 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1387 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1388 struct tcp_sacktag_state
*state
,
1389 u32 start_seq
, u32 end_seq
,
1392 struct tcp_sock
*tp
= tcp_sk(sk
);
1393 struct sk_buff
*prev
;
1399 if (!sk_can_gso(sk
))
1402 /* Normally R but no L won't result in plain S */
1404 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1406 if (!skb_can_shift(skb
))
1408 /* This frame is about to be dropped (was ACKed). */
1409 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1412 /* Can only happen with delayed DSACK + discard craziness */
1413 if (unlikely(skb
== tcp_write_queue_head(sk
)))
1415 prev
= tcp_write_queue_prev(sk
, skb
);
1417 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1420 if (!tcp_skb_can_collapse_to(prev
))
1423 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1424 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1428 pcount
= tcp_skb_pcount(skb
);
1429 mss
= tcp_skb_seglen(skb
);
1431 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1432 * drop this restriction as unnecessary
1434 if (mss
!= tcp_skb_seglen(prev
))
1437 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1439 /* CHECKME: This is non-MSS split case only?, this will
1440 * cause skipped skbs due to advancing loop btw, original
1441 * has that feature too
1443 if (tcp_skb_pcount(skb
) <= 1)
1446 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1448 /* TODO: head merge to next could be attempted here
1449 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1450 * though it might not be worth of the additional hassle
1452 * ...we can probably just fallback to what was done
1453 * previously. We could try merging non-SACKed ones
1454 * as well but it probably isn't going to buy off
1455 * because later SACKs might again split them, and
1456 * it would make skb timestamp tracking considerably
1462 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1464 BUG_ON(len
> skb
->len
);
1466 /* MSS boundaries should be honoured or else pcount will
1467 * severely break even though it makes things bit trickier.
1468 * Optimize common case to avoid most of the divides
1470 mss
= tcp_skb_mss(skb
);
1472 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1473 * drop this restriction as unnecessary
1475 if (mss
!= tcp_skb_seglen(prev
))
1480 } else if (len
< mss
) {
1488 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1489 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1492 if (!skb_shift(prev
, skb
, len
))
1494 if (!tcp_shifted_skb(sk
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1497 /* Hole filled allows collapsing with the next as well, this is very
1498 * useful when hole on every nth skb pattern happens
1500 if (prev
== tcp_write_queue_tail(sk
))
1502 skb
= tcp_write_queue_next(sk
, prev
);
1504 if (!skb_can_shift(skb
) ||
1505 (skb
== tcp_send_head(sk
)) ||
1506 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1507 (mss
!= tcp_skb_seglen(skb
)))
1511 if (skb_shift(prev
, skb
, len
)) {
1512 pcount
+= tcp_skb_pcount(skb
);
1513 tcp_shifted_skb(sk
, skb
, state
, tcp_skb_pcount(skb
), len
, mss
, 0);
1517 state
->fack_count
+= pcount
;
1524 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1528 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1529 struct tcp_sack_block
*next_dup
,
1530 struct tcp_sacktag_state
*state
,
1531 u32 start_seq
, u32 end_seq
,
1534 struct tcp_sock
*tp
= tcp_sk(sk
);
1535 struct sk_buff
*tmp
;
1537 tcp_for_write_queue_from(skb
, sk
) {
1539 bool dup_sack
= dup_sack_in
;
1541 if (skb
== tcp_send_head(sk
))
1544 /* queue is in-order => we can short-circuit the walk early */
1545 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1549 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1550 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1551 next_dup
->start_seq
,
1557 /* skb reference here is a bit tricky to get right, since
1558 * shifting can eat and free both this skb and the next,
1559 * so not even _safe variant of the loop is enough.
1562 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1563 start_seq
, end_seq
, dup_sack
);
1572 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1578 if (unlikely(in_sack
< 0))
1582 TCP_SKB_CB(skb
)->sacked
=
1585 TCP_SKB_CB(skb
)->sacked
,
1586 TCP_SKB_CB(skb
)->seq
,
1587 TCP_SKB_CB(skb
)->end_seq
,
1589 tcp_skb_pcount(skb
),
1591 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1593 if (!before(TCP_SKB_CB(skb
)->seq
,
1594 tcp_highest_sack_seq(tp
)))
1595 tcp_advance_highest_sack(sk
, skb
);
1598 state
->fack_count
+= tcp_skb_pcount(skb
);
1603 /* Avoid all extra work that is being done by sacktag while walking in
1606 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1607 struct tcp_sacktag_state
*state
,
1610 tcp_for_write_queue_from(skb
, sk
) {
1611 if (skb
== tcp_send_head(sk
))
1614 if (after(TCP_SKB_CB(skb
)->end_seq
, skip_to_seq
))
1617 state
->fack_count
+= tcp_skb_pcount(skb
);
1622 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1624 struct tcp_sack_block
*next_dup
,
1625 struct tcp_sacktag_state
*state
,
1631 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1632 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1633 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1634 next_dup
->start_seq
, next_dup
->end_seq
,
1641 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1643 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1647 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1648 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1650 struct tcp_sock
*tp
= tcp_sk(sk
);
1651 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1652 TCP_SKB_CB(ack_skb
)->sacked
);
1653 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1654 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1655 struct tcp_sack_block
*cache
;
1656 struct sk_buff
*skb
;
1657 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1659 bool found_dup_sack
= false;
1661 int first_sack_index
;
1664 state
->reord
= tp
->packets_out
;
1666 if (!tp
->sacked_out
) {
1667 if (WARN_ON(tp
->fackets_out
))
1668 tp
->fackets_out
= 0;
1669 tcp_highest_sack_reset(sk
);
1672 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1673 num_sacks
, prior_snd_una
);
1674 if (found_dup_sack
) {
1675 state
->flag
|= FLAG_DSACKING_ACK
;
1676 tp
->delivered
++; /* A spurious retransmission is delivered */
1679 /* Eliminate too old ACKs, but take into
1680 * account more or less fresh ones, they can
1681 * contain valid SACK info.
1683 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1686 if (!tp
->packets_out
)
1690 first_sack_index
= 0;
1691 for (i
= 0; i
< num_sacks
; i
++) {
1692 bool dup_sack
= !i
&& found_dup_sack
;
1694 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1695 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1697 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1698 sp
[used_sacks
].start_seq
,
1699 sp
[used_sacks
].end_seq
)) {
1703 if (!tp
->undo_marker
)
1704 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1706 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1708 /* Don't count olds caused by ACK reordering */
1709 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1710 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1712 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1715 NET_INC_STATS(sock_net(sk
), mib_idx
);
1717 first_sack_index
= -1;
1721 /* Ignore very old stuff early */
1722 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1728 /* order SACK blocks to allow in order walk of the retrans queue */
1729 for (i
= used_sacks
- 1; i
> 0; i
--) {
1730 for (j
= 0; j
< i
; j
++) {
1731 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1732 swap(sp
[j
], sp
[j
+ 1]);
1734 /* Track where the first SACK block goes to */
1735 if (j
== first_sack_index
)
1736 first_sack_index
= j
+ 1;
1741 skb
= tcp_write_queue_head(sk
);
1742 state
->fack_count
= 0;
1745 if (!tp
->sacked_out
) {
1746 /* It's already past, so skip checking against it */
1747 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1749 cache
= tp
->recv_sack_cache
;
1750 /* Skip empty blocks in at head of the cache */
1751 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1756 while (i
< used_sacks
) {
1757 u32 start_seq
= sp
[i
].start_seq
;
1758 u32 end_seq
= sp
[i
].end_seq
;
1759 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1760 struct tcp_sack_block
*next_dup
= NULL
;
1762 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1763 next_dup
= &sp
[i
+ 1];
1765 /* Skip too early cached blocks */
1766 while (tcp_sack_cache_ok(tp
, cache
) &&
1767 !before(start_seq
, cache
->end_seq
))
1770 /* Can skip some work by looking recv_sack_cache? */
1771 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1772 after(end_seq
, cache
->start_seq
)) {
1775 if (before(start_seq
, cache
->start_seq
)) {
1776 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1778 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1785 /* Rest of the block already fully processed? */
1786 if (!after(end_seq
, cache
->end_seq
))
1789 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1793 /* ...tail remains todo... */
1794 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1795 /* ...but better entrypoint exists! */
1796 skb
= tcp_highest_sack(sk
);
1799 state
->fack_count
= tp
->fackets_out
;
1804 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1805 /* Check overlap against next cached too (past this one already) */
1810 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1811 skb
= tcp_highest_sack(sk
);
1814 state
->fack_count
= tp
->fackets_out
;
1816 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1819 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1820 start_seq
, end_seq
, dup_sack
);
1826 /* Clear the head of the cache sack blocks so we can skip it next time */
1827 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1828 tp
->recv_sack_cache
[i
].start_seq
= 0;
1829 tp
->recv_sack_cache
[i
].end_seq
= 0;
1831 for (j
= 0; j
< used_sacks
; j
++)
1832 tp
->recv_sack_cache
[i
++] = sp
[j
];
1834 if ((state
->reord
< tp
->fackets_out
) &&
1835 ((inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
) || tp
->undo_marker
))
1836 tcp_update_reordering(sk
, tp
->fackets_out
- state
->reord
, 0);
1838 tcp_verify_left_out(tp
);
1841 #if FASTRETRANS_DEBUG > 0
1842 WARN_ON((int)tp
->sacked_out
< 0);
1843 WARN_ON((int)tp
->lost_out
< 0);
1844 WARN_ON((int)tp
->retrans_out
< 0);
1845 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1850 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1851 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1853 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1857 holes
= max(tp
->lost_out
, 1U);
1858 holes
= min(holes
, tp
->packets_out
);
1860 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1861 tp
->sacked_out
= tp
->packets_out
- holes
;
1867 /* If we receive more dupacks than we expected counting segments
1868 * in assumption of absent reordering, interpret this as reordering.
1869 * The only another reason could be bug in receiver TCP.
1871 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1873 struct tcp_sock
*tp
= tcp_sk(sk
);
1874 if (tcp_limit_reno_sacked(tp
))
1875 tcp_update_reordering(sk
, tp
->packets_out
+ addend
, 0);
1878 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1880 static void tcp_add_reno_sack(struct sock
*sk
)
1882 struct tcp_sock
*tp
= tcp_sk(sk
);
1883 u32 prior_sacked
= tp
->sacked_out
;
1886 tcp_check_reno_reordering(sk
, 0);
1887 if (tp
->sacked_out
> prior_sacked
)
1888 tp
->delivered
++; /* Some out-of-order packet is delivered */
1889 tcp_verify_left_out(tp
);
1892 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1894 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1896 struct tcp_sock
*tp
= tcp_sk(sk
);
1899 /* One ACK acked hole. The rest eat duplicate ACKs. */
1900 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1901 if (acked
- 1 >= tp
->sacked_out
)
1904 tp
->sacked_out
-= acked
- 1;
1906 tcp_check_reno_reordering(sk
, acked
);
1907 tcp_verify_left_out(tp
);
1910 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1915 void tcp_clear_retrans(struct tcp_sock
*tp
)
1917 tp
->retrans_out
= 0;
1919 tp
->undo_marker
= 0;
1920 tp
->undo_retrans
= -1;
1921 tp
->fackets_out
= 0;
1925 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1927 tp
->undo_marker
= tp
->snd_una
;
1928 /* Retransmission still in flight may cause DSACKs later. */
1929 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1932 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1933 * and reset tags completely, otherwise preserve SACKs. If receiver
1934 * dropped its ofo queue, we will know this due to reneging detection.
1936 void tcp_enter_loss(struct sock
*sk
)
1938 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1939 struct tcp_sock
*tp
= tcp_sk(sk
);
1940 struct net
*net
= sock_net(sk
);
1941 struct sk_buff
*skb
;
1942 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
1943 bool is_reneg
; /* is receiver reneging on SACKs? */
1946 /* Reduce ssthresh if it has not yet been made inside this window. */
1947 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1948 !after(tp
->high_seq
, tp
->snd_una
) ||
1949 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1950 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1951 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1952 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1956 tp
->snd_cwnd_cnt
= 0;
1957 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1959 tp
->retrans_out
= 0;
1962 if (tcp_is_reno(tp
))
1963 tcp_reset_reno_sack(tp
);
1965 skb
= tcp_write_queue_head(sk
);
1966 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1968 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1970 tp
->fackets_out
= 0;
1972 tcp_clear_all_retrans_hints(tp
);
1974 tcp_for_write_queue(skb
, sk
) {
1975 if (skb
== tcp_send_head(sk
))
1978 mark_lost
= (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
1981 tcp_sum_lost(tp
, skb
);
1982 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1984 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1985 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1986 tp
->lost_out
+= tcp_skb_pcount(skb
);
1989 tcp_verify_left_out(tp
);
1991 /* Timeout in disordered state after receiving substantial DUPACKs
1992 * suggests that the degree of reordering is over-estimated.
1994 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1995 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
1996 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1997 net
->ipv4
.sysctl_tcp_reordering
);
1998 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1999 tp
->high_seq
= tp
->snd_nxt
;
2000 tcp_ecn_queue_cwr(tp
);
2002 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2003 * loss recovery is underway except recurring timeout(s) on
2004 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2006 * In theory F-RTO can be used repeatedly during loss recovery.
2007 * In practice this interacts badly with broken middle-boxes that
2008 * falsely raise the receive window, which results in repeated
2009 * timeouts and stop-and-go behavior.
2011 tp
->frto
= sysctl_tcp_frto
&&
2012 (new_recovery
|| icsk
->icsk_retransmits
) &&
2013 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2016 /* If ACK arrived pointing to a remembered SACK, it means that our
2017 * remembered SACKs do not reflect real state of receiver i.e.
2018 * receiver _host_ is heavily congested (or buggy).
2020 * To avoid big spurious retransmission bursts due to transient SACK
2021 * scoreboard oddities that look like reneging, we give the receiver a
2022 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2023 * restore sanity to the SACK scoreboard. If the apparent reneging
2024 * persists until this RTO then we'll clear the SACK scoreboard.
2026 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
2028 if (flag
& FLAG_SACK_RENEGING
) {
2029 struct tcp_sock
*tp
= tcp_sk(sk
);
2030 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2031 msecs_to_jiffies(10));
2033 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2034 delay
, TCP_RTO_MAX
);
2040 static inline int tcp_fackets_out(const struct tcp_sock
*tp
)
2042 return tcp_is_reno(tp
) ? tp
->sacked_out
+ 1 : tp
->fackets_out
;
2045 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2046 * counter when SACK is enabled (without SACK, sacked_out is used for
2049 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2050 * segments up to the highest received SACK block so far and holes in
2053 * With reordering, holes may still be in flight, so RFC3517 recovery
2054 * uses pure sacked_out (total number of SACKed segments) even though
2055 * it violates the RFC that uses duplicate ACKs, often these are equal
2056 * but when e.g. out-of-window ACKs or packet duplication occurs,
2057 * they differ. Since neither occurs due to loss, TCP should really
2060 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2062 return tcp_is_fack(tp
) ? tp
->fackets_out
: tp
->sacked_out
+ 1;
2065 /* Linux NewReno/SACK/FACK/ECN state machine.
2066 * --------------------------------------
2068 * "Open" Normal state, no dubious events, fast path.
2069 * "Disorder" In all the respects it is "Open",
2070 * but requires a bit more attention. It is entered when
2071 * we see some SACKs or dupacks. It is split of "Open"
2072 * mainly to move some processing from fast path to slow one.
2073 * "CWR" CWND was reduced due to some Congestion Notification event.
2074 * It can be ECN, ICMP source quench, local device congestion.
2075 * "Recovery" CWND was reduced, we are fast-retransmitting.
2076 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2078 * tcp_fastretrans_alert() is entered:
2079 * - each incoming ACK, if state is not "Open"
2080 * - when arrived ACK is unusual, namely:
2085 * Counting packets in flight is pretty simple.
2087 * in_flight = packets_out - left_out + retrans_out
2089 * packets_out is SND.NXT-SND.UNA counted in packets.
2091 * retrans_out is number of retransmitted segments.
2093 * left_out is number of segments left network, but not ACKed yet.
2095 * left_out = sacked_out + lost_out
2097 * sacked_out: Packets, which arrived to receiver out of order
2098 * and hence not ACKed. With SACKs this number is simply
2099 * amount of SACKed data. Even without SACKs
2100 * it is easy to give pretty reliable estimate of this number,
2101 * counting duplicate ACKs.
2103 * lost_out: Packets lost by network. TCP has no explicit
2104 * "loss notification" feedback from network (for now).
2105 * It means that this number can be only _guessed_.
2106 * Actually, it is the heuristics to predict lossage that
2107 * distinguishes different algorithms.
2109 * F.e. after RTO, when all the queue is considered as lost,
2110 * lost_out = packets_out and in_flight = retrans_out.
2112 * Essentially, we have now a few algorithms detecting
2115 * If the receiver supports SACK:
2117 * RFC6675/3517: It is the conventional algorithm. A packet is
2118 * considered lost if the number of higher sequence packets
2119 * SACKed is greater than or equal the DUPACK thoreshold
2120 * (reordering). This is implemented in tcp_mark_head_lost and
2121 * tcp_update_scoreboard.
2123 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2124 * (2017-) that checks timing instead of counting DUPACKs.
2125 * Essentially a packet is considered lost if it's not S/ACKed
2126 * after RTT + reordering_window, where both metrics are
2127 * dynamically measured and adjusted. This is implemented in
2128 * tcp_rack_mark_lost.
2130 * FACK (Disabled by default. Subsumbed by RACK):
2131 * It is the simplest heuristics. As soon as we decided
2132 * that something is lost, we decide that _all_ not SACKed
2133 * packets until the most forward SACK are lost. I.e.
2134 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2135 * It is absolutely correct estimate, if network does not reorder
2136 * packets. And it loses any connection to reality when reordering
2137 * takes place. We use FACK by default until reordering
2138 * is suspected on the path to this destination.
2140 * If the receiver does not support SACK:
2142 * NewReno (RFC6582): in Recovery we assume that one segment
2143 * is lost (classic Reno). While we are in Recovery and
2144 * a partial ACK arrives, we assume that one more packet
2145 * is lost (NewReno). This heuristics are the same in NewReno
2148 * Really tricky (and requiring careful tuning) part of algorithm
2149 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2150 * The first determines the moment _when_ we should reduce CWND and,
2151 * hence, slow down forward transmission. In fact, it determines the moment
2152 * when we decide that hole is caused by loss, rather than by a reorder.
2154 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2155 * holes, caused by lost packets.
2157 * And the most logically complicated part of algorithm is undo
2158 * heuristics. We detect false retransmits due to both too early
2159 * fast retransmit (reordering) and underestimated RTO, analyzing
2160 * timestamps and D-SACKs. When we detect that some segments were
2161 * retransmitted by mistake and CWND reduction was wrong, we undo
2162 * window reduction and abort recovery phase. This logic is hidden
2163 * inside several functions named tcp_try_undo_<something>.
2166 /* This function decides, when we should leave Disordered state
2167 * and enter Recovery phase, reducing congestion window.
2169 * Main question: may we further continue forward transmission
2170 * with the same cwnd?
2172 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2174 struct tcp_sock
*tp
= tcp_sk(sk
);
2176 /* Trick#1: The loss is proven. */
2180 /* Not-A-Trick#2 : Classic rule... */
2181 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2187 /* Detect loss in event "A" above by marking head of queue up as lost.
2188 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2189 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2190 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2191 * the maximum SACKed segments to pass before reaching this limit.
2193 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2195 struct tcp_sock
*tp
= tcp_sk(sk
);
2196 struct sk_buff
*skb
;
2197 int cnt
, oldcnt
, lost
;
2199 /* Use SACK to deduce losses of new sequences sent during recovery */
2200 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2202 WARN_ON(packets
> tp
->packets_out
);
2203 if (tp
->lost_skb_hint
) {
2204 skb
= tp
->lost_skb_hint
;
2205 cnt
= tp
->lost_cnt_hint
;
2206 /* Head already handled? */
2207 if (mark_head
&& skb
!= tcp_write_queue_head(sk
))
2210 skb
= tcp_write_queue_head(sk
);
2214 tcp_for_write_queue_from(skb
, sk
) {
2215 if (skb
== tcp_send_head(sk
))
2217 /* TODO: do this better */
2218 /* this is not the most efficient way to do this... */
2219 tp
->lost_skb_hint
= skb
;
2220 tp
->lost_cnt_hint
= cnt
;
2222 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2226 if (tcp_is_fack(tp
) || tcp_is_reno(tp
) ||
2227 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2228 cnt
+= tcp_skb_pcount(skb
);
2230 if (cnt
> packets
) {
2231 if ((tcp_is_sack(tp
) && !tcp_is_fack(tp
)) ||
2232 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2233 (oldcnt
>= packets
))
2236 mss
= tcp_skb_mss(skb
);
2237 /* If needed, chop off the prefix to mark as lost. */
2238 lost
= (packets
- oldcnt
) * mss
;
2239 if (lost
< skb
->len
&&
2240 tcp_fragment(sk
, skb
, lost
, mss
, GFP_ATOMIC
) < 0)
2245 tcp_skb_mark_lost(tp
, skb
);
2250 tcp_verify_left_out(tp
);
2253 /* Account newly detected lost packet(s) */
2255 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2257 struct tcp_sock
*tp
= tcp_sk(sk
);
2259 if (tcp_is_reno(tp
)) {
2260 tcp_mark_head_lost(sk
, 1, 1);
2261 } else if (tcp_is_fack(tp
)) {
2262 int lost
= tp
->fackets_out
- tp
->reordering
;
2265 tcp_mark_head_lost(sk
, lost
, 0);
2267 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2268 if (sacked_upto
>= 0)
2269 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2270 else if (fast_rexmit
)
2271 tcp_mark_head_lost(sk
, 1, 1);
2275 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2277 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2278 before(tp
->rx_opt
.rcv_tsecr
, when
);
2281 /* skb is spurious retransmitted if the returned timestamp echo
2282 * reply is prior to the skb transmission time
2284 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2285 const struct sk_buff
*skb
)
2287 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2288 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2291 /* Nothing was retransmitted or returned timestamp is less
2292 * than timestamp of the first retransmission.
2294 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2296 return !tp
->retrans_stamp
||
2297 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2300 /* Undo procedures. */
2302 /* We can clear retrans_stamp when there are no retransmissions in the
2303 * window. It would seem that it is trivially available for us in
2304 * tp->retrans_out, however, that kind of assumptions doesn't consider
2305 * what will happen if errors occur when sending retransmission for the
2306 * second time. ...It could the that such segment has only
2307 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2308 * the head skb is enough except for some reneging corner cases that
2309 * are not worth the effort.
2311 * Main reason for all this complexity is the fact that connection dying
2312 * time now depends on the validity of the retrans_stamp, in particular,
2313 * that successive retransmissions of a segment must not advance
2314 * retrans_stamp under any conditions.
2316 static bool tcp_any_retrans_done(const struct sock
*sk
)
2318 const struct tcp_sock
*tp
= tcp_sk(sk
);
2319 struct sk_buff
*skb
;
2321 if (tp
->retrans_out
)
2324 skb
= tcp_write_queue_head(sk
);
2325 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2331 #if FASTRETRANS_DEBUG > 1
2332 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2334 struct tcp_sock
*tp
= tcp_sk(sk
);
2335 struct inet_sock
*inet
= inet_sk(sk
);
2337 if (sk
->sk_family
== AF_INET
) {
2338 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2340 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2341 tp
->snd_cwnd
, tcp_left_out(tp
),
2342 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2345 #if IS_ENABLED(CONFIG_IPV6)
2346 else if (sk
->sk_family
== AF_INET6
) {
2347 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2349 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2350 tp
->snd_cwnd
, tcp_left_out(tp
),
2351 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2357 #define DBGUNDO(x...) do { } while (0)
2360 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2362 struct tcp_sock
*tp
= tcp_sk(sk
);
2365 struct sk_buff
*skb
;
2367 tcp_for_write_queue(skb
, sk
) {
2368 if (skb
== tcp_send_head(sk
))
2370 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2373 tcp_clear_all_retrans_hints(tp
);
2376 if (tp
->prior_ssthresh
) {
2377 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2379 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2381 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2382 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2383 tcp_ecn_withdraw_cwr(tp
);
2386 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2387 tp
->undo_marker
= 0;
2390 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2392 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2395 /* People celebrate: "We love our President!" */
2396 static bool tcp_try_undo_recovery(struct sock
*sk
)
2398 struct tcp_sock
*tp
= tcp_sk(sk
);
2400 if (tcp_may_undo(tp
)) {
2403 /* Happy end! We did not retransmit anything
2404 * or our original transmission succeeded.
2406 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2407 tcp_undo_cwnd_reduction(sk
, false);
2408 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2409 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2411 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2413 NET_INC_STATS(sock_net(sk
), mib_idx
);
2415 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2416 /* Hold old state until something *above* high_seq
2417 * is ACKed. For Reno it is MUST to prevent false
2418 * fast retransmits (RFC2582). SACK TCP is safe. */
2419 if (!tcp_any_retrans_done(sk
))
2420 tp
->retrans_stamp
= 0;
2423 tcp_set_ca_state(sk
, TCP_CA_Open
);
2427 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2428 static bool tcp_try_undo_dsack(struct sock
*sk
)
2430 struct tcp_sock
*tp
= tcp_sk(sk
);
2432 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2433 DBGUNDO(sk
, "D-SACK");
2434 tcp_undo_cwnd_reduction(sk
, false);
2435 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2441 /* Undo during loss recovery after partial ACK or using F-RTO. */
2442 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2444 struct tcp_sock
*tp
= tcp_sk(sk
);
2446 if (frto_undo
|| tcp_may_undo(tp
)) {
2447 tcp_undo_cwnd_reduction(sk
, true);
2449 DBGUNDO(sk
, "partial loss");
2450 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2452 NET_INC_STATS(sock_net(sk
),
2453 LINUX_MIB_TCPSPURIOUSRTOS
);
2454 inet_csk(sk
)->icsk_retransmits
= 0;
2455 if (frto_undo
|| tcp_is_sack(tp
))
2456 tcp_set_ca_state(sk
, TCP_CA_Open
);
2462 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2463 * It computes the number of packets to send (sndcnt) based on packets newly
2465 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2466 * cwnd reductions across a full RTT.
2467 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2468 * But when the retransmits are acked without further losses, PRR
2469 * slow starts cwnd up to ssthresh to speed up the recovery.
2471 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2473 struct tcp_sock
*tp
= tcp_sk(sk
);
2475 tp
->high_seq
= tp
->snd_nxt
;
2476 tp
->tlp_high_seq
= 0;
2477 tp
->snd_cwnd_cnt
= 0;
2478 tp
->prior_cwnd
= tp
->snd_cwnd
;
2479 tp
->prr_delivered
= 0;
2481 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2482 tcp_ecn_queue_cwr(tp
);
2485 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int flag
)
2487 struct tcp_sock
*tp
= tcp_sk(sk
);
2489 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2491 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2494 tp
->prr_delivered
+= newly_acked_sacked
;
2496 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2498 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2499 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2500 !(flag
& FLAG_LOST_RETRANS
)) {
2501 sndcnt
= min_t(int, delta
,
2502 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2503 newly_acked_sacked
) + 1);
2505 sndcnt
= min(delta
, newly_acked_sacked
);
2507 /* Force a fast retransmit upon entering fast recovery */
2508 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2509 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2512 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2514 struct tcp_sock
*tp
= tcp_sk(sk
);
2516 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2519 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2520 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
||
2521 (tp
->undo_marker
&& tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
)) {
2522 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2523 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2525 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2528 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2529 void tcp_enter_cwr(struct sock
*sk
)
2531 struct tcp_sock
*tp
= tcp_sk(sk
);
2533 tp
->prior_ssthresh
= 0;
2534 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2535 tp
->undo_marker
= 0;
2536 tcp_init_cwnd_reduction(sk
);
2537 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2540 EXPORT_SYMBOL(tcp_enter_cwr
);
2542 static void tcp_try_keep_open(struct sock
*sk
)
2544 struct tcp_sock
*tp
= tcp_sk(sk
);
2545 int state
= TCP_CA_Open
;
2547 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2548 state
= TCP_CA_Disorder
;
2550 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2551 tcp_set_ca_state(sk
, state
);
2552 tp
->high_seq
= tp
->snd_nxt
;
2556 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2558 struct tcp_sock
*tp
= tcp_sk(sk
);
2560 tcp_verify_left_out(tp
);
2562 if (!tcp_any_retrans_done(sk
))
2563 tp
->retrans_stamp
= 0;
2565 if (flag
& FLAG_ECE
)
2568 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2569 tcp_try_keep_open(sk
);
2573 static void tcp_mtup_probe_failed(struct sock
*sk
)
2575 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2577 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2578 icsk
->icsk_mtup
.probe_size
= 0;
2579 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2582 static void tcp_mtup_probe_success(struct sock
*sk
)
2584 struct tcp_sock
*tp
= tcp_sk(sk
);
2585 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2587 /* FIXME: breaks with very large cwnd */
2588 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2589 tp
->snd_cwnd
= tp
->snd_cwnd
*
2590 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2591 icsk
->icsk_mtup
.probe_size
;
2592 tp
->snd_cwnd_cnt
= 0;
2593 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
2594 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2596 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2597 icsk
->icsk_mtup
.probe_size
= 0;
2598 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2599 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2602 /* Do a simple retransmit without using the backoff mechanisms in
2603 * tcp_timer. This is used for path mtu discovery.
2604 * The socket is already locked here.
2606 void tcp_simple_retransmit(struct sock
*sk
)
2608 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2609 struct tcp_sock
*tp
= tcp_sk(sk
);
2610 struct sk_buff
*skb
;
2611 unsigned int mss
= tcp_current_mss(sk
);
2612 u32 prior_lost
= tp
->lost_out
;
2614 tcp_for_write_queue(skb
, sk
) {
2615 if (skb
== tcp_send_head(sk
))
2617 if (tcp_skb_seglen(skb
) > mss
&&
2618 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2619 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2620 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2621 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2623 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2627 tcp_clear_retrans_hints_partial(tp
);
2629 if (prior_lost
== tp
->lost_out
)
2632 if (tcp_is_reno(tp
))
2633 tcp_limit_reno_sacked(tp
);
2635 tcp_verify_left_out(tp
);
2637 /* Don't muck with the congestion window here.
2638 * Reason is that we do not increase amount of _data_
2639 * in network, but units changed and effective
2640 * cwnd/ssthresh really reduced now.
2642 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2643 tp
->high_seq
= tp
->snd_nxt
;
2644 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2645 tp
->prior_ssthresh
= 0;
2646 tp
->undo_marker
= 0;
2647 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2649 tcp_xmit_retransmit_queue(sk
);
2651 EXPORT_SYMBOL(tcp_simple_retransmit
);
2653 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2655 struct tcp_sock
*tp
= tcp_sk(sk
);
2658 if (tcp_is_reno(tp
))
2659 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2661 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2663 NET_INC_STATS(sock_net(sk
), mib_idx
);
2665 tp
->prior_ssthresh
= 0;
2668 if (!tcp_in_cwnd_reduction(sk
)) {
2670 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2671 tcp_init_cwnd_reduction(sk
);
2673 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2676 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2677 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2679 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2682 struct tcp_sock
*tp
= tcp_sk(sk
);
2683 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2685 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2686 tcp_try_undo_loss(sk
, false))
2689 /* The ACK (s)acks some never-retransmitted data meaning not all
2690 * the data packets before the timeout were lost. Therefore we
2691 * undo the congestion window and state. This is essentially
2692 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2693 * a retransmitted skb is permantly marked, we can apply such an
2694 * operation even if F-RTO was not used.
2696 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2697 tcp_try_undo_loss(sk
, tp
->undo_marker
))
2700 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2701 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2702 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2703 tp
->frto
= 0; /* Step 3.a. loss was real */
2704 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2705 tp
->high_seq
= tp
->snd_nxt
;
2706 /* Step 2.b. Try send new data (but deferred until cwnd
2707 * is updated in tcp_ack()). Otherwise fall back to
2708 * the conventional recovery.
2710 if (tcp_send_head(sk
) &&
2711 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2712 *rexmit
= REXMIT_NEW
;
2720 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2721 tcp_try_undo_recovery(sk
);
2724 if (tcp_is_reno(tp
)) {
2725 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2726 * delivered. Lower inflight to clock out (re)tranmissions.
2728 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2729 tcp_add_reno_sack(sk
);
2730 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2731 tcp_reset_reno_sack(tp
);
2733 *rexmit
= REXMIT_LOST
;
2736 /* Undo during fast recovery after partial ACK. */
2737 static bool tcp_try_undo_partial(struct sock
*sk
, const int acked
)
2739 struct tcp_sock
*tp
= tcp_sk(sk
);
2741 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2742 /* Plain luck! Hole if filled with delayed
2743 * packet, rather than with a retransmit.
2745 tcp_update_reordering(sk
, tcp_fackets_out(tp
) + acked
, 1);
2747 /* We are getting evidence that the reordering degree is higher
2748 * than we realized. If there are no retransmits out then we
2749 * can undo. Otherwise we clock out new packets but do not
2750 * mark more packets lost or retransmit more.
2752 if (tp
->retrans_out
)
2755 if (!tcp_any_retrans_done(sk
))
2756 tp
->retrans_stamp
= 0;
2758 DBGUNDO(sk
, "partial recovery");
2759 tcp_undo_cwnd_reduction(sk
, true);
2760 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2761 tcp_try_keep_open(sk
);
2767 static void tcp_rack_identify_loss(struct sock
*sk
, int *ack_flag
)
2769 struct tcp_sock
*tp
= tcp_sk(sk
);
2771 /* Use RACK to detect loss */
2772 if (sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
) {
2773 u32 prior_retrans
= tp
->retrans_out
;
2775 tcp_rack_mark_lost(sk
);
2776 if (prior_retrans
> tp
->retrans_out
)
2777 *ack_flag
|= FLAG_LOST_RETRANS
;
2781 /* Process an event, which can update packets-in-flight not trivially.
2782 * Main goal of this function is to calculate new estimate for left_out,
2783 * taking into account both packets sitting in receiver's buffer and
2784 * packets lost by network.
2786 * Besides that it updates the congestion state when packet loss or ECN
2787 * is detected. But it does not reduce the cwnd, it is done by the
2788 * congestion control later.
2790 * It does _not_ decide what to send, it is made in function
2791 * tcp_xmit_retransmit_queue().
2793 static void tcp_fastretrans_alert(struct sock
*sk
, const int acked
,
2794 bool is_dupack
, int *ack_flag
, int *rexmit
)
2796 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2797 struct tcp_sock
*tp
= tcp_sk(sk
);
2798 int fast_rexmit
= 0, flag
= *ack_flag
;
2799 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2800 (tcp_fackets_out(tp
) > tp
->reordering
));
2802 if (WARN_ON(!tp
->packets_out
&& tp
->sacked_out
))
2804 if (WARN_ON(!tp
->sacked_out
&& tp
->fackets_out
))
2805 tp
->fackets_out
= 0;
2807 /* Now state machine starts.
2808 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2809 if (flag
& FLAG_ECE
)
2810 tp
->prior_ssthresh
= 0;
2812 /* B. In all the states check for reneging SACKs. */
2813 if (tcp_check_sack_reneging(sk
, flag
))
2816 /* C. Check consistency of the current state. */
2817 tcp_verify_left_out(tp
);
2819 /* D. Check state exit conditions. State can be terminated
2820 * when high_seq is ACKed. */
2821 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2822 WARN_ON(tp
->retrans_out
!= 0);
2823 tp
->retrans_stamp
= 0;
2824 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2825 switch (icsk
->icsk_ca_state
) {
2827 /* CWR is to be held something *above* high_seq
2828 * is ACKed for CWR bit to reach receiver. */
2829 if (tp
->snd_una
!= tp
->high_seq
) {
2830 tcp_end_cwnd_reduction(sk
);
2831 tcp_set_ca_state(sk
, TCP_CA_Open
);
2835 case TCP_CA_Recovery
:
2836 if (tcp_is_reno(tp
))
2837 tcp_reset_reno_sack(tp
);
2838 if (tcp_try_undo_recovery(sk
))
2840 tcp_end_cwnd_reduction(sk
);
2845 /* E. Process state. */
2846 switch (icsk
->icsk_ca_state
) {
2847 case TCP_CA_Recovery
:
2848 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2849 if (tcp_is_reno(tp
) && is_dupack
)
2850 tcp_add_reno_sack(sk
);
2852 if (tcp_try_undo_partial(sk
, acked
))
2854 /* Partial ACK arrived. Force fast retransmit. */
2855 do_lost
= tcp_is_reno(tp
) ||
2856 tcp_fackets_out(tp
) > tp
->reordering
;
2858 if (tcp_try_undo_dsack(sk
)) {
2859 tcp_try_keep_open(sk
);
2862 tcp_rack_identify_loss(sk
, ack_flag
);
2865 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2866 tcp_rack_identify_loss(sk
, ack_flag
);
2867 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2868 (*ack_flag
& FLAG_LOST_RETRANS
)))
2870 /* Change state if cwnd is undone or retransmits are lost */
2872 if (tcp_is_reno(tp
)) {
2873 if (flag
& FLAG_SND_UNA_ADVANCED
)
2874 tcp_reset_reno_sack(tp
);
2876 tcp_add_reno_sack(sk
);
2879 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2880 tcp_try_undo_dsack(sk
);
2882 tcp_rack_identify_loss(sk
, ack_flag
);
2883 if (!tcp_time_to_recover(sk
, flag
)) {
2884 tcp_try_to_open(sk
, flag
);
2888 /* MTU probe failure: don't reduce cwnd */
2889 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2890 icsk
->icsk_mtup
.probe_size
&&
2891 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2892 tcp_mtup_probe_failed(sk
);
2893 /* Restores the reduction we did in tcp_mtup_probe() */
2895 tcp_simple_retransmit(sk
);
2899 /* Otherwise enter Recovery state */
2900 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2905 tcp_update_scoreboard(sk
, fast_rexmit
);
2906 *rexmit
= REXMIT_LOST
;
2909 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
)
2911 struct tcp_sock
*tp
= tcp_sk(sk
);
2912 u32 wlen
= sysctl_tcp_min_rtt_wlen
* HZ
;
2914 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_time_stamp
,
2915 rtt_us
? : jiffies_to_usecs(1));
2918 static inline bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2919 long seq_rtt_us
, long sack_rtt_us
,
2922 const struct tcp_sock
*tp
= tcp_sk(sk
);
2924 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2925 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2926 * Karn's algorithm forbids taking RTT if some retransmitted data
2927 * is acked (RFC6298).
2930 seq_rtt_us
= sack_rtt_us
;
2932 /* RTTM Rule: A TSecr value received in a segment is used to
2933 * update the averaged RTT measurement only if the segment
2934 * acknowledges some new data, i.e., only if it advances the
2935 * left edge of the send window.
2936 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2938 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2940 seq_rtt_us
= ca_rtt_us
= jiffies_to_usecs(tcp_time_stamp
-
2941 tp
->rx_opt
.rcv_tsecr
);
2945 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2946 * always taken together with ACK, SACK, or TS-opts. Any negative
2947 * values will be skipped with the seq_rtt_us < 0 check above.
2949 tcp_update_rtt_min(sk
, ca_rtt_us
);
2950 tcp_rtt_estimator(sk
, seq_rtt_us
);
2953 /* RFC6298: only reset backoff on valid RTT measurement. */
2954 inet_csk(sk
)->icsk_backoff
= 0;
2958 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2959 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2963 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
.v64
) {
2964 struct skb_mstamp now
;
2966 skb_mstamp_get(&now
);
2967 rtt_us
= skb_mstamp_us_delta(&now
, &tcp_rsk(req
)->snt_synack
);
2970 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
);
2974 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2976 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2978 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2979 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_time_stamp
;
2982 /* Restart timer after forward progress on connection.
2983 * RFC2988 recommends to restart timer to now+rto.
2985 void tcp_rearm_rto(struct sock
*sk
)
2987 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2988 struct tcp_sock
*tp
= tcp_sk(sk
);
2990 /* If the retrans timer is currently being used by Fast Open
2991 * for SYN-ACK retrans purpose, stay put.
2993 if (tp
->fastopen_rsk
)
2996 if (!tp
->packets_out
) {
2997 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2999 u32 rto
= inet_csk(sk
)->icsk_rto
;
3000 /* Offset the time elapsed after installing regular RTO */
3001 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
3002 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3003 struct sk_buff
*skb
= tcp_write_queue_head(sk
);
3004 const u32 rto_time_stamp
=
3005 tcp_skb_timestamp(skb
) + rto
;
3006 s32 delta
= (s32
)(rto_time_stamp
- tcp_time_stamp
);
3007 /* delta may not be positive if the socket is locked
3008 * when the retrans timer fires and is rescheduled.
3013 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3018 /* If we get here, the whole TSO packet has not been acked. */
3019 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3021 struct tcp_sock
*tp
= tcp_sk(sk
);
3024 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3026 packets_acked
= tcp_skb_pcount(skb
);
3027 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3029 packets_acked
-= tcp_skb_pcount(skb
);
3031 if (packets_acked
) {
3032 BUG_ON(tcp_skb_pcount(skb
) == 0);
3033 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3036 return packets_acked
;
3039 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3042 const struct skb_shared_info
*shinfo
;
3044 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3045 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3048 shinfo
= skb_shinfo(skb
);
3049 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3050 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
))
3051 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3054 /* Remove acknowledged frames from the retransmission queue. If our packet
3055 * is before the ack sequence we can discard it as it's confirmed to have
3056 * arrived at the other end.
3058 static int tcp_clean_rtx_queue(struct sock
*sk
, int prior_fackets
,
3059 u32 prior_snd_una
, int *acked
,
3060 struct tcp_sacktag_state
*sack
)
3062 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3063 struct skb_mstamp first_ackt
, last_ackt
;
3064 struct tcp_sock
*tp
= tcp_sk(sk
);
3065 struct skb_mstamp
*now
= &tp
->tcp_mstamp
;
3066 u32 prior_sacked
= tp
->sacked_out
;
3067 u32 reord
= tp
->packets_out
;
3068 bool fully_acked
= true;
3069 long sack_rtt_us
= -1L;
3070 long seq_rtt_us
= -1L;
3071 long ca_rtt_us
= -1L;
3072 struct sk_buff
*skb
;
3074 u32 last_in_flight
= 0;
3080 while ((skb
= tcp_write_queue_head(sk
)) && skb
!= tcp_send_head(sk
)) {
3081 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3082 u8 sacked
= scb
->sacked
;
3085 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3087 /* Determine how many packets and what bytes were acked, tso and else */
3088 if (after(scb
->end_seq
, tp
->snd_una
)) {
3089 if (tcp_skb_pcount(skb
) == 1 ||
3090 !after(tp
->snd_una
, scb
->seq
))
3093 acked_pcount
= tcp_tso_acked(sk
, skb
);
3096 fully_acked
= false;
3098 /* Speedup tcp_unlink_write_queue() and next loop */
3099 prefetchw(skb
->next
);
3100 acked_pcount
= tcp_skb_pcount(skb
);
3103 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3104 if (sacked
& TCPCB_SACKED_RETRANS
)
3105 tp
->retrans_out
-= acked_pcount
;
3106 flag
|= FLAG_RETRANS_DATA_ACKED
;
3107 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3108 last_ackt
= skb
->skb_mstamp
;
3109 WARN_ON_ONCE(last_ackt
.v64
== 0);
3110 if (!first_ackt
.v64
)
3111 first_ackt
= last_ackt
;
3113 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3114 reord
= min(pkts_acked
, reord
);
3115 if (!after(scb
->end_seq
, tp
->high_seq
))
3116 flag
|= FLAG_ORIG_SACK_ACKED
;
3119 if (sacked
& TCPCB_SACKED_ACKED
) {
3120 tp
->sacked_out
-= acked_pcount
;
3121 } else if (tcp_is_sack(tp
)) {
3122 tp
->delivered
+= acked_pcount
;
3123 if (!tcp_skb_spurious_retrans(tp
, skb
))
3124 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3127 if (sacked
& TCPCB_LOST
)
3128 tp
->lost_out
-= acked_pcount
;
3130 tp
->packets_out
-= acked_pcount
;
3131 pkts_acked
+= acked_pcount
;
3132 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3134 /* Initial outgoing SYN's get put onto the write_queue
3135 * just like anything else we transmit. It is not
3136 * true data, and if we misinform our callers that
3137 * this ACK acks real data, we will erroneously exit
3138 * connection startup slow start one packet too
3139 * quickly. This is severely frowned upon behavior.
3141 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3142 flag
|= FLAG_DATA_ACKED
;
3144 flag
|= FLAG_SYN_ACKED
;
3145 tp
->retrans_stamp
= 0;
3151 tcp_unlink_write_queue(skb
, sk
);
3152 sk_wmem_free_skb(sk
, skb
);
3153 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3154 tp
->retransmit_skb_hint
= NULL
;
3155 if (unlikely(skb
== tp
->lost_skb_hint
))
3156 tp
->lost_skb_hint
= NULL
;
3160 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3162 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3163 tp
->snd_up
= tp
->snd_una
;
3165 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3166 flag
|= FLAG_SACK_RENEGING
;
3168 if (likely(first_ackt
.v64
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3169 seq_rtt_us
= skb_mstamp_us_delta(now
, &first_ackt
);
3170 ca_rtt_us
= skb_mstamp_us_delta(now
, &last_ackt
);
3172 if (sack
->first_sackt
.v64
) {
3173 sack_rtt_us
= skb_mstamp_us_delta(now
, &sack
->first_sackt
);
3174 ca_rtt_us
= skb_mstamp_us_delta(now
, &sack
->last_sackt
);
3176 sack
->rate
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet, or -1 */
3177 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3180 if (flag
& FLAG_ACKED
) {
3182 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3183 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3184 tcp_mtup_probe_success(sk
);
3187 if (tcp_is_reno(tp
)) {
3188 tcp_remove_reno_sacks(sk
, pkts_acked
);
3192 /* Non-retransmitted hole got filled? That's reordering */
3193 if (reord
< prior_fackets
&& reord
<= tp
->fackets_out
)
3194 tcp_update_reordering(sk
, tp
->fackets_out
- reord
, 0);
3196 delta
= tcp_is_fack(tp
) ? pkts_acked
:
3197 prior_sacked
- tp
->sacked_out
;
3198 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3201 tp
->fackets_out
-= min(pkts_acked
, tp
->fackets_out
);
3203 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3204 sack_rtt_us
> skb_mstamp_us_delta(now
, &skb
->skb_mstamp
)) {
3205 /* Do not re-arm RTO if the sack RTT is measured from data sent
3206 * after when the head was last (re)transmitted. Otherwise the
3207 * timeout may continue to extend in loss recovery.
3212 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3213 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3214 .rtt_us
= ca_rtt_us
,
3215 .in_flight
= last_in_flight
};
3217 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3220 #if FASTRETRANS_DEBUG > 0
3221 WARN_ON((int)tp
->sacked_out
< 0);
3222 WARN_ON((int)tp
->lost_out
< 0);
3223 WARN_ON((int)tp
->retrans_out
< 0);
3224 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3225 icsk
= inet_csk(sk
);
3227 pr_debug("Leak l=%u %d\n",
3228 tp
->lost_out
, icsk
->icsk_ca_state
);
3231 if (tp
->sacked_out
) {
3232 pr_debug("Leak s=%u %d\n",
3233 tp
->sacked_out
, icsk
->icsk_ca_state
);
3236 if (tp
->retrans_out
) {
3237 pr_debug("Leak r=%u %d\n",
3238 tp
->retrans_out
, icsk
->icsk_ca_state
);
3239 tp
->retrans_out
= 0;
3243 *acked
= pkts_acked
;
3247 static void tcp_ack_probe(struct sock
*sk
)
3249 const struct tcp_sock
*tp
= tcp_sk(sk
);
3250 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3252 /* Was it a usable window open? */
3254 if (!after(TCP_SKB_CB(tcp_send_head(sk
))->end_seq
, tcp_wnd_end(tp
))) {
3255 icsk
->icsk_backoff
= 0;
3256 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3257 /* Socket must be waked up by subsequent tcp_data_snd_check().
3258 * This function is not for random using!
3261 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3263 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3268 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3270 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3271 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3274 /* Decide wheather to run the increase function of congestion control. */
3275 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3277 /* If reordering is high then always grow cwnd whenever data is
3278 * delivered regardless of its ordering. Otherwise stay conservative
3279 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3280 * new SACK or ECE mark may first advance cwnd here and later reduce
3281 * cwnd in tcp_fastretrans_alert() based on more states.
3283 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3284 return flag
& FLAG_FORWARD_PROGRESS
;
3286 return flag
& FLAG_DATA_ACKED
;
3289 /* The "ultimate" congestion control function that aims to replace the rigid
3290 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3291 * It's called toward the end of processing an ACK with precise rate
3292 * information. All transmission or retransmission are delayed afterwards.
3294 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3295 int flag
, const struct rate_sample
*rs
)
3297 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3299 if (icsk
->icsk_ca_ops
->cong_control
) {
3300 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3304 if (tcp_in_cwnd_reduction(sk
)) {
3305 /* Reduce cwnd if state mandates */
3306 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3307 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3308 /* Advance cwnd if state allows */
3309 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3311 tcp_update_pacing_rate(sk
);
3314 /* Check that window update is acceptable.
3315 * The function assumes that snd_una<=ack<=snd_next.
3317 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3318 const u32 ack
, const u32 ack_seq
,
3321 return after(ack
, tp
->snd_una
) ||
3322 after(ack_seq
, tp
->snd_wl1
) ||
3323 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3326 /* If we update tp->snd_una, also update tp->bytes_acked */
3327 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3329 u32 delta
= ack
- tp
->snd_una
;
3331 sock_owned_by_me((struct sock
*)tp
);
3332 tp
->bytes_acked
+= delta
;
3336 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3337 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3339 u32 delta
= seq
- tp
->rcv_nxt
;
3341 sock_owned_by_me((struct sock
*)tp
);
3342 tp
->bytes_received
+= delta
;
3346 /* Update our send window.
3348 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3349 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3351 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3354 struct tcp_sock
*tp
= tcp_sk(sk
);
3356 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3358 if (likely(!tcp_hdr(skb
)->syn
))
3359 nwin
<<= tp
->rx_opt
.snd_wscale
;
3361 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3362 flag
|= FLAG_WIN_UPDATE
;
3363 tcp_update_wl(tp
, ack_seq
);
3365 if (tp
->snd_wnd
!= nwin
) {
3368 /* Note, it is the only place, where
3369 * fast path is recovered for sending TCP.
3372 tcp_fast_path_check(sk
);
3374 if (tcp_send_head(sk
))
3375 tcp_slow_start_after_idle_check(sk
);
3377 if (nwin
> tp
->max_window
) {
3378 tp
->max_window
= nwin
;
3379 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3384 tcp_snd_una_update(tp
, ack
);
3389 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3390 u32
*last_oow_ack_time
)
3392 if (*last_oow_ack_time
) {
3393 s32 elapsed
= (s32
)(tcp_time_stamp
- *last_oow_ack_time
);
3395 if (0 <= elapsed
&& elapsed
< sysctl_tcp_invalid_ratelimit
) {
3396 NET_INC_STATS(net
, mib_idx
);
3397 return true; /* rate-limited: don't send yet! */
3401 *last_oow_ack_time
= tcp_time_stamp
;
3403 return false; /* not rate-limited: go ahead, send dupack now! */
3406 /* Return true if we're currently rate-limiting out-of-window ACKs and
3407 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3408 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3409 * attacks that send repeated SYNs or ACKs for the same connection. To
3410 * do this, we do not send a duplicate SYNACK or ACK if the remote
3411 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3413 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3414 int mib_idx
, u32
*last_oow_ack_time
)
3416 /* Data packets without SYNs are not likely part of an ACK loop. */
3417 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3421 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3424 /* RFC 5961 7 [ACK Throttling] */
3425 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3427 /* unprotected vars, we dont care of overwrites */
3428 static u32 challenge_timestamp
;
3429 static unsigned int challenge_count
;
3430 struct tcp_sock
*tp
= tcp_sk(sk
);
3433 /* First check our per-socket dupack rate limit. */
3434 if (__tcp_oow_rate_limited(sock_net(sk
),
3435 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3436 &tp
->last_oow_ack_time
))
3439 /* Then check host-wide RFC 5961 rate limit. */
3441 if (now
!= challenge_timestamp
) {
3442 u32 half
= (sysctl_tcp_challenge_ack_limit
+ 1) >> 1;
3444 challenge_timestamp
= now
;
3445 WRITE_ONCE(challenge_count
, half
+
3446 prandom_u32_max(sysctl_tcp_challenge_ack_limit
));
3448 count
= READ_ONCE(challenge_count
);
3450 WRITE_ONCE(challenge_count
, count
- 1);
3451 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPCHALLENGEACK
);
3456 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3458 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3459 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3462 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3464 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3465 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3466 * extra check below makes sure this can only happen
3467 * for pure ACK frames. -DaveM
3469 * Not only, also it occurs for expired timestamps.
3472 if (tcp_paws_check(&tp
->rx_opt
, 0))
3473 tcp_store_ts_recent(tp
);
3477 /* This routine deals with acks during a TLP episode.
3478 * We mark the end of a TLP episode on receiving TLP dupack or when
3479 * ack is after tlp_high_seq.
3480 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3482 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3484 struct tcp_sock
*tp
= tcp_sk(sk
);
3486 if (before(ack
, tp
->tlp_high_seq
))
3489 if (flag
& FLAG_DSACKING_ACK
) {
3490 /* This DSACK means original and TLP probe arrived; no loss */
3491 tp
->tlp_high_seq
= 0;
3492 } else if (after(ack
, tp
->tlp_high_seq
)) {
3493 /* ACK advances: there was a loss, so reduce cwnd. Reset
3494 * tlp_high_seq in tcp_init_cwnd_reduction()
3496 tcp_init_cwnd_reduction(sk
);
3497 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3498 tcp_end_cwnd_reduction(sk
);
3499 tcp_try_keep_open(sk
);
3500 NET_INC_STATS(sock_net(sk
),
3501 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3502 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3503 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3504 /* Pure dupack: original and TLP probe arrived; no loss */
3505 tp
->tlp_high_seq
= 0;
3509 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3511 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3513 if (icsk
->icsk_ca_ops
->in_ack_event
)
3514 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3517 /* Congestion control has updated the cwnd already. So if we're in
3518 * loss recovery then now we do any new sends (for FRTO) or
3519 * retransmits (for CA_Loss or CA_recovery) that make sense.
3521 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3523 struct tcp_sock
*tp
= tcp_sk(sk
);
3525 if (rexmit
== REXMIT_NONE
)
3528 if (unlikely(rexmit
== 2)) {
3529 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3531 if (after(tp
->snd_nxt
, tp
->high_seq
))
3535 tcp_xmit_retransmit_queue(sk
);
3538 /* This routine deals with incoming acks, but not outgoing ones. */
3539 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3541 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3542 struct tcp_sock
*tp
= tcp_sk(sk
);
3543 struct tcp_sacktag_state sack_state
;
3544 struct rate_sample rs
= { .prior_delivered
= 0 };
3545 u32 prior_snd_una
= tp
->snd_una
;
3546 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3547 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3548 bool is_dupack
= false;
3550 int prior_packets
= tp
->packets_out
;
3551 u32 delivered
= tp
->delivered
;
3552 u32 lost
= tp
->lost
;
3553 int acked
= 0; /* Number of packets newly acked */
3554 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3556 sack_state
.first_sackt
.v64
= 0;
3557 sack_state
.rate
= &rs
;
3559 /* We very likely will need to access write queue head. */
3560 prefetchw(sk
->sk_write_queue
.next
);
3562 /* If the ack is older than previous acks
3563 * then we can probably ignore it.
3565 if (before(ack
, prior_snd_una
)) {
3566 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3567 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3568 tcp_send_challenge_ack(sk
, skb
);
3574 /* If the ack includes data we haven't sent yet, discard
3575 * this segment (RFC793 Section 3.9).
3577 if (after(ack
, tp
->snd_nxt
))
3580 if (icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)
3583 if (after(ack
, prior_snd_una
)) {
3584 flag
|= FLAG_SND_UNA_ADVANCED
;
3585 icsk
->icsk_retransmits
= 0;
3588 prior_fackets
= tp
->fackets_out
;
3589 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3591 /* ts_recent update must be made after we are sure that the packet
3594 if (flag
& FLAG_UPDATE_TS_RECENT
)
3595 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3597 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3598 /* Window is constant, pure forward advance.
3599 * No more checks are required.
3600 * Note, we use the fact that SND.UNA>=SND.WL2.
3602 tcp_update_wl(tp
, ack_seq
);
3603 tcp_snd_una_update(tp
, ack
);
3604 flag
|= FLAG_WIN_UPDATE
;
3606 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3608 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3610 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3612 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3615 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3617 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3619 if (TCP_SKB_CB(skb
)->sacked
)
3620 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3623 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3625 ack_ev_flags
|= CA_ACK_ECE
;
3628 if (flag
& FLAG_WIN_UPDATE
)
3629 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3631 tcp_in_ack_event(sk
, ack_ev_flags
);
3634 /* We passed data and got it acked, remove any soft error
3635 * log. Something worked...
3637 sk
->sk_err_soft
= 0;
3638 icsk
->icsk_probes_out
= 0;
3639 tp
->rcv_tstamp
= tcp_time_stamp
;
3643 /* See if we can take anything off of the retransmit queue. */
3644 flag
|= tcp_clean_rtx_queue(sk
, prior_fackets
, prior_snd_una
, &acked
,
3647 if (tcp_ack_is_dubious(sk
, flag
)) {
3648 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3649 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3651 if (tp
->tlp_high_seq
)
3652 tcp_process_tlp_ack(sk
, ack
, flag
);
3654 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3657 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
)
3658 tcp_schedule_loss_probe(sk
);
3659 delivered
= tp
->delivered
- delivered
; /* freshly ACKed or SACKed */
3660 lost
= tp
->lost
- lost
; /* freshly marked lost */
3661 tcp_rate_gen(sk
, delivered
, lost
, sack_state
.rate
);
3662 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3663 tcp_xmit_recovery(sk
, rexmit
);
3667 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3668 if (flag
& FLAG_DSACKING_ACK
)
3669 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3670 /* If this ack opens up a zero window, clear backoff. It was
3671 * being used to time the probes, and is probably far higher than
3672 * it needs to be for normal retransmission.
3674 if (tcp_send_head(sk
))
3677 if (tp
->tlp_high_seq
)
3678 tcp_process_tlp_ack(sk
, ack
, flag
);
3682 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3686 /* If data was SACKed, tag it and see if we should send more data.
3687 * If data was DSACKed, see if we can undo a cwnd reduction.
3689 if (TCP_SKB_CB(skb
)->sacked
) {
3690 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3692 tcp_fastretrans_alert(sk
, acked
, is_dupack
, &flag
, &rexmit
);
3693 tcp_xmit_recovery(sk
, rexmit
);
3696 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3700 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3701 bool syn
, struct tcp_fastopen_cookie
*foc
,
3704 /* Valid only in SYN or SYN-ACK with an even length. */
3705 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3708 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3709 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3710 memcpy(foc
->val
, cookie
, len
);
3717 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3718 * But, this can also be called on packets in the established flow when
3719 * the fast version below fails.
3721 void tcp_parse_options(const struct sk_buff
*skb
,
3722 struct tcp_options_received
*opt_rx
, int estab
,
3723 struct tcp_fastopen_cookie
*foc
)
3725 const unsigned char *ptr
;
3726 const struct tcphdr
*th
= tcp_hdr(skb
);
3727 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3729 ptr
= (const unsigned char *)(th
+ 1);
3730 opt_rx
->saw_tstamp
= 0;
3732 while (length
> 0) {
3733 int opcode
= *ptr
++;
3739 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3744 if (opsize
< 2) /* "silly options" */
3746 if (opsize
> length
)
3747 return; /* don't parse partial options */
3750 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3751 u16 in_mss
= get_unaligned_be16(ptr
);
3753 if (opt_rx
->user_mss
&&
3754 opt_rx
->user_mss
< in_mss
)
3755 in_mss
= opt_rx
->user_mss
;
3756 opt_rx
->mss_clamp
= in_mss
;
3761 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3762 !estab
&& sysctl_tcp_window_scaling
) {
3763 __u8 snd_wscale
= *(__u8
*)ptr
;
3764 opt_rx
->wscale_ok
= 1;
3765 if (snd_wscale
> TCP_MAX_WSCALE
) {
3766 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3770 snd_wscale
= TCP_MAX_WSCALE
;
3772 opt_rx
->snd_wscale
= snd_wscale
;
3775 case TCPOPT_TIMESTAMP
:
3776 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3777 ((estab
&& opt_rx
->tstamp_ok
) ||
3778 (!estab
&& sysctl_tcp_timestamps
))) {
3779 opt_rx
->saw_tstamp
= 1;
3780 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3781 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3784 case TCPOPT_SACK_PERM
:
3785 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3786 !estab
&& sysctl_tcp_sack
) {
3787 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3788 tcp_sack_reset(opt_rx
);
3793 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3794 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3796 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3799 #ifdef CONFIG_TCP_MD5SIG
3802 * The MD5 Hash has already been
3803 * checked (see tcp_v{4,6}_do_rcv()).
3807 case TCPOPT_FASTOPEN
:
3808 tcp_parse_fastopen_option(
3809 opsize
- TCPOLEN_FASTOPEN_BASE
,
3810 ptr
, th
->syn
, foc
, false);
3814 /* Fast Open option shares code 254 using a
3815 * 16 bits magic number.
3817 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3818 get_unaligned_be16(ptr
) ==
3819 TCPOPT_FASTOPEN_MAGIC
)
3820 tcp_parse_fastopen_option(opsize
-
3821 TCPOLEN_EXP_FASTOPEN_BASE
,
3822 ptr
+ 2, th
->syn
, foc
, true);
3831 EXPORT_SYMBOL(tcp_parse_options
);
3833 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3835 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3837 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3838 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3839 tp
->rx_opt
.saw_tstamp
= 1;
3841 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3844 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3846 tp
->rx_opt
.rcv_tsecr
= 0;
3852 /* Fast parse options. This hopes to only see timestamps.
3853 * If it is wrong it falls back on tcp_parse_options().
3855 static bool tcp_fast_parse_options(const struct sk_buff
*skb
,
3856 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3858 /* In the spirit of fast parsing, compare doff directly to constant
3859 * values. Because equality is used, short doff can be ignored here.
3861 if (th
->doff
== (sizeof(*th
) / 4)) {
3862 tp
->rx_opt
.saw_tstamp
= 0;
3864 } else if (tp
->rx_opt
.tstamp_ok
&&
3865 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3866 if (tcp_parse_aligned_timestamp(tp
, th
))
3870 tcp_parse_options(skb
, &tp
->rx_opt
, 1, NULL
);
3871 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3872 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3877 #ifdef CONFIG_TCP_MD5SIG
3879 * Parse MD5 Signature option
3881 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3883 int length
= (th
->doff
<< 2) - sizeof(*th
);
3884 const u8
*ptr
= (const u8
*)(th
+ 1);
3886 /* If the TCP option is too short, we can short cut */
3887 if (length
< TCPOLEN_MD5SIG
)
3890 while (length
> 0) {
3891 int opcode
= *ptr
++;
3902 if (opsize
< 2 || opsize
> length
)
3904 if (opcode
== TCPOPT_MD5SIG
)
3905 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3912 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3915 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3917 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3918 * it can pass through stack. So, the following predicate verifies that
3919 * this segment is not used for anything but congestion avoidance or
3920 * fast retransmit. Moreover, we even are able to eliminate most of such
3921 * second order effects, if we apply some small "replay" window (~RTO)
3922 * to timestamp space.
3924 * All these measures still do not guarantee that we reject wrapped ACKs
3925 * on networks with high bandwidth, when sequence space is recycled fastly,
3926 * but it guarantees that such events will be very rare and do not affect
3927 * connection seriously. This doesn't look nice, but alas, PAWS is really
3930 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3931 * states that events when retransmit arrives after original data are rare.
3932 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3933 * the biggest problem on large power networks even with minor reordering.
3934 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3935 * up to bandwidth of 18Gigabit/sec. 8) ]
3938 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3940 const struct tcp_sock
*tp
= tcp_sk(sk
);
3941 const struct tcphdr
*th
= tcp_hdr(skb
);
3942 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3943 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3945 return (/* 1. Pure ACK with correct sequence number. */
3946 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3948 /* 2. ... and duplicate ACK. */
3949 ack
== tp
->snd_una
&&
3951 /* 3. ... and does not update window. */
3952 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3954 /* 4. ... and sits in replay window. */
3955 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3958 static inline bool tcp_paws_discard(const struct sock
*sk
,
3959 const struct sk_buff
*skb
)
3961 const struct tcp_sock
*tp
= tcp_sk(sk
);
3963 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3964 !tcp_disordered_ack(sk
, skb
);
3967 /* Check segment sequence number for validity.
3969 * Segment controls are considered valid, if the segment
3970 * fits to the window after truncation to the window. Acceptability
3971 * of data (and SYN, FIN, of course) is checked separately.
3972 * See tcp_data_queue(), for example.
3974 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3975 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3976 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3977 * (borrowed from freebsd)
3980 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3982 return !before(end_seq
, tp
->rcv_wup
) &&
3983 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3986 /* When we get a reset we do this. */
3987 void tcp_reset(struct sock
*sk
)
3989 /* We want the right error as BSD sees it (and indeed as we do). */
3990 switch (sk
->sk_state
) {
3992 sk
->sk_err
= ECONNREFUSED
;
3994 case TCP_CLOSE_WAIT
:
4000 sk
->sk_err
= ECONNRESET
;
4002 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4007 if (!sock_flag(sk
, SOCK_DEAD
))
4008 sk
->sk_error_report(sk
);
4012 * Process the FIN bit. This now behaves as it is supposed to work
4013 * and the FIN takes effect when it is validly part of sequence
4014 * space. Not before when we get holes.
4016 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4017 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4020 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4021 * close and we go into CLOSING (and later onto TIME-WAIT)
4023 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4025 void tcp_fin(struct sock
*sk
)
4027 struct tcp_sock
*tp
= tcp_sk(sk
);
4029 inet_csk_schedule_ack(sk
);
4031 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4032 sock_set_flag(sk
, SOCK_DONE
);
4034 switch (sk
->sk_state
) {
4036 case TCP_ESTABLISHED
:
4037 /* Move to CLOSE_WAIT */
4038 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4039 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4042 case TCP_CLOSE_WAIT
:
4044 /* Received a retransmission of the FIN, do
4049 /* RFC793: Remain in the LAST-ACK state. */
4053 /* This case occurs when a simultaneous close
4054 * happens, we must ack the received FIN and
4055 * enter the CLOSING state.
4058 tcp_set_state(sk
, TCP_CLOSING
);
4061 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4063 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4066 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4067 * cases we should never reach this piece of code.
4069 pr_err("%s: Impossible, sk->sk_state=%d\n",
4070 __func__
, sk
->sk_state
);
4074 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4075 * Probably, we should reset in this case. For now drop them.
4077 skb_rbtree_purge(&tp
->out_of_order_queue
);
4078 if (tcp_is_sack(tp
))
4079 tcp_sack_reset(&tp
->rx_opt
);
4082 if (!sock_flag(sk
, SOCK_DEAD
)) {
4083 sk
->sk_state_change(sk
);
4085 /* Do not send POLL_HUP for half duplex close. */
4086 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4087 sk
->sk_state
== TCP_CLOSE
)
4088 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4090 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4094 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4097 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4098 if (before(seq
, sp
->start_seq
))
4099 sp
->start_seq
= seq
;
4100 if (after(end_seq
, sp
->end_seq
))
4101 sp
->end_seq
= end_seq
;
4107 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4109 struct tcp_sock
*tp
= tcp_sk(sk
);
4111 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4114 if (before(seq
, tp
->rcv_nxt
))
4115 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4117 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4119 NET_INC_STATS(sock_net(sk
), mib_idx
);
4121 tp
->rx_opt
.dsack
= 1;
4122 tp
->duplicate_sack
[0].start_seq
= seq
;
4123 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4127 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4129 struct tcp_sock
*tp
= tcp_sk(sk
);
4131 if (!tp
->rx_opt
.dsack
)
4132 tcp_dsack_set(sk
, seq
, end_seq
);
4134 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4137 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4139 struct tcp_sock
*tp
= tcp_sk(sk
);
4141 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4142 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4143 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4144 tcp_enter_quickack_mode(sk
);
4146 if (tcp_is_sack(tp
) && sysctl_tcp_dsack
) {
4147 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4149 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4150 end_seq
= tp
->rcv_nxt
;
4151 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4158 /* These routines update the SACK block as out-of-order packets arrive or
4159 * in-order packets close up the sequence space.
4161 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4164 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4165 struct tcp_sack_block
*swalk
= sp
+ 1;
4167 /* See if the recent change to the first SACK eats into
4168 * or hits the sequence space of other SACK blocks, if so coalesce.
4170 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4171 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4174 /* Zap SWALK, by moving every further SACK up by one slot.
4175 * Decrease num_sacks.
4177 tp
->rx_opt
.num_sacks
--;
4178 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4182 this_sack
++, swalk
++;
4186 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4188 struct tcp_sock
*tp
= tcp_sk(sk
);
4189 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4190 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4196 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4197 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4198 /* Rotate this_sack to the first one. */
4199 for (; this_sack
> 0; this_sack
--, sp
--)
4200 swap(*sp
, *(sp
- 1));
4202 tcp_sack_maybe_coalesce(tp
);
4207 /* Could not find an adjacent existing SACK, build a new one,
4208 * put it at the front, and shift everyone else down. We
4209 * always know there is at least one SACK present already here.
4211 * If the sack array is full, forget about the last one.
4213 if (this_sack
>= TCP_NUM_SACKS
) {
4215 tp
->rx_opt
.num_sacks
--;
4218 for (; this_sack
> 0; this_sack
--, sp
--)
4222 /* Build the new head SACK, and we're done. */
4223 sp
->start_seq
= seq
;
4224 sp
->end_seq
= end_seq
;
4225 tp
->rx_opt
.num_sacks
++;
4228 /* RCV.NXT advances, some SACKs should be eaten. */
4230 static void tcp_sack_remove(struct tcp_sock
*tp
)
4232 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4233 int num_sacks
= tp
->rx_opt
.num_sacks
;
4236 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4237 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4238 tp
->rx_opt
.num_sacks
= 0;
4242 for (this_sack
= 0; this_sack
< num_sacks
;) {
4243 /* Check if the start of the sack is covered by RCV.NXT. */
4244 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4247 /* RCV.NXT must cover all the block! */
4248 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4250 /* Zap this SACK, by moving forward any other SACKS. */
4251 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4252 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4259 tp
->rx_opt
.num_sacks
= num_sacks
;
4263 * tcp_try_coalesce - try to merge skb to prior one
4266 * @from: buffer to add in queue
4267 * @fragstolen: pointer to boolean
4269 * Before queueing skb @from after @to, try to merge them
4270 * to reduce overall memory use and queue lengths, if cost is small.
4271 * Packets in ofo or receive queues can stay a long time.
4272 * Better try to coalesce them right now to avoid future collapses.
4273 * Returns true if caller should free @from instead of queueing it
4275 static bool tcp_try_coalesce(struct sock
*sk
,
4277 struct sk_buff
*from
,
4282 *fragstolen
= false;
4284 /* Its possible this segment overlaps with prior segment in queue */
4285 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4288 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4291 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4292 sk_mem_charge(sk
, delta
);
4293 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4294 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4295 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4296 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4300 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4302 sk_drops_add(sk
, skb
);
4306 /* This one checks to see if we can put data from the
4307 * out_of_order queue into the receive_queue.
4309 static void tcp_ofo_queue(struct sock
*sk
)
4311 struct tcp_sock
*tp
= tcp_sk(sk
);
4312 __u32 dsack_high
= tp
->rcv_nxt
;
4313 bool fin
, fragstolen
, eaten
;
4314 struct sk_buff
*skb
, *tail
;
4317 p
= rb_first(&tp
->out_of_order_queue
);
4319 skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4320 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4323 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4324 __u32 dsack
= dsack_high
;
4325 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4326 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4327 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4330 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4332 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4333 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4337 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4338 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4339 TCP_SKB_CB(skb
)->end_seq
);
4341 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4342 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4343 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4344 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4346 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4348 kfree_skb_partial(skb
, fragstolen
);
4350 if (unlikely(fin
)) {
4352 /* tcp_fin() purges tp->out_of_order_queue,
4353 * so we must end this loop right now.
4360 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4361 static int tcp_prune_queue(struct sock
*sk
);
4363 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4366 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4367 !sk_rmem_schedule(sk
, skb
, size
)) {
4369 if (tcp_prune_queue(sk
) < 0)
4372 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4373 if (!tcp_prune_ofo_queue(sk
))
4380 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4382 struct tcp_sock
*tp
= tcp_sk(sk
);
4383 struct rb_node
**p
, *q
, *parent
;
4384 struct sk_buff
*skb1
;
4388 tcp_ecn_check_ce(tp
, skb
);
4390 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4391 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4396 /* Disable header prediction. */
4398 inet_csk_schedule_ack(sk
);
4400 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4401 seq
= TCP_SKB_CB(skb
)->seq
;
4402 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4403 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4404 tp
->rcv_nxt
, seq
, end_seq
);
4406 p
= &tp
->out_of_order_queue
.rb_node
;
4407 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4408 /* Initial out of order segment, build 1 SACK. */
4409 if (tcp_is_sack(tp
)) {
4410 tp
->rx_opt
.num_sacks
= 1;
4411 tp
->selective_acks
[0].start_seq
= seq
;
4412 tp
->selective_acks
[0].end_seq
= end_seq
;
4414 rb_link_node(&skb
->rbnode
, NULL
, p
);
4415 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4416 tp
->ooo_last_skb
= skb
;
4420 /* In the typical case, we are adding an skb to the end of the list.
4421 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4423 if (tcp_try_coalesce(sk
, tp
->ooo_last_skb
, skb
, &fragstolen
)) {
4425 tcp_grow_window(sk
, skb
);
4426 kfree_skb_partial(skb
, fragstolen
);
4430 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4431 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4432 parent
= &tp
->ooo_last_skb
->rbnode
;
4433 p
= &parent
->rb_right
;
4437 /* Find place to insert this segment. Handle overlaps on the way. */
4441 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4442 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4443 p
= &parent
->rb_left
;
4446 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4447 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4448 /* All the bits are present. Drop. */
4449 NET_INC_STATS(sock_net(sk
),
4450 LINUX_MIB_TCPOFOMERGE
);
4453 tcp_dsack_set(sk
, seq
, end_seq
);
4456 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4457 /* Partial overlap. */
4458 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4460 /* skb's seq == skb1's seq and skb covers skb1.
4461 * Replace skb1 with skb.
4463 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4464 &tp
->out_of_order_queue
);
4465 tcp_dsack_extend(sk
,
4466 TCP_SKB_CB(skb1
)->seq
,
4467 TCP_SKB_CB(skb1
)->end_seq
);
4468 NET_INC_STATS(sock_net(sk
),
4469 LINUX_MIB_TCPOFOMERGE
);
4473 } else if (tcp_try_coalesce(sk
, skb1
, skb
, &fragstolen
)) {
4476 p
= &parent
->rb_right
;
4479 /* Insert segment into RB tree. */
4480 rb_link_node(&skb
->rbnode
, parent
, p
);
4481 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4484 /* Remove other segments covered by skb. */
4485 while ((q
= rb_next(&skb
->rbnode
)) != NULL
) {
4486 skb1
= rb_entry(q
, struct sk_buff
, rbnode
);
4488 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4490 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4491 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4495 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4496 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4497 TCP_SKB_CB(skb1
)->end_seq
);
4498 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4501 /* If there is no skb after us, we are the last_skb ! */
4503 tp
->ooo_last_skb
= skb
;
4506 if (tcp_is_sack(tp
))
4507 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4510 tcp_grow_window(sk
, skb
);
4512 skb_set_owner_r(skb
, sk
);
4516 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4520 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4522 __skb_pull(skb
, hdrlen
);
4524 tcp_try_coalesce(sk
, tail
, skb
, fragstolen
)) ? 1 : 0;
4525 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4527 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4528 skb_set_owner_r(skb
, sk
);
4533 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4535 struct sk_buff
*skb
;
4543 if (size
> PAGE_SIZE
) {
4544 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4546 data_len
= npages
<< PAGE_SHIFT
;
4547 size
= data_len
+ (size
& ~PAGE_MASK
);
4549 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4550 PAGE_ALLOC_COSTLY_ORDER
,
4551 &err
, sk
->sk_allocation
);
4555 skb_put(skb
, size
- data_len
);
4556 skb
->data_len
= data_len
;
4559 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4562 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4566 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4567 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4568 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4570 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4571 WARN_ON_ONCE(fragstolen
); /* should not happen */
4583 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4585 struct tcp_sock
*tp
= tcp_sk(sk
);
4586 bool fragstolen
= false;
4589 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4594 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4596 tcp_ecn_accept_cwr(tp
, skb
);
4598 tp
->rx_opt
.dsack
= 0;
4600 /* Queue data for delivery to the user.
4601 * Packets in sequence go to the receive queue.
4602 * Out of sequence packets to the out_of_order_queue.
4604 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4605 if (tcp_receive_window(tp
) == 0)
4608 /* Ok. In sequence. In window. */
4609 if (tp
->ucopy
.task
== current
&&
4610 tp
->copied_seq
== tp
->rcv_nxt
&& tp
->ucopy
.len
&&
4611 sock_owned_by_user(sk
) && !tp
->urg_data
) {
4612 int chunk
= min_t(unsigned int, skb
->len
,
4615 __set_current_state(TASK_RUNNING
);
4617 if (!skb_copy_datagram_msg(skb
, 0, tp
->ucopy
.msg
, chunk
)) {
4618 tp
->ucopy
.len
-= chunk
;
4619 tp
->copied_seq
+= chunk
;
4620 eaten
= (chunk
== skb
->len
);
4621 tcp_rcv_space_adjust(sk
);
4628 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4629 sk_forced_mem_schedule(sk
, skb
->truesize
);
4630 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4633 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4635 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4637 tcp_event_data_recv(sk
, skb
);
4638 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4641 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4644 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4645 * gap in queue is filled.
4647 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4648 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4651 if (tp
->rx_opt
.num_sacks
)
4652 tcp_sack_remove(tp
);
4654 tcp_fast_path_check(sk
);
4657 kfree_skb_partial(skb
, fragstolen
);
4658 if (!sock_flag(sk
, SOCK_DEAD
))
4659 sk
->sk_data_ready(sk
);
4663 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4664 /* A retransmit, 2nd most common case. Force an immediate ack. */
4665 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4666 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4669 tcp_enter_quickack_mode(sk
);
4670 inet_csk_schedule_ack(sk
);
4676 /* Out of window. F.e. zero window probe. */
4677 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4680 tcp_enter_quickack_mode(sk
);
4682 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4683 /* Partial packet, seq < rcv_next < end_seq */
4684 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4685 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4686 TCP_SKB_CB(skb
)->end_seq
);
4688 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4690 /* If window is closed, drop tail of packet. But after
4691 * remembering D-SACK for its head made in previous line.
4693 if (!tcp_receive_window(tp
))
4698 tcp_data_queue_ofo(sk
, skb
);
4701 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4704 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4706 return rb_entry_safe(rb_next(&skb
->rbnode
), struct sk_buff
, rbnode
);
4709 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4710 struct sk_buff_head
*list
,
4711 struct rb_root
*root
)
4713 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4716 __skb_unlink(skb
, list
);
4718 rb_erase(&skb
->rbnode
, root
);
4721 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4726 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4727 static void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4729 struct rb_node
**p
= &root
->rb_node
;
4730 struct rb_node
*parent
= NULL
;
4731 struct sk_buff
*skb1
;
4735 skb1
= rb_entry(parent
, struct sk_buff
, rbnode
);
4736 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4737 p
= &parent
->rb_left
;
4739 p
= &parent
->rb_right
;
4741 rb_link_node(&skb
->rbnode
, parent
, p
);
4742 rb_insert_color(&skb
->rbnode
, root
);
4745 /* Collapse contiguous sequence of skbs head..tail with
4746 * sequence numbers start..end.
4748 * If tail is NULL, this means until the end of the queue.
4750 * Segments with FIN/SYN are not collapsed (only because this
4754 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4755 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4757 struct sk_buff
*skb
= head
, *n
;
4758 struct sk_buff_head tmp
;
4761 /* First, check that queue is collapsible and find
4762 * the point where collapsing can be useful.
4765 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4766 n
= tcp_skb_next(skb
, list
);
4768 /* No new bits? It is possible on ofo queue. */
4769 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4770 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4776 /* The first skb to collapse is:
4778 * - bloated or contains data before "start" or
4779 * overlaps to the next one.
4781 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4782 (tcp_win_from_space(skb
->truesize
) > skb
->len
||
4783 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4784 end_of_skbs
= false;
4788 if (n
&& n
!= tail
&&
4789 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4790 end_of_skbs
= false;
4794 /* Decided to skip this, advance start seq. */
4795 start
= TCP_SKB_CB(skb
)->end_seq
;
4798 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4801 __skb_queue_head_init(&tmp
);
4803 while (before(start
, end
)) {
4804 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4805 struct sk_buff
*nskb
;
4807 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4811 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4812 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4814 __skb_queue_before(list
, skb
, nskb
);
4816 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4817 skb_set_owner_r(nskb
, sk
);
4819 /* Copy data, releasing collapsed skbs. */
4821 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4822 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4826 size
= min(copy
, size
);
4827 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4829 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4833 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4834 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4837 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4843 skb_queue_walk_safe(&tmp
, skb
, n
)
4844 tcp_rbtree_insert(root
, skb
);
4847 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4848 * and tcp_collapse() them until all the queue is collapsed.
4850 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4852 struct tcp_sock
*tp
= tcp_sk(sk
);
4853 struct sk_buff
*skb
, *head
;
4857 p
= rb_first(&tp
->out_of_order_queue
);
4858 skb
= rb_entry_safe(p
, struct sk_buff
, rbnode
);
4861 p
= rb_last(&tp
->out_of_order_queue
);
4862 /* Note: This is possible p is NULL here. We do not
4863 * use rb_entry_safe(), as ooo_last_skb is valid only
4864 * if rbtree is not empty.
4866 tp
->ooo_last_skb
= rb_entry(p
, struct sk_buff
, rbnode
);
4869 start
= TCP_SKB_CB(skb
)->seq
;
4870 end
= TCP_SKB_CB(skb
)->end_seq
;
4872 for (head
= skb
;;) {
4873 skb
= tcp_skb_next(skb
, NULL
);
4875 /* Range is terminated when we see a gap or when
4876 * we are at the queue end.
4879 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4880 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4881 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4882 head
, skb
, start
, end
);
4886 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
4887 start
= TCP_SKB_CB(skb
)->seq
;
4888 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4889 end
= TCP_SKB_CB(skb
)->end_seq
;
4894 * Clean the out-of-order queue to make room.
4895 * We drop high sequences packets to :
4896 * 1) Let a chance for holes to be filled.
4897 * 2) not add too big latencies if thousands of packets sit there.
4898 * (But if application shrinks SO_RCVBUF, we could still end up
4899 * freeing whole queue here)
4901 * Return true if queue has shrunk.
4903 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4905 struct tcp_sock
*tp
= tcp_sk(sk
);
4906 struct rb_node
*node
, *prev
;
4908 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4911 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4912 node
= &tp
->ooo_last_skb
->rbnode
;
4914 prev
= rb_prev(node
);
4915 rb_erase(node
, &tp
->out_of_order_queue
);
4916 tcp_drop(sk
, rb_entry(node
, struct sk_buff
, rbnode
));
4918 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
4919 !tcp_under_memory_pressure(sk
))
4923 tp
->ooo_last_skb
= rb_entry(prev
, struct sk_buff
, rbnode
);
4925 /* Reset SACK state. A conforming SACK implementation will
4926 * do the same at a timeout based retransmit. When a connection
4927 * is in a sad state like this, we care only about integrity
4928 * of the connection not performance.
4930 if (tp
->rx_opt
.sack_ok
)
4931 tcp_sack_reset(&tp
->rx_opt
);
4935 /* Reduce allocated memory if we can, trying to get
4936 * the socket within its memory limits again.
4938 * Return less than zero if we should start dropping frames
4939 * until the socket owning process reads some of the data
4940 * to stabilize the situation.
4942 static int tcp_prune_queue(struct sock
*sk
)
4944 struct tcp_sock
*tp
= tcp_sk(sk
);
4946 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4948 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4950 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4951 tcp_clamp_window(sk
);
4952 else if (tcp_under_memory_pressure(sk
))
4953 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4955 tcp_collapse_ofo_queue(sk
);
4956 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4957 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
4958 skb_peek(&sk
->sk_receive_queue
),
4960 tp
->copied_seq
, tp
->rcv_nxt
);
4963 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4966 /* Collapsing did not help, destructive actions follow.
4967 * This must not ever occur. */
4969 tcp_prune_ofo_queue(sk
);
4971 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4974 /* If we are really being abused, tell the caller to silently
4975 * drop receive data on the floor. It will get retransmitted
4976 * and hopefully then we'll have sufficient space.
4978 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4980 /* Massive buffer overcommit. */
4985 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4987 const struct tcp_sock
*tp
= tcp_sk(sk
);
4989 /* If the user specified a specific send buffer setting, do
4992 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4995 /* If we are under global TCP memory pressure, do not expand. */
4996 if (tcp_under_memory_pressure(sk
))
4999 /* If we are under soft global TCP memory pressure, do not expand. */
5000 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5003 /* If we filled the congestion window, do not expand. */
5004 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
5010 /* When incoming ACK allowed to free some skb from write_queue,
5011 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5012 * on the exit from tcp input handler.
5014 * PROBLEM: sndbuf expansion does not work well with largesend.
5016 static void tcp_new_space(struct sock
*sk
)
5018 struct tcp_sock
*tp
= tcp_sk(sk
);
5020 if (tcp_should_expand_sndbuf(sk
)) {
5021 tcp_sndbuf_expand(sk
);
5022 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
5025 sk
->sk_write_space(sk
);
5028 static void tcp_check_space(struct sock
*sk
)
5030 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5031 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5032 /* pairs with tcp_poll() */
5034 if (sk
->sk_socket
&&
5035 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5037 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5038 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5043 static inline void tcp_data_snd_check(struct sock
*sk
)
5045 tcp_push_pending_frames(sk
);
5046 tcp_check_space(sk
);
5050 * Check if sending an ack is needed.
5052 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5054 struct tcp_sock
*tp
= tcp_sk(sk
);
5056 /* More than one full frame received... */
5057 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5058 /* ... and right edge of window advances far enough.
5059 * (tcp_recvmsg() will send ACK otherwise). Or...
5061 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5062 /* We ACK each frame or... */
5063 tcp_in_quickack_mode(sk
) ||
5064 /* We have out of order data. */
5065 (ofo_possible
&& !RB_EMPTY_ROOT(&tp
->out_of_order_queue
))) {
5066 /* Then ack it now */
5069 /* Else, send delayed ack. */
5070 tcp_send_delayed_ack(sk
);
5074 static inline void tcp_ack_snd_check(struct sock
*sk
)
5076 if (!inet_csk_ack_scheduled(sk
)) {
5077 /* We sent a data segment already. */
5080 __tcp_ack_snd_check(sk
, 1);
5084 * This routine is only called when we have urgent data
5085 * signaled. Its the 'slow' part of tcp_urg. It could be
5086 * moved inline now as tcp_urg is only called from one
5087 * place. We handle URGent data wrong. We have to - as
5088 * BSD still doesn't use the correction from RFC961.
5089 * For 1003.1g we should support a new option TCP_STDURG to permit
5090 * either form (or just set the sysctl tcp_stdurg).
5093 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5095 struct tcp_sock
*tp
= tcp_sk(sk
);
5096 u32 ptr
= ntohs(th
->urg_ptr
);
5098 if (ptr
&& !sysctl_tcp_stdurg
)
5100 ptr
+= ntohl(th
->seq
);
5102 /* Ignore urgent data that we've already seen and read. */
5103 if (after(tp
->copied_seq
, ptr
))
5106 /* Do not replay urg ptr.
5108 * NOTE: interesting situation not covered by specs.
5109 * Misbehaving sender may send urg ptr, pointing to segment,
5110 * which we already have in ofo queue. We are not able to fetch
5111 * such data and will stay in TCP_URG_NOTYET until will be eaten
5112 * by recvmsg(). Seems, we are not obliged to handle such wicked
5113 * situations. But it is worth to think about possibility of some
5114 * DoSes using some hypothetical application level deadlock.
5116 if (before(ptr
, tp
->rcv_nxt
))
5119 /* Do we already have a newer (or duplicate) urgent pointer? */
5120 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5123 /* Tell the world about our new urgent pointer. */
5126 /* We may be adding urgent data when the last byte read was
5127 * urgent. To do this requires some care. We cannot just ignore
5128 * tp->copied_seq since we would read the last urgent byte again
5129 * as data, nor can we alter copied_seq until this data arrives
5130 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5132 * NOTE. Double Dutch. Rendering to plain English: author of comment
5133 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5134 * and expect that both A and B disappear from stream. This is _wrong_.
5135 * Though this happens in BSD with high probability, this is occasional.
5136 * Any application relying on this is buggy. Note also, that fix "works"
5137 * only in this artificial test. Insert some normal data between A and B and we will
5138 * decline of BSD again. Verdict: it is better to remove to trap
5141 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5142 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5143 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5145 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5146 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5151 tp
->urg_data
= TCP_URG_NOTYET
;
5154 /* Disable header prediction. */
5158 /* This is the 'fast' part of urgent handling. */
5159 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5161 struct tcp_sock
*tp
= tcp_sk(sk
);
5163 /* Check if we get a new urgent pointer - normally not. */
5165 tcp_check_urg(sk
, th
);
5167 /* Do we wait for any urgent data? - normally not... */
5168 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5169 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5172 /* Is the urgent pointer pointing into this packet? */
5173 if (ptr
< skb
->len
) {
5175 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5177 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5178 if (!sock_flag(sk
, SOCK_DEAD
))
5179 sk
->sk_data_ready(sk
);
5184 static int tcp_copy_to_iovec(struct sock
*sk
, struct sk_buff
*skb
, int hlen
)
5186 struct tcp_sock
*tp
= tcp_sk(sk
);
5187 int chunk
= skb
->len
- hlen
;
5190 if (skb_csum_unnecessary(skb
))
5191 err
= skb_copy_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
, chunk
);
5193 err
= skb_copy_and_csum_datagram_msg(skb
, hlen
, tp
->ucopy
.msg
);
5196 tp
->ucopy
.len
-= chunk
;
5197 tp
->copied_seq
+= chunk
;
5198 tcp_rcv_space_adjust(sk
);
5204 /* Accept RST for rcv_nxt - 1 after a FIN.
5205 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5206 * FIN is sent followed by a RST packet. The RST is sent with the same
5207 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5208 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5209 * ACKs on the closed socket. In addition middleboxes can drop either the
5210 * challenge ACK or a subsequent RST.
5212 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5214 struct tcp_sock
*tp
= tcp_sk(sk
);
5216 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5217 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5221 /* Does PAWS and seqno based validation of an incoming segment, flags will
5222 * play significant role here.
5224 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5225 const struct tcphdr
*th
, int syn_inerr
)
5227 struct tcp_sock
*tp
= tcp_sk(sk
);
5228 bool rst_seq_match
= false;
5230 /* RFC1323: H1. Apply PAWS check first. */
5231 if (tcp_fast_parse_options(skb
, th
, tp
) && tp
->rx_opt
.saw_tstamp
&&
5232 tcp_paws_discard(sk
, skb
)) {
5234 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5235 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5236 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5237 &tp
->last_oow_ack_time
))
5238 tcp_send_dupack(sk
, skb
);
5241 /* Reset is accepted even if it did not pass PAWS. */
5244 /* Step 1: check sequence number */
5245 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5246 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5247 * (RST) segments are validated by checking their SEQ-fields."
5248 * And page 69: "If an incoming segment is not acceptable,
5249 * an acknowledgment should be sent in reply (unless the RST
5250 * bit is set, if so drop the segment and return)".
5255 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5256 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5257 &tp
->last_oow_ack_time
))
5258 tcp_send_dupack(sk
, skb
);
5259 } else if (tcp_reset_check(sk
, skb
)) {
5265 /* Step 2: check RST bit */
5267 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5268 * FIN and SACK too if available):
5269 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5270 * the right-most SACK block,
5272 * RESET the connection
5274 * Send a challenge ACK
5276 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5277 tcp_reset_check(sk
, skb
)) {
5278 rst_seq_match
= true;
5279 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5280 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5281 int max_sack
= sp
[0].end_seq
;
5284 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5286 max_sack
= after(sp
[this_sack
].end_seq
,
5288 sp
[this_sack
].end_seq
: max_sack
;
5291 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5292 rst_seq_match
= true;
5298 /* Disable TFO if RST is out-of-order
5299 * and no data has been received
5300 * for current active TFO socket
5302 if (tp
->syn_fastopen
&& !tp
->data_segs_in
&&
5303 sk
->sk_state
== TCP_ESTABLISHED
)
5304 tcp_fastopen_active_disable(sk
);
5305 tcp_send_challenge_ack(sk
, skb
);
5310 /* step 3: check security and precedence [ignored] */
5312 /* step 4: Check for a SYN
5313 * RFC 5961 4.2 : Send a challenge ack
5318 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5319 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5320 tcp_send_challenge_ack(sk
, skb
);
5332 * TCP receive function for the ESTABLISHED state.
5334 * It is split into a fast path and a slow path. The fast path is
5336 * - A zero window was announced from us - zero window probing
5337 * is only handled properly in the slow path.
5338 * - Out of order segments arrived.
5339 * - Urgent data is expected.
5340 * - There is no buffer space left
5341 * - Unexpected TCP flags/window values/header lengths are received
5342 * (detected by checking the TCP header against pred_flags)
5343 * - Data is sent in both directions. Fast path only supports pure senders
5344 * or pure receivers (this means either the sequence number or the ack
5345 * value must stay constant)
5346 * - Unexpected TCP option.
5348 * When these conditions are not satisfied it drops into a standard
5349 * receive procedure patterned after RFC793 to handle all cases.
5350 * The first three cases are guaranteed by proper pred_flags setting,
5351 * the rest is checked inline. Fast processing is turned on in
5352 * tcp_data_queue when everything is OK.
5354 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5355 const struct tcphdr
*th
, unsigned int len
)
5357 struct tcp_sock
*tp
= tcp_sk(sk
);
5359 skb_mstamp_get(&tp
->tcp_mstamp
);
5360 if (unlikely(!sk
->sk_rx_dst
))
5361 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5363 * Header prediction.
5364 * The code loosely follows the one in the famous
5365 * "30 instruction TCP receive" Van Jacobson mail.
5367 * Van's trick is to deposit buffers into socket queue
5368 * on a device interrupt, to call tcp_recv function
5369 * on the receive process context and checksum and copy
5370 * the buffer to user space. smart...
5372 * Our current scheme is not silly either but we take the
5373 * extra cost of the net_bh soft interrupt processing...
5374 * We do checksum and copy also but from device to kernel.
5377 tp
->rx_opt
.saw_tstamp
= 0;
5379 /* pred_flags is 0xS?10 << 16 + snd_wnd
5380 * if header_prediction is to be made
5381 * 'S' will always be tp->tcp_header_len >> 2
5382 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5383 * turn it off (when there are holes in the receive
5384 * space for instance)
5385 * PSH flag is ignored.
5388 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5389 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5390 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5391 int tcp_header_len
= tp
->tcp_header_len
;
5393 /* Timestamp header prediction: tcp_header_len
5394 * is automatically equal to th->doff*4 due to pred_flags
5398 /* Check timestamp */
5399 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5400 /* No? Slow path! */
5401 if (!tcp_parse_aligned_timestamp(tp
, th
))
5404 /* If PAWS failed, check it more carefully in slow path */
5405 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5408 /* DO NOT update ts_recent here, if checksum fails
5409 * and timestamp was corrupted part, it will result
5410 * in a hung connection since we will drop all
5411 * future packets due to the PAWS test.
5415 if (len
<= tcp_header_len
) {
5416 /* Bulk data transfer: sender */
5417 if (len
== tcp_header_len
) {
5418 /* Predicted packet is in window by definition.
5419 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5420 * Hence, check seq<=rcv_wup reduces to:
5422 if (tcp_header_len
==
5423 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5424 tp
->rcv_nxt
== tp
->rcv_wup
)
5425 tcp_store_ts_recent(tp
);
5427 /* We know that such packets are checksummed
5430 tcp_ack(sk
, skb
, 0);
5432 tcp_data_snd_check(sk
);
5434 } else { /* Header too small */
5435 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5440 bool fragstolen
= false;
5442 if (tp
->ucopy
.task
== current
&&
5443 tp
->copied_seq
== tp
->rcv_nxt
&&
5444 len
- tcp_header_len
<= tp
->ucopy
.len
&&
5445 sock_owned_by_user(sk
)) {
5446 __set_current_state(TASK_RUNNING
);
5448 if (!tcp_copy_to_iovec(sk
, skb
, tcp_header_len
)) {
5449 /* Predicted packet is in window by definition.
5450 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5451 * Hence, check seq<=rcv_wup reduces to:
5453 if (tcp_header_len
==
5454 (sizeof(struct tcphdr
) +
5455 TCPOLEN_TSTAMP_ALIGNED
) &&
5456 tp
->rcv_nxt
== tp
->rcv_wup
)
5457 tcp_store_ts_recent(tp
);
5459 tcp_rcv_rtt_measure_ts(sk
, skb
);
5461 __skb_pull(skb
, tcp_header_len
);
5462 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
5463 NET_INC_STATS(sock_net(sk
),
5464 LINUX_MIB_TCPHPHITSTOUSER
);
5469 if (tcp_checksum_complete(skb
))
5472 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5475 /* Predicted packet is in window by definition.
5476 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5477 * Hence, check seq<=rcv_wup reduces to:
5479 if (tcp_header_len
==
5480 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5481 tp
->rcv_nxt
== tp
->rcv_wup
)
5482 tcp_store_ts_recent(tp
);
5484 tcp_rcv_rtt_measure_ts(sk
, skb
);
5486 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5488 /* Bulk data transfer: receiver */
5489 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5493 tcp_event_data_recv(sk
, skb
);
5495 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5496 /* Well, only one small jumplet in fast path... */
5497 tcp_ack(sk
, skb
, FLAG_DATA
);
5498 tcp_data_snd_check(sk
);
5499 if (!inet_csk_ack_scheduled(sk
))
5503 __tcp_ack_snd_check(sk
, 0);
5506 kfree_skb_partial(skb
, fragstolen
);
5507 sk
->sk_data_ready(sk
);
5513 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5516 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5520 * Standard slow path.
5523 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5527 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5530 tcp_rcv_rtt_measure_ts(sk
, skb
);
5532 /* Process urgent data. */
5533 tcp_urg(sk
, skb
, th
);
5535 /* step 7: process the segment text */
5536 tcp_data_queue(sk
, skb
);
5538 tcp_data_snd_check(sk
);
5539 tcp_ack_snd_check(sk
);
5543 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5544 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5549 EXPORT_SYMBOL(tcp_rcv_established
);
5551 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5553 struct tcp_sock
*tp
= tcp_sk(sk
);
5554 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5556 tcp_set_state(sk
, TCP_ESTABLISHED
);
5557 icsk
->icsk_ack
.lrcvtime
= tcp_time_stamp
;
5560 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5561 security_inet_conn_established(sk
, skb
);
5564 /* Make sure socket is routed, for correct metrics. */
5565 icsk
->icsk_af_ops
->rebuild_header(sk
);
5567 tcp_init_metrics(sk
);
5569 tcp_init_congestion_control(sk
);
5571 /* Prevent spurious tcp_cwnd_restart() on first data
5574 tp
->lsndtime
= tcp_time_stamp
;
5576 tcp_init_buffer_space(sk
);
5578 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5579 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5581 if (!tp
->rx_opt
.snd_wscale
)
5582 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5588 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5589 struct tcp_fastopen_cookie
*cookie
)
5591 struct tcp_sock
*tp
= tcp_sk(sk
);
5592 struct sk_buff
*data
= tp
->syn_data
? tcp_write_queue_head(sk
) : NULL
;
5593 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5594 bool syn_drop
= false;
5596 if (mss
== tp
->rx_opt
.user_mss
) {
5597 struct tcp_options_received opt
;
5599 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5600 tcp_clear_options(&opt
);
5601 opt
.user_mss
= opt
.mss_clamp
= 0;
5602 tcp_parse_options(synack
, &opt
, 0, NULL
);
5603 mss
= opt
.mss_clamp
;
5606 if (!tp
->syn_fastopen
) {
5607 /* Ignore an unsolicited cookie */
5609 } else if (tp
->total_retrans
) {
5610 /* SYN timed out and the SYN-ACK neither has a cookie nor
5611 * acknowledges data. Presumably the remote received only
5612 * the retransmitted (regular) SYNs: either the original
5613 * SYN-data or the corresponding SYN-ACK was dropped.
5615 syn_drop
= (cookie
->len
< 0 && data
);
5616 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5617 /* We requested a cookie but didn't get it. If we did not use
5618 * the (old) exp opt format then try so next time (try_exp=1).
5619 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5621 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5624 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5626 if (data
) { /* Retransmit unacked data in SYN */
5627 tcp_for_write_queue_from(data
, sk
) {
5628 if (data
== tcp_send_head(sk
) ||
5629 __tcp_retransmit_skb(sk
, data
, 1))
5633 NET_INC_STATS(sock_net(sk
),
5634 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5637 tp
->syn_data_acked
= tp
->syn_data
;
5638 if (tp
->syn_data_acked
)
5639 NET_INC_STATS(sock_net(sk
),
5640 LINUX_MIB_TCPFASTOPENACTIVE
);
5642 tcp_fastopen_add_skb(sk
, synack
);
5647 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5648 const struct tcphdr
*th
)
5650 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5651 struct tcp_sock
*tp
= tcp_sk(sk
);
5652 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5653 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5656 tcp_parse_options(skb
, &tp
->rx_opt
, 0, &foc
);
5657 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5658 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5662 * "If the state is SYN-SENT then
5663 * first check the ACK bit
5664 * If the ACK bit is set
5665 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5666 * a reset (unless the RST bit is set, if so drop
5667 * the segment and return)"
5669 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5670 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5671 goto reset_and_undo
;
5673 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5674 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5676 NET_INC_STATS(sock_net(sk
),
5677 LINUX_MIB_PAWSACTIVEREJECTED
);
5678 goto reset_and_undo
;
5681 /* Now ACK is acceptable.
5683 * "If the RST bit is set
5684 * If the ACK was acceptable then signal the user "error:
5685 * connection reset", drop the segment, enter CLOSED state,
5686 * delete TCB, and return."
5695 * "fifth, if neither of the SYN or RST bits is set then
5696 * drop the segment and return."
5702 goto discard_and_undo
;
5705 * "If the SYN bit is on ...
5706 * are acceptable then ...
5707 * (our SYN has been ACKed), change the connection
5708 * state to ESTABLISHED..."
5711 tcp_ecn_rcv_synack(tp
, th
);
5713 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5714 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5716 /* Ok.. it's good. Set up sequence numbers and
5717 * move to established.
5719 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5720 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5722 /* RFC1323: The window in SYN & SYN/ACK segments is
5725 tp
->snd_wnd
= ntohs(th
->window
);
5727 if (!tp
->rx_opt
.wscale_ok
) {
5728 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5729 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5732 if (tp
->rx_opt
.saw_tstamp
) {
5733 tp
->rx_opt
.tstamp_ok
= 1;
5734 tp
->tcp_header_len
=
5735 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5736 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5737 tcp_store_ts_recent(tp
);
5739 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5742 if (tcp_is_sack(tp
) && sysctl_tcp_fack
)
5743 tcp_enable_fack(tp
);
5746 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5747 tcp_initialize_rcv_mss(sk
);
5749 /* Remember, tcp_poll() does not lock socket!
5750 * Change state from SYN-SENT only after copied_seq
5751 * is initialized. */
5752 tp
->copied_seq
= tp
->rcv_nxt
;
5756 tcp_finish_connect(sk
, skb
);
5758 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
5759 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
5761 if (!sock_flag(sk
, SOCK_DEAD
)) {
5762 sk
->sk_state_change(sk
);
5763 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5767 if (sk
->sk_write_pending
||
5768 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5769 icsk
->icsk_ack
.pingpong
) {
5770 /* Save one ACK. Data will be ready after
5771 * several ticks, if write_pending is set.
5773 * It may be deleted, but with this feature tcpdumps
5774 * look so _wonderfully_ clever, that I was not able
5775 * to stand against the temptation 8) --ANK
5777 inet_csk_schedule_ack(sk
);
5778 tcp_enter_quickack_mode(sk
);
5779 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5780 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5791 /* No ACK in the segment */
5795 * "If the RST bit is set
5797 * Otherwise (no ACK) drop the segment and return."
5800 goto discard_and_undo
;
5804 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5805 tcp_paws_reject(&tp
->rx_opt
, 0))
5806 goto discard_and_undo
;
5809 /* We see SYN without ACK. It is attempt of
5810 * simultaneous connect with crossed SYNs.
5811 * Particularly, it can be connect to self.
5813 tcp_set_state(sk
, TCP_SYN_RECV
);
5815 if (tp
->rx_opt
.saw_tstamp
) {
5816 tp
->rx_opt
.tstamp_ok
= 1;
5817 tcp_store_ts_recent(tp
);
5818 tp
->tcp_header_len
=
5819 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5821 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5824 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5825 tp
->copied_seq
= tp
->rcv_nxt
;
5826 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5828 /* RFC1323: The window in SYN & SYN/ACK segments is
5831 tp
->snd_wnd
= ntohs(th
->window
);
5832 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5833 tp
->max_window
= tp
->snd_wnd
;
5835 tcp_ecn_rcv_syn(tp
, th
);
5838 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5839 tcp_initialize_rcv_mss(sk
);
5841 tcp_send_synack(sk
);
5843 /* Note, we could accept data and URG from this segment.
5844 * There are no obstacles to make this (except that we must
5845 * either change tcp_recvmsg() to prevent it from returning data
5846 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5848 * However, if we ignore data in ACKless segments sometimes,
5849 * we have no reasons to accept it sometimes.
5850 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5851 * is not flawless. So, discard packet for sanity.
5852 * Uncomment this return to process the data.
5859 /* "fifth, if neither of the SYN or RST bits is set then
5860 * drop the segment and return."
5864 tcp_clear_options(&tp
->rx_opt
);
5865 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5869 tcp_clear_options(&tp
->rx_opt
);
5870 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5875 * This function implements the receiving procedure of RFC 793 for
5876 * all states except ESTABLISHED and TIME_WAIT.
5877 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5878 * address independent.
5881 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5883 struct tcp_sock
*tp
= tcp_sk(sk
);
5884 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5885 const struct tcphdr
*th
= tcp_hdr(skb
);
5886 struct request_sock
*req
;
5890 switch (sk
->sk_state
) {
5904 /* It is possible that we process SYN packets from backlog,
5905 * so we need to make sure to disable BH right there.
5908 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
5919 tp
->rx_opt
.saw_tstamp
= 0;
5920 skb_mstamp_get(&tp
->tcp_mstamp
);
5921 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5925 /* Do step6 onward by hand. */
5926 tcp_urg(sk
, skb
, th
);
5928 tcp_data_snd_check(sk
);
5932 skb_mstamp_get(&tp
->tcp_mstamp
);
5933 tp
->rx_opt
.saw_tstamp
= 0;
5934 req
= tp
->fastopen_rsk
;
5936 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5937 sk
->sk_state
!= TCP_FIN_WAIT1
);
5939 if (!tcp_check_req(sk
, skb
, req
, true))
5943 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5946 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5949 /* step 5: check the ACK field */
5950 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5951 FLAG_UPDATE_TS_RECENT
) > 0;
5953 switch (sk
->sk_state
) {
5959 tcp_synack_rtt_meas(sk
, req
);
5961 /* Once we leave TCP_SYN_RECV, we no longer need req
5965 inet_csk(sk
)->icsk_retransmits
= 0;
5966 reqsk_fastopen_remove(sk
, req
, false);
5968 /* Make sure socket is routed, for correct metrics. */
5969 icsk
->icsk_af_ops
->rebuild_header(sk
);
5970 tcp_init_congestion_control(sk
);
5973 tp
->copied_seq
= tp
->rcv_nxt
;
5974 tcp_init_buffer_space(sk
);
5977 tcp_set_state(sk
, TCP_ESTABLISHED
);
5978 sk
->sk_state_change(sk
);
5980 /* Note, that this wakeup is only for marginal crossed SYN case.
5981 * Passively open sockets are not waked up, because
5982 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5985 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5987 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5988 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5989 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5991 if (tp
->rx_opt
.tstamp_ok
)
5992 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5995 /* Re-arm the timer because data may have been sent out.
5996 * This is similar to the regular data transmission case
5997 * when new data has just been ack'ed.
5999 * (TFO) - we could try to be more aggressive and
6000 * retransmitting any data sooner based on when they
6005 tcp_init_metrics(sk
);
6007 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6008 tcp_update_pacing_rate(sk
);
6010 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6011 tp
->lsndtime
= tcp_time_stamp
;
6013 tcp_initialize_rcv_mss(sk
);
6014 tcp_fast_path_on(tp
);
6017 case TCP_FIN_WAIT1
: {
6020 /* If we enter the TCP_FIN_WAIT1 state and we are a
6021 * Fast Open socket and this is the first acceptable
6022 * ACK we have received, this would have acknowledged
6023 * our SYNACK so stop the SYNACK timer.
6026 /* Return RST if ack_seq is invalid.
6027 * Note that RFC793 only says to generate a
6028 * DUPACK for it but for TCP Fast Open it seems
6029 * better to treat this case like TCP_SYN_RECV
6034 /* We no longer need the request sock. */
6035 reqsk_fastopen_remove(sk
, req
, false);
6038 if (tp
->snd_una
!= tp
->write_seq
)
6041 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6042 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
6046 if (!sock_flag(sk
, SOCK_DEAD
)) {
6047 /* Wake up lingering close() */
6048 sk
->sk_state_change(sk
);
6052 if (tp
->linger2
< 0) {
6054 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6057 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6058 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6059 /* Receive out of order FIN after close() */
6060 if (tp
->syn_fastopen
&& th
->fin
)
6061 tcp_fastopen_active_disable(sk
);
6063 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6067 tmo
= tcp_fin_time(sk
);
6068 if (tmo
> TCP_TIMEWAIT_LEN
) {
6069 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6070 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6071 /* Bad case. We could lose such FIN otherwise.
6072 * It is not a big problem, but it looks confusing
6073 * and not so rare event. We still can lose it now,
6074 * if it spins in bh_lock_sock(), but it is really
6077 inet_csk_reset_keepalive_timer(sk
, tmo
);
6079 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6086 if (tp
->snd_una
== tp
->write_seq
) {
6087 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6093 if (tp
->snd_una
== tp
->write_seq
) {
6094 tcp_update_metrics(sk
);
6101 /* step 6: check the URG bit */
6102 tcp_urg(sk
, skb
, th
);
6104 /* step 7: process the segment text */
6105 switch (sk
->sk_state
) {
6106 case TCP_CLOSE_WAIT
:
6109 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6113 /* RFC 793 says to queue data in these states,
6114 * RFC 1122 says we MUST send a reset.
6115 * BSD 4.4 also does reset.
6117 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6118 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6119 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6120 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6126 case TCP_ESTABLISHED
:
6127 tcp_data_queue(sk
, skb
);
6132 /* tcp_data could move socket to TIME-WAIT */
6133 if (sk
->sk_state
!= TCP_CLOSE
) {
6134 tcp_data_snd_check(sk
);
6135 tcp_ack_snd_check(sk
);
6144 EXPORT_SYMBOL(tcp_rcv_state_process
);
6146 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6148 struct inet_request_sock
*ireq
= inet_rsk(req
);
6150 if (family
== AF_INET
)
6151 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6152 &ireq
->ir_rmt_addr
, port
);
6153 #if IS_ENABLED(CONFIG_IPV6)
6154 else if (family
== AF_INET6
)
6155 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6156 &ireq
->ir_v6_rmt_addr
, port
);
6160 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6162 * If we receive a SYN packet with these bits set, it means a
6163 * network is playing bad games with TOS bits. In order to
6164 * avoid possible false congestion notifications, we disable
6165 * TCP ECN negotiation.
6167 * Exception: tcp_ca wants ECN. This is required for DCTCP
6168 * congestion control: Linux DCTCP asserts ECT on all packets,
6169 * including SYN, which is most optimal solution; however,
6170 * others, such as FreeBSD do not.
6172 static void tcp_ecn_create_request(struct request_sock
*req
,
6173 const struct sk_buff
*skb
,
6174 const struct sock
*listen_sk
,
6175 const struct dst_entry
*dst
)
6177 const struct tcphdr
*th
= tcp_hdr(skb
);
6178 const struct net
*net
= sock_net(listen_sk
);
6179 bool th_ecn
= th
->ece
&& th
->cwr
;
6186 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6187 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6188 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6190 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6191 (ecn_ok_dst
& DST_FEATURE_ECN_CA
))
6192 inet_rsk(req
)->ecn_ok
= 1;
6195 static void tcp_openreq_init(struct request_sock
*req
,
6196 const struct tcp_options_received
*rx_opt
,
6197 struct sk_buff
*skb
, const struct sock
*sk
)
6199 struct inet_request_sock
*ireq
= inet_rsk(req
);
6201 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6203 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6204 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6205 skb_mstamp_get(&tcp_rsk(req
)->snt_synack
);
6206 tcp_rsk(req
)->last_oow_ack_time
= 0;
6207 req
->mss
= rx_opt
->mss_clamp
;
6208 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6209 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6210 ireq
->sack_ok
= rx_opt
->sack_ok
;
6211 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6212 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6215 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6216 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6217 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6220 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6221 struct sock
*sk_listener
,
6222 bool attach_listener
)
6224 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6228 struct inet_request_sock
*ireq
= inet_rsk(req
);
6230 kmemcheck_annotate_bitfield(ireq
, flags
);
6232 #if IS_ENABLED(CONFIG_IPV6)
6233 ireq
->pktopts
= NULL
;
6235 atomic64_set(&ireq
->ir_cookie
, 0);
6236 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6237 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6238 ireq
->ireq_family
= sk_listener
->sk_family
;
6243 EXPORT_SYMBOL(inet_reqsk_alloc
);
6246 * Return true if a syncookie should be sent
6248 static bool tcp_syn_flood_action(const struct sock
*sk
,
6249 const struct sk_buff
*skb
,
6252 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6253 const char *msg
= "Dropping request";
6254 bool want_cookie
= false;
6255 struct net
*net
= sock_net(sk
);
6257 #ifdef CONFIG_SYN_COOKIES
6258 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6259 msg
= "Sending cookies";
6261 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6264 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6266 if (!queue
->synflood_warned
&&
6267 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6268 xchg(&queue
->synflood_warned
, 1) == 0)
6269 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6270 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6275 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6276 struct request_sock
*req
,
6277 const struct sk_buff
*skb
)
6279 if (tcp_sk(sk
)->save_syn
) {
6280 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6283 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6286 memcpy(©
[1], skb_network_header(skb
), len
);
6287 req
->saved_syn
= copy
;
6292 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6293 const struct tcp_request_sock_ops
*af_ops
,
6294 struct sock
*sk
, struct sk_buff
*skb
)
6296 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6297 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6298 struct tcp_options_received tmp_opt
;
6299 struct tcp_sock
*tp
= tcp_sk(sk
);
6300 struct net
*net
= sock_net(sk
);
6301 struct sock
*fastopen_sk
= NULL
;
6302 struct dst_entry
*dst
= NULL
;
6303 struct request_sock
*req
;
6304 bool want_cookie
= false;
6307 /* TW buckets are converted to open requests without
6308 * limitations, they conserve resources and peer is
6309 * evidently real one.
6311 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6312 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6313 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6318 if (sk_acceptq_is_full(sk
)) {
6319 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6323 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6327 tcp_rsk(req
)->af_specific
= af_ops
;
6328 tcp_rsk(req
)->ts_off
= 0;
6330 tcp_clear_options(&tmp_opt
);
6331 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6332 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6333 tcp_parse_options(skb
, &tmp_opt
, 0, want_cookie
? NULL
: &foc
);
6335 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6336 tcp_clear_options(&tmp_opt
);
6338 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6339 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6340 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6342 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6343 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6345 af_ops
->init_req(req
, sk
, skb
);
6347 if (security_inet_conn_request(sk
, skb
, req
))
6350 if (tmp_opt
.tstamp_ok
)
6351 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(skb
);
6353 if (!want_cookie
&& !isn
) {
6354 /* Kill the following clause, if you dislike this way. */
6355 if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6356 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6357 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6358 !tcp_peer_is_proven(req
, dst
)) {
6359 /* Without syncookies last quarter of
6360 * backlog is filled with destinations,
6361 * proven to be alive.
6362 * It means that we continue to communicate
6363 * to destinations, already remembered
6364 * to the moment of synflood.
6366 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6368 goto drop_and_release
;
6371 isn
= af_ops
->init_seq(skb
);
6374 dst
= af_ops
->route_req(sk
, &fl
, req
);
6379 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6382 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6383 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6384 if (!tmp_opt
.tstamp_ok
)
6385 inet_rsk(req
)->ecn_ok
= 0;
6388 tcp_rsk(req
)->snt_isn
= isn
;
6389 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6390 tcp_openreq_init_rwin(req
, sk
, dst
);
6392 tcp_reqsk_record_syn(sk
, req
, skb
);
6393 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6396 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6397 &foc
, TCP_SYNACK_FASTOPEN
);
6398 /* Add the child socket directly into the accept queue */
6399 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6400 sk
->sk_data_ready(sk
);
6401 bh_unlock_sock(fastopen_sk
);
6402 sock_put(fastopen_sk
);
6404 tcp_rsk(req
)->tfo_listener
= false;
6406 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
6407 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6408 !want_cookie
? TCP_SYNACK_NORMAL
:
6426 EXPORT_SYMBOL(tcp_conn_request
);