2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly
;
112 unsigned int sysctl_net_busy_poll __read_mostly
;
115 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
116 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
117 unsigned long nr_segs
, loff_t pos
);
118 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
119 unsigned long nr_segs
, loff_t pos
);
120 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
122 static int sock_close(struct inode
*inode
, struct file
*file
);
123 static unsigned int sock_poll(struct file
*file
,
124 struct poll_table_struct
*wait
);
125 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
127 static long compat_sock_ioctl(struct file
*file
,
128 unsigned int cmd
, unsigned long arg
);
130 static int sock_fasync(int fd
, struct file
*filp
, int on
);
131 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
132 int offset
, size_t size
, loff_t
*ppos
, int more
);
133 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
134 struct pipe_inode_info
*pipe
, size_t len
,
138 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139 * in the operation structures but are done directly via the socketcall() multiplexor.
142 static const struct file_operations socket_file_ops
= {
143 .owner
= THIS_MODULE
,
145 .aio_read
= sock_aio_read
,
146 .aio_write
= sock_aio_write
,
148 .unlocked_ioctl
= sock_ioctl
,
150 .compat_ioctl
= compat_sock_ioctl
,
153 .open
= sock_no_open
, /* special open code to disallow open via /proc */
154 .release
= sock_close
,
155 .fasync
= sock_fasync
,
156 .sendpage
= sock_sendpage
,
157 .splice_write
= generic_splice_sendpage
,
158 .splice_read
= sock_splice_read
,
162 * The protocol list. Each protocol is registered in here.
165 static DEFINE_SPINLOCK(net_family_lock
);
166 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
169 * Statistics counters of the socket lists
172 static DEFINE_PER_CPU(int, sockets_in_use
);
176 * Move socket addresses back and forth across the kernel/user
177 * divide and look after the messy bits.
181 * move_addr_to_kernel - copy a socket address into kernel space
182 * @uaddr: Address in user space
183 * @kaddr: Address in kernel space
184 * @ulen: Length in user space
186 * The address is copied into kernel space. If the provided address is
187 * too long an error code of -EINVAL is returned. If the copy gives
188 * invalid addresses -EFAULT is returned. On a success 0 is returned.
191 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
193 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
197 if (copy_from_user(kaddr
, uaddr
, ulen
))
199 return audit_sockaddr(ulen
, kaddr
);
203 * move_addr_to_user - copy an address to user space
204 * @kaddr: kernel space address
205 * @klen: length of address in kernel
206 * @uaddr: user space address
207 * @ulen: pointer to user length field
209 * The value pointed to by ulen on entry is the buffer length available.
210 * This is overwritten with the buffer space used. -EINVAL is returned
211 * if an overlong buffer is specified or a negative buffer size. -EFAULT
212 * is returned if either the buffer or the length field are not
214 * After copying the data up to the limit the user specifies, the true
215 * length of the data is written over the length limit the user
216 * specified. Zero is returned for a success.
219 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
220 void __user
*uaddr
, int __user
*ulen
)
225 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
226 err
= get_user(len
, ulen
);
234 if (audit_sockaddr(klen
, kaddr
))
236 if (copy_to_user(uaddr
, kaddr
, len
))
240 * "fromlen shall refer to the value before truncation.."
243 return __put_user(klen
, ulen
);
246 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
248 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
250 struct socket_alloc
*ei
;
251 struct socket_wq
*wq
;
253 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
256 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
258 kmem_cache_free(sock_inode_cachep
, ei
);
261 init_waitqueue_head(&wq
->wait
);
262 wq
->fasync_list
= NULL
;
263 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
265 ei
->socket
.state
= SS_UNCONNECTED
;
266 ei
->socket
.flags
= 0;
267 ei
->socket
.ops
= NULL
;
268 ei
->socket
.sk
= NULL
;
269 ei
->socket
.file
= NULL
;
271 return &ei
->vfs_inode
;
274 static void sock_destroy_inode(struct inode
*inode
)
276 struct socket_alloc
*ei
;
277 struct socket_wq
*wq
;
279 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
280 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
282 kmem_cache_free(sock_inode_cachep
, ei
);
285 static void init_once(void *foo
)
287 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
289 inode_init_once(&ei
->vfs_inode
);
292 static int init_inodecache(void)
294 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
295 sizeof(struct socket_alloc
),
297 (SLAB_HWCACHE_ALIGN
|
298 SLAB_RECLAIM_ACCOUNT
|
301 if (sock_inode_cachep
== NULL
)
306 static const struct super_operations sockfs_ops
= {
307 .alloc_inode
= sock_alloc_inode
,
308 .destroy_inode
= sock_destroy_inode
,
309 .statfs
= simple_statfs
,
313 * sockfs_dname() is called from d_path().
315 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
317 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
318 dentry
->d_inode
->i_ino
);
321 static const struct dentry_operations sockfs_dentry_operations
= {
322 .d_dname
= sockfs_dname
,
325 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
326 int flags
, const char *dev_name
, void *data
)
328 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
329 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
332 static struct vfsmount
*sock_mnt __read_mostly
;
334 static struct file_system_type sock_fs_type
= {
336 .mount
= sockfs_mount
,
337 .kill_sb
= kill_anon_super
,
341 * Obtains the first available file descriptor and sets it up for use.
343 * These functions create file structures and maps them to fd space
344 * of the current process. On success it returns file descriptor
345 * and file struct implicitly stored in sock->file.
346 * Note that another thread may close file descriptor before we return
347 * from this function. We use the fact that now we do not refer
348 * to socket after mapping. If one day we will need it, this
349 * function will increment ref. count on file by 1.
351 * In any case returned fd MAY BE not valid!
352 * This race condition is unavoidable
353 * with shared fd spaces, we cannot solve it inside kernel,
354 * but we take care of internal coherence yet.
357 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
359 struct qstr name
= { .name
= "" };
365 name
.len
= strlen(name
.name
);
366 } else if (sock
->sk
) {
367 name
.name
= sock
->sk
->sk_prot_creator
->name
;
368 name
.len
= strlen(name
.name
);
370 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
371 if (unlikely(!path
.dentry
))
372 return ERR_PTR(-ENOMEM
);
373 path
.mnt
= mntget(sock_mnt
);
375 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
376 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
378 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
380 if (unlikely(IS_ERR(file
))) {
381 /* drop dentry, keep inode */
382 ihold(path
.dentry
->d_inode
);
388 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
389 file
->private_data
= sock
;
392 EXPORT_SYMBOL(sock_alloc_file
);
394 static int sock_map_fd(struct socket
*sock
, int flags
)
396 struct file
*newfile
;
397 int fd
= get_unused_fd_flags(flags
);
398 if (unlikely(fd
< 0))
401 newfile
= sock_alloc_file(sock
, flags
, NULL
);
402 if (likely(!IS_ERR(newfile
))) {
403 fd_install(fd
, newfile
);
408 return PTR_ERR(newfile
);
411 struct socket
*sock_from_file(struct file
*file
, int *err
)
413 if (file
->f_op
== &socket_file_ops
)
414 return file
->private_data
; /* set in sock_map_fd */
419 EXPORT_SYMBOL(sock_from_file
);
422 * sockfd_lookup - Go from a file number to its socket slot
424 * @err: pointer to an error code return
426 * The file handle passed in is locked and the socket it is bound
427 * too is returned. If an error occurs the err pointer is overwritten
428 * with a negative errno code and NULL is returned. The function checks
429 * for both invalid handles and passing a handle which is not a socket.
431 * On a success the socket object pointer is returned.
434 struct socket
*sockfd_lookup(int fd
, int *err
)
445 sock
= sock_from_file(file
, err
);
450 EXPORT_SYMBOL(sockfd_lookup
);
452 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
454 struct fd f
= fdget(fd
);
459 sock
= sock_from_file(f
.file
, err
);
461 *fput_needed
= f
.flags
;
469 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
470 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
471 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
472 static ssize_t
sockfs_getxattr(struct dentry
*dentry
,
473 const char *name
, void *value
, size_t size
)
475 const char *proto_name
;
480 if (!strncmp(name
, XATTR_NAME_SOCKPROTONAME
, XATTR_NAME_SOCKPROTONAME_LEN
)) {
481 proto_name
= dentry
->d_name
.name
;
482 proto_size
= strlen(proto_name
);
486 if (proto_size
+ 1 > size
)
489 strncpy(value
, proto_name
, proto_size
+ 1);
491 error
= proto_size
+ 1;
498 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
504 len
= security_inode_listsecurity(dentry
->d_inode
, buffer
, size
);
514 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
519 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
526 static const struct inode_operations sockfs_inode_ops
= {
527 .getxattr
= sockfs_getxattr
,
528 .listxattr
= sockfs_listxattr
,
532 * sock_alloc - allocate a socket
534 * Allocate a new inode and socket object. The two are bound together
535 * and initialised. The socket is then returned. If we are out of inodes
539 static struct socket
*sock_alloc(void)
544 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
548 sock
= SOCKET_I(inode
);
550 kmemcheck_annotate_bitfield(sock
, type
);
551 inode
->i_ino
= get_next_ino();
552 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
553 inode
->i_uid
= current_fsuid();
554 inode
->i_gid
= current_fsgid();
555 inode
->i_op
= &sockfs_inode_ops
;
557 this_cpu_add(sockets_in_use
, 1);
562 * In theory you can't get an open on this inode, but /proc provides
563 * a back door. Remember to keep it shut otherwise you'll let the
564 * creepy crawlies in.
567 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
572 const struct file_operations bad_sock_fops
= {
573 .owner
= THIS_MODULE
,
574 .open
= sock_no_open
,
575 .llseek
= noop_llseek
,
579 * sock_release - close a socket
580 * @sock: socket to close
582 * The socket is released from the protocol stack if it has a release
583 * callback, and the inode is then released if the socket is bound to
584 * an inode not a file.
587 void sock_release(struct socket
*sock
)
590 struct module
*owner
= sock
->ops
->owner
;
592 sock
->ops
->release(sock
);
597 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
598 pr_err("%s: fasync list not empty!\n", __func__
);
600 if (test_bit(SOCK_EXTERNALLY_ALLOCATED
, &sock
->flags
))
603 this_cpu_sub(sockets_in_use
, 1);
605 iput(SOCK_INODE(sock
));
610 EXPORT_SYMBOL(sock_release
);
612 void sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
615 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
616 *tx_flags
|= SKBTX_HW_TSTAMP
;
617 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
618 *tx_flags
|= SKBTX_SW_TSTAMP
;
619 if (sock_flag(sk
, SOCK_WIFI_STATUS
))
620 *tx_flags
|= SKBTX_WIFI_STATUS
;
622 EXPORT_SYMBOL(sock_tx_timestamp
);
624 static inline int __sock_sendmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
625 struct msghdr
*msg
, size_t size
)
627 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
634 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
637 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
638 struct msghdr
*msg
, size_t size
)
640 int err
= security_socket_sendmsg(sock
, msg
, size
);
642 return err
?: __sock_sendmsg_nosec(iocb
, sock
, msg
, size
);
645 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
648 struct sock_iocb siocb
;
651 init_sync_kiocb(&iocb
, NULL
);
652 iocb
.private = &siocb
;
653 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
654 if (-EIOCBQUEUED
== ret
)
655 ret
= wait_on_sync_kiocb(&iocb
);
658 EXPORT_SYMBOL(sock_sendmsg
);
660 static int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
663 struct sock_iocb siocb
;
666 init_sync_kiocb(&iocb
, NULL
);
667 iocb
.private = &siocb
;
668 ret
= __sock_sendmsg_nosec(&iocb
, sock
, msg
, size
);
669 if (-EIOCBQUEUED
== ret
)
670 ret
= wait_on_sync_kiocb(&iocb
);
674 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
675 struct kvec
*vec
, size_t num
, size_t size
)
677 mm_segment_t oldfs
= get_fs();
682 * the following is safe, since for compiler definitions of kvec and
683 * iovec are identical, yielding the same in-core layout and alignment
685 msg
->msg_iov
= (struct iovec
*)vec
;
686 msg
->msg_iovlen
= num
;
687 result
= sock_sendmsg(sock
, msg
, size
);
691 EXPORT_SYMBOL(kernel_sendmsg
);
694 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
696 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
699 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
700 struct timespec ts
[3];
702 struct skb_shared_hwtstamps
*shhwtstamps
=
705 /* Race occurred between timestamp enabling and packet
706 receiving. Fill in the current time for now. */
707 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
708 __net_timestamp(skb
);
710 if (need_software_tstamp
) {
711 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
713 skb_get_timestamp(skb
, &tv
);
714 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
717 skb_get_timestampns(skb
, &ts
[0]);
718 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
719 sizeof(ts
[0]), &ts
[0]);
724 memset(ts
, 0, sizeof(ts
));
725 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
) &&
726 ktime_to_timespec_cond(skb
->tstamp
, ts
+ 0))
729 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
730 ktime_to_timespec_cond(shhwtstamps
->syststamp
, ts
+ 1))
732 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
733 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, ts
+ 2))
737 put_cmsg(msg
, SOL_SOCKET
,
738 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
740 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
742 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
747 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
749 if (!skb
->wifi_acked_valid
)
752 ack
= skb
->wifi_acked
;
754 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
756 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
758 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
761 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
762 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
763 sizeof(__u32
), &skb
->dropcount
);
766 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
769 sock_recv_timestamp(msg
, sk
, skb
);
770 sock_recv_drops(msg
, sk
, skb
);
772 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
774 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
775 struct msghdr
*msg
, size_t size
, int flags
)
777 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
785 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
788 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
789 struct msghdr
*msg
, size_t size
, int flags
)
791 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
793 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
796 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
797 size_t size
, int flags
)
800 struct sock_iocb siocb
;
803 init_sync_kiocb(&iocb
, NULL
);
804 iocb
.private = &siocb
;
805 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
806 if (-EIOCBQUEUED
== ret
)
807 ret
= wait_on_sync_kiocb(&iocb
);
810 EXPORT_SYMBOL(sock_recvmsg
);
812 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
813 size_t size
, int flags
)
816 struct sock_iocb siocb
;
819 init_sync_kiocb(&iocb
, NULL
);
820 iocb
.private = &siocb
;
821 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
822 if (-EIOCBQUEUED
== ret
)
823 ret
= wait_on_sync_kiocb(&iocb
);
828 * kernel_recvmsg - Receive a message from a socket (kernel space)
829 * @sock: The socket to receive the message from
830 * @msg: Received message
831 * @vec: Input s/g array for message data
832 * @num: Size of input s/g array
833 * @size: Number of bytes to read
834 * @flags: Message flags (MSG_DONTWAIT, etc...)
836 * On return the msg structure contains the scatter/gather array passed in the
837 * vec argument. The array is modified so that it consists of the unfilled
838 * portion of the original array.
840 * The returned value is the total number of bytes received, or an error.
842 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
843 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
845 mm_segment_t oldfs
= get_fs();
850 * the following is safe, since for compiler definitions of kvec and
851 * iovec are identical, yielding the same in-core layout and alignment
853 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
854 result
= sock_recvmsg(sock
, msg
, size
, flags
);
858 EXPORT_SYMBOL(kernel_recvmsg
);
860 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
861 int offset
, size_t size
, loff_t
*ppos
, int more
)
866 sock
= file
->private_data
;
868 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
869 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
872 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
875 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
876 struct pipe_inode_info
*pipe
, size_t len
,
879 struct socket
*sock
= file
->private_data
;
881 if (unlikely(!sock
->ops
->splice_read
))
884 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
887 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
888 struct sock_iocb
*siocb
)
891 iocb
->private = siocb
;
895 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
896 struct file
*file
, const struct iovec
*iov
,
897 unsigned long nr_segs
)
899 struct socket
*sock
= file
->private_data
;
903 for (i
= 0; i
< nr_segs
; i
++)
904 size
+= iov
[i
].iov_len
;
906 msg
->msg_name
= NULL
;
907 msg
->msg_namelen
= 0;
908 msg
->msg_control
= NULL
;
909 msg
->msg_controllen
= 0;
910 msg
->msg_iov
= (struct iovec
*)iov
;
911 msg
->msg_iovlen
= nr_segs
;
912 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
914 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
917 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
918 unsigned long nr_segs
, loff_t pos
)
920 struct sock_iocb siocb
, *x
;
925 if (iocb
->ki_nbytes
== 0) /* Match SYS5 behaviour */
929 x
= alloc_sock_iocb(iocb
, &siocb
);
932 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
935 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
936 struct file
*file
, const struct iovec
*iov
,
937 unsigned long nr_segs
)
939 struct socket
*sock
= file
->private_data
;
943 for (i
= 0; i
< nr_segs
; i
++)
944 size
+= iov
[i
].iov_len
;
946 msg
->msg_name
= NULL
;
947 msg
->msg_namelen
= 0;
948 msg
->msg_control
= NULL
;
949 msg
->msg_controllen
= 0;
950 msg
->msg_iov
= (struct iovec
*)iov
;
951 msg
->msg_iovlen
= nr_segs
;
952 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
953 if (sock
->type
== SOCK_SEQPACKET
)
954 msg
->msg_flags
|= MSG_EOR
;
956 return __sock_sendmsg(iocb
, sock
, msg
, size
);
959 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
960 unsigned long nr_segs
, loff_t pos
)
962 struct sock_iocb siocb
, *x
;
967 x
= alloc_sock_iocb(iocb
, &siocb
);
971 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
975 * Atomic setting of ioctl hooks to avoid race
976 * with module unload.
979 static DEFINE_MUTEX(br_ioctl_mutex
);
980 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
982 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
984 mutex_lock(&br_ioctl_mutex
);
985 br_ioctl_hook
= hook
;
986 mutex_unlock(&br_ioctl_mutex
);
988 EXPORT_SYMBOL(brioctl_set
);
990 static DEFINE_MUTEX(vlan_ioctl_mutex
);
991 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
993 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
995 mutex_lock(&vlan_ioctl_mutex
);
996 vlan_ioctl_hook
= hook
;
997 mutex_unlock(&vlan_ioctl_mutex
);
999 EXPORT_SYMBOL(vlan_ioctl_set
);
1001 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1002 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1004 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1006 mutex_lock(&dlci_ioctl_mutex
);
1007 dlci_ioctl_hook
= hook
;
1008 mutex_unlock(&dlci_ioctl_mutex
);
1010 EXPORT_SYMBOL(dlci_ioctl_set
);
1012 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1013 unsigned int cmd
, unsigned long arg
)
1016 void __user
*argp
= (void __user
*)arg
;
1018 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1021 * If this ioctl is unknown try to hand it down
1022 * to the NIC driver.
1024 if (err
== -ENOIOCTLCMD
)
1025 err
= dev_ioctl(net
, cmd
, argp
);
1031 * With an ioctl, arg may well be a user mode pointer, but we don't know
1032 * what to do with it - that's up to the protocol still.
1035 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1037 struct socket
*sock
;
1039 void __user
*argp
= (void __user
*)arg
;
1043 sock
= file
->private_data
;
1046 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
1047 err
= dev_ioctl(net
, cmd
, argp
);
1049 #ifdef CONFIG_WEXT_CORE
1050 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1051 err
= dev_ioctl(net
, cmd
, argp
);
1058 if (get_user(pid
, (int __user
*)argp
))
1060 err
= f_setown(sock
->file
, pid
, 1);
1064 err
= put_user(f_getown(sock
->file
),
1065 (int __user
*)argp
);
1073 request_module("bridge");
1075 mutex_lock(&br_ioctl_mutex
);
1077 err
= br_ioctl_hook(net
, cmd
, argp
);
1078 mutex_unlock(&br_ioctl_mutex
);
1083 if (!vlan_ioctl_hook
)
1084 request_module("8021q");
1086 mutex_lock(&vlan_ioctl_mutex
);
1087 if (vlan_ioctl_hook
)
1088 err
= vlan_ioctl_hook(net
, argp
);
1089 mutex_unlock(&vlan_ioctl_mutex
);
1094 if (!dlci_ioctl_hook
)
1095 request_module("dlci");
1097 mutex_lock(&dlci_ioctl_mutex
);
1098 if (dlci_ioctl_hook
)
1099 err
= dlci_ioctl_hook(cmd
, argp
);
1100 mutex_unlock(&dlci_ioctl_mutex
);
1103 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1109 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1112 struct socket
*sock
= NULL
;
1114 err
= security_socket_create(family
, type
, protocol
, 1);
1118 sock
= sock_alloc();
1125 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1137 EXPORT_SYMBOL(sock_create_lite
);
1139 /* No kernel lock held - perfect */
1140 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1142 unsigned int busy_flag
= 0;
1143 struct socket
*sock
;
1146 * We can't return errors to poll, so it's either yes or no.
1148 sock
= file
->private_data
;
1150 if (sk_can_busy_loop(sock
->sk
)) {
1151 /* this socket can poll_ll so tell the system call */
1152 busy_flag
= POLL_BUSY_LOOP
;
1154 /* once, only if requested by syscall */
1155 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1156 sk_busy_loop(sock
->sk
, 1);
1159 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1162 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1164 struct socket
*sock
= file
->private_data
;
1166 return sock
->ops
->mmap(file
, sock
, vma
);
1169 static int sock_close(struct inode
*inode
, struct file
*filp
)
1171 sock_release(SOCKET_I(inode
));
1176 * Update the socket async list
1178 * Fasync_list locking strategy.
1180 * 1. fasync_list is modified only under process context socket lock
1181 * i.e. under semaphore.
1182 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1183 * or under socket lock
1186 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1188 struct socket
*sock
= filp
->private_data
;
1189 struct sock
*sk
= sock
->sk
;
1190 struct socket_wq
*wq
;
1196 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1197 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1199 if (!wq
->fasync_list
)
1200 sock_reset_flag(sk
, SOCK_FASYNC
);
1202 sock_set_flag(sk
, SOCK_FASYNC
);
1208 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1210 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1212 struct socket_wq
*wq
;
1217 wq
= rcu_dereference(sock
->wq
);
1218 if (!wq
|| !wq
->fasync_list
) {
1223 case SOCK_WAKE_WAITD
:
1224 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1227 case SOCK_WAKE_SPACE
:
1228 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1233 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1236 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1241 EXPORT_SYMBOL(sock_wake_async
);
1243 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1244 struct socket
**res
, int kern
)
1247 struct socket
*sock
;
1248 const struct net_proto_family
*pf
;
1251 * Check protocol is in range
1253 if (family
< 0 || family
>= NPROTO
)
1254 return -EAFNOSUPPORT
;
1255 if (type
< 0 || type
>= SOCK_MAX
)
1260 This uglymoron is moved from INET layer to here to avoid
1261 deadlock in module load.
1263 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1267 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1273 err
= security_socket_create(family
, type
, protocol
, kern
);
1278 * Allocate the socket and allow the family to set things up. if
1279 * the protocol is 0, the family is instructed to select an appropriate
1282 sock
= sock_alloc();
1284 net_warn_ratelimited("socket: no more sockets\n");
1285 return -ENFILE
; /* Not exactly a match, but its the
1286 closest posix thing */
1291 #ifdef CONFIG_MODULES
1292 /* Attempt to load a protocol module if the find failed.
1294 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1295 * requested real, full-featured networking support upon configuration.
1296 * Otherwise module support will break!
1298 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1299 request_module("net-pf-%d", family
);
1303 pf
= rcu_dereference(net_families
[family
]);
1304 err
= -EAFNOSUPPORT
;
1309 * We will call the ->create function, that possibly is in a loadable
1310 * module, so we have to bump that loadable module refcnt first.
1312 if (!try_module_get(pf
->owner
))
1315 /* Now protected by module ref count */
1318 err
= pf
->create(net
, sock
, protocol
, kern
);
1320 goto out_module_put
;
1323 * Now to bump the refcnt of the [loadable] module that owns this
1324 * socket at sock_release time we decrement its refcnt.
1326 if (!try_module_get(sock
->ops
->owner
))
1327 goto out_module_busy
;
1330 * Now that we're done with the ->create function, the [loadable]
1331 * module can have its refcnt decremented
1333 module_put(pf
->owner
);
1334 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1336 goto out_sock_release
;
1342 err
= -EAFNOSUPPORT
;
1345 module_put(pf
->owner
);
1352 goto out_sock_release
;
1354 EXPORT_SYMBOL(__sock_create
);
1356 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1358 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1360 EXPORT_SYMBOL(sock_create
);
1362 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1364 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1366 EXPORT_SYMBOL(sock_create_kern
);
1368 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1371 struct socket
*sock
;
1374 /* Check the SOCK_* constants for consistency. */
1375 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1376 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1377 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1378 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1380 flags
= type
& ~SOCK_TYPE_MASK
;
1381 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1383 type
&= SOCK_TYPE_MASK
;
1385 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1386 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1388 retval
= sock_create(family
, type
, protocol
, &sock
);
1392 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1397 /* It may be already another descriptor 8) Not kernel problem. */
1406 * Create a pair of connected sockets.
1409 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1410 int __user
*, usockvec
)
1412 struct socket
*sock1
, *sock2
;
1414 struct file
*newfile1
, *newfile2
;
1417 flags
= type
& ~SOCK_TYPE_MASK
;
1418 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1420 type
&= SOCK_TYPE_MASK
;
1422 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1423 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1426 * Obtain the first socket and check if the underlying protocol
1427 * supports the socketpair call.
1430 err
= sock_create(family
, type
, protocol
, &sock1
);
1434 err
= sock_create(family
, type
, protocol
, &sock2
);
1438 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1440 goto out_release_both
;
1442 fd1
= get_unused_fd_flags(flags
);
1443 if (unlikely(fd1
< 0)) {
1445 goto out_release_both
;
1448 fd2
= get_unused_fd_flags(flags
);
1449 if (unlikely(fd2
< 0)) {
1451 goto out_put_unused_1
;
1454 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1455 if (unlikely(IS_ERR(newfile1
))) {
1456 err
= PTR_ERR(newfile1
);
1457 goto out_put_unused_both
;
1460 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1461 if (IS_ERR(newfile2
)) {
1462 err
= PTR_ERR(newfile2
);
1466 err
= put_user(fd1
, &usockvec
[0]);
1470 err
= put_user(fd2
, &usockvec
[1]);
1474 audit_fd_pair(fd1
, fd2
);
1476 fd_install(fd1
, newfile1
);
1477 fd_install(fd2
, newfile2
);
1478 /* fd1 and fd2 may be already another descriptors.
1479 * Not kernel problem.
1495 sock_release(sock2
);
1498 out_put_unused_both
:
1503 sock_release(sock2
);
1505 sock_release(sock1
);
1511 * Bind a name to a socket. Nothing much to do here since it's
1512 * the protocol's responsibility to handle the local address.
1514 * We move the socket address to kernel space before we call
1515 * the protocol layer (having also checked the address is ok).
1518 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1520 struct socket
*sock
;
1521 struct sockaddr_storage address
;
1522 int err
, fput_needed
;
1524 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1526 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1528 err
= security_socket_bind(sock
,
1529 (struct sockaddr
*)&address
,
1532 err
= sock
->ops
->bind(sock
,
1536 fput_light(sock
->file
, fput_needed
);
1542 * Perform a listen. Basically, we allow the protocol to do anything
1543 * necessary for a listen, and if that works, we mark the socket as
1544 * ready for listening.
1547 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1549 struct socket
*sock
;
1550 int err
, fput_needed
;
1553 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1555 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1556 if ((unsigned int)backlog
> somaxconn
)
1557 backlog
= somaxconn
;
1559 err
= security_socket_listen(sock
, backlog
);
1561 err
= sock
->ops
->listen(sock
, backlog
);
1563 fput_light(sock
->file
, fput_needed
);
1569 * For accept, we attempt to create a new socket, set up the link
1570 * with the client, wake up the client, then return the new
1571 * connected fd. We collect the address of the connector in kernel
1572 * space and move it to user at the very end. This is unclean because
1573 * we open the socket then return an error.
1575 * 1003.1g adds the ability to recvmsg() to query connection pending
1576 * status to recvmsg. We need to add that support in a way thats
1577 * clean when we restucture accept also.
1580 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1581 int __user
*, upeer_addrlen
, int, flags
)
1583 struct socket
*sock
, *newsock
;
1584 struct file
*newfile
;
1585 int err
, len
, newfd
, fput_needed
;
1586 struct sockaddr_storage address
;
1588 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1591 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1592 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1594 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1599 newsock
= sock_alloc();
1603 newsock
->type
= sock
->type
;
1604 newsock
->ops
= sock
->ops
;
1607 * We don't need try_module_get here, as the listening socket (sock)
1608 * has the protocol module (sock->ops->owner) held.
1610 __module_get(newsock
->ops
->owner
);
1612 newfd
= get_unused_fd_flags(flags
);
1613 if (unlikely(newfd
< 0)) {
1615 sock_release(newsock
);
1618 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1619 if (unlikely(IS_ERR(newfile
))) {
1620 err
= PTR_ERR(newfile
);
1621 put_unused_fd(newfd
);
1622 sock_release(newsock
);
1626 err
= security_socket_accept(sock
, newsock
);
1630 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1634 if (upeer_sockaddr
) {
1635 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1637 err
= -ECONNABORTED
;
1640 err
= move_addr_to_user(&address
,
1641 len
, upeer_sockaddr
, upeer_addrlen
);
1646 /* File flags are not inherited via accept() unlike another OSes. */
1648 fd_install(newfd
, newfile
);
1652 fput_light(sock
->file
, fput_needed
);
1657 put_unused_fd(newfd
);
1661 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1662 int __user
*, upeer_addrlen
)
1664 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1668 * Attempt to connect to a socket with the server address. The address
1669 * is in user space so we verify it is OK and move it to kernel space.
1671 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1674 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1675 * other SEQPACKET protocols that take time to connect() as it doesn't
1676 * include the -EINPROGRESS status for such sockets.
1679 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1682 struct socket
*sock
;
1683 struct sockaddr_storage address
;
1684 int err
, fput_needed
;
1686 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1689 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1694 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1698 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1699 sock
->file
->f_flags
);
1701 fput_light(sock
->file
, fput_needed
);
1707 * Get the local address ('name') of a socket object. Move the obtained
1708 * name to user space.
1711 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1712 int __user
*, usockaddr_len
)
1714 struct socket
*sock
;
1715 struct sockaddr_storage address
;
1716 int len
, err
, fput_needed
;
1718 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1722 err
= security_socket_getsockname(sock
);
1726 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1729 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1732 fput_light(sock
->file
, fput_needed
);
1738 * Get the remote address ('name') of a socket object. Move the obtained
1739 * name to user space.
1742 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1743 int __user
*, usockaddr_len
)
1745 struct socket
*sock
;
1746 struct sockaddr_storage address
;
1747 int len
, err
, fput_needed
;
1749 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1751 err
= security_socket_getpeername(sock
);
1753 fput_light(sock
->file
, fput_needed
);
1758 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1761 err
= move_addr_to_user(&address
, len
, usockaddr
,
1763 fput_light(sock
->file
, fput_needed
);
1769 * Send a datagram to a given address. We move the address into kernel
1770 * space and check the user space data area is readable before invoking
1774 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1775 unsigned int, flags
, struct sockaddr __user
*, addr
,
1778 struct socket
*sock
;
1779 struct sockaddr_storage address
;
1787 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1791 iov
.iov_base
= buff
;
1793 msg
.msg_name
= NULL
;
1796 msg
.msg_control
= NULL
;
1797 msg
.msg_controllen
= 0;
1798 msg
.msg_namelen
= 0;
1800 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1803 msg
.msg_name
= (struct sockaddr
*)&address
;
1804 msg
.msg_namelen
= addr_len
;
1806 if (sock
->file
->f_flags
& O_NONBLOCK
)
1807 flags
|= MSG_DONTWAIT
;
1808 msg
.msg_flags
= flags
;
1809 err
= sock_sendmsg(sock
, &msg
, len
);
1812 fput_light(sock
->file
, fput_needed
);
1818 * Send a datagram down a socket.
1821 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1822 unsigned int, flags
)
1824 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1828 * Receive a frame from the socket and optionally record the address of the
1829 * sender. We verify the buffers are writable and if needed move the
1830 * sender address from kernel to user space.
1833 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1834 unsigned int, flags
, struct sockaddr __user
*, addr
,
1835 int __user
*, addr_len
)
1837 struct socket
*sock
;
1840 struct sockaddr_storage address
;
1846 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1850 msg
.msg_control
= NULL
;
1851 msg
.msg_controllen
= 0;
1855 iov
.iov_base
= ubuf
;
1856 /* Save some cycles and don't copy the address if not needed */
1857 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1858 /* We assume all kernel code knows the size of sockaddr_storage */
1859 msg
.msg_namelen
= 0;
1860 if (sock
->file
->f_flags
& O_NONBLOCK
)
1861 flags
|= MSG_DONTWAIT
;
1862 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1864 if (err
>= 0 && addr
!= NULL
) {
1865 err2
= move_addr_to_user(&address
,
1866 msg
.msg_namelen
, addr
, addr_len
);
1871 fput_light(sock
->file
, fput_needed
);
1877 * Receive a datagram from a socket.
1880 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1881 unsigned int, flags
)
1883 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1887 * Set a socket option. Because we don't know the option lengths we have
1888 * to pass the user mode parameter for the protocols to sort out.
1891 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1892 char __user
*, optval
, int, optlen
)
1894 int err
, fput_needed
;
1895 struct socket
*sock
;
1900 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1902 err
= security_socket_setsockopt(sock
, level
, optname
);
1906 if (level
== SOL_SOCKET
)
1908 sock_setsockopt(sock
, level
, optname
, optval
,
1912 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1915 fput_light(sock
->file
, fput_needed
);
1921 * Get a socket option. Because we don't know the option lengths we have
1922 * to pass a user mode parameter for the protocols to sort out.
1925 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1926 char __user
*, optval
, int __user
*, optlen
)
1928 int err
, fput_needed
;
1929 struct socket
*sock
;
1931 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1933 err
= security_socket_getsockopt(sock
, level
, optname
);
1937 if (level
== SOL_SOCKET
)
1939 sock_getsockopt(sock
, level
, optname
, optval
,
1943 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1946 fput_light(sock
->file
, fput_needed
);
1952 * Shutdown a socket.
1955 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1957 int err
, fput_needed
;
1958 struct socket
*sock
;
1960 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1962 err
= security_socket_shutdown(sock
, how
);
1964 err
= sock
->ops
->shutdown(sock
, how
);
1965 fput_light(sock
->file
, fput_needed
);
1970 /* A couple of helpful macros for getting the address of the 32/64 bit
1971 * fields which are the same type (int / unsigned) on our platforms.
1973 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1974 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1975 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1977 struct used_address
{
1978 struct sockaddr_storage name
;
1979 unsigned int name_len
;
1982 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
1983 struct msghdr __user
*umsg
)
1985 if (copy_from_user(kmsg
, umsg
, sizeof(struct msghdr
)))
1988 if (kmsg
->msg_name
== NULL
)
1989 kmsg
->msg_namelen
= 0;
1991 if (kmsg
->msg_namelen
< 0)
1994 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
1995 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
1999 static int ___sys_sendmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2000 struct msghdr
*msg_sys
, unsigned int flags
,
2001 struct used_address
*used_address
)
2003 struct compat_msghdr __user
*msg_compat
=
2004 (struct compat_msghdr __user
*)msg
;
2005 struct sockaddr_storage address
;
2006 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2007 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2008 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
2009 /* 20 is size of ipv6_pktinfo */
2010 unsigned char *ctl_buf
= ctl
;
2011 int err
, ctl_len
, total_len
;
2014 if (MSG_CMSG_COMPAT
& flags
)
2015 err
= get_compat_msghdr(msg_sys
, msg_compat
);
2017 err
= copy_msghdr_from_user(msg_sys
, msg
);
2021 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2023 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2026 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2032 /* This will also move the address data into kernel space */
2033 if (MSG_CMSG_COMPAT
& flags
) {
2034 err
= verify_compat_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2036 err
= verify_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2043 if (msg_sys
->msg_controllen
> INT_MAX
)
2045 ctl_len
= msg_sys
->msg_controllen
;
2046 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2048 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2052 ctl_buf
= msg_sys
->msg_control
;
2053 ctl_len
= msg_sys
->msg_controllen
;
2054 } else if (ctl_len
) {
2055 if (ctl_len
> sizeof(ctl
)) {
2056 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2057 if (ctl_buf
== NULL
)
2062 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2063 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2064 * checking falls down on this.
2066 if (copy_from_user(ctl_buf
,
2067 (void __user __force
*)msg_sys
->msg_control
,
2070 msg_sys
->msg_control
= ctl_buf
;
2072 msg_sys
->msg_flags
= flags
;
2074 if (sock
->file
->f_flags
& O_NONBLOCK
)
2075 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2077 * If this is sendmmsg() and current destination address is same as
2078 * previously succeeded address, omit asking LSM's decision.
2079 * used_address->name_len is initialized to UINT_MAX so that the first
2080 * destination address never matches.
2082 if (used_address
&& msg_sys
->msg_name
&&
2083 used_address
->name_len
== msg_sys
->msg_namelen
&&
2084 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2085 used_address
->name_len
)) {
2086 err
= sock_sendmsg_nosec(sock
, msg_sys
, total_len
);
2089 err
= sock_sendmsg(sock
, msg_sys
, total_len
);
2091 * If this is sendmmsg() and sending to current destination address was
2092 * successful, remember it.
2094 if (used_address
&& err
>= 0) {
2095 used_address
->name_len
= msg_sys
->msg_namelen
;
2096 if (msg_sys
->msg_name
)
2097 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2098 used_address
->name_len
);
2103 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2105 if (iov
!= iovstack
)
2112 * BSD sendmsg interface
2115 long __sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2117 int fput_needed
, err
;
2118 struct msghdr msg_sys
;
2119 struct socket
*sock
;
2121 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2125 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
2127 fput_light(sock
->file
, fput_needed
);
2132 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned int, flags
)
2134 if (flags
& MSG_CMSG_COMPAT
)
2136 return __sys_sendmsg(fd
, msg
, flags
);
2140 * Linux sendmmsg interface
2143 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2146 int fput_needed
, err
, datagrams
;
2147 struct socket
*sock
;
2148 struct mmsghdr __user
*entry
;
2149 struct compat_mmsghdr __user
*compat_entry
;
2150 struct msghdr msg_sys
;
2151 struct used_address used_address
;
2153 if (vlen
> UIO_MAXIOV
)
2158 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2162 used_address
.name_len
= UINT_MAX
;
2164 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2167 while (datagrams
< vlen
) {
2168 if (MSG_CMSG_COMPAT
& flags
) {
2169 err
= ___sys_sendmsg(sock
, (struct msghdr __user
*)compat_entry
,
2170 &msg_sys
, flags
, &used_address
);
2173 err
= __put_user(err
, &compat_entry
->msg_len
);
2176 err
= ___sys_sendmsg(sock
,
2177 (struct msghdr __user
*)entry
,
2178 &msg_sys
, flags
, &used_address
);
2181 err
= put_user(err
, &entry
->msg_len
);
2190 fput_light(sock
->file
, fput_needed
);
2192 /* We only return an error if no datagrams were able to be sent */
2199 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2200 unsigned int, vlen
, unsigned int, flags
)
2202 if (flags
& MSG_CMSG_COMPAT
)
2204 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2207 static int ___sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2208 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2210 struct compat_msghdr __user
*msg_compat
=
2211 (struct compat_msghdr __user
*)msg
;
2212 struct iovec iovstack
[UIO_FASTIOV
];
2213 struct iovec
*iov
= iovstack
;
2214 unsigned long cmsg_ptr
;
2215 int err
, total_len
, len
;
2217 /* kernel mode address */
2218 struct sockaddr_storage addr
;
2220 /* user mode address pointers */
2221 struct sockaddr __user
*uaddr
;
2222 int __user
*uaddr_len
;
2224 if (MSG_CMSG_COMPAT
& flags
)
2225 err
= get_compat_msghdr(msg_sys
, msg_compat
);
2227 err
= copy_msghdr_from_user(msg_sys
, msg
);
2231 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2233 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2236 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2242 /* Save the user-mode address (verify_iovec will change the
2243 * kernel msghdr to use the kernel address space)
2245 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2246 uaddr_len
= COMPAT_NAMELEN(msg
);
2247 if (MSG_CMSG_COMPAT
& flags
)
2248 err
= verify_compat_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2250 err
= verify_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2255 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2256 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2258 /* We assume all kernel code knows the size of sockaddr_storage */
2259 msg_sys
->msg_namelen
= 0;
2261 if (sock
->file
->f_flags
& O_NONBLOCK
)
2262 flags
|= MSG_DONTWAIT
;
2263 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2269 if (uaddr
!= NULL
) {
2270 err
= move_addr_to_user(&addr
,
2271 msg_sys
->msg_namelen
, uaddr
,
2276 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2280 if (MSG_CMSG_COMPAT
& flags
)
2281 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2282 &msg_compat
->msg_controllen
);
2284 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2285 &msg
->msg_controllen
);
2291 if (iov
!= iovstack
)
2298 * BSD recvmsg interface
2301 long __sys_recvmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2303 int fput_needed
, err
;
2304 struct msghdr msg_sys
;
2305 struct socket
*sock
;
2307 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2311 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2313 fput_light(sock
->file
, fput_needed
);
2318 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2319 unsigned int, flags
)
2321 if (flags
& MSG_CMSG_COMPAT
)
2323 return __sys_recvmsg(fd
, msg
, flags
);
2327 * Linux recvmmsg interface
2330 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2331 unsigned int flags
, struct timespec
*timeout
)
2333 int fput_needed
, err
, datagrams
;
2334 struct socket
*sock
;
2335 struct mmsghdr __user
*entry
;
2336 struct compat_mmsghdr __user
*compat_entry
;
2337 struct msghdr msg_sys
;
2338 struct timespec end_time
;
2341 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2347 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2351 err
= sock_error(sock
->sk
);
2356 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2358 while (datagrams
< vlen
) {
2360 * No need to ask LSM for more than the first datagram.
2362 if (MSG_CMSG_COMPAT
& flags
) {
2363 err
= ___sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2364 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2368 err
= __put_user(err
, &compat_entry
->msg_len
);
2371 err
= ___sys_recvmsg(sock
,
2372 (struct msghdr __user
*)entry
,
2373 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2377 err
= put_user(err
, &entry
->msg_len
);
2385 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2386 if (flags
& MSG_WAITFORONE
)
2387 flags
|= MSG_DONTWAIT
;
2390 ktime_get_ts(timeout
);
2391 *timeout
= timespec_sub(end_time
, *timeout
);
2392 if (timeout
->tv_sec
< 0) {
2393 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2397 /* Timeout, return less than vlen datagrams */
2398 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2402 /* Out of band data, return right away */
2403 if (msg_sys
.msg_flags
& MSG_OOB
)
2410 if (datagrams
== 0) {
2416 * We may return less entries than requested (vlen) if the
2417 * sock is non block and there aren't enough datagrams...
2419 if (err
!= -EAGAIN
) {
2421 * ... or if recvmsg returns an error after we
2422 * received some datagrams, where we record the
2423 * error to return on the next call or if the
2424 * app asks about it using getsockopt(SO_ERROR).
2426 sock
->sk
->sk_err
= -err
;
2429 fput_light(sock
->file
, fput_needed
);
2434 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2435 unsigned int, vlen
, unsigned int, flags
,
2436 struct timespec __user
*, timeout
)
2439 struct timespec timeout_sys
;
2441 if (flags
& MSG_CMSG_COMPAT
)
2445 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2447 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2450 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2452 if (datagrams
> 0 &&
2453 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2454 datagrams
= -EFAULT
;
2459 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2460 /* Argument list sizes for sys_socketcall */
2461 #define AL(x) ((x) * sizeof(unsigned long))
2462 static const unsigned char nargs
[21] = {
2463 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2464 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2465 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2472 * System call vectors.
2474 * Argument checking cleaned up. Saved 20% in size.
2475 * This function doesn't need to set the kernel lock because
2476 * it is set by the callees.
2479 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2481 unsigned long a
[AUDITSC_ARGS
];
2482 unsigned long a0
, a1
;
2486 if (call
< 1 || call
> SYS_SENDMMSG
)
2490 if (len
> sizeof(a
))
2493 /* copy_from_user should be SMP safe. */
2494 if (copy_from_user(a
, args
, len
))
2497 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2506 err
= sys_socket(a0
, a1
, a
[2]);
2509 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2512 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2515 err
= sys_listen(a0
, a1
);
2518 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2519 (int __user
*)a
[2], 0);
2521 case SYS_GETSOCKNAME
:
2523 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2524 (int __user
*)a
[2]);
2526 case SYS_GETPEERNAME
:
2528 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2529 (int __user
*)a
[2]);
2531 case SYS_SOCKETPAIR
:
2532 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2535 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2538 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2539 (struct sockaddr __user
*)a
[4], a
[5]);
2542 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2545 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2546 (struct sockaddr __user
*)a
[4],
2547 (int __user
*)a
[5]);
2550 err
= sys_shutdown(a0
, a1
);
2552 case SYS_SETSOCKOPT
:
2553 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2555 case SYS_GETSOCKOPT
:
2557 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2558 (int __user
*)a
[4]);
2561 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2564 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2567 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2570 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2571 (struct timespec __user
*)a
[4]);
2574 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2575 (int __user
*)a
[2], a
[3]);
2584 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2587 * sock_register - add a socket protocol handler
2588 * @ops: description of protocol
2590 * This function is called by a protocol handler that wants to
2591 * advertise its address family, and have it linked into the
2592 * socket interface. The value ops->family coresponds to the
2593 * socket system call protocol family.
2595 int sock_register(const struct net_proto_family
*ops
)
2599 if (ops
->family
>= NPROTO
) {
2600 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2604 spin_lock(&net_family_lock
);
2605 if (rcu_dereference_protected(net_families
[ops
->family
],
2606 lockdep_is_held(&net_family_lock
)))
2609 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2612 spin_unlock(&net_family_lock
);
2614 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2617 EXPORT_SYMBOL(sock_register
);
2620 * sock_unregister - remove a protocol handler
2621 * @family: protocol family to remove
2623 * This function is called by a protocol handler that wants to
2624 * remove its address family, and have it unlinked from the
2625 * new socket creation.
2627 * If protocol handler is a module, then it can use module reference
2628 * counts to protect against new references. If protocol handler is not
2629 * a module then it needs to provide its own protection in
2630 * the ops->create routine.
2632 void sock_unregister(int family
)
2634 BUG_ON(family
< 0 || family
>= NPROTO
);
2636 spin_lock(&net_family_lock
);
2637 RCU_INIT_POINTER(net_families
[family
], NULL
);
2638 spin_unlock(&net_family_lock
);
2642 pr_info("NET: Unregistered protocol family %d\n", family
);
2644 EXPORT_SYMBOL(sock_unregister
);
2646 static int __init
sock_init(void)
2650 * Initialize the network sysctl infrastructure.
2652 err
= net_sysctl_init();
2657 * Initialize skbuff SLAB cache
2662 * Initialize the protocols module.
2667 err
= register_filesystem(&sock_fs_type
);
2670 sock_mnt
= kern_mount(&sock_fs_type
);
2671 if (IS_ERR(sock_mnt
)) {
2672 err
= PTR_ERR(sock_mnt
);
2676 /* The real protocol initialization is performed in later initcalls.
2679 #ifdef CONFIG_NETFILTER
2680 err
= netfilter_init();
2685 ptp_classifier_init();
2691 unregister_filesystem(&sock_fs_type
);
2696 core_initcall(sock_init
); /* early initcall */
2698 #ifdef CONFIG_PROC_FS
2699 void socket_seq_show(struct seq_file
*seq
)
2704 for_each_possible_cpu(cpu
)
2705 counter
+= per_cpu(sockets_in_use
, cpu
);
2707 /* It can be negative, by the way. 8) */
2711 seq_printf(seq
, "sockets: used %d\n", counter
);
2713 #endif /* CONFIG_PROC_FS */
2715 #ifdef CONFIG_COMPAT
2716 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2717 unsigned int cmd
, void __user
*up
)
2719 mm_segment_t old_fs
= get_fs();
2724 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2727 err
= compat_put_timeval(&ktv
, up
);
2732 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2733 unsigned int cmd
, void __user
*up
)
2735 mm_segment_t old_fs
= get_fs();
2736 struct timespec kts
;
2740 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2743 err
= compat_put_timespec(&kts
, up
);
2748 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2750 struct ifreq __user
*uifr
;
2753 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2754 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2757 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2761 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2767 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2769 struct compat_ifconf ifc32
;
2771 struct ifconf __user
*uifc
;
2772 struct compat_ifreq __user
*ifr32
;
2773 struct ifreq __user
*ifr
;
2777 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2780 memset(&ifc
, 0, sizeof(ifc
));
2781 if (ifc32
.ifcbuf
== 0) {
2785 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2787 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2788 sizeof(struct ifreq
);
2789 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2791 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2792 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2793 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2794 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2800 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2803 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2807 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2811 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2813 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2814 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2815 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2821 if (ifc32
.ifcbuf
== 0) {
2822 /* Translate from 64-bit structure multiple to
2826 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2831 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2837 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2839 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2840 bool convert_in
= false, convert_out
= false;
2841 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2842 struct ethtool_rxnfc __user
*rxnfc
;
2843 struct ifreq __user
*ifr
;
2844 u32 rule_cnt
= 0, actual_rule_cnt
;
2849 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2852 compat_rxnfc
= compat_ptr(data
);
2854 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2857 /* Most ethtool structures are defined without padding.
2858 * Unfortunately struct ethtool_rxnfc is an exception.
2863 case ETHTOOL_GRXCLSRLALL
:
2864 /* Buffer size is variable */
2865 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2867 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2869 buf_size
+= rule_cnt
* sizeof(u32
);
2871 case ETHTOOL_GRXRINGS
:
2872 case ETHTOOL_GRXCLSRLCNT
:
2873 case ETHTOOL_GRXCLSRULE
:
2874 case ETHTOOL_SRXCLSRLINS
:
2877 case ETHTOOL_SRXCLSRLDEL
:
2878 buf_size
+= sizeof(struct ethtool_rxnfc
);
2883 ifr
= compat_alloc_user_space(buf_size
);
2884 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2886 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2889 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2890 &ifr
->ifr_ifru
.ifru_data
))
2894 /* We expect there to be holes between fs.m_ext and
2895 * fs.ring_cookie and at the end of fs, but nowhere else.
2897 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2898 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2899 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2900 sizeof(rxnfc
->fs
.m_ext
));
2902 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2903 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2904 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2905 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2907 if (copy_in_user(rxnfc
, compat_rxnfc
,
2908 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2909 (void __user
*)rxnfc
) ||
2910 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2911 &compat_rxnfc
->fs
.ring_cookie
,
2912 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2913 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2914 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2915 sizeof(rxnfc
->rule_cnt
)))
2919 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2924 if (copy_in_user(compat_rxnfc
, rxnfc
,
2925 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2926 (const void __user
*)rxnfc
) ||
2927 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2928 &rxnfc
->fs
.ring_cookie
,
2929 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2930 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2931 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2932 sizeof(rxnfc
->rule_cnt
)))
2935 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2936 /* As an optimisation, we only copy the actual
2937 * number of rules that the underlying
2938 * function returned. Since Mallory might
2939 * change the rule count in user memory, we
2940 * check that it is less than the rule count
2941 * originally given (as the user buffer size),
2942 * which has been range-checked.
2944 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2946 if (actual_rule_cnt
< rule_cnt
)
2947 rule_cnt
= actual_rule_cnt
;
2948 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2949 &rxnfc
->rule_locs
[0],
2950 rule_cnt
* sizeof(u32
)))
2958 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2961 compat_uptr_t uptr32
;
2962 struct ifreq __user
*uifr
;
2964 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2965 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2968 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2971 uptr
= compat_ptr(uptr32
);
2973 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2976 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2979 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2980 struct compat_ifreq __user
*ifr32
)
2983 mm_segment_t old_fs
;
2987 case SIOCBONDENSLAVE
:
2988 case SIOCBONDRELEASE
:
2989 case SIOCBONDSETHWADDR
:
2990 case SIOCBONDCHANGEACTIVE
:
2991 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2996 err
= dev_ioctl(net
, cmd
,
2997 (struct ifreq __user __force
*) &kifr
);
3002 return -ENOIOCTLCMD
;
3006 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3007 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3008 struct compat_ifreq __user
*u_ifreq32
)
3010 struct ifreq __user
*u_ifreq64
;
3011 char tmp_buf
[IFNAMSIZ
];
3012 void __user
*data64
;
3015 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
3018 if (get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
3020 data64
= compat_ptr(data32
);
3022 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
3024 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
3027 if (put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
3030 return dev_ioctl(net
, cmd
, u_ifreq64
);
3033 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
3034 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
3036 struct ifreq __user
*uifr
;
3039 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3040 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3043 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3054 case SIOCGIFBRDADDR
:
3055 case SIOCGIFDSTADDR
:
3056 case SIOCGIFNETMASK
:
3061 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3069 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3070 struct compat_ifreq __user
*uifr32
)
3073 struct compat_ifmap __user
*uifmap32
;
3074 mm_segment_t old_fs
;
3077 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3078 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3079 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3080 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3081 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3082 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3083 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3084 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3090 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
3093 if (cmd
== SIOCGIFMAP
&& !err
) {
3094 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3095 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3096 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3097 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3098 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3099 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3100 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3109 struct sockaddr rt_dst
; /* target address */
3110 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3111 struct sockaddr rt_genmask
; /* target network mask (IP) */
3112 unsigned short rt_flags
;
3115 unsigned char rt_tos
;
3116 unsigned char rt_class
;
3118 short rt_metric
; /* +1 for binary compatibility! */
3119 /* char * */ u32 rt_dev
; /* forcing the device at add */
3120 u32 rt_mtu
; /* per route MTU/Window */
3121 u32 rt_window
; /* Window clamping */
3122 unsigned short rt_irtt
; /* Initial RTT */
3125 struct in6_rtmsg32
{
3126 struct in6_addr rtmsg_dst
;
3127 struct in6_addr rtmsg_src
;
3128 struct in6_addr rtmsg_gateway
;
3138 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3139 unsigned int cmd
, void __user
*argp
)
3143 struct in6_rtmsg r6
;
3147 mm_segment_t old_fs
= get_fs();
3149 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3150 struct in6_rtmsg32 __user
*ur6
= argp
;
3151 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3152 3 * sizeof(struct in6_addr
));
3153 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3154 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3155 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3156 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3157 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3158 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3159 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3163 struct rtentry32 __user
*ur4
= argp
;
3164 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3165 3 * sizeof(struct sockaddr
));
3166 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3167 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3168 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3169 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3170 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3171 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3173 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3174 r4
.rt_dev
= (char __user __force
*)devname
;
3188 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3195 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3196 * for some operations; this forces use of the newer bridge-utils that
3197 * use compatible ioctls
3199 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3203 if (get_user(tmp
, argp
))
3205 if (tmp
== BRCTL_GET_VERSION
)
3206 return BRCTL_VERSION
+ 1;
3210 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3211 unsigned int cmd
, unsigned long arg
)
3213 void __user
*argp
= compat_ptr(arg
);
3214 struct sock
*sk
= sock
->sk
;
3215 struct net
*net
= sock_net(sk
);
3217 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3218 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3223 return old_bridge_ioctl(argp
);
3225 return dev_ifname32(net
, argp
);
3227 return dev_ifconf(net
, argp
);
3229 return ethtool_ioctl(net
, argp
);
3231 return compat_siocwandev(net
, argp
);
3234 return compat_sioc_ifmap(net
, cmd
, argp
);
3235 case SIOCBONDENSLAVE
:
3236 case SIOCBONDRELEASE
:
3237 case SIOCBONDSETHWADDR
:
3238 case SIOCBONDCHANGEACTIVE
:
3239 return bond_ioctl(net
, cmd
, argp
);
3242 return routing_ioctl(net
, sock
, cmd
, argp
);
3244 return do_siocgstamp(net
, sock
, cmd
, argp
);
3246 return do_siocgstampns(net
, sock
, cmd
, argp
);
3247 case SIOCBONDSLAVEINFOQUERY
:
3248 case SIOCBONDINFOQUERY
:
3251 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3263 return sock_ioctl(file
, cmd
, arg
);
3280 case SIOCSIFHWBROADCAST
:
3282 case SIOCGIFBRDADDR
:
3283 case SIOCSIFBRDADDR
:
3284 case SIOCGIFDSTADDR
:
3285 case SIOCSIFDSTADDR
:
3286 case SIOCGIFNETMASK
:
3287 case SIOCSIFNETMASK
:
3298 return dev_ifsioc(net
, sock
, cmd
, argp
);
3304 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3307 return -ENOIOCTLCMD
;
3310 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3313 struct socket
*sock
= file
->private_data
;
3314 int ret
= -ENOIOCTLCMD
;
3321 if (sock
->ops
->compat_ioctl
)
3322 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3324 if (ret
== -ENOIOCTLCMD
&&
3325 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3326 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3328 if (ret
== -ENOIOCTLCMD
)
3329 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3335 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3337 return sock
->ops
->bind(sock
, addr
, addrlen
);
3339 EXPORT_SYMBOL(kernel_bind
);
3341 int kernel_listen(struct socket
*sock
, int backlog
)
3343 return sock
->ops
->listen(sock
, backlog
);
3345 EXPORT_SYMBOL(kernel_listen
);
3347 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3349 struct sock
*sk
= sock
->sk
;
3352 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3357 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3359 sock_release(*newsock
);
3364 (*newsock
)->ops
= sock
->ops
;
3365 __module_get((*newsock
)->ops
->owner
);
3370 EXPORT_SYMBOL(kernel_accept
);
3372 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3375 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3377 EXPORT_SYMBOL(kernel_connect
);
3379 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3382 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3384 EXPORT_SYMBOL(kernel_getsockname
);
3386 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3389 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3391 EXPORT_SYMBOL(kernel_getpeername
);
3393 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3394 char *optval
, int *optlen
)
3396 mm_segment_t oldfs
= get_fs();
3397 char __user
*uoptval
;
3398 int __user
*uoptlen
;
3401 uoptval
= (char __user __force
*) optval
;
3402 uoptlen
= (int __user __force
*) optlen
;
3405 if (level
== SOL_SOCKET
)
3406 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3408 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3413 EXPORT_SYMBOL(kernel_getsockopt
);
3415 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3416 char *optval
, unsigned int optlen
)
3418 mm_segment_t oldfs
= get_fs();
3419 char __user
*uoptval
;
3422 uoptval
= (char __user __force
*) optval
;
3425 if (level
== SOL_SOCKET
)
3426 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3428 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3433 EXPORT_SYMBOL(kernel_setsockopt
);
3435 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3436 size_t size
, int flags
)
3438 if (sock
->ops
->sendpage
)
3439 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3441 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3443 EXPORT_SYMBOL(kernel_sendpage
);
3445 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3447 mm_segment_t oldfs
= get_fs();
3451 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3456 EXPORT_SYMBOL(kernel_sock_ioctl
);
3458 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3460 return sock
->ops
->shutdown(sock
, how
);
3462 EXPORT_SYMBOL(kernel_sock_shutdown
);