4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
46 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
55 EXPORT_SYMBOL(init_buffer
);
57 inline void touch_buffer(struct buffer_head
*bh
)
59 trace_block_touch_buffer(bh
);
60 mark_page_accessed(bh
->b_page
);
62 EXPORT_SYMBOL(touch_buffer
);
64 static int sleep_on_buffer(void *word
)
70 void __lock_buffer(struct buffer_head
*bh
)
72 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sleep_on_buffer
,
73 TASK_UNINTERRUPTIBLE
);
75 EXPORT_SYMBOL(__lock_buffer
);
77 void unlock_buffer(struct buffer_head
*bh
)
79 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
80 smp_mb__after_atomic();
81 wake_up_bit(&bh
->b_state
, BH_Lock
);
83 EXPORT_SYMBOL(unlock_buffer
);
86 * Returns if the page has dirty or writeback buffers. If all the buffers
87 * are unlocked and clean then the PageDirty information is stale. If
88 * any of the pages are locked, it is assumed they are locked for IO.
90 void buffer_check_dirty_writeback(struct page
*page
,
91 bool *dirty
, bool *writeback
)
93 struct buffer_head
*head
, *bh
;
97 BUG_ON(!PageLocked(page
));
99 if (!page_has_buffers(page
))
102 if (PageWriteback(page
))
105 head
= page_buffers(page
);
108 if (buffer_locked(bh
))
111 if (buffer_dirty(bh
))
114 bh
= bh
->b_this_page
;
115 } while (bh
!= head
);
117 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
120 * Block until a buffer comes unlocked. This doesn't stop it
121 * from becoming locked again - you have to lock it yourself
122 * if you want to preserve its state.
124 void __wait_on_buffer(struct buffer_head
* bh
)
126 wait_on_bit(&bh
->b_state
, BH_Lock
, sleep_on_buffer
, TASK_UNINTERRUPTIBLE
);
128 EXPORT_SYMBOL(__wait_on_buffer
);
131 __clear_page_buffers(struct page
*page
)
133 ClearPagePrivate(page
);
134 set_page_private(page
, 0);
135 page_cache_release(page
);
139 static int quiet_error(struct buffer_head
*bh
)
141 if (!test_bit(BH_Quiet
, &bh
->b_state
) && printk_ratelimit())
147 static void buffer_io_error(struct buffer_head
*bh
)
149 char b
[BDEVNAME_SIZE
];
150 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
151 bdevname(bh
->b_bdev
, b
),
152 (unsigned long long)bh
->b_blocknr
);
156 * End-of-IO handler helper function which does not touch the bh after
158 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
159 * a race there is benign: unlock_buffer() only use the bh's address for
160 * hashing after unlocking the buffer, so it doesn't actually touch the bh
163 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
166 set_buffer_uptodate(bh
);
168 /* This happens, due to failed READA attempts. */
169 clear_buffer_uptodate(bh
);
175 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
176 * unlock the buffer. This is what ll_rw_block uses too.
178 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
180 __end_buffer_read_notouch(bh
, uptodate
);
183 EXPORT_SYMBOL(end_buffer_read_sync
);
185 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
187 char b
[BDEVNAME_SIZE
];
190 set_buffer_uptodate(bh
);
192 if (!quiet_error(bh
)) {
194 printk(KERN_WARNING
"lost page write due to "
196 bdevname(bh
->b_bdev
, b
));
198 set_buffer_write_io_error(bh
);
199 clear_buffer_uptodate(bh
);
204 EXPORT_SYMBOL(end_buffer_write_sync
);
207 * Various filesystems appear to want __find_get_block to be non-blocking.
208 * But it's the page lock which protects the buffers. To get around this,
209 * we get exclusion from try_to_free_buffers with the blockdev mapping's
212 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
213 * may be quite high. This code could TryLock the page, and if that
214 * succeeds, there is no need to take private_lock. (But if
215 * private_lock is contended then so is mapping->tree_lock).
217 static struct buffer_head
*
218 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
220 struct inode
*bd_inode
= bdev
->bd_inode
;
221 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
222 struct buffer_head
*ret
= NULL
;
224 struct buffer_head
*bh
;
225 struct buffer_head
*head
;
229 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
230 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
234 spin_lock(&bd_mapping
->private_lock
);
235 if (!page_has_buffers(page
))
237 head
= page_buffers(page
);
240 if (!buffer_mapped(bh
))
242 else if (bh
->b_blocknr
== block
) {
247 bh
= bh
->b_this_page
;
248 } while (bh
!= head
);
250 /* we might be here because some of the buffers on this page are
251 * not mapped. This is due to various races between
252 * file io on the block device and getblk. It gets dealt with
253 * elsewhere, don't buffer_error if we had some unmapped buffers
256 char b
[BDEVNAME_SIZE
];
258 printk("__find_get_block_slow() failed. "
259 "block=%llu, b_blocknr=%llu\n",
260 (unsigned long long)block
,
261 (unsigned long long)bh
->b_blocknr
);
262 printk("b_state=0x%08lx, b_size=%zu\n",
263 bh
->b_state
, bh
->b_size
);
264 printk("device %s blocksize: %d\n", bdevname(bdev
, b
),
265 1 << bd_inode
->i_blkbits
);
268 spin_unlock(&bd_mapping
->private_lock
);
269 page_cache_release(page
);
275 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
277 static void free_more_memory(void)
282 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
285 for_each_online_node(nid
) {
286 (void)first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
287 gfp_zone(GFP_NOFS
), NULL
,
290 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
296 * I/O completion handler for block_read_full_page() - pages
297 * which come unlocked at the end of I/O.
299 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
302 struct buffer_head
*first
;
303 struct buffer_head
*tmp
;
305 int page_uptodate
= 1;
307 BUG_ON(!buffer_async_read(bh
));
311 set_buffer_uptodate(bh
);
313 clear_buffer_uptodate(bh
);
314 if (!quiet_error(bh
))
320 * Be _very_ careful from here on. Bad things can happen if
321 * two buffer heads end IO at almost the same time and both
322 * decide that the page is now completely done.
324 first
= page_buffers(page
);
325 local_irq_save(flags
);
326 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
327 clear_buffer_async_read(bh
);
331 if (!buffer_uptodate(tmp
))
333 if (buffer_async_read(tmp
)) {
334 BUG_ON(!buffer_locked(tmp
));
337 tmp
= tmp
->b_this_page
;
339 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
340 local_irq_restore(flags
);
343 * If none of the buffers had errors and they are all
344 * uptodate then we can set the page uptodate.
346 if (page_uptodate
&& !PageError(page
))
347 SetPageUptodate(page
);
352 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
353 local_irq_restore(flags
);
358 * Completion handler for block_write_full_page() - pages which are unlocked
359 * during I/O, and which have PageWriteback cleared upon I/O completion.
361 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
363 char b
[BDEVNAME_SIZE
];
365 struct buffer_head
*first
;
366 struct buffer_head
*tmp
;
369 BUG_ON(!buffer_async_write(bh
));
373 set_buffer_uptodate(bh
);
375 if (!quiet_error(bh
)) {
377 printk(KERN_WARNING
"lost page write due to "
379 bdevname(bh
->b_bdev
, b
));
381 set_bit(AS_EIO
, &page
->mapping
->flags
);
382 set_buffer_write_io_error(bh
);
383 clear_buffer_uptodate(bh
);
387 first
= page_buffers(page
);
388 local_irq_save(flags
);
389 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
391 clear_buffer_async_write(bh
);
393 tmp
= bh
->b_this_page
;
395 if (buffer_async_write(tmp
)) {
396 BUG_ON(!buffer_locked(tmp
));
399 tmp
= tmp
->b_this_page
;
401 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
402 local_irq_restore(flags
);
403 end_page_writeback(page
);
407 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
408 local_irq_restore(flags
);
411 EXPORT_SYMBOL(end_buffer_async_write
);
414 * If a page's buffers are under async readin (end_buffer_async_read
415 * completion) then there is a possibility that another thread of
416 * control could lock one of the buffers after it has completed
417 * but while some of the other buffers have not completed. This
418 * locked buffer would confuse end_buffer_async_read() into not unlocking
419 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
420 * that this buffer is not under async I/O.
422 * The page comes unlocked when it has no locked buffer_async buffers
425 * PageLocked prevents anyone starting new async I/O reads any of
428 * PageWriteback is used to prevent simultaneous writeout of the same
431 * PageLocked prevents anyone from starting writeback of a page which is
432 * under read I/O (PageWriteback is only ever set against a locked page).
434 static void mark_buffer_async_read(struct buffer_head
*bh
)
436 bh
->b_end_io
= end_buffer_async_read
;
437 set_buffer_async_read(bh
);
440 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
441 bh_end_io_t
*handler
)
443 bh
->b_end_io
= handler
;
444 set_buffer_async_write(bh
);
447 void mark_buffer_async_write(struct buffer_head
*bh
)
449 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
451 EXPORT_SYMBOL(mark_buffer_async_write
);
455 * fs/buffer.c contains helper functions for buffer-backed address space's
456 * fsync functions. A common requirement for buffer-based filesystems is
457 * that certain data from the backing blockdev needs to be written out for
458 * a successful fsync(). For example, ext2 indirect blocks need to be
459 * written back and waited upon before fsync() returns.
461 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
462 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
463 * management of a list of dependent buffers at ->i_mapping->private_list.
465 * Locking is a little subtle: try_to_free_buffers() will remove buffers
466 * from their controlling inode's queue when they are being freed. But
467 * try_to_free_buffers() will be operating against the *blockdev* mapping
468 * at the time, not against the S_ISREG file which depends on those buffers.
469 * So the locking for private_list is via the private_lock in the address_space
470 * which backs the buffers. Which is different from the address_space
471 * against which the buffers are listed. So for a particular address_space,
472 * mapping->private_lock does *not* protect mapping->private_list! In fact,
473 * mapping->private_list will always be protected by the backing blockdev's
476 * Which introduces a requirement: all buffers on an address_space's
477 * ->private_list must be from the same address_space: the blockdev's.
479 * address_spaces which do not place buffers at ->private_list via these
480 * utility functions are free to use private_lock and private_list for
481 * whatever they want. The only requirement is that list_empty(private_list)
482 * be true at clear_inode() time.
484 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
485 * filesystems should do that. invalidate_inode_buffers() should just go
486 * BUG_ON(!list_empty).
488 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
489 * take an address_space, not an inode. And it should be called
490 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
493 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
494 * list if it is already on a list. Because if the buffer is on a list,
495 * it *must* already be on the right one. If not, the filesystem is being
496 * silly. This will save a ton of locking. But first we have to ensure
497 * that buffers are taken *off* the old inode's list when they are freed
498 * (presumably in truncate). That requires careful auditing of all
499 * filesystems (do it inside bforget()). It could also be done by bringing
504 * The buffer's backing address_space's private_lock must be held
506 static void __remove_assoc_queue(struct buffer_head
*bh
)
508 list_del_init(&bh
->b_assoc_buffers
);
509 WARN_ON(!bh
->b_assoc_map
);
510 if (buffer_write_io_error(bh
))
511 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
512 bh
->b_assoc_map
= NULL
;
515 int inode_has_buffers(struct inode
*inode
)
517 return !list_empty(&inode
->i_data
.private_list
);
521 * osync is designed to support O_SYNC io. It waits synchronously for
522 * all already-submitted IO to complete, but does not queue any new
523 * writes to the disk.
525 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
526 * you dirty the buffers, and then use osync_inode_buffers to wait for
527 * completion. Any other dirty buffers which are not yet queued for
528 * write will not be flushed to disk by the osync.
530 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
532 struct buffer_head
*bh
;
538 list_for_each_prev(p
, list
) {
540 if (buffer_locked(bh
)) {
544 if (!buffer_uptodate(bh
))
555 static void do_thaw_one(struct super_block
*sb
, void *unused
)
557 char b
[BDEVNAME_SIZE
];
558 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
559 printk(KERN_WARNING
"Emergency Thaw on %s\n",
560 bdevname(sb
->s_bdev
, b
));
563 static void do_thaw_all(struct work_struct
*work
)
565 iterate_supers(do_thaw_one
, NULL
);
567 printk(KERN_WARNING
"Emergency Thaw complete\n");
571 * emergency_thaw_all -- forcibly thaw every frozen filesystem
573 * Used for emergency unfreeze of all filesystems via SysRq
575 void emergency_thaw_all(void)
577 struct work_struct
*work
;
579 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
581 INIT_WORK(work
, do_thaw_all
);
587 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
588 * @mapping: the mapping which wants those buffers written
590 * Starts I/O against the buffers at mapping->private_list, and waits upon
593 * Basically, this is a convenience function for fsync().
594 * @mapping is a file or directory which needs those buffers to be written for
595 * a successful fsync().
597 int sync_mapping_buffers(struct address_space
*mapping
)
599 struct address_space
*buffer_mapping
= mapping
->private_data
;
601 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
604 return fsync_buffers_list(&buffer_mapping
->private_lock
,
605 &mapping
->private_list
);
607 EXPORT_SYMBOL(sync_mapping_buffers
);
610 * Called when we've recently written block `bblock', and it is known that
611 * `bblock' was for a buffer_boundary() buffer. This means that the block at
612 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
613 * dirty, schedule it for IO. So that indirects merge nicely with their data.
615 void write_boundary_block(struct block_device
*bdev
,
616 sector_t bblock
, unsigned blocksize
)
618 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
620 if (buffer_dirty(bh
))
621 ll_rw_block(WRITE
, 1, &bh
);
626 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
628 struct address_space
*mapping
= inode
->i_mapping
;
629 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
631 mark_buffer_dirty(bh
);
632 if (!mapping
->private_data
) {
633 mapping
->private_data
= buffer_mapping
;
635 BUG_ON(mapping
->private_data
!= buffer_mapping
);
637 if (!bh
->b_assoc_map
) {
638 spin_lock(&buffer_mapping
->private_lock
);
639 list_move_tail(&bh
->b_assoc_buffers
,
640 &mapping
->private_list
);
641 bh
->b_assoc_map
= mapping
;
642 spin_unlock(&buffer_mapping
->private_lock
);
645 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
648 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
651 * If warn is true, then emit a warning if the page is not uptodate and has
652 * not been truncated.
654 static void __set_page_dirty(struct page
*page
,
655 struct address_space
*mapping
, int warn
)
659 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
660 if (page
->mapping
) { /* Race with truncate? */
661 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
662 account_page_dirtied(page
, mapping
);
663 radix_tree_tag_set(&mapping
->page_tree
,
664 page_index(page
), PAGECACHE_TAG_DIRTY
);
666 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
667 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
671 * Add a page to the dirty page list.
673 * It is a sad fact of life that this function is called from several places
674 * deeply under spinlocking. It may not sleep.
676 * If the page has buffers, the uptodate buffers are set dirty, to preserve
677 * dirty-state coherency between the page and the buffers. It the page does
678 * not have buffers then when they are later attached they will all be set
681 * The buffers are dirtied before the page is dirtied. There's a small race
682 * window in which a writepage caller may see the page cleanness but not the
683 * buffer dirtiness. That's fine. If this code were to set the page dirty
684 * before the buffers, a concurrent writepage caller could clear the page dirty
685 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
686 * page on the dirty page list.
688 * We use private_lock to lock against try_to_free_buffers while using the
689 * page's buffer list. Also use this to protect against clean buffers being
690 * added to the page after it was set dirty.
692 * FIXME: may need to call ->reservepage here as well. That's rather up to the
693 * address_space though.
695 int __set_page_dirty_buffers(struct page
*page
)
698 struct address_space
*mapping
= page_mapping(page
);
700 if (unlikely(!mapping
))
701 return !TestSetPageDirty(page
);
703 spin_lock(&mapping
->private_lock
);
704 if (page_has_buffers(page
)) {
705 struct buffer_head
*head
= page_buffers(page
);
706 struct buffer_head
*bh
= head
;
709 set_buffer_dirty(bh
);
710 bh
= bh
->b_this_page
;
711 } while (bh
!= head
);
713 newly_dirty
= !TestSetPageDirty(page
);
714 spin_unlock(&mapping
->private_lock
);
717 __set_page_dirty(page
, mapping
, 1);
720 EXPORT_SYMBOL(__set_page_dirty_buffers
);
723 * Write out and wait upon a list of buffers.
725 * We have conflicting pressures: we want to make sure that all
726 * initially dirty buffers get waited on, but that any subsequently
727 * dirtied buffers don't. After all, we don't want fsync to last
728 * forever if somebody is actively writing to the file.
730 * Do this in two main stages: first we copy dirty buffers to a
731 * temporary inode list, queueing the writes as we go. Then we clean
732 * up, waiting for those writes to complete.
734 * During this second stage, any subsequent updates to the file may end
735 * up refiling the buffer on the original inode's dirty list again, so
736 * there is a chance we will end up with a buffer queued for write but
737 * not yet completed on that list. So, as a final cleanup we go through
738 * the osync code to catch these locked, dirty buffers without requeuing
739 * any newly dirty buffers for write.
741 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
743 struct buffer_head
*bh
;
744 struct list_head tmp
;
745 struct address_space
*mapping
;
747 struct blk_plug plug
;
749 INIT_LIST_HEAD(&tmp
);
750 blk_start_plug(&plug
);
753 while (!list_empty(list
)) {
754 bh
= BH_ENTRY(list
->next
);
755 mapping
= bh
->b_assoc_map
;
756 __remove_assoc_queue(bh
);
757 /* Avoid race with mark_buffer_dirty_inode() which does
758 * a lockless check and we rely on seeing the dirty bit */
760 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
761 list_add(&bh
->b_assoc_buffers
, &tmp
);
762 bh
->b_assoc_map
= mapping
;
763 if (buffer_dirty(bh
)) {
767 * Ensure any pending I/O completes so that
768 * write_dirty_buffer() actually writes the
769 * current contents - it is a noop if I/O is
770 * still in flight on potentially older
773 write_dirty_buffer(bh
, WRITE_SYNC
);
776 * Kick off IO for the previous mapping. Note
777 * that we will not run the very last mapping,
778 * wait_on_buffer() will do that for us
779 * through sync_buffer().
788 blk_finish_plug(&plug
);
791 while (!list_empty(&tmp
)) {
792 bh
= BH_ENTRY(tmp
.prev
);
794 mapping
= bh
->b_assoc_map
;
795 __remove_assoc_queue(bh
);
796 /* Avoid race with mark_buffer_dirty_inode() which does
797 * a lockless check and we rely on seeing the dirty bit */
799 if (buffer_dirty(bh
)) {
800 list_add(&bh
->b_assoc_buffers
,
801 &mapping
->private_list
);
802 bh
->b_assoc_map
= mapping
;
806 if (!buffer_uptodate(bh
))
813 err2
= osync_buffers_list(lock
, list
);
821 * Invalidate any and all dirty buffers on a given inode. We are
822 * probably unmounting the fs, but that doesn't mean we have already
823 * done a sync(). Just drop the buffers from the inode list.
825 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
826 * assumes that all the buffers are against the blockdev. Not true
829 void invalidate_inode_buffers(struct inode
*inode
)
831 if (inode_has_buffers(inode
)) {
832 struct address_space
*mapping
= &inode
->i_data
;
833 struct list_head
*list
= &mapping
->private_list
;
834 struct address_space
*buffer_mapping
= mapping
->private_data
;
836 spin_lock(&buffer_mapping
->private_lock
);
837 while (!list_empty(list
))
838 __remove_assoc_queue(BH_ENTRY(list
->next
));
839 spin_unlock(&buffer_mapping
->private_lock
);
842 EXPORT_SYMBOL(invalidate_inode_buffers
);
845 * Remove any clean buffers from the inode's buffer list. This is called
846 * when we're trying to free the inode itself. Those buffers can pin it.
848 * Returns true if all buffers were removed.
850 int remove_inode_buffers(struct inode
*inode
)
854 if (inode_has_buffers(inode
)) {
855 struct address_space
*mapping
= &inode
->i_data
;
856 struct list_head
*list
= &mapping
->private_list
;
857 struct address_space
*buffer_mapping
= mapping
->private_data
;
859 spin_lock(&buffer_mapping
->private_lock
);
860 while (!list_empty(list
)) {
861 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
862 if (buffer_dirty(bh
)) {
866 __remove_assoc_queue(bh
);
868 spin_unlock(&buffer_mapping
->private_lock
);
874 * Create the appropriate buffers when given a page for data area and
875 * the size of each buffer.. Use the bh->b_this_page linked list to
876 * follow the buffers created. Return NULL if unable to create more
879 * The retry flag is used to differentiate async IO (paging, swapping)
880 * which may not fail from ordinary buffer allocations.
882 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
885 struct buffer_head
*bh
, *head
;
891 while ((offset
-= size
) >= 0) {
892 bh
= alloc_buffer_head(GFP_NOFS
);
896 bh
->b_this_page
= head
;
902 /* Link the buffer to its page */
903 set_bh_page(bh
, page
, offset
);
907 * In case anything failed, we just free everything we got.
913 head
= head
->b_this_page
;
914 free_buffer_head(bh
);
919 * Return failure for non-async IO requests. Async IO requests
920 * are not allowed to fail, so we have to wait until buffer heads
921 * become available. But we don't want tasks sleeping with
922 * partially complete buffers, so all were released above.
927 /* We're _really_ low on memory. Now we just
928 * wait for old buffer heads to become free due to
929 * finishing IO. Since this is an async request and
930 * the reserve list is empty, we're sure there are
931 * async buffer heads in use.
936 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
939 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
941 struct buffer_head
*bh
, *tail
;
946 bh
= bh
->b_this_page
;
948 tail
->b_this_page
= head
;
949 attach_page_buffers(page
, head
);
952 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
954 sector_t retval
= ~((sector_t
)0);
955 loff_t sz
= i_size_read(bdev
->bd_inode
);
958 unsigned int sizebits
= blksize_bits(size
);
959 retval
= (sz
>> sizebits
);
965 * Initialise the state of a blockdev page's buffers.
968 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
969 sector_t block
, int size
)
971 struct buffer_head
*head
= page_buffers(page
);
972 struct buffer_head
*bh
= head
;
973 int uptodate
= PageUptodate(page
);
974 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
977 if (!buffer_mapped(bh
)) {
978 init_buffer(bh
, NULL
, NULL
);
980 bh
->b_blocknr
= block
;
982 set_buffer_uptodate(bh
);
983 if (block
< end_block
)
984 set_buffer_mapped(bh
);
987 bh
= bh
->b_this_page
;
988 } while (bh
!= head
);
991 * Caller needs to validate requested block against end of device.
997 * Create the page-cache page that contains the requested block.
999 * This is used purely for blockdev mappings.
1002 grow_dev_page(struct block_device
*bdev
, sector_t block
,
1003 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
1005 struct inode
*inode
= bdev
->bd_inode
;
1007 struct buffer_head
*bh
;
1009 int ret
= 0; /* Will call free_more_memory() */
1012 gfp_mask
= (mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
) | gfp
;
1015 * XXX: __getblk_slow() can not really deal with failure and
1016 * will endlessly loop on improvised global reclaim. Prefer
1017 * looping in the allocator rather than here, at least that
1018 * code knows what it's doing.
1020 gfp_mask
|= __GFP_NOFAIL
;
1022 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
1026 BUG_ON(!PageLocked(page
));
1028 if (page_has_buffers(page
)) {
1029 bh
= page_buffers(page
);
1030 if (bh
->b_size
== size
) {
1031 end_block
= init_page_buffers(page
, bdev
,
1032 (sector_t
)index
<< sizebits
,
1036 if (!try_to_free_buffers(page
))
1041 * Allocate some buffers for this page
1043 bh
= alloc_page_buffers(page
, size
, 0);
1048 * Link the page to the buffers and initialise them. Take the
1049 * lock to be atomic wrt __find_get_block(), which does not
1050 * run under the page lock.
1052 spin_lock(&inode
->i_mapping
->private_lock
);
1053 link_dev_buffers(page
, bh
);
1054 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
1056 spin_unlock(&inode
->i_mapping
->private_lock
);
1058 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1061 page_cache_release(page
);
1066 * Create buffers for the specified block device block's page. If
1067 * that page was dirty, the buffers are set dirty also.
1070 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1078 } while ((size
<< sizebits
) < PAGE_SIZE
);
1080 index
= block
>> sizebits
;
1083 * Check for a block which wants to lie outside our maximum possible
1084 * pagecache index. (this comparison is done using sector_t types).
1086 if (unlikely(index
!= block
>> sizebits
)) {
1087 char b
[BDEVNAME_SIZE
];
1089 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1091 __func__
, (unsigned long long)block
,
1096 /* Create a page with the proper size buffers.. */
1097 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1100 struct buffer_head
*
1101 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1102 unsigned size
, gfp_t gfp
)
1104 /* Size must be multiple of hard sectorsize */
1105 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1106 (size
< 512 || size
> PAGE_SIZE
))) {
1107 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1109 printk(KERN_ERR
"logical block size: %d\n",
1110 bdev_logical_block_size(bdev
));
1117 struct buffer_head
*bh
;
1120 bh
= __find_get_block(bdev
, block
, size
);
1124 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1131 EXPORT_SYMBOL(__getblk_slow
);
1134 * The relationship between dirty buffers and dirty pages:
1136 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1137 * the page is tagged dirty in its radix tree.
1139 * At all times, the dirtiness of the buffers represents the dirtiness of
1140 * subsections of the page. If the page has buffers, the page dirty bit is
1141 * merely a hint about the true dirty state.
1143 * When a page is set dirty in its entirety, all its buffers are marked dirty
1144 * (if the page has buffers).
1146 * When a buffer is marked dirty, its page is dirtied, but the page's other
1149 * Also. When blockdev buffers are explicitly read with bread(), they
1150 * individually become uptodate. But their backing page remains not
1151 * uptodate - even if all of its buffers are uptodate. A subsequent
1152 * block_read_full_page() against that page will discover all the uptodate
1153 * buffers, will set the page uptodate and will perform no I/O.
1157 * mark_buffer_dirty - mark a buffer_head as needing writeout
1158 * @bh: the buffer_head to mark dirty
1160 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1161 * backing page dirty, then tag the page as dirty in its address_space's radix
1162 * tree and then attach the address_space's inode to its superblock's dirty
1165 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1166 * mapping->tree_lock and mapping->host->i_lock.
1168 void mark_buffer_dirty(struct buffer_head
*bh
)
1170 WARN_ON_ONCE(!buffer_uptodate(bh
));
1172 trace_block_dirty_buffer(bh
);
1175 * Very *carefully* optimize the it-is-already-dirty case.
1177 * Don't let the final "is it dirty" escape to before we
1178 * perhaps modified the buffer.
1180 if (buffer_dirty(bh
)) {
1182 if (buffer_dirty(bh
))
1186 if (!test_set_buffer_dirty(bh
)) {
1187 struct page
*page
= bh
->b_page
;
1188 if (!TestSetPageDirty(page
)) {
1189 struct address_space
*mapping
= page_mapping(page
);
1191 __set_page_dirty(page
, mapping
, 0);
1195 EXPORT_SYMBOL(mark_buffer_dirty
);
1198 * Decrement a buffer_head's reference count. If all buffers against a page
1199 * have zero reference count, are clean and unlocked, and if the page is clean
1200 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1201 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1202 * a page but it ends up not being freed, and buffers may later be reattached).
1204 void __brelse(struct buffer_head
* buf
)
1206 if (atomic_read(&buf
->b_count
)) {
1210 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1212 EXPORT_SYMBOL(__brelse
);
1215 * bforget() is like brelse(), except it discards any
1216 * potentially dirty data.
1218 void __bforget(struct buffer_head
*bh
)
1220 clear_buffer_dirty(bh
);
1221 if (bh
->b_assoc_map
) {
1222 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1224 spin_lock(&buffer_mapping
->private_lock
);
1225 list_del_init(&bh
->b_assoc_buffers
);
1226 bh
->b_assoc_map
= NULL
;
1227 spin_unlock(&buffer_mapping
->private_lock
);
1231 EXPORT_SYMBOL(__bforget
);
1233 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1236 if (buffer_uptodate(bh
)) {
1241 bh
->b_end_io
= end_buffer_read_sync
;
1242 submit_bh(READ
, bh
);
1244 if (buffer_uptodate(bh
))
1252 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1253 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1254 * refcount elevated by one when they're in an LRU. A buffer can only appear
1255 * once in a particular CPU's LRU. A single buffer can be present in multiple
1256 * CPU's LRUs at the same time.
1258 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1259 * sb_find_get_block().
1261 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1262 * a local interrupt disable for that.
1265 #define BH_LRU_SIZE 8
1268 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1271 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1274 #define bh_lru_lock() local_irq_disable()
1275 #define bh_lru_unlock() local_irq_enable()
1277 #define bh_lru_lock() preempt_disable()
1278 #define bh_lru_unlock() preempt_enable()
1281 static inline void check_irqs_on(void)
1283 #ifdef irqs_disabled
1284 BUG_ON(irqs_disabled());
1289 * The LRU management algorithm is dopey-but-simple. Sorry.
1291 static void bh_lru_install(struct buffer_head
*bh
)
1293 struct buffer_head
*evictee
= NULL
;
1297 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1298 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1304 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1305 struct buffer_head
*bh2
=
1306 __this_cpu_read(bh_lrus
.bhs
[in
]);
1311 if (out
>= BH_LRU_SIZE
) {
1312 BUG_ON(evictee
!= NULL
);
1319 while (out
< BH_LRU_SIZE
)
1321 memcpy(this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1330 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1332 static struct buffer_head
*
1333 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1335 struct buffer_head
*ret
= NULL
;
1340 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1341 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1343 if (bh
&& bh
->b_bdev
== bdev
&&
1344 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1347 __this_cpu_write(bh_lrus
.bhs
[i
],
1348 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1351 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1363 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1364 * it in the LRU and mark it as accessed. If it is not present then return
1367 struct buffer_head
*
1368 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1370 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1373 /* __find_get_block_slow will mark the page accessed */
1374 bh
= __find_get_block_slow(bdev
, block
);
1382 EXPORT_SYMBOL(__find_get_block
);
1385 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1386 * which corresponds to the passed block_device, block and size. The
1387 * returned buffer has its reference count incremented.
1389 * __getblk_gfp() will lock up the machine if grow_dev_page's
1390 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1392 struct buffer_head
*
1393 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1394 unsigned size
, gfp_t gfp
)
1396 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1400 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1403 EXPORT_SYMBOL(__getblk_gfp
);
1406 * Do async read-ahead on a buffer..
1408 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1410 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1412 ll_rw_block(READA
, 1, &bh
);
1416 EXPORT_SYMBOL(__breadahead
);
1419 * __bread_gfp() - reads a specified block and returns the bh
1420 * @bdev: the block_device to read from
1421 * @block: number of block
1422 * @size: size (in bytes) to read
1423 * @gfp: page allocation flag
1425 * Reads a specified block, and returns buffer head that contains it.
1426 * The page cache can be allocated from non-movable area
1427 * not to prevent page migration if you set gfp to zero.
1428 * It returns NULL if the block was unreadable.
1430 struct buffer_head
*
1431 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1432 unsigned size
, gfp_t gfp
)
1434 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1436 if (likely(bh
) && !buffer_uptodate(bh
))
1437 bh
= __bread_slow(bh
);
1440 EXPORT_SYMBOL(__bread_gfp
);
1443 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1444 * This doesn't race because it runs in each cpu either in irq
1445 * or with preempt disabled.
1447 static void invalidate_bh_lru(void *arg
)
1449 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1452 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1456 put_cpu_var(bh_lrus
);
1459 static bool has_bh_in_lru(int cpu
, void *dummy
)
1461 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1464 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1472 void invalidate_bh_lrus(void)
1474 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1476 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1478 void set_bh_page(struct buffer_head
*bh
,
1479 struct page
*page
, unsigned long offset
)
1482 BUG_ON(offset
>= PAGE_SIZE
);
1483 if (PageHighMem(page
))
1485 * This catches illegal uses and preserves the offset:
1487 bh
->b_data
= (char *)(0 + offset
);
1489 bh
->b_data
= page_address(page
) + offset
;
1491 EXPORT_SYMBOL(set_bh_page
);
1494 * Called when truncating a buffer on a page completely.
1497 /* Bits that are cleared during an invalidate */
1498 #define BUFFER_FLAGS_DISCARD \
1499 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1500 1 << BH_Delay | 1 << BH_Unwritten)
1502 static void discard_buffer(struct buffer_head
* bh
)
1504 unsigned long b_state
, b_state_old
;
1507 clear_buffer_dirty(bh
);
1509 b_state
= bh
->b_state
;
1511 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1512 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1513 if (b_state_old
== b_state
)
1515 b_state
= b_state_old
;
1521 * block_invalidatepage - invalidate part or all of a buffer-backed page
1523 * @page: the page which is affected
1524 * @offset: start of the range to invalidate
1525 * @length: length of the range to invalidate
1527 * block_invalidatepage() is called when all or part of the page has become
1528 * invalidated by a truncate operation.
1530 * block_invalidatepage() does not have to release all buffers, but it must
1531 * ensure that no dirty buffer is left outside @offset and that no I/O
1532 * is underway against any of the blocks which are outside the truncation
1533 * point. Because the caller is about to free (and possibly reuse) those
1536 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1537 unsigned int length
)
1539 struct buffer_head
*head
, *bh
, *next
;
1540 unsigned int curr_off
= 0;
1541 unsigned int stop
= length
+ offset
;
1543 BUG_ON(!PageLocked(page
));
1544 if (!page_has_buffers(page
))
1548 * Check for overflow
1550 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1552 head
= page_buffers(page
);
1555 unsigned int next_off
= curr_off
+ bh
->b_size
;
1556 next
= bh
->b_this_page
;
1559 * Are we still fully in range ?
1561 if (next_off
> stop
)
1565 * is this block fully invalidated?
1567 if (offset
<= curr_off
)
1569 curr_off
= next_off
;
1571 } while (bh
!= head
);
1574 * We release buffers only if the entire page is being invalidated.
1575 * The get_block cached value has been unconditionally invalidated,
1576 * so real IO is not possible anymore.
1579 try_to_release_page(page
, 0);
1583 EXPORT_SYMBOL(block_invalidatepage
);
1587 * We attach and possibly dirty the buffers atomically wrt
1588 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1589 * is already excluded via the page lock.
1591 void create_empty_buffers(struct page
*page
,
1592 unsigned long blocksize
, unsigned long b_state
)
1594 struct buffer_head
*bh
, *head
, *tail
;
1596 head
= alloc_page_buffers(page
, blocksize
, 1);
1599 bh
->b_state
|= b_state
;
1601 bh
= bh
->b_this_page
;
1603 tail
->b_this_page
= head
;
1605 spin_lock(&page
->mapping
->private_lock
);
1606 if (PageUptodate(page
) || PageDirty(page
)) {
1609 if (PageDirty(page
))
1610 set_buffer_dirty(bh
);
1611 if (PageUptodate(page
))
1612 set_buffer_uptodate(bh
);
1613 bh
= bh
->b_this_page
;
1614 } while (bh
!= head
);
1616 attach_page_buffers(page
, head
);
1617 spin_unlock(&page
->mapping
->private_lock
);
1619 EXPORT_SYMBOL(create_empty_buffers
);
1622 * We are taking a block for data and we don't want any output from any
1623 * buffer-cache aliases starting from return from that function and
1624 * until the moment when something will explicitly mark the buffer
1625 * dirty (hopefully that will not happen until we will free that block ;-)
1626 * We don't even need to mark it not-uptodate - nobody can expect
1627 * anything from a newly allocated buffer anyway. We used to used
1628 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1629 * don't want to mark the alias unmapped, for example - it would confuse
1630 * anyone who might pick it with bread() afterwards...
1632 * Also.. Note that bforget() doesn't lock the buffer. So there can
1633 * be writeout I/O going on against recently-freed buffers. We don't
1634 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1635 * only if we really need to. That happens here.
1637 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1639 struct buffer_head
*old_bh
;
1643 old_bh
= __find_get_block_slow(bdev
, block
);
1645 clear_buffer_dirty(old_bh
);
1646 wait_on_buffer(old_bh
);
1647 clear_buffer_req(old_bh
);
1651 EXPORT_SYMBOL(unmap_underlying_metadata
);
1654 * Size is a power-of-two in the range 512..PAGE_SIZE,
1655 * and the case we care about most is PAGE_SIZE.
1657 * So this *could* possibly be written with those
1658 * constraints in mind (relevant mostly if some
1659 * architecture has a slow bit-scan instruction)
1661 static inline int block_size_bits(unsigned int blocksize
)
1663 return ilog2(blocksize
);
1666 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1668 BUG_ON(!PageLocked(page
));
1670 if (!page_has_buffers(page
))
1671 create_empty_buffers(page
, 1 << ACCESS_ONCE(inode
->i_blkbits
), b_state
);
1672 return page_buffers(page
);
1676 * NOTE! All mapped/uptodate combinations are valid:
1678 * Mapped Uptodate Meaning
1680 * No No "unknown" - must do get_block()
1681 * No Yes "hole" - zero-filled
1682 * Yes No "allocated" - allocated on disk, not read in
1683 * Yes Yes "valid" - allocated and up-to-date in memory.
1685 * "Dirty" is valid only with the last case (mapped+uptodate).
1689 * While block_write_full_page is writing back the dirty buffers under
1690 * the page lock, whoever dirtied the buffers may decide to clean them
1691 * again at any time. We handle that by only looking at the buffer
1692 * state inside lock_buffer().
1694 * If block_write_full_page() is called for regular writeback
1695 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1696 * locked buffer. This only can happen if someone has written the buffer
1697 * directly, with submit_bh(). At the address_space level PageWriteback
1698 * prevents this contention from occurring.
1700 * If block_write_full_page() is called with wbc->sync_mode ==
1701 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1702 * causes the writes to be flagged as synchronous writes.
1704 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1705 get_block_t
*get_block
, struct writeback_control
*wbc
,
1706 bh_end_io_t
*handler
)
1710 sector_t last_block
;
1711 struct buffer_head
*bh
, *head
;
1712 unsigned int blocksize
, bbits
;
1713 int nr_underway
= 0;
1714 int write_op
= (wbc
->sync_mode
== WB_SYNC_ALL
?
1715 WRITE_SYNC
: WRITE
);
1717 head
= create_page_buffers(page
, inode
,
1718 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1721 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1722 * here, and the (potentially unmapped) buffers may become dirty at
1723 * any time. If a buffer becomes dirty here after we've inspected it
1724 * then we just miss that fact, and the page stays dirty.
1726 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1727 * handle that here by just cleaning them.
1731 blocksize
= bh
->b_size
;
1732 bbits
= block_size_bits(blocksize
);
1734 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1735 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1738 * Get all the dirty buffers mapped to disk addresses and
1739 * handle any aliases from the underlying blockdev's mapping.
1742 if (block
> last_block
) {
1744 * mapped buffers outside i_size will occur, because
1745 * this page can be outside i_size when there is a
1746 * truncate in progress.
1749 * The buffer was zeroed by block_write_full_page()
1751 clear_buffer_dirty(bh
);
1752 set_buffer_uptodate(bh
);
1753 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1755 WARN_ON(bh
->b_size
!= blocksize
);
1756 err
= get_block(inode
, block
, bh
, 1);
1759 clear_buffer_delay(bh
);
1760 if (buffer_new(bh
)) {
1761 /* blockdev mappings never come here */
1762 clear_buffer_new(bh
);
1763 unmap_underlying_metadata(bh
->b_bdev
,
1767 bh
= bh
->b_this_page
;
1769 } while (bh
!= head
);
1772 if (!buffer_mapped(bh
))
1775 * If it's a fully non-blocking write attempt and we cannot
1776 * lock the buffer then redirty the page. Note that this can
1777 * potentially cause a busy-wait loop from writeback threads
1778 * and kswapd activity, but those code paths have their own
1779 * higher-level throttling.
1781 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1783 } else if (!trylock_buffer(bh
)) {
1784 redirty_page_for_writepage(wbc
, page
);
1787 if (test_clear_buffer_dirty(bh
)) {
1788 mark_buffer_async_write_endio(bh
, handler
);
1792 } while ((bh
= bh
->b_this_page
) != head
);
1795 * The page and its buffers are protected by PageWriteback(), so we can
1796 * drop the bh refcounts early.
1798 BUG_ON(PageWriteback(page
));
1799 set_page_writeback(page
);
1802 struct buffer_head
*next
= bh
->b_this_page
;
1803 if (buffer_async_write(bh
)) {
1804 submit_bh(write_op
, bh
);
1808 } while (bh
!= head
);
1813 if (nr_underway
== 0) {
1815 * The page was marked dirty, but the buffers were
1816 * clean. Someone wrote them back by hand with
1817 * ll_rw_block/submit_bh. A rare case.
1819 end_page_writeback(page
);
1822 * The page and buffer_heads can be released at any time from
1830 * ENOSPC, or some other error. We may already have added some
1831 * blocks to the file, so we need to write these out to avoid
1832 * exposing stale data.
1833 * The page is currently locked and not marked for writeback
1836 /* Recovery: lock and submit the mapped buffers */
1838 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1839 !buffer_delay(bh
)) {
1841 mark_buffer_async_write_endio(bh
, handler
);
1844 * The buffer may have been set dirty during
1845 * attachment to a dirty page.
1847 clear_buffer_dirty(bh
);
1849 } while ((bh
= bh
->b_this_page
) != head
);
1851 BUG_ON(PageWriteback(page
));
1852 mapping_set_error(page
->mapping
, err
);
1853 set_page_writeback(page
);
1855 struct buffer_head
*next
= bh
->b_this_page
;
1856 if (buffer_async_write(bh
)) {
1857 clear_buffer_dirty(bh
);
1858 submit_bh(write_op
, bh
);
1862 } while (bh
!= head
);
1868 * If a page has any new buffers, zero them out here, and mark them uptodate
1869 * and dirty so they'll be written out (in order to prevent uninitialised
1870 * block data from leaking). And clear the new bit.
1872 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1874 unsigned int block_start
, block_end
;
1875 struct buffer_head
*head
, *bh
;
1877 BUG_ON(!PageLocked(page
));
1878 if (!page_has_buffers(page
))
1881 bh
= head
= page_buffers(page
);
1884 block_end
= block_start
+ bh
->b_size
;
1886 if (buffer_new(bh
)) {
1887 if (block_end
> from
&& block_start
< to
) {
1888 if (!PageUptodate(page
)) {
1889 unsigned start
, size
;
1891 start
= max(from
, block_start
);
1892 size
= min(to
, block_end
) - start
;
1894 zero_user(page
, start
, size
);
1895 set_buffer_uptodate(bh
);
1898 clear_buffer_new(bh
);
1899 mark_buffer_dirty(bh
);
1903 block_start
= block_end
;
1904 bh
= bh
->b_this_page
;
1905 } while (bh
!= head
);
1907 EXPORT_SYMBOL(page_zero_new_buffers
);
1909 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1910 get_block_t
*get_block
)
1912 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1913 unsigned to
= from
+ len
;
1914 struct inode
*inode
= page
->mapping
->host
;
1915 unsigned block_start
, block_end
;
1918 unsigned blocksize
, bbits
;
1919 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1921 BUG_ON(!PageLocked(page
));
1922 BUG_ON(from
> PAGE_CACHE_SIZE
);
1923 BUG_ON(to
> PAGE_CACHE_SIZE
);
1926 head
= create_page_buffers(page
, inode
, 0);
1927 blocksize
= head
->b_size
;
1928 bbits
= block_size_bits(blocksize
);
1930 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1932 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1933 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1934 block_end
= block_start
+ blocksize
;
1935 if (block_end
<= from
|| block_start
>= to
) {
1936 if (PageUptodate(page
)) {
1937 if (!buffer_uptodate(bh
))
1938 set_buffer_uptodate(bh
);
1943 clear_buffer_new(bh
);
1944 if (!buffer_mapped(bh
)) {
1945 WARN_ON(bh
->b_size
!= blocksize
);
1946 err
= get_block(inode
, block
, bh
, 1);
1949 if (buffer_new(bh
)) {
1950 unmap_underlying_metadata(bh
->b_bdev
,
1952 if (PageUptodate(page
)) {
1953 clear_buffer_new(bh
);
1954 set_buffer_uptodate(bh
);
1955 mark_buffer_dirty(bh
);
1958 if (block_end
> to
|| block_start
< from
)
1959 zero_user_segments(page
,
1965 if (PageUptodate(page
)) {
1966 if (!buffer_uptodate(bh
))
1967 set_buffer_uptodate(bh
);
1970 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1971 !buffer_unwritten(bh
) &&
1972 (block_start
< from
|| block_end
> to
)) {
1973 ll_rw_block(READ
, 1, &bh
);
1978 * If we issued read requests - let them complete.
1980 while(wait_bh
> wait
) {
1981 wait_on_buffer(*--wait_bh
);
1982 if (!buffer_uptodate(*wait_bh
))
1986 page_zero_new_buffers(page
, from
, to
);
1989 EXPORT_SYMBOL(__block_write_begin
);
1991 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1992 unsigned from
, unsigned to
)
1994 unsigned block_start
, block_end
;
1997 struct buffer_head
*bh
, *head
;
1999 bh
= head
= page_buffers(page
);
2000 blocksize
= bh
->b_size
;
2004 block_end
= block_start
+ blocksize
;
2005 if (block_end
<= from
|| block_start
>= to
) {
2006 if (!buffer_uptodate(bh
))
2009 set_buffer_uptodate(bh
);
2010 mark_buffer_dirty(bh
);
2012 clear_buffer_new(bh
);
2014 block_start
= block_end
;
2015 bh
= bh
->b_this_page
;
2016 } while (bh
!= head
);
2019 * If this is a partial write which happened to make all buffers
2020 * uptodate then we can optimize away a bogus readpage() for
2021 * the next read(). Here we 'discover' whether the page went
2022 * uptodate as a result of this (potentially partial) write.
2025 SetPageUptodate(page
);
2030 * block_write_begin takes care of the basic task of block allocation and
2031 * bringing partial write blocks uptodate first.
2033 * The filesystem needs to handle block truncation upon failure.
2035 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2036 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2038 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2042 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2046 status
= __block_write_begin(page
, pos
, len
, get_block
);
2047 if (unlikely(status
)) {
2049 page_cache_release(page
);
2056 EXPORT_SYMBOL(block_write_begin
);
2058 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2059 loff_t pos
, unsigned len
, unsigned copied
,
2060 struct page
*page
, void *fsdata
)
2062 struct inode
*inode
= mapping
->host
;
2065 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2067 if (unlikely(copied
< len
)) {
2069 * The buffers that were written will now be uptodate, so we
2070 * don't have to worry about a readpage reading them and
2071 * overwriting a partial write. However if we have encountered
2072 * a short write and only partially written into a buffer, it
2073 * will not be marked uptodate, so a readpage might come in and
2074 * destroy our partial write.
2076 * Do the simplest thing, and just treat any short write to a
2077 * non uptodate page as a zero-length write, and force the
2078 * caller to redo the whole thing.
2080 if (!PageUptodate(page
))
2083 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2085 flush_dcache_page(page
);
2087 /* This could be a short (even 0-length) commit */
2088 __block_commit_write(inode
, page
, start
, start
+copied
);
2092 EXPORT_SYMBOL(block_write_end
);
2094 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2095 loff_t pos
, unsigned len
, unsigned copied
,
2096 struct page
*page
, void *fsdata
)
2098 struct inode
*inode
= mapping
->host
;
2099 loff_t old_size
= inode
->i_size
;
2100 int i_size_changed
= 0;
2102 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2105 * No need to use i_size_read() here, the i_size
2106 * cannot change under us because we hold i_mutex.
2108 * But it's important to update i_size while still holding page lock:
2109 * page writeout could otherwise come in and zero beyond i_size.
2111 if (pos
+copied
> inode
->i_size
) {
2112 i_size_write(inode
, pos
+copied
);
2117 page_cache_release(page
);
2120 pagecache_isize_extended(inode
, old_size
, pos
);
2122 * Don't mark the inode dirty under page lock. First, it unnecessarily
2123 * makes the holding time of page lock longer. Second, it forces lock
2124 * ordering of page lock and transaction start for journaling
2128 mark_inode_dirty(inode
);
2132 EXPORT_SYMBOL(generic_write_end
);
2135 * block_is_partially_uptodate checks whether buffers within a page are
2138 * Returns true if all buffers which correspond to a file portion
2139 * we want to read are uptodate.
2141 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2142 unsigned long count
)
2144 unsigned block_start
, block_end
, blocksize
;
2146 struct buffer_head
*bh
, *head
;
2149 if (!page_has_buffers(page
))
2152 head
= page_buffers(page
);
2153 blocksize
= head
->b_size
;
2154 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, count
);
2156 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
2162 block_end
= block_start
+ blocksize
;
2163 if (block_end
> from
&& block_start
< to
) {
2164 if (!buffer_uptodate(bh
)) {
2168 if (block_end
>= to
)
2171 block_start
= block_end
;
2172 bh
= bh
->b_this_page
;
2173 } while (bh
!= head
);
2177 EXPORT_SYMBOL(block_is_partially_uptodate
);
2180 * Generic "read page" function for block devices that have the normal
2181 * get_block functionality. This is most of the block device filesystems.
2182 * Reads the page asynchronously --- the unlock_buffer() and
2183 * set/clear_buffer_uptodate() functions propagate buffer state into the
2184 * page struct once IO has completed.
2186 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2188 struct inode
*inode
= page
->mapping
->host
;
2189 sector_t iblock
, lblock
;
2190 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2191 unsigned int blocksize
, bbits
;
2193 int fully_mapped
= 1;
2195 head
= create_page_buffers(page
, inode
, 0);
2196 blocksize
= head
->b_size
;
2197 bbits
= block_size_bits(blocksize
);
2199 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
2200 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2206 if (buffer_uptodate(bh
))
2209 if (!buffer_mapped(bh
)) {
2213 if (iblock
< lblock
) {
2214 WARN_ON(bh
->b_size
!= blocksize
);
2215 err
= get_block(inode
, iblock
, bh
, 0);
2219 if (!buffer_mapped(bh
)) {
2220 zero_user(page
, i
* blocksize
, blocksize
);
2222 set_buffer_uptodate(bh
);
2226 * get_block() might have updated the buffer
2229 if (buffer_uptodate(bh
))
2233 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2236 SetPageMappedToDisk(page
);
2240 * All buffers are uptodate - we can set the page uptodate
2241 * as well. But not if get_block() returned an error.
2243 if (!PageError(page
))
2244 SetPageUptodate(page
);
2249 /* Stage two: lock the buffers */
2250 for (i
= 0; i
< nr
; i
++) {
2253 mark_buffer_async_read(bh
);
2257 * Stage 3: start the IO. Check for uptodateness
2258 * inside the buffer lock in case another process reading
2259 * the underlying blockdev brought it uptodate (the sct fix).
2261 for (i
= 0; i
< nr
; i
++) {
2263 if (buffer_uptodate(bh
))
2264 end_buffer_async_read(bh
, 1);
2266 submit_bh(READ
, bh
);
2270 EXPORT_SYMBOL(block_read_full_page
);
2272 /* utility function for filesystems that need to do work on expanding
2273 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2274 * deal with the hole.
2276 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2278 struct address_space
*mapping
= inode
->i_mapping
;
2283 err
= inode_newsize_ok(inode
, size
);
2287 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2288 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2293 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2299 EXPORT_SYMBOL(generic_cont_expand_simple
);
2301 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2302 loff_t pos
, loff_t
*bytes
)
2304 struct inode
*inode
= mapping
->host
;
2305 unsigned blocksize
= 1 << inode
->i_blkbits
;
2308 pgoff_t index
, curidx
;
2310 unsigned zerofrom
, offset
, len
;
2313 index
= pos
>> PAGE_CACHE_SHIFT
;
2314 offset
= pos
& ~PAGE_CACHE_MASK
;
2316 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2317 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2318 if (zerofrom
& (blocksize
-1)) {
2319 *bytes
|= (blocksize
-1);
2322 len
= PAGE_CACHE_SIZE
- zerofrom
;
2324 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2325 AOP_FLAG_UNINTERRUPTIBLE
,
2329 zero_user(page
, zerofrom
, len
);
2330 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2337 balance_dirty_pages_ratelimited(mapping
);
2339 if (unlikely(fatal_signal_pending(current
))) {
2345 /* page covers the boundary, find the boundary offset */
2346 if (index
== curidx
) {
2347 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2348 /* if we will expand the thing last block will be filled */
2349 if (offset
<= zerofrom
) {
2352 if (zerofrom
& (blocksize
-1)) {
2353 *bytes
|= (blocksize
-1);
2356 len
= offset
- zerofrom
;
2358 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2359 AOP_FLAG_UNINTERRUPTIBLE
,
2363 zero_user(page
, zerofrom
, len
);
2364 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2376 * For moronic filesystems that do not allow holes in file.
2377 * We may have to extend the file.
2379 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2380 loff_t pos
, unsigned len
, unsigned flags
,
2381 struct page
**pagep
, void **fsdata
,
2382 get_block_t
*get_block
, loff_t
*bytes
)
2384 struct inode
*inode
= mapping
->host
;
2385 unsigned blocksize
= 1 << inode
->i_blkbits
;
2389 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2393 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2394 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2395 *bytes
|= (blocksize
-1);
2399 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2401 EXPORT_SYMBOL(cont_write_begin
);
2403 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2405 struct inode
*inode
= page
->mapping
->host
;
2406 __block_commit_write(inode
,page
,from
,to
);
2409 EXPORT_SYMBOL(block_commit_write
);
2412 * block_page_mkwrite() is not allowed to change the file size as it gets
2413 * called from a page fault handler when a page is first dirtied. Hence we must
2414 * be careful to check for EOF conditions here. We set the page up correctly
2415 * for a written page which means we get ENOSPC checking when writing into
2416 * holes and correct delalloc and unwritten extent mapping on filesystems that
2417 * support these features.
2419 * We are not allowed to take the i_mutex here so we have to play games to
2420 * protect against truncate races as the page could now be beyond EOF. Because
2421 * truncate writes the inode size before removing pages, once we have the
2422 * page lock we can determine safely if the page is beyond EOF. If it is not
2423 * beyond EOF, then the page is guaranteed safe against truncation until we
2426 * Direct callers of this function should protect against filesystem freezing
2427 * using sb_start_write() - sb_end_write() functions.
2429 int __block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2430 get_block_t get_block
)
2432 struct page
*page
= vmf
->page
;
2433 struct inode
*inode
= file_inode(vma
->vm_file
);
2439 size
= i_size_read(inode
);
2440 if ((page
->mapping
!= inode
->i_mapping
) ||
2441 (page_offset(page
) > size
)) {
2442 /* We overload EFAULT to mean page got truncated */
2447 /* page is wholly or partially inside EOF */
2448 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2449 end
= size
& ~PAGE_CACHE_MASK
;
2451 end
= PAGE_CACHE_SIZE
;
2453 ret
= __block_write_begin(page
, 0, end
, get_block
);
2455 ret
= block_commit_write(page
, 0, end
);
2457 if (unlikely(ret
< 0))
2459 set_page_dirty(page
);
2460 wait_for_stable_page(page
);
2466 EXPORT_SYMBOL(__block_page_mkwrite
);
2468 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2469 get_block_t get_block
)
2472 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
2474 sb_start_pagefault(sb
);
2477 * Update file times before taking page lock. We may end up failing the
2478 * fault so this update may be superfluous but who really cares...
2480 file_update_time(vma
->vm_file
);
2482 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
2483 sb_end_pagefault(sb
);
2484 return block_page_mkwrite_return(ret
);
2486 EXPORT_SYMBOL(block_page_mkwrite
);
2489 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2490 * immediately, while under the page lock. So it needs a special end_io
2491 * handler which does not touch the bh after unlocking it.
2493 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2495 __end_buffer_read_notouch(bh
, uptodate
);
2499 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2500 * the page (converting it to circular linked list and taking care of page
2503 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2505 struct buffer_head
*bh
;
2507 BUG_ON(!PageLocked(page
));
2509 spin_lock(&page
->mapping
->private_lock
);
2512 if (PageDirty(page
))
2513 set_buffer_dirty(bh
);
2514 if (!bh
->b_this_page
)
2515 bh
->b_this_page
= head
;
2516 bh
= bh
->b_this_page
;
2517 } while (bh
!= head
);
2518 attach_page_buffers(page
, head
);
2519 spin_unlock(&page
->mapping
->private_lock
);
2523 * On entry, the page is fully not uptodate.
2524 * On exit the page is fully uptodate in the areas outside (from,to)
2525 * The filesystem needs to handle block truncation upon failure.
2527 int nobh_write_begin(struct address_space
*mapping
,
2528 loff_t pos
, unsigned len
, unsigned flags
,
2529 struct page
**pagep
, void **fsdata
,
2530 get_block_t
*get_block
)
2532 struct inode
*inode
= mapping
->host
;
2533 const unsigned blkbits
= inode
->i_blkbits
;
2534 const unsigned blocksize
= 1 << blkbits
;
2535 struct buffer_head
*head
, *bh
;
2539 unsigned block_in_page
;
2540 unsigned block_start
, block_end
;
2541 sector_t block_in_file
;
2544 int is_mapped_to_disk
= 1;
2546 index
= pos
>> PAGE_CACHE_SHIFT
;
2547 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2550 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2556 if (page_has_buffers(page
)) {
2557 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2563 if (PageMappedToDisk(page
))
2567 * Allocate buffers so that we can keep track of state, and potentially
2568 * attach them to the page if an error occurs. In the common case of
2569 * no error, they will just be freed again without ever being attached
2570 * to the page (which is all OK, because we're under the page lock).
2572 * Be careful: the buffer linked list is a NULL terminated one, rather
2573 * than the circular one we're used to.
2575 head
= alloc_page_buffers(page
, blocksize
, 0);
2581 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2584 * We loop across all blocks in the page, whether or not they are
2585 * part of the affected region. This is so we can discover if the
2586 * page is fully mapped-to-disk.
2588 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2589 block_start
< PAGE_CACHE_SIZE
;
2590 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2593 block_end
= block_start
+ blocksize
;
2596 if (block_start
>= to
)
2598 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2602 if (!buffer_mapped(bh
))
2603 is_mapped_to_disk
= 0;
2605 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2606 if (PageUptodate(page
)) {
2607 set_buffer_uptodate(bh
);
2610 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2611 zero_user_segments(page
, block_start
, from
,
2615 if (buffer_uptodate(bh
))
2616 continue; /* reiserfs does this */
2617 if (block_start
< from
|| block_end
> to
) {
2619 bh
->b_end_io
= end_buffer_read_nobh
;
2620 submit_bh(READ
, bh
);
2627 * The page is locked, so these buffers are protected from
2628 * any VM or truncate activity. Hence we don't need to care
2629 * for the buffer_head refcounts.
2631 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2633 if (!buffer_uptodate(bh
))
2640 if (is_mapped_to_disk
)
2641 SetPageMappedToDisk(page
);
2643 *fsdata
= head
; /* to be released by nobh_write_end */
2650 * Error recovery is a bit difficult. We need to zero out blocks that
2651 * were newly allocated, and dirty them to ensure they get written out.
2652 * Buffers need to be attached to the page at this point, otherwise
2653 * the handling of potential IO errors during writeout would be hard
2654 * (could try doing synchronous writeout, but what if that fails too?)
2656 attach_nobh_buffers(page
, head
);
2657 page_zero_new_buffers(page
, from
, to
);
2661 page_cache_release(page
);
2666 EXPORT_SYMBOL(nobh_write_begin
);
2668 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2669 loff_t pos
, unsigned len
, unsigned copied
,
2670 struct page
*page
, void *fsdata
)
2672 struct inode
*inode
= page
->mapping
->host
;
2673 struct buffer_head
*head
= fsdata
;
2674 struct buffer_head
*bh
;
2675 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2677 if (unlikely(copied
< len
) && head
)
2678 attach_nobh_buffers(page
, head
);
2679 if (page_has_buffers(page
))
2680 return generic_write_end(file
, mapping
, pos
, len
,
2681 copied
, page
, fsdata
);
2683 SetPageUptodate(page
);
2684 set_page_dirty(page
);
2685 if (pos
+copied
> inode
->i_size
) {
2686 i_size_write(inode
, pos
+copied
);
2687 mark_inode_dirty(inode
);
2691 page_cache_release(page
);
2695 head
= head
->b_this_page
;
2696 free_buffer_head(bh
);
2701 EXPORT_SYMBOL(nobh_write_end
);
2704 * nobh_writepage() - based on block_full_write_page() except
2705 * that it tries to operate without attaching bufferheads to
2708 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2709 struct writeback_control
*wbc
)
2711 struct inode
* const inode
= page
->mapping
->host
;
2712 loff_t i_size
= i_size_read(inode
);
2713 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2717 /* Is the page fully inside i_size? */
2718 if (page
->index
< end_index
)
2721 /* Is the page fully outside i_size? (truncate in progress) */
2722 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2723 if (page
->index
>= end_index
+1 || !offset
) {
2725 * The page may have dirty, unmapped buffers. For example,
2726 * they may have been added in ext3_writepage(). Make them
2727 * freeable here, so the page does not leak.
2730 /* Not really sure about this - do we need this ? */
2731 if (page
->mapping
->a_ops
->invalidatepage
)
2732 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2735 return 0; /* don't care */
2739 * The page straddles i_size. It must be zeroed out on each and every
2740 * writepage invocation because it may be mmapped. "A file is mapped
2741 * in multiples of the page size. For a file that is not a multiple of
2742 * the page size, the remaining memory is zeroed when mapped, and
2743 * writes to that region are not written out to the file."
2745 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2747 ret
= mpage_writepage(page
, get_block
, wbc
);
2749 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2750 end_buffer_async_write
);
2753 EXPORT_SYMBOL(nobh_writepage
);
2755 int nobh_truncate_page(struct address_space
*mapping
,
2756 loff_t from
, get_block_t
*get_block
)
2758 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2759 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2762 unsigned length
, pos
;
2763 struct inode
*inode
= mapping
->host
;
2765 struct buffer_head map_bh
;
2768 blocksize
= 1 << inode
->i_blkbits
;
2769 length
= offset
& (blocksize
- 1);
2771 /* Block boundary? Nothing to do */
2775 length
= blocksize
- length
;
2776 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2778 page
= grab_cache_page(mapping
, index
);
2783 if (page_has_buffers(page
)) {
2786 page_cache_release(page
);
2787 return block_truncate_page(mapping
, from
, get_block
);
2790 /* Find the buffer that contains "offset" */
2792 while (offset
>= pos
) {
2797 map_bh
.b_size
= blocksize
;
2799 err
= get_block(inode
, iblock
, &map_bh
, 0);
2802 /* unmapped? It's a hole - nothing to do */
2803 if (!buffer_mapped(&map_bh
))
2806 /* Ok, it's mapped. Make sure it's up-to-date */
2807 if (!PageUptodate(page
)) {
2808 err
= mapping
->a_ops
->readpage(NULL
, page
);
2810 page_cache_release(page
);
2814 if (!PageUptodate(page
)) {
2818 if (page_has_buffers(page
))
2821 zero_user(page
, offset
, length
);
2822 set_page_dirty(page
);
2827 page_cache_release(page
);
2831 EXPORT_SYMBOL(nobh_truncate_page
);
2833 int block_truncate_page(struct address_space
*mapping
,
2834 loff_t from
, get_block_t
*get_block
)
2836 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2837 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2840 unsigned length
, pos
;
2841 struct inode
*inode
= mapping
->host
;
2843 struct buffer_head
*bh
;
2846 blocksize
= 1 << inode
->i_blkbits
;
2847 length
= offset
& (blocksize
- 1);
2849 /* Block boundary? Nothing to do */
2853 length
= blocksize
- length
;
2854 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2856 page
= grab_cache_page(mapping
, index
);
2861 if (!page_has_buffers(page
))
2862 create_empty_buffers(page
, blocksize
, 0);
2864 /* Find the buffer that contains "offset" */
2865 bh
= page_buffers(page
);
2867 while (offset
>= pos
) {
2868 bh
= bh
->b_this_page
;
2874 if (!buffer_mapped(bh
)) {
2875 WARN_ON(bh
->b_size
!= blocksize
);
2876 err
= get_block(inode
, iblock
, bh
, 0);
2879 /* unmapped? It's a hole - nothing to do */
2880 if (!buffer_mapped(bh
))
2884 /* Ok, it's mapped. Make sure it's up-to-date */
2885 if (PageUptodate(page
))
2886 set_buffer_uptodate(bh
);
2888 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2890 ll_rw_block(READ
, 1, &bh
);
2892 /* Uhhuh. Read error. Complain and punt. */
2893 if (!buffer_uptodate(bh
))
2897 zero_user(page
, offset
, length
);
2898 mark_buffer_dirty(bh
);
2903 page_cache_release(page
);
2907 EXPORT_SYMBOL(block_truncate_page
);
2910 * The generic ->writepage function for buffer-backed address_spaces
2912 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2913 struct writeback_control
*wbc
)
2915 struct inode
* const inode
= page
->mapping
->host
;
2916 loff_t i_size
= i_size_read(inode
);
2917 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2920 /* Is the page fully inside i_size? */
2921 if (page
->index
< end_index
)
2922 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2923 end_buffer_async_write
);
2925 /* Is the page fully outside i_size? (truncate in progress) */
2926 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2927 if (page
->index
>= end_index
+1 || !offset
) {
2929 * The page may have dirty, unmapped buffers. For example,
2930 * they may have been added in ext3_writepage(). Make them
2931 * freeable here, so the page does not leak.
2933 do_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
2935 return 0; /* don't care */
2939 * The page straddles i_size. It must be zeroed out on each and every
2940 * writepage invocation because it may be mmapped. "A file is mapped
2941 * in multiples of the page size. For a file that is not a multiple of
2942 * the page size, the remaining memory is zeroed when mapped, and
2943 * writes to that region are not written out to the file."
2945 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2946 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2947 end_buffer_async_write
);
2949 EXPORT_SYMBOL(block_write_full_page
);
2951 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2952 get_block_t
*get_block
)
2954 struct buffer_head tmp
;
2955 struct inode
*inode
= mapping
->host
;
2958 tmp
.b_size
= 1 << inode
->i_blkbits
;
2959 get_block(inode
, block
, &tmp
, 0);
2960 return tmp
.b_blocknr
;
2962 EXPORT_SYMBOL(generic_block_bmap
);
2964 static void end_bio_bh_io_sync(struct bio
*bio
, int err
)
2966 struct buffer_head
*bh
= bio
->bi_private
;
2968 if (err
== -EOPNOTSUPP
) {
2969 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2972 if (unlikely (test_bit(BIO_QUIET
,&bio
->bi_flags
)))
2973 set_bit(BH_Quiet
, &bh
->b_state
);
2975 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2980 * This allows us to do IO even on the odd last sectors
2981 * of a device, even if the bh block size is some multiple
2982 * of the physical sector size.
2984 * We'll just truncate the bio to the size of the device,
2985 * and clear the end of the buffer head manually.
2987 * Truly out-of-range accesses will turn into actual IO
2988 * errors, this only handles the "we need to be able to
2989 * do IO at the final sector" case.
2991 static void guard_bh_eod(int rw
, struct bio
*bio
, struct buffer_head
*bh
)
2996 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
3001 * If the *whole* IO is past the end of the device,
3002 * let it through, and the IO layer will turn it into
3005 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3008 maxsector
-= bio
->bi_iter
.bi_sector
;
3009 bytes
= bio
->bi_iter
.bi_size
;
3010 if (likely((bytes
>> 9) <= maxsector
))
3013 /* Uhhuh. We've got a bh that straddles the device size! */
3014 bytes
= maxsector
<< 9;
3016 /* Truncate the bio.. */
3017 bio
->bi_iter
.bi_size
= bytes
;
3018 bio
->bi_io_vec
[0].bv_len
= bytes
;
3020 /* ..and clear the end of the buffer for reads */
3021 if ((rw
& RW_MASK
) == READ
) {
3022 void *kaddr
= kmap_atomic(bh
->b_page
);
3023 memset(kaddr
+ bh_offset(bh
) + bytes
, 0, bh
->b_size
- bytes
);
3024 kunmap_atomic(kaddr
);
3025 flush_dcache_page(bh
->b_page
);
3029 int _submit_bh(int rw
, struct buffer_head
*bh
, unsigned long bio_flags
)
3034 BUG_ON(!buffer_locked(bh
));
3035 BUG_ON(!buffer_mapped(bh
));
3036 BUG_ON(!bh
->b_end_io
);
3037 BUG_ON(buffer_delay(bh
));
3038 BUG_ON(buffer_unwritten(bh
));
3041 * Only clear out a write error when rewriting
3043 if (test_set_buffer_req(bh
) && (rw
& WRITE
))
3044 clear_buffer_write_io_error(bh
);
3047 * from here on down, it's all bio -- do the initial mapping,
3048 * submit_bio -> generic_make_request may further map this bio around
3050 bio
= bio_alloc(GFP_NOIO
, 1);
3052 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3053 bio
->bi_bdev
= bh
->b_bdev
;
3054 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
3055 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
3056 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
3059 bio
->bi_iter
.bi_size
= bh
->b_size
;
3061 bio
->bi_end_io
= end_bio_bh_io_sync
;
3062 bio
->bi_private
= bh
;
3063 bio
->bi_flags
|= bio_flags
;
3065 /* Take care of bh's that straddle the end of the device */
3066 guard_bh_eod(rw
, bio
, bh
);
3068 if (buffer_meta(bh
))
3070 if (buffer_prio(bh
))
3074 submit_bio(rw
, bio
);
3076 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
3082 EXPORT_SYMBOL_GPL(_submit_bh
);
3084 int submit_bh(int rw
, struct buffer_head
*bh
)
3086 return _submit_bh(rw
, bh
, 0);
3088 EXPORT_SYMBOL(submit_bh
);
3091 * ll_rw_block: low-level access to block devices (DEPRECATED)
3092 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3093 * @nr: number of &struct buffer_heads in the array
3094 * @bhs: array of pointers to &struct buffer_head
3096 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3097 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3098 * %READA option is described in the documentation for generic_make_request()
3099 * which ll_rw_block() calls.
3101 * This function drops any buffer that it cannot get a lock on (with the
3102 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3103 * request, and any buffer that appears to be up-to-date when doing read
3104 * request. Further it marks as clean buffers that are processed for
3105 * writing (the buffer cache won't assume that they are actually clean
3106 * until the buffer gets unlocked).
3108 * ll_rw_block sets b_end_io to simple completion handler that marks
3109 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3112 * All of the buffers must be for the same device, and must also be a
3113 * multiple of the current approved size for the device.
3115 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
3119 for (i
= 0; i
< nr
; i
++) {
3120 struct buffer_head
*bh
= bhs
[i
];
3122 if (!trylock_buffer(bh
))
3125 if (test_clear_buffer_dirty(bh
)) {
3126 bh
->b_end_io
= end_buffer_write_sync
;
3128 submit_bh(WRITE
, bh
);
3132 if (!buffer_uptodate(bh
)) {
3133 bh
->b_end_io
= end_buffer_read_sync
;
3142 EXPORT_SYMBOL(ll_rw_block
);
3144 void write_dirty_buffer(struct buffer_head
*bh
, int rw
)
3147 if (!test_clear_buffer_dirty(bh
)) {
3151 bh
->b_end_io
= end_buffer_write_sync
;
3155 EXPORT_SYMBOL(write_dirty_buffer
);
3158 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3159 * and then start new I/O and then wait upon it. The caller must have a ref on
3162 int __sync_dirty_buffer(struct buffer_head
*bh
, int rw
)
3166 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3168 if (test_clear_buffer_dirty(bh
)) {
3170 bh
->b_end_io
= end_buffer_write_sync
;
3171 ret
= submit_bh(rw
, bh
);
3173 if (!ret
&& !buffer_uptodate(bh
))
3180 EXPORT_SYMBOL(__sync_dirty_buffer
);
3182 int sync_dirty_buffer(struct buffer_head
*bh
)
3184 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3186 EXPORT_SYMBOL(sync_dirty_buffer
);
3189 * try_to_free_buffers() checks if all the buffers on this particular page
3190 * are unused, and releases them if so.
3192 * Exclusion against try_to_free_buffers may be obtained by either
3193 * locking the page or by holding its mapping's private_lock.
3195 * If the page is dirty but all the buffers are clean then we need to
3196 * be sure to mark the page clean as well. This is because the page
3197 * may be against a block device, and a later reattachment of buffers
3198 * to a dirty page will set *all* buffers dirty. Which would corrupt
3199 * filesystem data on the same device.
3201 * The same applies to regular filesystem pages: if all the buffers are
3202 * clean then we set the page clean and proceed. To do that, we require
3203 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3206 * try_to_free_buffers() is non-blocking.
3208 static inline int buffer_busy(struct buffer_head
*bh
)
3210 return atomic_read(&bh
->b_count
) |
3211 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3215 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3217 struct buffer_head
*head
= page_buffers(page
);
3218 struct buffer_head
*bh
;
3222 if (buffer_write_io_error(bh
) && page
->mapping
)
3223 set_bit(AS_EIO
, &page
->mapping
->flags
);
3224 if (buffer_busy(bh
))
3226 bh
= bh
->b_this_page
;
3227 } while (bh
!= head
);
3230 struct buffer_head
*next
= bh
->b_this_page
;
3232 if (bh
->b_assoc_map
)
3233 __remove_assoc_queue(bh
);
3235 } while (bh
!= head
);
3236 *buffers_to_free
= head
;
3237 __clear_page_buffers(page
);
3243 int try_to_free_buffers(struct page
*page
)
3245 struct address_space
* const mapping
= page
->mapping
;
3246 struct buffer_head
*buffers_to_free
= NULL
;
3249 BUG_ON(!PageLocked(page
));
3250 if (PageWriteback(page
))
3253 if (mapping
== NULL
) { /* can this still happen? */
3254 ret
= drop_buffers(page
, &buffers_to_free
);
3258 spin_lock(&mapping
->private_lock
);
3259 ret
= drop_buffers(page
, &buffers_to_free
);
3262 * If the filesystem writes its buffers by hand (eg ext3)
3263 * then we can have clean buffers against a dirty page. We
3264 * clean the page here; otherwise the VM will never notice
3265 * that the filesystem did any IO at all.
3267 * Also, during truncate, discard_buffer will have marked all
3268 * the page's buffers clean. We discover that here and clean
3271 * private_lock must be held over this entire operation in order
3272 * to synchronise against __set_page_dirty_buffers and prevent the
3273 * dirty bit from being lost.
3276 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
3277 spin_unlock(&mapping
->private_lock
);
3279 if (buffers_to_free
) {
3280 struct buffer_head
*bh
= buffers_to_free
;
3283 struct buffer_head
*next
= bh
->b_this_page
;
3284 free_buffer_head(bh
);
3286 } while (bh
!= buffers_to_free
);
3290 EXPORT_SYMBOL(try_to_free_buffers
);
3293 * There are no bdflush tunables left. But distributions are
3294 * still running obsolete flush daemons, so we terminate them here.
3296 * Use of bdflush() is deprecated and will be removed in a future kernel.
3297 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3299 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3301 static int msg_count
;
3303 if (!capable(CAP_SYS_ADMIN
))
3306 if (msg_count
< 5) {
3309 "warning: process `%s' used the obsolete bdflush"
3310 " system call\n", current
->comm
);
3311 printk(KERN_INFO
"Fix your initscripts?\n");
3320 * Buffer-head allocation
3322 static struct kmem_cache
*bh_cachep __read_mostly
;
3325 * Once the number of bh's in the machine exceeds this level, we start
3326 * stripping them in writeback.
3328 static unsigned long max_buffer_heads
;
3330 int buffer_heads_over_limit
;
3332 struct bh_accounting
{
3333 int nr
; /* Number of live bh's */
3334 int ratelimit
; /* Limit cacheline bouncing */
3337 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3339 static void recalc_bh_state(void)
3344 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3346 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3347 for_each_online_cpu(i
)
3348 tot
+= per_cpu(bh_accounting
, i
).nr
;
3349 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3352 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3354 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3356 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3358 __this_cpu_inc(bh_accounting
.nr
);
3364 EXPORT_SYMBOL(alloc_buffer_head
);
3366 void free_buffer_head(struct buffer_head
*bh
)
3368 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3369 kmem_cache_free(bh_cachep
, bh
);
3371 __this_cpu_dec(bh_accounting
.nr
);
3375 EXPORT_SYMBOL(free_buffer_head
);
3377 static void buffer_exit_cpu(int cpu
)
3380 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3382 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3386 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3387 per_cpu(bh_accounting
, cpu
).nr
= 0;
3390 static int buffer_cpu_notify(struct notifier_block
*self
,
3391 unsigned long action
, void *hcpu
)
3393 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3394 buffer_exit_cpu((unsigned long)hcpu
);
3399 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3400 * @bh: struct buffer_head
3402 * Return true if the buffer is up-to-date and false,
3403 * with the buffer locked, if not.
3405 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3407 if (!buffer_uptodate(bh
)) {
3409 if (!buffer_uptodate(bh
))
3415 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3418 * bh_submit_read - Submit a locked buffer for reading
3419 * @bh: struct buffer_head
3421 * Returns zero on success and -EIO on error.
3423 int bh_submit_read(struct buffer_head
*bh
)
3425 BUG_ON(!buffer_locked(bh
));
3427 if (buffer_uptodate(bh
)) {
3433 bh
->b_end_io
= end_buffer_read_sync
;
3434 submit_bh(READ
, bh
);
3436 if (buffer_uptodate(bh
))
3440 EXPORT_SYMBOL(bh_submit_read
);
3442 void __init
buffer_init(void)
3444 unsigned long nrpages
;
3446 bh_cachep
= kmem_cache_create("buffer_head",
3447 sizeof(struct buffer_head
), 0,
3448 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3453 * Limit the bh occupancy to 10% of ZONE_NORMAL
3455 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3456 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3457 hotcpu_notifier(buffer_cpu_notify
, 0);