2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE
= 0,
59 CHUNK_ALLOC_LIMITED
= 1,
60 CHUNK_ALLOC_FORCE
= 2,
63 static int update_block_group(struct btrfs_trans_handle
*trans
,
64 struct btrfs_root
*root
, u64 bytenr
,
65 u64 num_bytes
, int alloc
);
66 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
67 struct btrfs_root
*root
,
68 struct btrfs_delayed_ref_node
*node
, u64 parent
,
69 u64 root_objectid
, u64 owner_objectid
,
70 u64 owner_offset
, int refs_to_drop
,
71 struct btrfs_delayed_extent_op
*extra_op
);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
73 struct extent_buffer
*leaf
,
74 struct btrfs_extent_item
*ei
);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
76 struct btrfs_root
*root
,
77 u64 parent
, u64 root_objectid
,
78 u64 flags
, u64 owner
, u64 offset
,
79 struct btrfs_key
*ins
, int ref_mod
);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
81 struct btrfs_root
*root
,
82 u64 parent
, u64 root_objectid
,
83 u64 flags
, struct btrfs_disk_key
*key
,
84 int level
, struct btrfs_key
*ins
);
85 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
86 struct btrfs_root
*extent_root
, u64 flags
,
88 static int find_next_key(struct btrfs_path
*path
, int level
,
89 struct btrfs_key
*key
);
90 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
91 struct btrfs_space_info
*info
, u64 bytes
,
92 int dump_block_groups
);
93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
94 u64 ram_bytes
, u64 num_bytes
, int delalloc
);
95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
96 u64 num_bytes
, int delalloc
);
97 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
99 int btrfs_pin_extent(struct btrfs_root
*root
,
100 u64 bytenr
, u64 num_bytes
, int reserved
);
101 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
102 struct btrfs_space_info
*space_info
,
104 enum btrfs_reserve_flush_enum flush
);
105 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
106 struct btrfs_space_info
*space_info
,
108 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
109 struct btrfs_space_info
*space_info
,
113 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
116 return cache
->cached
== BTRFS_CACHE_FINISHED
||
117 cache
->cached
== BTRFS_CACHE_ERROR
;
120 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
122 return (cache
->flags
& bits
) == bits
;
125 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
127 atomic_inc(&cache
->count
);
130 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
132 if (atomic_dec_and_test(&cache
->count
)) {
133 WARN_ON(cache
->pinned
> 0);
134 WARN_ON(cache
->reserved
> 0);
135 kfree(cache
->free_space_ctl
);
141 * this adds the block group to the fs_info rb tree for the block group
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
145 struct btrfs_block_group_cache
*block_group
)
148 struct rb_node
*parent
= NULL
;
149 struct btrfs_block_group_cache
*cache
;
151 spin_lock(&info
->block_group_cache_lock
);
152 p
= &info
->block_group_cache_tree
.rb_node
;
156 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
158 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
160 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
163 spin_unlock(&info
->block_group_cache_lock
);
168 rb_link_node(&block_group
->cache_node
, parent
, p
);
169 rb_insert_color(&block_group
->cache_node
,
170 &info
->block_group_cache_tree
);
172 if (info
->first_logical_byte
> block_group
->key
.objectid
)
173 info
->first_logical_byte
= block_group
->key
.objectid
;
175 spin_unlock(&info
->block_group_cache_lock
);
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
184 static struct btrfs_block_group_cache
*
185 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
188 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
192 spin_lock(&info
->block_group_cache_lock
);
193 n
= info
->block_group_cache_tree
.rb_node
;
196 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
198 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
199 start
= cache
->key
.objectid
;
201 if (bytenr
< start
) {
202 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
205 } else if (bytenr
> start
) {
206 if (contains
&& bytenr
<= end
) {
217 btrfs_get_block_group(ret
);
218 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
219 info
->first_logical_byte
= ret
->key
.objectid
;
221 spin_unlock(&info
->block_group_cache_lock
);
226 static int add_excluded_extent(struct btrfs_root
*root
,
227 u64 start
, u64 num_bytes
)
229 u64 end
= start
+ num_bytes
- 1;
230 set_extent_bits(&root
->fs_info
->freed_extents
[0],
231 start
, end
, EXTENT_UPTODATE
);
232 set_extent_bits(&root
->fs_info
->freed_extents
[1],
233 start
, end
, EXTENT_UPTODATE
);
237 static void free_excluded_extents(struct btrfs_root
*root
,
238 struct btrfs_block_group_cache
*cache
)
242 start
= cache
->key
.objectid
;
243 end
= start
+ cache
->key
.offset
- 1;
245 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
246 start
, end
, EXTENT_UPTODATE
);
247 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
248 start
, end
, EXTENT_UPTODATE
);
251 static int exclude_super_stripes(struct btrfs_root
*root
,
252 struct btrfs_block_group_cache
*cache
)
259 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
260 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
261 cache
->bytes_super
+= stripe_len
;
262 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
268 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
269 bytenr
= btrfs_sb_offset(i
);
270 ret
= btrfs_rmap_block(root
->fs_info
, cache
->key
.objectid
,
271 bytenr
, 0, &logical
, &nr
, &stripe_len
);
278 if (logical
[nr
] > cache
->key
.objectid
+
282 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
286 if (start
< cache
->key
.objectid
) {
287 start
= cache
->key
.objectid
;
288 len
= (logical
[nr
] + stripe_len
) - start
;
290 len
= min_t(u64
, stripe_len
,
291 cache
->key
.objectid
+
292 cache
->key
.offset
- start
);
295 cache
->bytes_super
+= len
;
296 ret
= add_excluded_extent(root
, start
, len
);
308 static struct btrfs_caching_control
*
309 get_caching_control(struct btrfs_block_group_cache
*cache
)
311 struct btrfs_caching_control
*ctl
;
313 spin_lock(&cache
->lock
);
314 if (!cache
->caching_ctl
) {
315 spin_unlock(&cache
->lock
);
319 ctl
= cache
->caching_ctl
;
320 atomic_inc(&ctl
->count
);
321 spin_unlock(&cache
->lock
);
325 static void put_caching_control(struct btrfs_caching_control
*ctl
)
327 if (atomic_dec_and_test(&ctl
->count
))
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root
*root
,
333 struct btrfs_block_group_cache
*block_group
)
335 u64 start
= block_group
->key
.objectid
;
336 u64 len
= block_group
->key
.offset
;
337 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
338 root
->nodesize
: root
->sectorsize
;
339 u64 step
= chunk
<< 1;
341 while (len
> chunk
) {
342 btrfs_remove_free_space(block_group
, start
, chunk
);
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
357 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
358 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
360 u64 extent_start
, extent_end
, size
, total_added
= 0;
363 while (start
< end
) {
364 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
365 &extent_start
, &extent_end
,
366 EXTENT_DIRTY
| EXTENT_UPTODATE
,
371 if (extent_start
<= start
) {
372 start
= extent_end
+ 1;
373 } else if (extent_start
> start
&& extent_start
< end
) {
374 size
= extent_start
- start
;
376 ret
= btrfs_add_free_space(block_group
, start
,
378 BUG_ON(ret
); /* -ENOMEM or logic error */
379 start
= extent_end
+ 1;
388 ret
= btrfs_add_free_space(block_group
, start
, size
);
389 BUG_ON(ret
); /* -ENOMEM or logic error */
395 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
397 struct btrfs_block_group_cache
*block_group
;
398 struct btrfs_fs_info
*fs_info
;
399 struct btrfs_root
*extent_root
;
400 struct btrfs_path
*path
;
401 struct extent_buffer
*leaf
;
402 struct btrfs_key key
;
409 block_group
= caching_ctl
->block_group
;
410 fs_info
= block_group
->fs_info
;
411 extent_root
= fs_info
->extent_root
;
413 path
= btrfs_alloc_path();
417 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
419 #ifdef CONFIG_BTRFS_DEBUG
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
425 if (btrfs_should_fragment_free_space(extent_root
, block_group
))
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
434 path
->skip_locking
= 1;
435 path
->search_commit_root
= 1;
436 path
->reada
= READA_FORWARD
;
440 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
443 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
447 leaf
= path
->nodes
[0];
448 nritems
= btrfs_header_nritems(leaf
);
451 if (btrfs_fs_closing(fs_info
) > 1) {
456 if (path
->slots
[0] < nritems
) {
457 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
459 ret
= find_next_key(path
, 0, &key
);
463 if (need_resched() ||
464 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
466 caching_ctl
->progress
= last
;
467 btrfs_release_path(path
);
468 up_read(&fs_info
->commit_root_sem
);
469 mutex_unlock(&caching_ctl
->mutex
);
471 mutex_lock(&caching_ctl
->mutex
);
472 down_read(&fs_info
->commit_root_sem
);
476 ret
= btrfs_next_leaf(extent_root
, path
);
481 leaf
= path
->nodes
[0];
482 nritems
= btrfs_header_nritems(leaf
);
486 if (key
.objectid
< last
) {
489 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
492 caching_ctl
->progress
= last
;
493 btrfs_release_path(path
);
497 if (key
.objectid
< block_group
->key
.objectid
) {
502 if (key
.objectid
>= block_group
->key
.objectid
+
503 block_group
->key
.offset
)
506 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
507 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
508 total_found
+= add_new_free_space(block_group
,
511 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
512 last
= key
.objectid
+
513 fs_info
->tree_root
->nodesize
;
515 last
= key
.objectid
+ key
.offset
;
517 if (total_found
> CACHING_CTL_WAKE_UP
) {
520 wake_up(&caching_ctl
->wait
);
527 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
528 block_group
->key
.objectid
+
529 block_group
->key
.offset
);
530 caching_ctl
->progress
= (u64
)-1;
533 btrfs_free_path(path
);
537 static noinline
void caching_thread(struct btrfs_work
*work
)
539 struct btrfs_block_group_cache
*block_group
;
540 struct btrfs_fs_info
*fs_info
;
541 struct btrfs_caching_control
*caching_ctl
;
542 struct btrfs_root
*extent_root
;
545 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
546 block_group
= caching_ctl
->block_group
;
547 fs_info
= block_group
->fs_info
;
548 extent_root
= fs_info
->extent_root
;
550 mutex_lock(&caching_ctl
->mutex
);
551 down_read(&fs_info
->commit_root_sem
);
553 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
554 ret
= load_free_space_tree(caching_ctl
);
556 ret
= load_extent_tree_free(caching_ctl
);
558 spin_lock(&block_group
->lock
);
559 block_group
->caching_ctl
= NULL
;
560 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
561 spin_unlock(&block_group
->lock
);
563 #ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root
, block_group
)) {
567 spin_lock(&block_group
->space_info
->lock
);
568 spin_lock(&block_group
->lock
);
569 bytes_used
= block_group
->key
.offset
-
570 btrfs_block_group_used(&block_group
->item
);
571 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
572 spin_unlock(&block_group
->lock
);
573 spin_unlock(&block_group
->space_info
->lock
);
574 fragment_free_space(extent_root
, block_group
);
578 caching_ctl
->progress
= (u64
)-1;
580 up_read(&fs_info
->commit_root_sem
);
581 free_excluded_extents(fs_info
->extent_root
, block_group
);
582 mutex_unlock(&caching_ctl
->mutex
);
584 wake_up(&caching_ctl
->wait
);
586 put_caching_control(caching_ctl
);
587 btrfs_put_block_group(block_group
);
590 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
594 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
595 struct btrfs_caching_control
*caching_ctl
;
598 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
602 INIT_LIST_HEAD(&caching_ctl
->list
);
603 mutex_init(&caching_ctl
->mutex
);
604 init_waitqueue_head(&caching_ctl
->wait
);
605 caching_ctl
->block_group
= cache
;
606 caching_ctl
->progress
= cache
->key
.objectid
;
607 atomic_set(&caching_ctl
->count
, 1);
608 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
609 caching_thread
, NULL
, NULL
);
611 spin_lock(&cache
->lock
);
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
624 while (cache
->cached
== BTRFS_CACHE_FAST
) {
625 struct btrfs_caching_control
*ctl
;
627 ctl
= cache
->caching_ctl
;
628 atomic_inc(&ctl
->count
);
629 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
630 spin_unlock(&cache
->lock
);
634 finish_wait(&ctl
->wait
, &wait
);
635 put_caching_control(ctl
);
636 spin_lock(&cache
->lock
);
639 if (cache
->cached
!= BTRFS_CACHE_NO
) {
640 spin_unlock(&cache
->lock
);
644 WARN_ON(cache
->caching_ctl
);
645 cache
->caching_ctl
= caching_ctl
;
646 cache
->cached
= BTRFS_CACHE_FAST
;
647 spin_unlock(&cache
->lock
);
649 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
650 mutex_lock(&caching_ctl
->mutex
);
651 ret
= load_free_space_cache(fs_info
, cache
);
653 spin_lock(&cache
->lock
);
655 cache
->caching_ctl
= NULL
;
656 cache
->cached
= BTRFS_CACHE_FINISHED
;
657 cache
->last_byte_to_unpin
= (u64
)-1;
658 caching_ctl
->progress
= (u64
)-1;
660 if (load_cache_only
) {
661 cache
->caching_ctl
= NULL
;
662 cache
->cached
= BTRFS_CACHE_NO
;
664 cache
->cached
= BTRFS_CACHE_STARTED
;
665 cache
->has_caching_ctl
= 1;
668 spin_unlock(&cache
->lock
);
669 #ifdef CONFIG_BTRFS_DEBUG
671 btrfs_should_fragment_free_space(fs_info
->extent_root
,
675 spin_lock(&cache
->space_info
->lock
);
676 spin_lock(&cache
->lock
);
677 bytes_used
= cache
->key
.offset
-
678 btrfs_block_group_used(&cache
->item
);
679 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
680 spin_unlock(&cache
->lock
);
681 spin_unlock(&cache
->space_info
->lock
);
682 fragment_free_space(fs_info
->extent_root
, cache
);
685 mutex_unlock(&caching_ctl
->mutex
);
687 wake_up(&caching_ctl
->wait
);
689 put_caching_control(caching_ctl
);
690 free_excluded_extents(fs_info
->extent_root
, cache
);
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
698 spin_lock(&cache
->lock
);
699 if (load_cache_only
) {
700 cache
->caching_ctl
= NULL
;
701 cache
->cached
= BTRFS_CACHE_NO
;
703 cache
->cached
= BTRFS_CACHE_STARTED
;
704 cache
->has_caching_ctl
= 1;
706 spin_unlock(&cache
->lock
);
707 wake_up(&caching_ctl
->wait
);
710 if (load_cache_only
) {
711 put_caching_control(caching_ctl
);
715 down_write(&fs_info
->commit_root_sem
);
716 atomic_inc(&caching_ctl
->count
);
717 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
718 up_write(&fs_info
->commit_root_sem
);
720 btrfs_get_block_group(cache
);
722 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
728 * return the block group that starts at or after bytenr
730 static struct btrfs_block_group_cache
*
731 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
733 return block_group_cache_tree_search(info
, bytenr
, 0);
737 * return the block group that contains the given bytenr
739 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
740 struct btrfs_fs_info
*info
,
743 return block_group_cache_tree_search(info
, bytenr
, 1);
746 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
749 struct list_head
*head
= &info
->space_info
;
750 struct btrfs_space_info
*found
;
752 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
755 list_for_each_entry_rcu(found
, head
, list
) {
756 if (found
->flags
& flags
) {
766 * after adding space to the filesystem, we need to clear the full flags
767 * on all the space infos.
769 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
771 struct list_head
*head
= &info
->space_info
;
772 struct btrfs_space_info
*found
;
775 list_for_each_entry_rcu(found
, head
, list
)
780 /* simple helper to search for an existing data extent at a given offset */
781 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
784 struct btrfs_key key
;
785 struct btrfs_path
*path
;
787 path
= btrfs_alloc_path();
791 key
.objectid
= start
;
793 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
794 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
796 btrfs_free_path(path
);
801 * helper function to lookup reference count and flags of a tree block.
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
810 struct btrfs_root
*root
, u64 bytenr
,
811 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
813 struct btrfs_delayed_ref_head
*head
;
814 struct btrfs_delayed_ref_root
*delayed_refs
;
815 struct btrfs_path
*path
;
816 struct btrfs_extent_item
*ei
;
817 struct extent_buffer
*leaf
;
818 struct btrfs_key key
;
825 * If we don't have skinny metadata, don't bother doing anything
828 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
829 offset
= root
->nodesize
;
833 path
= btrfs_alloc_path();
838 path
->skip_locking
= 1;
839 path
->search_commit_root
= 1;
843 key
.objectid
= bytenr
;
846 key
.type
= BTRFS_METADATA_ITEM_KEY
;
848 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
850 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
855 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
856 if (path
->slots
[0]) {
858 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
860 if (key
.objectid
== bytenr
&&
861 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
862 key
.offset
== root
->nodesize
)
868 leaf
= path
->nodes
[0];
869 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
870 if (item_size
>= sizeof(*ei
)) {
871 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
872 struct btrfs_extent_item
);
873 num_refs
= btrfs_extent_refs(leaf
, ei
);
874 extent_flags
= btrfs_extent_flags(leaf
, ei
);
876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 struct btrfs_extent_item_v0
*ei0
;
878 BUG_ON(item_size
!= sizeof(*ei0
));
879 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
880 struct btrfs_extent_item_v0
);
881 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
882 /* FIXME: this isn't correct for data */
883 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
888 BUG_ON(num_refs
== 0);
898 delayed_refs
= &trans
->transaction
->delayed_refs
;
899 spin_lock(&delayed_refs
->lock
);
900 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
902 if (!mutex_trylock(&head
->mutex
)) {
903 atomic_inc(&head
->node
.refs
);
904 spin_unlock(&delayed_refs
->lock
);
906 btrfs_release_path(path
);
909 * Mutex was contended, block until it's released and try
912 mutex_lock(&head
->mutex
);
913 mutex_unlock(&head
->mutex
);
914 btrfs_put_delayed_ref(&head
->node
);
917 spin_lock(&head
->lock
);
918 if (head
->extent_op
&& head
->extent_op
->update_flags
)
919 extent_flags
|= head
->extent_op
->flags_to_set
;
921 BUG_ON(num_refs
== 0);
923 num_refs
+= head
->node
.ref_mod
;
924 spin_unlock(&head
->lock
);
925 mutex_unlock(&head
->mutex
);
927 spin_unlock(&delayed_refs
->lock
);
929 WARN_ON(num_refs
== 0);
933 *flags
= extent_flags
;
935 btrfs_free_path(path
);
940 * Back reference rules. Back refs have three main goals:
942 * 1) differentiate between all holders of references to an extent so that
943 * when a reference is dropped we can make sure it was a valid reference
944 * before freeing the extent.
946 * 2) Provide enough information to quickly find the holders of an extent
947 * if we notice a given block is corrupted or bad.
949 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
950 * maintenance. This is actually the same as #2, but with a slightly
951 * different use case.
953 * There are two kinds of back refs. The implicit back refs is optimized
954 * for pointers in non-shared tree blocks. For a given pointer in a block,
955 * back refs of this kind provide information about the block's owner tree
956 * and the pointer's key. These information allow us to find the block by
957 * b-tree searching. The full back refs is for pointers in tree blocks not
958 * referenced by their owner trees. The location of tree block is recorded
959 * in the back refs. Actually the full back refs is generic, and can be
960 * used in all cases the implicit back refs is used. The major shortcoming
961 * of the full back refs is its overhead. Every time a tree block gets
962 * COWed, we have to update back refs entry for all pointers in it.
964 * For a newly allocated tree block, we use implicit back refs for
965 * pointers in it. This means most tree related operations only involve
966 * implicit back refs. For a tree block created in old transaction, the
967 * only way to drop a reference to it is COW it. So we can detect the
968 * event that tree block loses its owner tree's reference and do the
969 * back refs conversion.
971 * When a tree block is COWed through a tree, there are four cases:
973 * The reference count of the block is one and the tree is the block's
974 * owner tree. Nothing to do in this case.
976 * The reference count of the block is one and the tree is not the
977 * block's owner tree. In this case, full back refs is used for pointers
978 * in the block. Remove these full back refs, add implicit back refs for
979 * every pointers in the new block.
981 * The reference count of the block is greater than one and the tree is
982 * the block's owner tree. In this case, implicit back refs is used for
983 * pointers in the block. Add full back refs for every pointers in the
984 * block, increase lower level extents' reference counts. The original
985 * implicit back refs are entailed to the new block.
987 * The reference count of the block is greater than one and the tree is
988 * not the block's owner tree. Add implicit back refs for every pointer in
989 * the new block, increase lower level extents' reference count.
991 * Back Reference Key composing:
993 * The key objectid corresponds to the first byte in the extent,
994 * The key type is used to differentiate between types of back refs.
995 * There are different meanings of the key offset for different types
998 * File extents can be referenced by:
1000 * - multiple snapshots, subvolumes, or different generations in one subvol
1001 * - different files inside a single subvolume
1002 * - different offsets inside a file (bookend extents in file.c)
1004 * The extent ref structure for the implicit back refs has fields for:
1006 * - Objectid of the subvolume root
1007 * - objectid of the file holding the reference
1008 * - original offset in the file
1009 * - how many bookend extents
1011 * The key offset for the implicit back refs is hash of the first
1014 * The extent ref structure for the full back refs has field for:
1016 * - number of pointers in the tree leaf
1018 * The key offset for the implicit back refs is the first byte of
1021 * When a file extent is allocated, The implicit back refs is used.
1022 * the fields are filled in:
1024 * (root_key.objectid, inode objectid, offset in file, 1)
1026 * When a file extent is removed file truncation, we find the
1027 * corresponding implicit back refs and check the following fields:
1029 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1031 * Btree extents can be referenced by:
1033 * - Different subvolumes
1035 * Both the implicit back refs and the full back refs for tree blocks
1036 * only consist of key. The key offset for the implicit back refs is
1037 * objectid of block's owner tree. The key offset for the full back refs
1038 * is the first byte of parent block.
1040 * When implicit back refs is used, information about the lowest key and
1041 * level of the tree block are required. These information are stored in
1042 * tree block info structure.
1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1046 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1047 struct btrfs_root
*root
,
1048 struct btrfs_path
*path
,
1049 u64 owner
, u32 extra_size
)
1051 struct btrfs_extent_item
*item
;
1052 struct btrfs_extent_item_v0
*ei0
;
1053 struct btrfs_extent_ref_v0
*ref0
;
1054 struct btrfs_tree_block_info
*bi
;
1055 struct extent_buffer
*leaf
;
1056 struct btrfs_key key
;
1057 struct btrfs_key found_key
;
1058 u32 new_size
= sizeof(*item
);
1062 leaf
= path
->nodes
[0];
1063 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1065 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1066 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1067 struct btrfs_extent_item_v0
);
1068 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1070 if (owner
== (u64
)-1) {
1072 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1073 ret
= btrfs_next_leaf(root
, path
);
1076 BUG_ON(ret
> 0); /* Corruption */
1077 leaf
= path
->nodes
[0];
1079 btrfs_item_key_to_cpu(leaf
, &found_key
,
1081 BUG_ON(key
.objectid
!= found_key
.objectid
);
1082 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1086 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1087 struct btrfs_extent_ref_v0
);
1088 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1092 btrfs_release_path(path
);
1094 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1095 new_size
+= sizeof(*bi
);
1097 new_size
-= sizeof(*ei0
);
1098 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1099 new_size
+ extra_size
, 1);
1102 BUG_ON(ret
); /* Corruption */
1104 btrfs_extend_item(root
, path
, new_size
);
1106 leaf
= path
->nodes
[0];
1107 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1108 btrfs_set_extent_refs(leaf
, item
, refs
);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf
, item
, 0);
1111 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1112 btrfs_set_extent_flags(leaf
, item
,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1115 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1116 /* FIXME: get first key of the block */
1117 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1118 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1120 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1122 btrfs_mark_buffer_dirty(leaf
);
1127 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1129 u32 high_crc
= ~(u32
)0;
1130 u32 low_crc
= ~(u32
)0;
1133 lenum
= cpu_to_le64(root_objectid
);
1134 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1135 lenum
= cpu_to_le64(owner
);
1136 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1137 lenum
= cpu_to_le64(offset
);
1138 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1140 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1143 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1144 struct btrfs_extent_data_ref
*ref
)
1146 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1147 btrfs_extent_data_ref_objectid(leaf
, ref
),
1148 btrfs_extent_data_ref_offset(leaf
, ref
));
1151 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1152 struct btrfs_extent_data_ref
*ref
,
1153 u64 root_objectid
, u64 owner
, u64 offset
)
1155 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1156 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1157 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1162 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1163 struct btrfs_root
*root
,
1164 struct btrfs_path
*path
,
1165 u64 bytenr
, u64 parent
,
1167 u64 owner
, u64 offset
)
1169 struct btrfs_key key
;
1170 struct btrfs_extent_data_ref
*ref
;
1171 struct extent_buffer
*leaf
;
1177 key
.objectid
= bytenr
;
1179 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1180 key
.offset
= parent
;
1182 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1183 key
.offset
= hash_extent_data_ref(root_objectid
,
1188 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1198 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1199 btrfs_release_path(path
);
1200 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1211 leaf
= path
->nodes
[0];
1212 nritems
= btrfs_header_nritems(leaf
);
1214 if (path
->slots
[0] >= nritems
) {
1215 ret
= btrfs_next_leaf(root
, path
);
1221 leaf
= path
->nodes
[0];
1222 nritems
= btrfs_header_nritems(leaf
);
1226 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1227 if (key
.objectid
!= bytenr
||
1228 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1231 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1232 struct btrfs_extent_data_ref
);
1234 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1237 btrfs_release_path(path
);
1249 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1250 struct btrfs_root
*root
,
1251 struct btrfs_path
*path
,
1252 u64 bytenr
, u64 parent
,
1253 u64 root_objectid
, u64 owner
,
1254 u64 offset
, int refs_to_add
)
1256 struct btrfs_key key
;
1257 struct extent_buffer
*leaf
;
1262 key
.objectid
= bytenr
;
1264 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1265 key
.offset
= parent
;
1266 size
= sizeof(struct btrfs_shared_data_ref
);
1268 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1269 key
.offset
= hash_extent_data_ref(root_objectid
,
1271 size
= sizeof(struct btrfs_extent_data_ref
);
1274 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1275 if (ret
&& ret
!= -EEXIST
)
1278 leaf
= path
->nodes
[0];
1280 struct btrfs_shared_data_ref
*ref
;
1281 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1282 struct btrfs_shared_data_ref
);
1284 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1286 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1287 num_refs
+= refs_to_add
;
1288 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1291 struct btrfs_extent_data_ref
*ref
;
1292 while (ret
== -EEXIST
) {
1293 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1294 struct btrfs_extent_data_ref
);
1295 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1298 btrfs_release_path(path
);
1300 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1302 if (ret
&& ret
!= -EEXIST
)
1305 leaf
= path
->nodes
[0];
1307 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1308 struct btrfs_extent_data_ref
);
1310 btrfs_set_extent_data_ref_root(leaf
, ref
,
1312 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1313 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1314 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1316 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1317 num_refs
+= refs_to_add
;
1318 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1321 btrfs_mark_buffer_dirty(leaf
);
1324 btrfs_release_path(path
);
1328 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1329 struct btrfs_root
*root
,
1330 struct btrfs_path
*path
,
1331 int refs_to_drop
, int *last_ref
)
1333 struct btrfs_key key
;
1334 struct btrfs_extent_data_ref
*ref1
= NULL
;
1335 struct btrfs_shared_data_ref
*ref2
= NULL
;
1336 struct extent_buffer
*leaf
;
1340 leaf
= path
->nodes
[0];
1341 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1343 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1344 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1345 struct btrfs_extent_data_ref
);
1346 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1347 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1348 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1349 struct btrfs_shared_data_ref
);
1350 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1351 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1352 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1353 struct btrfs_extent_ref_v0
*ref0
;
1354 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1355 struct btrfs_extent_ref_v0
);
1356 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1362 BUG_ON(num_refs
< refs_to_drop
);
1363 num_refs
-= refs_to_drop
;
1365 if (num_refs
== 0) {
1366 ret
= btrfs_del_item(trans
, root
, path
);
1369 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1370 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1371 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1372 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1375 struct btrfs_extent_ref_v0
*ref0
;
1376 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1377 struct btrfs_extent_ref_v0
);
1378 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1381 btrfs_mark_buffer_dirty(leaf
);
1386 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1387 struct btrfs_extent_inline_ref
*iref
)
1389 struct btrfs_key key
;
1390 struct extent_buffer
*leaf
;
1391 struct btrfs_extent_data_ref
*ref1
;
1392 struct btrfs_shared_data_ref
*ref2
;
1395 leaf
= path
->nodes
[0];
1396 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1398 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1399 BTRFS_EXTENT_DATA_REF_KEY
) {
1400 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1401 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1403 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1404 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1406 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1407 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1408 struct btrfs_extent_data_ref
);
1409 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1410 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1411 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1412 struct btrfs_shared_data_ref
);
1413 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1415 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1416 struct btrfs_extent_ref_v0
*ref0
;
1417 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1418 struct btrfs_extent_ref_v0
);
1419 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1427 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1428 struct btrfs_root
*root
,
1429 struct btrfs_path
*path
,
1430 u64 bytenr
, u64 parent
,
1433 struct btrfs_key key
;
1436 key
.objectid
= bytenr
;
1438 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1439 key
.offset
= parent
;
1441 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1442 key
.offset
= root_objectid
;
1445 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1448 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 if (ret
== -ENOENT
&& parent
) {
1450 btrfs_release_path(path
);
1451 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1452 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1460 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1461 struct btrfs_root
*root
,
1462 struct btrfs_path
*path
,
1463 u64 bytenr
, u64 parent
,
1466 struct btrfs_key key
;
1469 key
.objectid
= bytenr
;
1471 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1472 key
.offset
= parent
;
1474 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1475 key
.offset
= root_objectid
;
1478 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1479 btrfs_release_path(path
);
1483 static inline int extent_ref_type(u64 parent
, u64 owner
)
1486 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1488 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1490 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1493 type
= BTRFS_SHARED_DATA_REF_KEY
;
1495 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1500 static int find_next_key(struct btrfs_path
*path
, int level
,
1501 struct btrfs_key
*key
)
1504 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1505 if (!path
->nodes
[level
])
1507 if (path
->slots
[level
] + 1 >=
1508 btrfs_header_nritems(path
->nodes
[level
]))
1511 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1512 path
->slots
[level
] + 1);
1514 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1515 path
->slots
[level
] + 1);
1522 * look for inline back ref. if back ref is found, *ref_ret is set
1523 * to the address of inline back ref, and 0 is returned.
1525 * if back ref isn't found, *ref_ret is set to the address where it
1526 * should be inserted, and -ENOENT is returned.
1528 * if insert is true and there are too many inline back refs, the path
1529 * points to the extent item, and -EAGAIN is returned.
1531 * NOTE: inline back refs are ordered in the same way that back ref
1532 * items in the tree are ordered.
1534 static noinline_for_stack
1535 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1536 struct btrfs_root
*root
,
1537 struct btrfs_path
*path
,
1538 struct btrfs_extent_inline_ref
**ref_ret
,
1539 u64 bytenr
, u64 num_bytes
,
1540 u64 parent
, u64 root_objectid
,
1541 u64 owner
, u64 offset
, int insert
)
1543 struct btrfs_key key
;
1544 struct extent_buffer
*leaf
;
1545 struct btrfs_extent_item
*ei
;
1546 struct btrfs_extent_inline_ref
*iref
;
1556 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1559 key
.objectid
= bytenr
;
1560 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1561 key
.offset
= num_bytes
;
1563 want
= extent_ref_type(parent
, owner
);
1565 extra_size
= btrfs_extent_inline_ref_size(want
);
1566 path
->keep_locks
= 1;
1571 * Owner is our parent level, so we can just add one to get the level
1572 * for the block we are interested in.
1574 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1575 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1580 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1587 * We may be a newly converted file system which still has the old fat
1588 * extent entries for metadata, so try and see if we have one of those.
1590 if (ret
> 0 && skinny_metadata
) {
1591 skinny_metadata
= false;
1592 if (path
->slots
[0]) {
1594 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1596 if (key
.objectid
== bytenr
&&
1597 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1598 key
.offset
== num_bytes
)
1602 key
.objectid
= bytenr
;
1603 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1604 key
.offset
= num_bytes
;
1605 btrfs_release_path(path
);
1610 if (ret
&& !insert
) {
1613 } else if (WARN_ON(ret
)) {
1618 leaf
= path
->nodes
[0];
1619 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1620 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1621 if (item_size
< sizeof(*ei
)) {
1626 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1632 leaf
= path
->nodes
[0];
1633 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1636 BUG_ON(item_size
< sizeof(*ei
));
1638 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1639 flags
= btrfs_extent_flags(leaf
, ei
);
1641 ptr
= (unsigned long)(ei
+ 1);
1642 end
= (unsigned long)ei
+ item_size
;
1644 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1645 ptr
+= sizeof(struct btrfs_tree_block_info
);
1655 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1656 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1660 ptr
+= btrfs_extent_inline_ref_size(type
);
1664 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1665 struct btrfs_extent_data_ref
*dref
;
1666 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1667 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1672 if (hash_extent_data_ref_item(leaf
, dref
) <
1673 hash_extent_data_ref(root_objectid
, owner
, offset
))
1677 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1679 if (parent
== ref_offset
) {
1683 if (ref_offset
< parent
)
1686 if (root_objectid
== ref_offset
) {
1690 if (ref_offset
< root_objectid
)
1694 ptr
+= btrfs_extent_inline_ref_size(type
);
1696 if (err
== -ENOENT
&& insert
) {
1697 if (item_size
+ extra_size
>=
1698 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1703 * To add new inline back ref, we have to make sure
1704 * there is no corresponding back ref item.
1705 * For simplicity, we just do not add new inline back
1706 * ref if there is any kind of item for this block
1708 if (find_next_key(path
, 0, &key
) == 0 &&
1709 key
.objectid
== bytenr
&&
1710 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1715 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1718 path
->keep_locks
= 0;
1719 btrfs_unlock_up_safe(path
, 1);
1725 * helper to add new inline back ref
1727 static noinline_for_stack
1728 void setup_inline_extent_backref(struct btrfs_root
*root
,
1729 struct btrfs_path
*path
,
1730 struct btrfs_extent_inline_ref
*iref
,
1731 u64 parent
, u64 root_objectid
,
1732 u64 owner
, u64 offset
, int refs_to_add
,
1733 struct btrfs_delayed_extent_op
*extent_op
)
1735 struct extent_buffer
*leaf
;
1736 struct btrfs_extent_item
*ei
;
1739 unsigned long item_offset
;
1744 leaf
= path
->nodes
[0];
1745 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1746 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1748 type
= extent_ref_type(parent
, owner
);
1749 size
= btrfs_extent_inline_ref_size(type
);
1751 btrfs_extend_item(root
, path
, size
);
1753 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1754 refs
= btrfs_extent_refs(leaf
, ei
);
1755 refs
+= refs_to_add
;
1756 btrfs_set_extent_refs(leaf
, ei
, refs
);
1758 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1760 ptr
= (unsigned long)ei
+ item_offset
;
1761 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1762 if (ptr
< end
- size
)
1763 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1766 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1767 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1768 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1769 struct btrfs_extent_data_ref
*dref
;
1770 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1771 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1772 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1773 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1774 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1775 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1776 struct btrfs_shared_data_ref
*sref
;
1777 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1778 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1779 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1780 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1781 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1783 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1785 btrfs_mark_buffer_dirty(leaf
);
1788 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1789 struct btrfs_root
*root
,
1790 struct btrfs_path
*path
,
1791 struct btrfs_extent_inline_ref
**ref_ret
,
1792 u64 bytenr
, u64 num_bytes
, u64 parent
,
1793 u64 root_objectid
, u64 owner
, u64 offset
)
1797 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1798 bytenr
, num_bytes
, parent
,
1799 root_objectid
, owner
, offset
, 0);
1803 btrfs_release_path(path
);
1806 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1807 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1810 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1811 root_objectid
, owner
, offset
);
1817 * helper to update/remove inline back ref
1819 static noinline_for_stack
1820 void update_inline_extent_backref(struct btrfs_root
*root
,
1821 struct btrfs_path
*path
,
1822 struct btrfs_extent_inline_ref
*iref
,
1824 struct btrfs_delayed_extent_op
*extent_op
,
1827 struct extent_buffer
*leaf
;
1828 struct btrfs_extent_item
*ei
;
1829 struct btrfs_extent_data_ref
*dref
= NULL
;
1830 struct btrfs_shared_data_ref
*sref
= NULL
;
1838 leaf
= path
->nodes
[0];
1839 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1840 refs
= btrfs_extent_refs(leaf
, ei
);
1841 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1842 refs
+= refs_to_mod
;
1843 btrfs_set_extent_refs(leaf
, ei
, refs
);
1845 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1847 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1849 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1850 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1851 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1852 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1853 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1854 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1857 BUG_ON(refs_to_mod
!= -1);
1860 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1861 refs
+= refs_to_mod
;
1864 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1865 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1867 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1870 size
= btrfs_extent_inline_ref_size(type
);
1871 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1872 ptr
= (unsigned long)iref
;
1873 end
= (unsigned long)ei
+ item_size
;
1874 if (ptr
+ size
< end
)
1875 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1878 btrfs_truncate_item(root
, path
, item_size
, 1);
1880 btrfs_mark_buffer_dirty(leaf
);
1883 static noinline_for_stack
1884 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1885 struct btrfs_root
*root
,
1886 struct btrfs_path
*path
,
1887 u64 bytenr
, u64 num_bytes
, u64 parent
,
1888 u64 root_objectid
, u64 owner
,
1889 u64 offset
, int refs_to_add
,
1890 struct btrfs_delayed_extent_op
*extent_op
)
1892 struct btrfs_extent_inline_ref
*iref
;
1895 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1896 bytenr
, num_bytes
, parent
,
1897 root_objectid
, owner
, offset
, 1);
1899 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1900 update_inline_extent_backref(root
, path
, iref
,
1901 refs_to_add
, extent_op
, NULL
);
1902 } else if (ret
== -ENOENT
) {
1903 setup_inline_extent_backref(root
, path
, iref
, parent
,
1904 root_objectid
, owner
, offset
,
1905 refs_to_add
, extent_op
);
1911 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1912 struct btrfs_root
*root
,
1913 struct btrfs_path
*path
,
1914 u64 bytenr
, u64 parent
, u64 root_objectid
,
1915 u64 owner
, u64 offset
, int refs_to_add
)
1918 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1919 BUG_ON(refs_to_add
!= 1);
1920 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1921 parent
, root_objectid
);
1923 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1924 parent
, root_objectid
,
1925 owner
, offset
, refs_to_add
);
1930 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1931 struct btrfs_root
*root
,
1932 struct btrfs_path
*path
,
1933 struct btrfs_extent_inline_ref
*iref
,
1934 int refs_to_drop
, int is_data
, int *last_ref
)
1938 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1940 update_inline_extent_backref(root
, path
, iref
,
1941 -refs_to_drop
, NULL
, last_ref
);
1942 } else if (is_data
) {
1943 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1947 ret
= btrfs_del_item(trans
, root
, path
);
1952 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1953 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1954 u64
*discarded_bytes
)
1957 u64 bytes_left
, end
;
1958 u64 aligned_start
= ALIGN(start
, 1 << 9);
1960 if (WARN_ON(start
!= aligned_start
)) {
1961 len
-= aligned_start
- start
;
1962 len
= round_down(len
, 1 << 9);
1963 start
= aligned_start
;
1966 *discarded_bytes
= 0;
1974 /* Skip any superblocks on this device. */
1975 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1976 u64 sb_start
= btrfs_sb_offset(j
);
1977 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
1978 u64 size
= sb_start
- start
;
1980 if (!in_range(sb_start
, start
, bytes_left
) &&
1981 !in_range(sb_end
, start
, bytes_left
) &&
1982 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
1986 * Superblock spans beginning of range. Adjust start and
1989 if (sb_start
<= start
) {
1990 start
+= sb_end
- start
;
1995 bytes_left
= end
- start
;
2000 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
2003 *discarded_bytes
+= size
;
2004 else if (ret
!= -EOPNOTSUPP
)
2013 bytes_left
= end
- start
;
2017 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2020 *discarded_bytes
+= bytes_left
;
2025 int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
2026 u64 num_bytes
, u64
*actual_bytes
)
2029 u64 discarded_bytes
= 0;
2030 struct btrfs_bio
*bbio
= NULL
;
2034 * Avoid races with device replace and make sure our bbio has devices
2035 * associated to its stripes that don't go away while we are discarding.
2037 btrfs_bio_counter_inc_blocked(root
->fs_info
);
2038 /* Tell the block device(s) that the sectors can be discarded */
2039 ret
= btrfs_map_block(root
->fs_info
, REQ_OP_DISCARD
,
2040 bytenr
, &num_bytes
, &bbio
, 0);
2041 /* Error condition is -ENOMEM */
2043 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2047 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2049 if (!stripe
->dev
->can_discard
)
2052 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2057 discarded_bytes
+= bytes
;
2058 else if (ret
!= -EOPNOTSUPP
)
2059 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2062 * Just in case we get back EOPNOTSUPP for some reason,
2063 * just ignore the return value so we don't screw up
2064 * people calling discard_extent.
2068 btrfs_put_bbio(bbio
);
2070 btrfs_bio_counter_dec(root
->fs_info
);
2073 *actual_bytes
= discarded_bytes
;
2076 if (ret
== -EOPNOTSUPP
)
2081 /* Can return -ENOMEM */
2082 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2083 struct btrfs_root
*root
,
2084 u64 bytenr
, u64 num_bytes
, u64 parent
,
2085 u64 root_objectid
, u64 owner
, u64 offset
)
2088 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2090 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2091 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2093 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2094 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2096 parent
, root_objectid
, (int)owner
,
2097 BTRFS_ADD_DELAYED_REF
, NULL
);
2099 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2100 num_bytes
, parent
, root_objectid
,
2102 BTRFS_ADD_DELAYED_REF
, NULL
);
2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2108 struct btrfs_root
*root
,
2109 struct btrfs_delayed_ref_node
*node
,
2110 u64 parent
, u64 root_objectid
,
2111 u64 owner
, u64 offset
, int refs_to_add
,
2112 struct btrfs_delayed_extent_op
*extent_op
)
2114 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2115 struct btrfs_path
*path
;
2116 struct extent_buffer
*leaf
;
2117 struct btrfs_extent_item
*item
;
2118 struct btrfs_key key
;
2119 u64 bytenr
= node
->bytenr
;
2120 u64 num_bytes
= node
->num_bytes
;
2124 path
= btrfs_alloc_path();
2128 path
->reada
= READA_FORWARD
;
2129 path
->leave_spinning
= 1;
2130 /* this will setup the path even if it fails to insert the back ref */
2131 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
2132 bytenr
, num_bytes
, parent
,
2133 root_objectid
, owner
, offset
,
2134 refs_to_add
, extent_op
);
2135 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2139 * Ok we had -EAGAIN which means we didn't have space to insert and
2140 * inline extent ref, so just update the reference count and add a
2143 leaf
= path
->nodes
[0];
2144 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2145 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2146 refs
= btrfs_extent_refs(leaf
, item
);
2147 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2149 __run_delayed_extent_op(extent_op
, leaf
, item
);
2151 btrfs_mark_buffer_dirty(leaf
);
2152 btrfs_release_path(path
);
2154 path
->reada
= READA_FORWARD
;
2155 path
->leave_spinning
= 1;
2156 /* now insert the actual backref */
2157 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2158 path
, bytenr
, parent
, root_objectid
,
2159 owner
, offset
, refs_to_add
);
2161 btrfs_abort_transaction(trans
, ret
);
2163 btrfs_free_path(path
);
2167 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2168 struct btrfs_root
*root
,
2169 struct btrfs_delayed_ref_node
*node
,
2170 struct btrfs_delayed_extent_op
*extent_op
,
2171 int insert_reserved
)
2174 struct btrfs_delayed_data_ref
*ref
;
2175 struct btrfs_key ins
;
2180 ins
.objectid
= node
->bytenr
;
2181 ins
.offset
= node
->num_bytes
;
2182 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2184 ref
= btrfs_delayed_node_to_data_ref(node
);
2185 trace_run_delayed_data_ref(root
->fs_info
, node
, ref
, node
->action
);
2187 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2188 parent
= ref
->parent
;
2189 ref_root
= ref
->root
;
2191 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2193 flags
|= extent_op
->flags_to_set
;
2194 ret
= alloc_reserved_file_extent(trans
, root
,
2195 parent
, ref_root
, flags
,
2196 ref
->objectid
, ref
->offset
,
2197 &ins
, node
->ref_mod
);
2198 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2199 ret
= __btrfs_inc_extent_ref(trans
, root
, node
, parent
,
2200 ref_root
, ref
->objectid
,
2201 ref
->offset
, node
->ref_mod
,
2203 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2204 ret
= __btrfs_free_extent(trans
, root
, node
, parent
,
2205 ref_root
, ref
->objectid
,
2206 ref
->offset
, node
->ref_mod
,
2214 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2215 struct extent_buffer
*leaf
,
2216 struct btrfs_extent_item
*ei
)
2218 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2219 if (extent_op
->update_flags
) {
2220 flags
|= extent_op
->flags_to_set
;
2221 btrfs_set_extent_flags(leaf
, ei
, flags
);
2224 if (extent_op
->update_key
) {
2225 struct btrfs_tree_block_info
*bi
;
2226 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2227 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2228 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2232 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2233 struct btrfs_root
*root
,
2234 struct btrfs_delayed_ref_node
*node
,
2235 struct btrfs_delayed_extent_op
*extent_op
)
2237 struct btrfs_key key
;
2238 struct btrfs_path
*path
;
2239 struct btrfs_extent_item
*ei
;
2240 struct extent_buffer
*leaf
;
2244 int metadata
= !extent_op
->is_data
;
2249 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2252 path
= btrfs_alloc_path();
2256 key
.objectid
= node
->bytenr
;
2259 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2260 key
.offset
= extent_op
->level
;
2262 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2263 key
.offset
= node
->num_bytes
;
2267 path
->reada
= READA_FORWARD
;
2268 path
->leave_spinning
= 1;
2269 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2277 if (path
->slots
[0] > 0) {
2279 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2281 if (key
.objectid
== node
->bytenr
&&
2282 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2283 key
.offset
== node
->num_bytes
)
2287 btrfs_release_path(path
);
2290 key
.objectid
= node
->bytenr
;
2291 key
.offset
= node
->num_bytes
;
2292 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2301 leaf
= path
->nodes
[0];
2302 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2304 if (item_size
< sizeof(*ei
)) {
2305 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2311 leaf
= path
->nodes
[0];
2312 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2315 BUG_ON(item_size
< sizeof(*ei
));
2316 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2317 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2319 btrfs_mark_buffer_dirty(leaf
);
2321 btrfs_free_path(path
);
2325 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2326 struct btrfs_root
*root
,
2327 struct btrfs_delayed_ref_node
*node
,
2328 struct btrfs_delayed_extent_op
*extent_op
,
2329 int insert_reserved
)
2332 struct btrfs_delayed_tree_ref
*ref
;
2333 struct btrfs_key ins
;
2336 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2339 ref
= btrfs_delayed_node_to_tree_ref(node
);
2340 trace_run_delayed_tree_ref(root
->fs_info
, node
, ref
, node
->action
);
2342 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2343 parent
= ref
->parent
;
2344 ref_root
= ref
->root
;
2346 ins
.objectid
= node
->bytenr
;
2347 if (skinny_metadata
) {
2348 ins
.offset
= ref
->level
;
2349 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2351 ins
.offset
= node
->num_bytes
;
2352 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2355 if (node
->ref_mod
!= 1) {
2356 btrfs_err(root
->fs_info
,
2357 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2358 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
2362 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2363 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2364 ret
= alloc_reserved_tree_block(trans
, root
,
2366 extent_op
->flags_to_set
,
2369 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2370 ret
= __btrfs_inc_extent_ref(trans
, root
, node
,
2374 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2375 ret
= __btrfs_free_extent(trans
, root
, node
,
2377 ref
->level
, 0, 1, extent_op
);
2384 /* helper function to actually process a single delayed ref entry */
2385 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2386 struct btrfs_root
*root
,
2387 struct btrfs_delayed_ref_node
*node
,
2388 struct btrfs_delayed_extent_op
*extent_op
,
2389 int insert_reserved
)
2393 if (trans
->aborted
) {
2394 if (insert_reserved
)
2395 btrfs_pin_extent(root
, node
->bytenr
,
2396 node
->num_bytes
, 1);
2400 if (btrfs_delayed_ref_is_head(node
)) {
2401 struct btrfs_delayed_ref_head
*head
;
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2409 head
= btrfs_delayed_node_to_head(node
);
2410 trace_run_delayed_ref_head(root
->fs_info
, node
, head
,
2413 if (insert_reserved
) {
2414 btrfs_pin_extent(root
, node
->bytenr
,
2415 node
->num_bytes
, 1);
2416 if (head
->is_data
) {
2417 ret
= btrfs_del_csums(trans
, root
,
2423 /* Also free its reserved qgroup space */
2424 btrfs_qgroup_free_delayed_ref(root
->fs_info
,
2425 head
->qgroup_ref_root
,
2426 head
->qgroup_reserved
);
2430 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2431 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2432 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2434 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2435 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2436 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2443 static inline struct btrfs_delayed_ref_node
*
2444 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2446 struct btrfs_delayed_ref_node
*ref
;
2448 if (list_empty(&head
->ref_list
))
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2457 list_for_each_entry(ref
, &head
->ref_list
, list
) {
2458 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2462 return list_entry(head
->ref_list
.next
, struct btrfs_delayed_ref_node
,
2467 * Returns 0 on success or if called with an already aborted transaction.
2468 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2471 struct btrfs_root
*root
,
2474 struct btrfs_delayed_ref_root
*delayed_refs
;
2475 struct btrfs_delayed_ref_node
*ref
;
2476 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2477 struct btrfs_delayed_extent_op
*extent_op
;
2478 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2479 ktime_t start
= ktime_get();
2481 unsigned long count
= 0;
2482 unsigned long actual_count
= 0;
2483 int must_insert_reserved
= 0;
2485 delayed_refs
= &trans
->transaction
->delayed_refs
;
2491 spin_lock(&delayed_refs
->lock
);
2492 locked_ref
= btrfs_select_ref_head(trans
);
2494 spin_unlock(&delayed_refs
->lock
);
2498 /* grab the lock that says we are going to process
2499 * all the refs for this head */
2500 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2501 spin_unlock(&delayed_refs
->lock
);
2503 * we may have dropped the spin lock to get the head
2504 * mutex lock, and that might have given someone else
2505 * time to free the head. If that's true, it has been
2506 * removed from our list and we can move on.
2508 if (ret
== -EAGAIN
) {
2516 * We need to try and merge add/drops of the same ref since we
2517 * can run into issues with relocate dropping the implicit ref
2518 * and then it being added back again before the drop can
2519 * finish. If we merged anything we need to re-loop so we can
2521 * Or we can get node references of the same type that weren't
2522 * merged when created due to bumps in the tree mod seq, and
2523 * we need to merge them to prevent adding an inline extent
2524 * backref before dropping it (triggering a BUG_ON at
2525 * insert_inline_extent_backref()).
2527 spin_lock(&locked_ref
->lock
);
2528 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2532 * locked_ref is the head node, so we have to go one
2533 * node back for any delayed ref updates
2535 ref
= select_delayed_ref(locked_ref
);
2537 if (ref
&& ref
->seq
&&
2538 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2539 spin_unlock(&locked_ref
->lock
);
2540 btrfs_delayed_ref_unlock(locked_ref
);
2541 spin_lock(&delayed_refs
->lock
);
2542 locked_ref
->processing
= 0;
2543 delayed_refs
->num_heads_ready
++;
2544 spin_unlock(&delayed_refs
->lock
);
2552 * record the must insert reserved flag before we
2553 * drop the spin lock.
2555 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2556 locked_ref
->must_insert_reserved
= 0;
2558 extent_op
= locked_ref
->extent_op
;
2559 locked_ref
->extent_op
= NULL
;
2564 /* All delayed refs have been processed, Go ahead
2565 * and send the head node to run_one_delayed_ref,
2566 * so that any accounting fixes can happen
2568 ref
= &locked_ref
->node
;
2570 if (extent_op
&& must_insert_reserved
) {
2571 btrfs_free_delayed_extent_op(extent_op
);
2576 spin_unlock(&locked_ref
->lock
);
2577 ret
= run_delayed_extent_op(trans
, root
,
2579 btrfs_free_delayed_extent_op(extent_op
);
2583 * Need to reset must_insert_reserved if
2584 * there was an error so the abort stuff
2585 * can cleanup the reserved space
2588 if (must_insert_reserved
)
2589 locked_ref
->must_insert_reserved
= 1;
2590 locked_ref
->processing
= 0;
2591 btrfs_debug(fs_info
,
2592 "run_delayed_extent_op returned %d",
2594 btrfs_delayed_ref_unlock(locked_ref
);
2601 * Need to drop our head ref lock and re-acquire the
2602 * delayed ref lock and then re-check to make sure
2605 spin_unlock(&locked_ref
->lock
);
2606 spin_lock(&delayed_refs
->lock
);
2607 spin_lock(&locked_ref
->lock
);
2608 if (!list_empty(&locked_ref
->ref_list
) ||
2609 locked_ref
->extent_op
) {
2610 spin_unlock(&locked_ref
->lock
);
2611 spin_unlock(&delayed_refs
->lock
);
2615 delayed_refs
->num_heads
--;
2616 rb_erase(&locked_ref
->href_node
,
2617 &delayed_refs
->href_root
);
2618 spin_unlock(&delayed_refs
->lock
);
2622 list_del(&ref
->list
);
2624 atomic_dec(&delayed_refs
->num_entries
);
2626 if (!btrfs_delayed_ref_is_head(ref
)) {
2628 * when we play the delayed ref, also correct the
2631 switch (ref
->action
) {
2632 case BTRFS_ADD_DELAYED_REF
:
2633 case BTRFS_ADD_DELAYED_EXTENT
:
2634 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2636 case BTRFS_DROP_DELAYED_REF
:
2637 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2643 spin_unlock(&locked_ref
->lock
);
2645 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2646 must_insert_reserved
);
2648 btrfs_free_delayed_extent_op(extent_op
);
2650 spin_lock(&delayed_refs
->lock
);
2651 locked_ref
->processing
= 0;
2652 delayed_refs
->num_heads_ready
++;
2653 spin_unlock(&delayed_refs
->lock
);
2654 btrfs_delayed_ref_unlock(locked_ref
);
2655 btrfs_put_delayed_ref(ref
);
2656 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
2662 * If this node is a head, that means all the refs in this head
2663 * have been dealt with, and we will pick the next head to deal
2664 * with, so we must unlock the head and drop it from the cluster
2665 * list before we release it.
2667 if (btrfs_delayed_ref_is_head(ref
)) {
2668 if (locked_ref
->is_data
&&
2669 locked_ref
->total_ref_mod
< 0) {
2670 spin_lock(&delayed_refs
->lock
);
2671 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2672 spin_unlock(&delayed_refs
->lock
);
2674 btrfs_delayed_ref_unlock(locked_ref
);
2677 btrfs_put_delayed_ref(ref
);
2683 * We don't want to include ref heads since we can have empty ref heads
2684 * and those will drastically skew our runtime down since we just do
2685 * accounting, no actual extent tree updates.
2687 if (actual_count
> 0) {
2688 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2692 * We weigh the current average higher than our current runtime
2693 * to avoid large swings in the average.
2695 spin_lock(&delayed_refs
->lock
);
2696 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2697 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2698 spin_unlock(&delayed_refs
->lock
);
2703 #ifdef SCRAMBLE_DELAYED_REFS
2705 * Normally delayed refs get processed in ascending bytenr order. This
2706 * correlates in most cases to the order added. To expose dependencies on this
2707 * order, we start to process the tree in the middle instead of the beginning
2709 static u64
find_middle(struct rb_root
*root
)
2711 struct rb_node
*n
= root
->rb_node
;
2712 struct btrfs_delayed_ref_node
*entry
;
2715 u64 first
= 0, last
= 0;
2719 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2720 first
= entry
->bytenr
;
2724 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2725 last
= entry
->bytenr
;
2730 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2731 WARN_ON(!entry
->in_tree
);
2733 middle
= entry
->bytenr
;
2746 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2750 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2751 sizeof(struct btrfs_extent_inline_ref
));
2752 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2753 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2756 * We don't ever fill up leaves all the way so multiply by 2 just to be
2757 * closer to what we're really going to want to use.
2759 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2763 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2764 * would require to store the csums for that many bytes.
2766 u64
btrfs_csum_bytes_to_leaves(struct btrfs_root
*root
, u64 csum_bytes
)
2769 u64 num_csums_per_leaf
;
2772 csum_size
= BTRFS_MAX_ITEM_SIZE(root
);
2773 num_csums_per_leaf
= div64_u64(csum_size
,
2774 (u64
)btrfs_super_csum_size(root
->fs_info
->super_copy
));
2775 num_csums
= div64_u64(csum_bytes
, root
->sectorsize
);
2776 num_csums
+= num_csums_per_leaf
- 1;
2777 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2781 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2782 struct btrfs_root
*root
)
2784 struct btrfs_block_rsv
*global_rsv
;
2785 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2786 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2787 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2788 u64 num_bytes
, num_dirty_bgs_bytes
;
2791 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2792 num_heads
= heads_to_leaves(root
, num_heads
);
2794 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2796 num_bytes
+= btrfs_csum_bytes_to_leaves(root
, csum_bytes
) * root
->nodesize
;
2797 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(root
,
2799 global_rsv
= &root
->fs_info
->global_block_rsv
;
2802 * If we can't allocate any more chunks lets make sure we have _lots_ of
2803 * wiggle room since running delayed refs can create more delayed refs.
2805 if (global_rsv
->space_info
->full
) {
2806 num_dirty_bgs_bytes
<<= 1;
2810 spin_lock(&global_rsv
->lock
);
2811 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2813 spin_unlock(&global_rsv
->lock
);
2817 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2818 struct btrfs_root
*root
)
2820 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2822 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2827 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2828 val
= num_entries
* avg_runtime
;
2829 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2831 if (val
>= NSEC_PER_SEC
/ 2)
2834 return btrfs_check_space_for_delayed_refs(trans
, root
);
2837 struct async_delayed_refs
{
2838 struct btrfs_root
*root
;
2843 struct completion wait
;
2844 struct btrfs_work work
;
2847 static void delayed_ref_async_start(struct btrfs_work
*work
)
2849 struct async_delayed_refs
*async
;
2850 struct btrfs_trans_handle
*trans
;
2853 async
= container_of(work
, struct async_delayed_refs
, work
);
2855 /* if the commit is already started, we don't need to wait here */
2856 if (btrfs_transaction_blocked(async
->root
->fs_info
))
2859 trans
= btrfs_join_transaction(async
->root
);
2860 if (IS_ERR(trans
)) {
2861 async
->error
= PTR_ERR(trans
);
2866 * trans->sync means that when we call end_transaction, we won't
2867 * wait on delayed refs
2871 /* Don't bother flushing if we got into a different transaction */
2872 if (trans
->transid
> async
->transid
)
2875 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2879 ret
= btrfs_end_transaction(trans
, async
->root
);
2880 if (ret
&& !async
->error
)
2884 complete(&async
->wait
);
2889 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2890 unsigned long count
, u64 transid
, int wait
)
2892 struct async_delayed_refs
*async
;
2895 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2899 async
->root
= root
->fs_info
->tree_root
;
2900 async
->count
= count
;
2902 async
->transid
= transid
;
2907 init_completion(&async
->wait
);
2909 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2910 delayed_ref_async_start
, NULL
, NULL
);
2912 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2915 wait_for_completion(&async
->wait
);
2924 * this starts processing the delayed reference count updates and
2925 * extent insertions we have queued up so far. count can be
2926 * 0, which means to process everything in the tree at the start
2927 * of the run (but not newly added entries), or it can be some target
2928 * number you'd like to process.
2930 * Returns 0 on success or if called with an aborted transaction
2931 * Returns <0 on error and aborts the transaction
2933 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2934 struct btrfs_root
*root
, unsigned long count
)
2936 struct rb_node
*node
;
2937 struct btrfs_delayed_ref_root
*delayed_refs
;
2938 struct btrfs_delayed_ref_head
*head
;
2940 int run_all
= count
== (unsigned long)-1;
2941 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
2943 /* We'll clean this up in btrfs_cleanup_transaction */
2947 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &root
->fs_info
->flags
))
2950 if (root
== root
->fs_info
->extent_root
)
2951 root
= root
->fs_info
->tree_root
;
2953 delayed_refs
= &trans
->transaction
->delayed_refs
;
2955 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2958 #ifdef SCRAMBLE_DELAYED_REFS
2959 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2961 trans
->can_flush_pending_bgs
= false;
2962 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2964 btrfs_abort_transaction(trans
, ret
);
2969 if (!list_empty(&trans
->new_bgs
))
2970 btrfs_create_pending_block_groups(trans
, root
);
2972 spin_lock(&delayed_refs
->lock
);
2973 node
= rb_first(&delayed_refs
->href_root
);
2975 spin_unlock(&delayed_refs
->lock
);
2980 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2982 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2983 struct btrfs_delayed_ref_node
*ref
;
2986 atomic_inc(&ref
->refs
);
2988 spin_unlock(&delayed_refs
->lock
);
2990 * Mutex was contended, block until it's
2991 * released and try again
2993 mutex_lock(&head
->mutex
);
2994 mutex_unlock(&head
->mutex
);
2996 btrfs_put_delayed_ref(ref
);
3002 node
= rb_next(node
);
3004 spin_unlock(&delayed_refs
->lock
);
3009 assert_qgroups_uptodate(trans
);
3010 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
3014 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
3015 struct btrfs_root
*root
,
3016 u64 bytenr
, u64 num_bytes
, u64 flags
,
3017 int level
, int is_data
)
3019 struct btrfs_delayed_extent_op
*extent_op
;
3022 extent_op
= btrfs_alloc_delayed_extent_op();
3026 extent_op
->flags_to_set
= flags
;
3027 extent_op
->update_flags
= true;
3028 extent_op
->update_key
= false;
3029 extent_op
->is_data
= is_data
? true : false;
3030 extent_op
->level
= level
;
3032 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
3033 num_bytes
, extent_op
);
3035 btrfs_free_delayed_extent_op(extent_op
);
3039 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
3040 struct btrfs_root
*root
,
3041 struct btrfs_path
*path
,
3042 u64 objectid
, u64 offset
, u64 bytenr
)
3044 struct btrfs_delayed_ref_head
*head
;
3045 struct btrfs_delayed_ref_node
*ref
;
3046 struct btrfs_delayed_data_ref
*data_ref
;
3047 struct btrfs_delayed_ref_root
*delayed_refs
;
3050 delayed_refs
= &trans
->transaction
->delayed_refs
;
3051 spin_lock(&delayed_refs
->lock
);
3052 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3054 spin_unlock(&delayed_refs
->lock
);
3058 if (!mutex_trylock(&head
->mutex
)) {
3059 atomic_inc(&head
->node
.refs
);
3060 spin_unlock(&delayed_refs
->lock
);
3062 btrfs_release_path(path
);
3065 * Mutex was contended, block until it's released and let
3068 mutex_lock(&head
->mutex
);
3069 mutex_unlock(&head
->mutex
);
3070 btrfs_put_delayed_ref(&head
->node
);
3073 spin_unlock(&delayed_refs
->lock
);
3075 spin_lock(&head
->lock
);
3076 list_for_each_entry(ref
, &head
->ref_list
, list
) {
3077 /* If it's a shared ref we know a cross reference exists */
3078 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3083 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3086 * If our ref doesn't match the one we're currently looking at
3087 * then we have a cross reference.
3089 if (data_ref
->root
!= root
->root_key
.objectid
||
3090 data_ref
->objectid
!= objectid
||
3091 data_ref
->offset
!= offset
) {
3096 spin_unlock(&head
->lock
);
3097 mutex_unlock(&head
->mutex
);
3101 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
3102 struct btrfs_root
*root
,
3103 struct btrfs_path
*path
,
3104 u64 objectid
, u64 offset
, u64 bytenr
)
3106 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3107 struct extent_buffer
*leaf
;
3108 struct btrfs_extent_data_ref
*ref
;
3109 struct btrfs_extent_inline_ref
*iref
;
3110 struct btrfs_extent_item
*ei
;
3111 struct btrfs_key key
;
3115 key
.objectid
= bytenr
;
3116 key
.offset
= (u64
)-1;
3117 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3119 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3122 BUG_ON(ret
== 0); /* Corruption */
3125 if (path
->slots
[0] == 0)
3129 leaf
= path
->nodes
[0];
3130 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3132 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3136 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3137 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138 if (item_size
< sizeof(*ei
)) {
3139 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3143 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3145 if (item_size
!= sizeof(*ei
) +
3146 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3149 if (btrfs_extent_generation(leaf
, ei
) <=
3150 btrfs_root_last_snapshot(&root
->root_item
))
3153 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3154 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3155 BTRFS_EXTENT_DATA_REF_KEY
)
3158 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3159 if (btrfs_extent_refs(leaf
, ei
) !=
3160 btrfs_extent_data_ref_count(leaf
, ref
) ||
3161 btrfs_extent_data_ref_root(leaf
, ref
) !=
3162 root
->root_key
.objectid
||
3163 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3164 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3172 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3173 struct btrfs_root
*root
,
3174 u64 objectid
, u64 offset
, u64 bytenr
)
3176 struct btrfs_path
*path
;
3180 path
= btrfs_alloc_path();
3185 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3187 if (ret
&& ret
!= -ENOENT
)
3190 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3192 } while (ret2
== -EAGAIN
);
3194 if (ret2
&& ret2
!= -ENOENT
) {
3199 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3202 btrfs_free_path(path
);
3203 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3208 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3209 struct btrfs_root
*root
,
3210 struct extent_buffer
*buf
,
3211 int full_backref
, int inc
)
3218 struct btrfs_key key
;
3219 struct btrfs_file_extent_item
*fi
;
3223 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3224 u64
, u64
, u64
, u64
, u64
, u64
);
3227 if (btrfs_is_testing(root
->fs_info
))
3230 ref_root
= btrfs_header_owner(buf
);
3231 nritems
= btrfs_header_nritems(buf
);
3232 level
= btrfs_header_level(buf
);
3234 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3238 process_func
= btrfs_inc_extent_ref
;
3240 process_func
= btrfs_free_extent
;
3243 parent
= buf
->start
;
3247 for (i
= 0; i
< nritems
; i
++) {
3249 btrfs_item_key_to_cpu(buf
, &key
, i
);
3250 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3252 fi
= btrfs_item_ptr(buf
, i
,
3253 struct btrfs_file_extent_item
);
3254 if (btrfs_file_extent_type(buf
, fi
) ==
3255 BTRFS_FILE_EXTENT_INLINE
)
3257 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3261 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3262 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3263 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3264 parent
, ref_root
, key
.objectid
,
3269 bytenr
= btrfs_node_blockptr(buf
, i
);
3270 num_bytes
= root
->nodesize
;
3271 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3272 parent
, ref_root
, level
- 1, 0);
3282 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3283 struct extent_buffer
*buf
, int full_backref
)
3285 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3288 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3289 struct extent_buffer
*buf
, int full_backref
)
3291 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3294 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3295 struct btrfs_root
*root
,
3296 struct btrfs_path
*path
,
3297 struct btrfs_block_group_cache
*cache
)
3300 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3302 struct extent_buffer
*leaf
;
3304 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3311 leaf
= path
->nodes
[0];
3312 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3313 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3314 btrfs_mark_buffer_dirty(leaf
);
3316 btrfs_release_path(path
);
3321 static struct btrfs_block_group_cache
*
3322 next_block_group(struct btrfs_root
*root
,
3323 struct btrfs_block_group_cache
*cache
)
3325 struct rb_node
*node
;
3327 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3329 /* If our block group was removed, we need a full search. */
3330 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3331 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3333 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3334 btrfs_put_block_group(cache
);
3335 cache
= btrfs_lookup_first_block_group(root
->fs_info
,
3339 node
= rb_next(&cache
->cache_node
);
3340 btrfs_put_block_group(cache
);
3342 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3344 btrfs_get_block_group(cache
);
3347 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3351 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3352 struct btrfs_trans_handle
*trans
,
3353 struct btrfs_path
*path
)
3355 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3356 struct inode
*inode
= NULL
;
3358 int dcs
= BTRFS_DC_ERROR
;
3364 * If this block group is smaller than 100 megs don't bother caching the
3367 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3368 spin_lock(&block_group
->lock
);
3369 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3370 spin_unlock(&block_group
->lock
);
3377 inode
= lookup_free_space_inode(root
, block_group
, path
);
3378 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3379 ret
= PTR_ERR(inode
);
3380 btrfs_release_path(path
);
3384 if (IS_ERR(inode
)) {
3388 if (block_group
->ro
)
3391 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3397 /* We've already setup this transaction, go ahead and exit */
3398 if (block_group
->cache_generation
== trans
->transid
&&
3399 i_size_read(inode
)) {
3400 dcs
= BTRFS_DC_SETUP
;
3405 * We want to set the generation to 0, that way if anything goes wrong
3406 * from here on out we know not to trust this cache when we load up next
3409 BTRFS_I(inode
)->generation
= 0;
3410 ret
= btrfs_update_inode(trans
, root
, inode
);
3413 * So theoretically we could recover from this, simply set the
3414 * super cache generation to 0 so we know to invalidate the
3415 * cache, but then we'd have to keep track of the block groups
3416 * that fail this way so we know we _have_ to reset this cache
3417 * before the next commit or risk reading stale cache. So to
3418 * limit our exposure to horrible edge cases lets just abort the
3419 * transaction, this only happens in really bad situations
3422 btrfs_abort_transaction(trans
, ret
);
3427 if (i_size_read(inode
) > 0) {
3428 ret
= btrfs_check_trunc_cache_free_space(root
,
3429 &root
->fs_info
->global_block_rsv
);
3433 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
3438 spin_lock(&block_group
->lock
);
3439 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3440 !btrfs_test_opt(root
->fs_info
, SPACE_CACHE
)) {
3442 * don't bother trying to write stuff out _if_
3443 * a) we're not cached,
3444 * b) we're with nospace_cache mount option.
3446 dcs
= BTRFS_DC_WRITTEN
;
3447 spin_unlock(&block_group
->lock
);
3450 spin_unlock(&block_group
->lock
);
3453 * We hit an ENOSPC when setting up the cache in this transaction, just
3454 * skip doing the setup, we've already cleared the cache so we're safe.
3456 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3462 * Try to preallocate enough space based on how big the block group is.
3463 * Keep in mind this has to include any pinned space which could end up
3464 * taking up quite a bit since it's not folded into the other space
3467 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3472 num_pages
*= PAGE_SIZE
;
3474 ret
= btrfs_check_data_free_space(inode
, 0, num_pages
);
3478 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3479 num_pages
, num_pages
,
3482 * Our cache requires contiguous chunks so that we don't modify a bunch
3483 * of metadata or split extents when writing the cache out, which means
3484 * we can enospc if we are heavily fragmented in addition to just normal
3485 * out of space conditions. So if we hit this just skip setting up any
3486 * other block groups for this transaction, maybe we'll unpin enough
3487 * space the next time around.
3490 dcs
= BTRFS_DC_SETUP
;
3491 else if (ret
== -ENOSPC
)
3492 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3497 btrfs_release_path(path
);
3499 spin_lock(&block_group
->lock
);
3500 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3501 block_group
->cache_generation
= trans
->transid
;
3502 block_group
->disk_cache_state
= dcs
;
3503 spin_unlock(&block_group
->lock
);
3508 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3509 struct btrfs_root
*root
)
3511 struct btrfs_block_group_cache
*cache
, *tmp
;
3512 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3513 struct btrfs_path
*path
;
3515 if (list_empty(&cur_trans
->dirty_bgs
) ||
3516 !btrfs_test_opt(root
->fs_info
, SPACE_CACHE
))
3519 path
= btrfs_alloc_path();
3523 /* Could add new block groups, use _safe just in case */
3524 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3526 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3527 cache_save_setup(cache
, trans
, path
);
3530 btrfs_free_path(path
);
3535 * transaction commit does final block group cache writeback during a
3536 * critical section where nothing is allowed to change the FS. This is
3537 * required in order for the cache to actually match the block group,
3538 * but can introduce a lot of latency into the commit.
3540 * So, btrfs_start_dirty_block_groups is here to kick off block group
3541 * cache IO. There's a chance we'll have to redo some of it if the
3542 * block group changes again during the commit, but it greatly reduces
3543 * the commit latency by getting rid of the easy block groups while
3544 * we're still allowing others to join the commit.
3546 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3547 struct btrfs_root
*root
)
3549 struct btrfs_block_group_cache
*cache
;
3550 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3553 struct btrfs_path
*path
= NULL
;
3555 struct list_head
*io
= &cur_trans
->io_bgs
;
3556 int num_started
= 0;
3559 spin_lock(&cur_trans
->dirty_bgs_lock
);
3560 if (list_empty(&cur_trans
->dirty_bgs
)) {
3561 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3564 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3565 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3569 * make sure all the block groups on our dirty list actually
3572 btrfs_create_pending_block_groups(trans
, root
);
3575 path
= btrfs_alloc_path();
3581 * cache_write_mutex is here only to save us from balance or automatic
3582 * removal of empty block groups deleting this block group while we are
3583 * writing out the cache
3585 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3586 while (!list_empty(&dirty
)) {
3587 cache
= list_first_entry(&dirty
,
3588 struct btrfs_block_group_cache
,
3591 * this can happen if something re-dirties a block
3592 * group that is already under IO. Just wait for it to
3593 * finish and then do it all again
3595 if (!list_empty(&cache
->io_list
)) {
3596 list_del_init(&cache
->io_list
);
3597 btrfs_wait_cache_io(root
, trans
, cache
,
3598 &cache
->io_ctl
, path
,
3599 cache
->key
.objectid
);
3600 btrfs_put_block_group(cache
);
3605 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3606 * if it should update the cache_state. Don't delete
3607 * until after we wait.
3609 * Since we're not running in the commit critical section
3610 * we need the dirty_bgs_lock to protect from update_block_group
3612 spin_lock(&cur_trans
->dirty_bgs_lock
);
3613 list_del_init(&cache
->dirty_list
);
3614 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3618 cache_save_setup(cache
, trans
, path
);
3620 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3621 cache
->io_ctl
.inode
= NULL
;
3622 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3623 if (ret
== 0 && cache
->io_ctl
.inode
) {
3628 * the cache_write_mutex is protecting
3631 list_add_tail(&cache
->io_list
, io
);
3634 * if we failed to write the cache, the
3635 * generation will be bad and life goes on
3641 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3643 * Our block group might still be attached to the list
3644 * of new block groups in the transaction handle of some
3645 * other task (struct btrfs_trans_handle->new_bgs). This
3646 * means its block group item isn't yet in the extent
3647 * tree. If this happens ignore the error, as we will
3648 * try again later in the critical section of the
3649 * transaction commit.
3651 if (ret
== -ENOENT
) {
3653 spin_lock(&cur_trans
->dirty_bgs_lock
);
3654 if (list_empty(&cache
->dirty_list
)) {
3655 list_add_tail(&cache
->dirty_list
,
3656 &cur_trans
->dirty_bgs
);
3657 btrfs_get_block_group(cache
);
3659 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3661 btrfs_abort_transaction(trans
, ret
);
3665 /* if its not on the io list, we need to put the block group */
3667 btrfs_put_block_group(cache
);
3673 * Avoid blocking other tasks for too long. It might even save
3674 * us from writing caches for block groups that are going to be
3677 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3678 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3680 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3683 * go through delayed refs for all the stuff we've just kicked off
3684 * and then loop back (just once)
3686 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
3687 if (!ret
&& loops
== 0) {
3689 spin_lock(&cur_trans
->dirty_bgs_lock
);
3690 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3692 * dirty_bgs_lock protects us from concurrent block group
3693 * deletes too (not just cache_write_mutex).
3695 if (!list_empty(&dirty
)) {
3696 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3699 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3700 } else if (ret
< 0) {
3701 btrfs_cleanup_dirty_bgs(cur_trans
, root
);
3704 btrfs_free_path(path
);
3708 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3709 struct btrfs_root
*root
)
3711 struct btrfs_block_group_cache
*cache
;
3712 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3715 struct btrfs_path
*path
;
3716 struct list_head
*io
= &cur_trans
->io_bgs
;
3717 int num_started
= 0;
3719 path
= btrfs_alloc_path();
3724 * Even though we are in the critical section of the transaction commit,
3725 * we can still have concurrent tasks adding elements to this
3726 * transaction's list of dirty block groups. These tasks correspond to
3727 * endio free space workers started when writeback finishes for a
3728 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3729 * allocate new block groups as a result of COWing nodes of the root
3730 * tree when updating the free space inode. The writeback for the space
3731 * caches is triggered by an earlier call to
3732 * btrfs_start_dirty_block_groups() and iterations of the following
3734 * Also we want to do the cache_save_setup first and then run the
3735 * delayed refs to make sure we have the best chance at doing this all
3738 spin_lock(&cur_trans
->dirty_bgs_lock
);
3739 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3740 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3741 struct btrfs_block_group_cache
,
3745 * this can happen if cache_save_setup re-dirties a block
3746 * group that is already under IO. Just wait for it to
3747 * finish and then do it all again
3749 if (!list_empty(&cache
->io_list
)) {
3750 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3751 list_del_init(&cache
->io_list
);
3752 btrfs_wait_cache_io(root
, trans
, cache
,
3753 &cache
->io_ctl
, path
,
3754 cache
->key
.objectid
);
3755 btrfs_put_block_group(cache
);
3756 spin_lock(&cur_trans
->dirty_bgs_lock
);
3760 * don't remove from the dirty list until after we've waited
3763 list_del_init(&cache
->dirty_list
);
3764 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3767 cache_save_setup(cache
, trans
, path
);
3770 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long) -1);
3772 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3773 cache
->io_ctl
.inode
= NULL
;
3774 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3775 if (ret
== 0 && cache
->io_ctl
.inode
) {
3778 list_add_tail(&cache
->io_list
, io
);
3781 * if we failed to write the cache, the
3782 * generation will be bad and life goes on
3788 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3790 * One of the free space endio workers might have
3791 * created a new block group while updating a free space
3792 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3793 * and hasn't released its transaction handle yet, in
3794 * which case the new block group is still attached to
3795 * its transaction handle and its creation has not
3796 * finished yet (no block group item in the extent tree
3797 * yet, etc). If this is the case, wait for all free
3798 * space endio workers to finish and retry. This is a
3799 * a very rare case so no need for a more efficient and
3802 if (ret
== -ENOENT
) {
3803 wait_event(cur_trans
->writer_wait
,
3804 atomic_read(&cur_trans
->num_writers
) == 1);
3805 ret
= write_one_cache_group(trans
, root
, path
,
3809 btrfs_abort_transaction(trans
, ret
);
3812 /* if its not on the io list, we need to put the block group */
3814 btrfs_put_block_group(cache
);
3815 spin_lock(&cur_trans
->dirty_bgs_lock
);
3817 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3819 while (!list_empty(io
)) {
3820 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3822 list_del_init(&cache
->io_list
);
3823 btrfs_wait_cache_io(root
, trans
, cache
,
3824 &cache
->io_ctl
, path
, cache
->key
.objectid
);
3825 btrfs_put_block_group(cache
);
3828 btrfs_free_path(path
);
3832 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3834 struct btrfs_block_group_cache
*block_group
;
3837 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3838 if (!block_group
|| block_group
->ro
)
3841 btrfs_put_block_group(block_group
);
3845 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3847 struct btrfs_block_group_cache
*bg
;
3850 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3854 spin_lock(&bg
->lock
);
3858 atomic_inc(&bg
->nocow_writers
);
3859 spin_unlock(&bg
->lock
);
3861 /* no put on block group, done by btrfs_dec_nocow_writers */
3863 btrfs_put_block_group(bg
);
3869 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3871 struct btrfs_block_group_cache
*bg
;
3873 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3875 if (atomic_dec_and_test(&bg
->nocow_writers
))
3876 wake_up_atomic_t(&bg
->nocow_writers
);
3878 * Once for our lookup and once for the lookup done by a previous call
3879 * to btrfs_inc_nocow_writers()
3881 btrfs_put_block_group(bg
);
3882 btrfs_put_block_group(bg
);
3885 static int btrfs_wait_nocow_writers_atomic_t(atomic_t
*a
)
3891 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
3893 wait_on_atomic_t(&bg
->nocow_writers
,
3894 btrfs_wait_nocow_writers_atomic_t
,
3895 TASK_UNINTERRUPTIBLE
);
3898 static const char *alloc_name(u64 flags
)
3901 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3903 case BTRFS_BLOCK_GROUP_METADATA
:
3905 case BTRFS_BLOCK_GROUP_DATA
:
3907 case BTRFS_BLOCK_GROUP_SYSTEM
:
3911 return "invalid-combination";
3915 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3916 u64 total_bytes
, u64 bytes_used
,
3918 struct btrfs_space_info
**space_info
)
3920 struct btrfs_space_info
*found
;
3925 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3926 BTRFS_BLOCK_GROUP_RAID10
))
3931 found
= __find_space_info(info
, flags
);
3933 spin_lock(&found
->lock
);
3934 found
->total_bytes
+= total_bytes
;
3935 found
->disk_total
+= total_bytes
* factor
;
3936 found
->bytes_used
+= bytes_used
;
3937 found
->disk_used
+= bytes_used
* factor
;
3938 found
->bytes_readonly
+= bytes_readonly
;
3939 if (total_bytes
> 0)
3941 space_info_add_new_bytes(info
, found
, total_bytes
-
3942 bytes_used
- bytes_readonly
);
3943 spin_unlock(&found
->lock
);
3944 *space_info
= found
;
3947 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3951 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3957 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3958 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3959 init_rwsem(&found
->groups_sem
);
3960 spin_lock_init(&found
->lock
);
3961 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3962 found
->total_bytes
= total_bytes
;
3963 found
->disk_total
= total_bytes
* factor
;
3964 found
->bytes_used
= bytes_used
;
3965 found
->disk_used
= bytes_used
* factor
;
3966 found
->bytes_pinned
= 0;
3967 found
->bytes_reserved
= 0;
3968 found
->bytes_readonly
= bytes_readonly
;
3969 found
->bytes_may_use
= 0;
3971 found
->max_extent_size
= 0;
3972 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3973 found
->chunk_alloc
= 0;
3975 init_waitqueue_head(&found
->wait
);
3976 INIT_LIST_HEAD(&found
->ro_bgs
);
3977 INIT_LIST_HEAD(&found
->tickets
);
3978 INIT_LIST_HEAD(&found
->priority_tickets
);
3980 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3981 info
->space_info_kobj
, "%s",
3982 alloc_name(found
->flags
));
3988 *space_info
= found
;
3989 list_add_rcu(&found
->list
, &info
->space_info
);
3990 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3991 info
->data_sinfo
= found
;
3996 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3998 u64 extra_flags
= chunk_to_extended(flags
) &
3999 BTRFS_EXTENDED_PROFILE_MASK
;
4001 write_seqlock(&fs_info
->profiles_lock
);
4002 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4003 fs_info
->avail_data_alloc_bits
|= extra_flags
;
4004 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4005 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
4006 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4007 fs_info
->avail_system_alloc_bits
|= extra_flags
;
4008 write_sequnlock(&fs_info
->profiles_lock
);
4012 * returns target flags in extended format or 0 if restripe for this
4013 * chunk_type is not in progress
4015 * should be called with either volume_mutex or balance_lock held
4017 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
4019 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4025 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4026 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4027 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4028 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4029 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4030 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4031 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4032 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4033 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4040 * @flags: available profiles in extended format (see ctree.h)
4042 * Returns reduced profile in chunk format. If profile changing is in
4043 * progress (either running or paused) picks the target profile (if it's
4044 * already available), otherwise falls back to plain reducing.
4046 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
4048 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
4054 * see if restripe for this chunk_type is in progress, if so
4055 * try to reduce to the target profile
4057 spin_lock(&root
->fs_info
->balance_lock
);
4058 target
= get_restripe_target(root
->fs_info
, flags
);
4060 /* pick target profile only if it's already available */
4061 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4062 spin_unlock(&root
->fs_info
->balance_lock
);
4063 return extended_to_chunk(target
);
4066 spin_unlock(&root
->fs_info
->balance_lock
);
4068 /* First, mask out the RAID levels which aren't possible */
4069 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4070 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4071 allowed
|= btrfs_raid_group
[raid_type
];
4075 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4076 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4077 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4078 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4079 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4080 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4081 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4082 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4083 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4084 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4086 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4088 return extended_to_chunk(flags
| allowed
);
4091 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
4098 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
4100 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4101 flags
|= root
->fs_info
->avail_data_alloc_bits
;
4102 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4103 flags
|= root
->fs_info
->avail_system_alloc_bits
;
4104 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4105 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
4106 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
4108 return btrfs_reduce_alloc_profile(root
, flags
);
4111 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
4117 flags
= BTRFS_BLOCK_GROUP_DATA
;
4118 else if (root
== root
->fs_info
->chunk_root
)
4119 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4121 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4123 ret
= get_alloc_profile(root
, flags
);
4127 int btrfs_alloc_data_chunk_ondemand(struct inode
*inode
, u64 bytes
)
4129 struct btrfs_space_info
*data_sinfo
;
4130 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4131 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4134 int need_commit
= 2;
4135 int have_pinned_space
;
4137 /* make sure bytes are sectorsize aligned */
4138 bytes
= ALIGN(bytes
, root
->sectorsize
);
4140 if (btrfs_is_free_space_inode(inode
)) {
4142 ASSERT(current
->journal_info
);
4145 data_sinfo
= fs_info
->data_sinfo
;
4150 /* make sure we have enough space to handle the data first */
4151 spin_lock(&data_sinfo
->lock
);
4152 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
4153 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
4154 data_sinfo
->bytes_may_use
;
4156 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4157 struct btrfs_trans_handle
*trans
;
4160 * if we don't have enough free bytes in this space then we need
4161 * to alloc a new chunk.
4163 if (!data_sinfo
->full
) {
4166 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4167 spin_unlock(&data_sinfo
->lock
);
4169 alloc_target
= btrfs_get_alloc_profile(root
, 1);
4171 * It is ugly that we don't call nolock join
4172 * transaction for the free space inode case here.
4173 * But it is safe because we only do the data space
4174 * reservation for the free space cache in the
4175 * transaction context, the common join transaction
4176 * just increase the counter of the current transaction
4177 * handler, doesn't try to acquire the trans_lock of
4180 trans
= btrfs_join_transaction(root
);
4182 return PTR_ERR(trans
);
4184 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4186 CHUNK_ALLOC_NO_FORCE
);
4187 btrfs_end_transaction(trans
, root
);
4192 have_pinned_space
= 1;
4198 data_sinfo
= fs_info
->data_sinfo
;
4204 * If we don't have enough pinned space to deal with this
4205 * allocation, and no removed chunk in current transaction,
4206 * don't bother committing the transaction.
4208 have_pinned_space
= percpu_counter_compare(
4209 &data_sinfo
->total_bytes_pinned
,
4210 used
+ bytes
- data_sinfo
->total_bytes
);
4211 spin_unlock(&data_sinfo
->lock
);
4213 /* commit the current transaction and try again */
4216 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
4219 if (need_commit
> 0) {
4220 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4221 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
4224 trans
= btrfs_join_transaction(root
);
4226 return PTR_ERR(trans
);
4227 if (have_pinned_space
>= 0 ||
4228 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4229 &trans
->transaction
->flags
) ||
4231 ret
= btrfs_commit_transaction(trans
, root
);
4235 * The cleaner kthread might still be doing iput
4236 * operations. Wait for it to finish so that
4237 * more space is released.
4239 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4240 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4243 btrfs_end_transaction(trans
, root
);
4247 trace_btrfs_space_reservation(root
->fs_info
,
4248 "space_info:enospc",
4249 data_sinfo
->flags
, bytes
, 1);
4252 data_sinfo
->bytes_may_use
+= bytes
;
4253 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4254 data_sinfo
->flags
, bytes
, 1);
4255 spin_unlock(&data_sinfo
->lock
);
4261 * New check_data_free_space() with ability for precious data reservation
4262 * Will replace old btrfs_check_data_free_space(), but for patch split,
4263 * add a new function first and then replace it.
4265 int btrfs_check_data_free_space(struct inode
*inode
, u64 start
, u64 len
)
4267 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4270 /* align the range */
4271 len
= round_up(start
+ len
, root
->sectorsize
) -
4272 round_down(start
, root
->sectorsize
);
4273 start
= round_down(start
, root
->sectorsize
);
4275 ret
= btrfs_alloc_data_chunk_ondemand(inode
, len
);
4279 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4280 ret
= btrfs_qgroup_reserve_data(inode
, start
, len
);
4282 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4287 * Called if we need to clear a data reservation for this inode
4288 * Normally in a error case.
4290 * This one will *NOT* use accurate qgroup reserved space API, just for case
4291 * which we can't sleep and is sure it won't affect qgroup reserved space.
4292 * Like clear_bit_hook().
4294 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4297 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4298 struct btrfs_space_info
*data_sinfo
;
4300 /* Make sure the range is aligned to sectorsize */
4301 len
= round_up(start
+ len
, root
->sectorsize
) -
4302 round_down(start
, root
->sectorsize
);
4303 start
= round_down(start
, root
->sectorsize
);
4305 data_sinfo
= root
->fs_info
->data_sinfo
;
4306 spin_lock(&data_sinfo
->lock
);
4307 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4308 data_sinfo
->bytes_may_use
= 0;
4310 data_sinfo
->bytes_may_use
-= len
;
4311 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4312 data_sinfo
->flags
, len
, 0);
4313 spin_unlock(&data_sinfo
->lock
);
4317 * Called if we need to clear a data reservation for this inode
4318 * Normally in a error case.
4320 * This one will handle the per-inode data rsv map for accurate reserved
4323 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 start
, u64 len
)
4325 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4326 btrfs_qgroup_free_data(inode
, start
, len
);
4329 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4331 struct list_head
*head
= &info
->space_info
;
4332 struct btrfs_space_info
*found
;
4335 list_for_each_entry_rcu(found
, head
, list
) {
4336 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4337 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4342 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4344 return (global
->size
<< 1);
4347 static int should_alloc_chunk(struct btrfs_root
*root
,
4348 struct btrfs_space_info
*sinfo
, int force
)
4350 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4351 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4352 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4355 if (force
== CHUNK_ALLOC_FORCE
)
4359 * We need to take into account the global rsv because for all intents
4360 * and purposes it's used space. Don't worry about locking the
4361 * global_rsv, it doesn't change except when the transaction commits.
4363 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4364 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4367 * in limited mode, we want to have some free space up to
4368 * about 1% of the FS size.
4370 if (force
== CHUNK_ALLOC_LIMITED
) {
4371 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
4372 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4374 if (num_bytes
- num_allocated
< thresh
)
4378 if (num_allocated
+ SZ_2M
< div_factor(num_bytes
, 8))
4383 static u64
get_profile_num_devs(struct btrfs_root
*root
, u64 type
)
4387 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4388 BTRFS_BLOCK_GROUP_RAID0
|
4389 BTRFS_BLOCK_GROUP_RAID5
|
4390 BTRFS_BLOCK_GROUP_RAID6
))
4391 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
4392 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4395 num_dev
= 1; /* DUP or single */
4401 * If @is_allocation is true, reserve space in the system space info necessary
4402 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4405 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4406 struct btrfs_root
*root
,
4409 struct btrfs_space_info
*info
;
4416 * Needed because we can end up allocating a system chunk and for an
4417 * atomic and race free space reservation in the chunk block reserve.
4419 ASSERT(mutex_is_locked(&root
->fs_info
->chunk_mutex
));
4421 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4422 spin_lock(&info
->lock
);
4423 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
4424 info
->bytes_reserved
- info
->bytes_readonly
-
4425 info
->bytes_may_use
;
4426 spin_unlock(&info
->lock
);
4428 num_devs
= get_profile_num_devs(root
, type
);
4430 /* num_devs device items to update and 1 chunk item to add or remove */
4431 thresh
= btrfs_calc_trunc_metadata_size(root
, num_devs
) +
4432 btrfs_calc_trans_metadata_size(root
, 1);
4434 if (left
< thresh
&& btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
4435 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
4436 left
, thresh
, type
);
4437 dump_space_info(root
->fs_info
, info
, 0, 0);
4440 if (left
< thresh
) {
4443 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
4445 * Ignore failure to create system chunk. We might end up not
4446 * needing it, as we might not need to COW all nodes/leafs from
4447 * the paths we visit in the chunk tree (they were already COWed
4448 * or created in the current transaction for example).
4450 ret
= btrfs_alloc_chunk(trans
, root
, flags
);
4454 ret
= btrfs_block_rsv_add(root
->fs_info
->chunk_root
,
4455 &root
->fs_info
->chunk_block_rsv
,
4456 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4458 trans
->chunk_bytes_reserved
+= thresh
;
4463 * If force is CHUNK_ALLOC_FORCE:
4464 * - return 1 if it successfully allocates a chunk,
4465 * - return errors including -ENOSPC otherwise.
4466 * If force is NOT CHUNK_ALLOC_FORCE:
4467 * - return 0 if it doesn't need to allocate a new chunk,
4468 * - return 1 if it successfully allocates a chunk,
4469 * - return errors including -ENOSPC otherwise.
4471 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4472 struct btrfs_root
*extent_root
, u64 flags
, int force
)
4474 struct btrfs_space_info
*space_info
;
4475 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
4476 int wait_for_alloc
= 0;
4479 /* Don't re-enter if we're already allocating a chunk */
4480 if (trans
->allocating_chunk
)
4483 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
4485 ret
= update_space_info(extent_root
->fs_info
, flags
,
4486 0, 0, 0, &space_info
);
4487 BUG_ON(ret
); /* -ENOMEM */
4489 BUG_ON(!space_info
); /* Logic error */
4492 spin_lock(&space_info
->lock
);
4493 if (force
< space_info
->force_alloc
)
4494 force
= space_info
->force_alloc
;
4495 if (space_info
->full
) {
4496 if (should_alloc_chunk(extent_root
, space_info
, force
))
4500 spin_unlock(&space_info
->lock
);
4504 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
4505 spin_unlock(&space_info
->lock
);
4507 } else if (space_info
->chunk_alloc
) {
4510 space_info
->chunk_alloc
= 1;
4513 spin_unlock(&space_info
->lock
);
4515 mutex_lock(&fs_info
->chunk_mutex
);
4518 * The chunk_mutex is held throughout the entirety of a chunk
4519 * allocation, so once we've acquired the chunk_mutex we know that the
4520 * other guy is done and we need to recheck and see if we should
4523 if (wait_for_alloc
) {
4524 mutex_unlock(&fs_info
->chunk_mutex
);
4529 trans
->allocating_chunk
= true;
4532 * If we have mixed data/metadata chunks we want to make sure we keep
4533 * allocating mixed chunks instead of individual chunks.
4535 if (btrfs_mixed_space_info(space_info
))
4536 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4539 * if we're doing a data chunk, go ahead and make sure that
4540 * we keep a reasonable number of metadata chunks allocated in the
4543 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4544 fs_info
->data_chunk_allocations
++;
4545 if (!(fs_info
->data_chunk_allocations
%
4546 fs_info
->metadata_ratio
))
4547 force_metadata_allocation(fs_info
);
4551 * Check if we have enough space in SYSTEM chunk because we may need
4552 * to update devices.
4554 check_system_chunk(trans
, extent_root
, flags
);
4556 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
4557 trans
->allocating_chunk
= false;
4559 spin_lock(&space_info
->lock
);
4560 if (ret
< 0 && ret
!= -ENOSPC
)
4563 space_info
->full
= 1;
4567 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4569 space_info
->chunk_alloc
= 0;
4570 spin_unlock(&space_info
->lock
);
4571 mutex_unlock(&fs_info
->chunk_mutex
);
4573 * When we allocate a new chunk we reserve space in the chunk block
4574 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4575 * add new nodes/leafs to it if we end up needing to do it when
4576 * inserting the chunk item and updating device items as part of the
4577 * second phase of chunk allocation, performed by
4578 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4579 * large number of new block groups to create in our transaction
4580 * handle's new_bgs list to avoid exhausting the chunk block reserve
4581 * in extreme cases - like having a single transaction create many new
4582 * block groups when starting to write out the free space caches of all
4583 * the block groups that were made dirty during the lifetime of the
4586 if (trans
->can_flush_pending_bgs
&&
4587 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4588 btrfs_create_pending_block_groups(trans
, extent_root
);
4589 btrfs_trans_release_chunk_metadata(trans
);
4594 static int can_overcommit(struct btrfs_root
*root
,
4595 struct btrfs_space_info
*space_info
, u64 bytes
,
4596 enum btrfs_reserve_flush_enum flush
)
4598 struct btrfs_block_rsv
*global_rsv
;
4604 /* Don't overcommit when in mixed mode. */
4605 if (space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4608 BUG_ON(root
->fs_info
== NULL
);
4609 global_rsv
= &root
->fs_info
->global_block_rsv
;
4610 profile
= btrfs_get_alloc_profile(root
, 0);
4611 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4612 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4615 * We only want to allow over committing if we have lots of actual space
4616 * free, but if we don't have enough space to handle the global reserve
4617 * space then we could end up having a real enospc problem when trying
4618 * to allocate a chunk or some other such important allocation.
4620 spin_lock(&global_rsv
->lock
);
4621 space_size
= calc_global_rsv_need_space(global_rsv
);
4622 spin_unlock(&global_rsv
->lock
);
4623 if (used
+ space_size
>= space_info
->total_bytes
)
4626 used
+= space_info
->bytes_may_use
;
4628 spin_lock(&root
->fs_info
->free_chunk_lock
);
4629 avail
= root
->fs_info
->free_chunk_space
;
4630 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4633 * If we have dup, raid1 or raid10 then only half of the free
4634 * space is actually useable. For raid56, the space info used
4635 * doesn't include the parity drive, so we don't have to
4638 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4639 BTRFS_BLOCK_GROUP_RAID1
|
4640 BTRFS_BLOCK_GROUP_RAID10
))
4644 * If we aren't flushing all things, let us overcommit up to
4645 * 1/2th of the space. If we can flush, don't let us overcommit
4646 * too much, let it overcommit up to 1/8 of the space.
4648 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4653 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4658 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4659 unsigned long nr_pages
, int nr_items
)
4661 struct super_block
*sb
= root
->fs_info
->sb
;
4663 if (down_read_trylock(&sb
->s_umount
)) {
4664 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4665 up_read(&sb
->s_umount
);
4668 * We needn't worry the filesystem going from r/w to r/o though
4669 * we don't acquire ->s_umount mutex, because the filesystem
4670 * should guarantee the delalloc inodes list be empty after
4671 * the filesystem is readonly(all dirty pages are written to
4674 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4675 if (!current
->journal_info
)
4676 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
,
4681 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4686 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4687 nr
= (int)div64_u64(to_reclaim
, bytes
);
4693 #define EXTENT_SIZE_PER_ITEM SZ_256K
4696 * shrink metadata reservation for delalloc
4698 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4701 struct btrfs_block_rsv
*block_rsv
;
4702 struct btrfs_space_info
*space_info
;
4703 struct btrfs_trans_handle
*trans
;
4707 unsigned long nr_pages
;
4710 enum btrfs_reserve_flush_enum flush
;
4712 /* Calc the number of the pages we need flush for space reservation */
4713 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4714 to_reclaim
= (u64
)items
* EXTENT_SIZE_PER_ITEM
;
4716 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4717 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4718 space_info
= block_rsv
->space_info
;
4720 delalloc_bytes
= percpu_counter_sum_positive(
4721 &root
->fs_info
->delalloc_bytes
);
4722 if (delalloc_bytes
== 0) {
4726 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4732 while (delalloc_bytes
&& loops
< 3) {
4733 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4734 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4735 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4737 * We need to wait for the async pages to actually start before
4740 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4744 if (max_reclaim
<= nr_pages
)
4747 max_reclaim
-= nr_pages
;
4749 wait_event(root
->fs_info
->async_submit_wait
,
4750 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4754 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4756 flush
= BTRFS_RESERVE_NO_FLUSH
;
4757 spin_lock(&space_info
->lock
);
4758 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4759 spin_unlock(&space_info
->lock
);
4762 if (list_empty(&space_info
->tickets
) &&
4763 list_empty(&space_info
->priority_tickets
)) {
4764 spin_unlock(&space_info
->lock
);
4767 spin_unlock(&space_info
->lock
);
4770 if (wait_ordered
&& !trans
) {
4771 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4774 time_left
= schedule_timeout_killable(1);
4778 delalloc_bytes
= percpu_counter_sum_positive(
4779 &root
->fs_info
->delalloc_bytes
);
4784 * maybe_commit_transaction - possibly commit the transaction if its ok to
4785 * @root - the root we're allocating for
4786 * @bytes - the number of bytes we want to reserve
4787 * @force - force the commit
4789 * This will check to make sure that committing the transaction will actually
4790 * get us somewhere and then commit the transaction if it does. Otherwise it
4791 * will return -ENOSPC.
4793 static int may_commit_transaction(struct btrfs_root
*root
,
4794 struct btrfs_space_info
*space_info
,
4795 u64 bytes
, int force
)
4797 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4798 struct btrfs_trans_handle
*trans
;
4800 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4807 /* See if there is enough pinned space to make this reservation */
4808 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4813 * See if there is some space in the delayed insertion reservation for
4816 if (space_info
!= delayed_rsv
->space_info
)
4819 spin_lock(&delayed_rsv
->lock
);
4820 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4821 bytes
- delayed_rsv
->size
) >= 0) {
4822 spin_unlock(&delayed_rsv
->lock
);
4825 spin_unlock(&delayed_rsv
->lock
);
4828 trans
= btrfs_join_transaction(root
);
4832 return btrfs_commit_transaction(trans
, root
);
4835 struct reserve_ticket
{
4838 struct list_head list
;
4839 wait_queue_head_t wait
;
4842 static int flush_space(struct btrfs_root
*root
,
4843 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4844 u64 orig_bytes
, int state
)
4846 struct btrfs_trans_handle
*trans
;
4851 case FLUSH_DELAYED_ITEMS_NR
:
4852 case FLUSH_DELAYED_ITEMS
:
4853 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4854 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4858 trans
= btrfs_join_transaction(root
);
4859 if (IS_ERR(trans
)) {
4860 ret
= PTR_ERR(trans
);
4863 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4864 btrfs_end_transaction(trans
, root
);
4866 case FLUSH_DELALLOC
:
4867 case FLUSH_DELALLOC_WAIT
:
4868 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4869 state
== FLUSH_DELALLOC_WAIT
);
4872 trans
= btrfs_join_transaction(root
);
4873 if (IS_ERR(trans
)) {
4874 ret
= PTR_ERR(trans
);
4877 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4878 btrfs_get_alloc_profile(root
, 0),
4879 CHUNK_ALLOC_NO_FORCE
);
4880 btrfs_end_transaction(trans
, root
);
4881 if (ret
> 0 || ret
== -ENOSPC
)
4885 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4892 trace_btrfs_flush_space(root
->fs_info
, space_info
->flags
, num_bytes
,
4893 orig_bytes
, state
, ret
);
4898 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4899 struct btrfs_space_info
*space_info
)
4901 struct reserve_ticket
*ticket
;
4906 list_for_each_entry(ticket
, &space_info
->tickets
, list
)
4907 to_reclaim
+= ticket
->bytes
;
4908 list_for_each_entry(ticket
, &space_info
->priority_tickets
, list
)
4909 to_reclaim
+= ticket
->bytes
;
4913 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
4914 if (can_overcommit(root
, space_info
, to_reclaim
,
4915 BTRFS_RESERVE_FLUSH_ALL
))
4918 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4919 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4920 space_info
->bytes_may_use
;
4921 if (can_overcommit(root
, space_info
, SZ_1M
, BTRFS_RESERVE_FLUSH_ALL
))
4922 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4924 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4926 if (used
> expected
)
4927 to_reclaim
= used
- expected
;
4930 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4931 space_info
->bytes_reserved
);
4935 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4936 struct btrfs_root
*root
, u64 used
)
4938 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
4940 /* If we're just plain full then async reclaim just slows us down. */
4941 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
4944 if (!btrfs_calc_reclaim_metadata_size(root
, space_info
))
4947 return (used
>= thresh
&& !btrfs_fs_closing(root
->fs_info
) &&
4948 !test_bit(BTRFS_FS_STATE_REMOUNTING
,
4949 &root
->fs_info
->fs_state
));
4952 static void wake_all_tickets(struct list_head
*head
)
4954 struct reserve_ticket
*ticket
;
4956 while (!list_empty(head
)) {
4957 ticket
= list_first_entry(head
, struct reserve_ticket
, list
);
4958 list_del_init(&ticket
->list
);
4959 ticket
->error
= -ENOSPC
;
4960 wake_up(&ticket
->wait
);
4965 * This is for normal flushers, we can wait all goddamned day if we want to. We
4966 * will loop and continuously try to flush as long as we are making progress.
4967 * We count progress as clearing off tickets each time we have to loop.
4969 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4971 struct btrfs_fs_info
*fs_info
;
4972 struct btrfs_space_info
*space_info
;
4975 int commit_cycles
= 0;
4976 u64 last_tickets_id
;
4978 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4979 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4981 spin_lock(&space_info
->lock
);
4982 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4985 space_info
->flush
= 0;
4986 spin_unlock(&space_info
->lock
);
4989 last_tickets_id
= space_info
->tickets_id
;
4990 spin_unlock(&space_info
->lock
);
4992 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4994 struct reserve_ticket
*ticket
;
4997 ret
= flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4998 to_reclaim
, flush_state
);
4999 spin_lock(&space_info
->lock
);
5000 if (list_empty(&space_info
->tickets
)) {
5001 space_info
->flush
= 0;
5002 spin_unlock(&space_info
->lock
);
5005 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5007 ticket
= list_first_entry(&space_info
->tickets
,
5008 struct reserve_ticket
, list
);
5009 if (last_tickets_id
== space_info
->tickets_id
) {
5012 last_tickets_id
= space_info
->tickets_id
;
5013 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5018 if (flush_state
> COMMIT_TRANS
) {
5020 if (commit_cycles
> 2) {
5021 wake_all_tickets(&space_info
->tickets
);
5022 space_info
->flush
= 0;
5024 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5027 spin_unlock(&space_info
->lock
);
5028 } while (flush_state
<= COMMIT_TRANS
);
5031 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
5033 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
5036 static void priority_reclaim_metadata_space(struct btrfs_fs_info
*fs_info
,
5037 struct btrfs_space_info
*space_info
,
5038 struct reserve_ticket
*ticket
)
5041 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
5043 spin_lock(&space_info
->lock
);
5044 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
5047 spin_unlock(&space_info
->lock
);
5050 spin_unlock(&space_info
->lock
);
5053 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
5054 to_reclaim
, flush_state
);
5056 spin_lock(&space_info
->lock
);
5057 if (ticket
->bytes
== 0) {
5058 spin_unlock(&space_info
->lock
);
5061 spin_unlock(&space_info
->lock
);
5064 * Priority flushers can't wait on delalloc without
5067 if (flush_state
== FLUSH_DELALLOC
||
5068 flush_state
== FLUSH_DELALLOC_WAIT
)
5069 flush_state
= ALLOC_CHUNK
;
5070 } while (flush_state
< COMMIT_TRANS
);
5073 static int wait_reserve_ticket(struct btrfs_fs_info
*fs_info
,
5074 struct btrfs_space_info
*space_info
,
5075 struct reserve_ticket
*ticket
, u64 orig_bytes
)
5081 spin_lock(&space_info
->lock
);
5082 while (ticket
->bytes
> 0 && ticket
->error
== 0) {
5083 ret
= prepare_to_wait_event(&ticket
->wait
, &wait
, TASK_KILLABLE
);
5088 spin_unlock(&space_info
->lock
);
5092 finish_wait(&ticket
->wait
, &wait
);
5093 spin_lock(&space_info
->lock
);
5096 ret
= ticket
->error
;
5097 if (!list_empty(&ticket
->list
))
5098 list_del_init(&ticket
->list
);
5099 if (ticket
->bytes
&& ticket
->bytes
< orig_bytes
) {
5100 u64 num_bytes
= orig_bytes
- ticket
->bytes
;
5101 space_info
->bytes_may_use
-= num_bytes
;
5102 trace_btrfs_space_reservation(fs_info
, "space_info",
5103 space_info
->flags
, num_bytes
, 0);
5105 spin_unlock(&space_info
->lock
);
5111 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5112 * @root - the root we're allocating for
5113 * @space_info - the space info we want to allocate from
5114 * @orig_bytes - the number of bytes we want
5115 * @flush - whether or not we can flush to make our reservation
5117 * This will reserve orig_bytes number of bytes from the space info associated
5118 * with the block_rsv. If there is not enough space it will make an attempt to
5119 * flush out space to make room. It will do this by flushing delalloc if
5120 * possible or committing the transaction. If flush is 0 then no attempts to
5121 * regain reservations will be made and this will fail if there is not enough
5124 static int __reserve_metadata_bytes(struct btrfs_root
*root
,
5125 struct btrfs_space_info
*space_info
,
5127 enum btrfs_reserve_flush_enum flush
)
5129 struct reserve_ticket ticket
;
5134 ASSERT(!current
->journal_info
|| flush
!= BTRFS_RESERVE_FLUSH_ALL
);
5136 spin_lock(&space_info
->lock
);
5138 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5139 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5140 space_info
->bytes_may_use
;
5143 * If we have enough space then hooray, make our reservation and carry
5144 * on. If not see if we can overcommit, and if we can, hooray carry on.
5145 * If not things get more complicated.
5147 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5148 space_info
->bytes_may_use
+= orig_bytes
;
5149 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
5150 space_info
->flags
, orig_bytes
,
5153 } else if (can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
5154 space_info
->bytes_may_use
+= orig_bytes
;
5155 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
5156 space_info
->flags
, orig_bytes
,
5162 * If we couldn't make a reservation then setup our reservation ticket
5163 * and kick the async worker if it's not already running.
5165 * If we are a priority flusher then we just need to add our ticket to
5166 * the list and we will do our own flushing further down.
5168 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5169 ticket
.bytes
= orig_bytes
;
5171 init_waitqueue_head(&ticket
.wait
);
5172 if (flush
== BTRFS_RESERVE_FLUSH_ALL
) {
5173 list_add_tail(&ticket
.list
, &space_info
->tickets
);
5174 if (!space_info
->flush
) {
5175 space_info
->flush
= 1;
5176 trace_btrfs_trigger_flush(root
->fs_info
,
5180 queue_work(system_unbound_wq
,
5181 &root
->fs_info
->async_reclaim_work
);
5184 list_add_tail(&ticket
.list
,
5185 &space_info
->priority_tickets
);
5187 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5190 * We will do the space reservation dance during log replay,
5191 * which means we won't have fs_info->fs_root set, so don't do
5192 * the async reclaim as we will panic.
5194 if (!test_bit(BTRFS_FS_LOG_RECOVERING
, &root
->fs_info
->flags
) &&
5195 need_do_async_reclaim(space_info
, root
, used
) &&
5196 !work_busy(&root
->fs_info
->async_reclaim_work
)) {
5197 trace_btrfs_trigger_flush(root
->fs_info
,
5201 queue_work(system_unbound_wq
,
5202 &root
->fs_info
->async_reclaim_work
);
5205 spin_unlock(&space_info
->lock
);
5206 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5209 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
5210 return wait_reserve_ticket(root
->fs_info
, space_info
, &ticket
,
5214 priority_reclaim_metadata_space(root
->fs_info
, space_info
, &ticket
);
5215 spin_lock(&space_info
->lock
);
5217 if (ticket
.bytes
< orig_bytes
) {
5218 u64 num_bytes
= orig_bytes
- ticket
.bytes
;
5219 space_info
->bytes_may_use
-= num_bytes
;
5220 trace_btrfs_space_reservation(root
->fs_info
,
5221 "space_info", space_info
->flags
,
5225 list_del_init(&ticket
.list
);
5228 spin_unlock(&space_info
->lock
);
5229 ASSERT(list_empty(&ticket
.list
));
5234 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5235 * @root - the root we're allocating for
5236 * @block_rsv - the block_rsv we're allocating for
5237 * @orig_bytes - the number of bytes we want
5238 * @flush - whether or not we can flush to make our reservation
5240 * This will reserve orgi_bytes number of bytes from the space info associated
5241 * with the block_rsv. If there is not enough space it will make an attempt to
5242 * flush out space to make room. It will do this by flushing delalloc if
5243 * possible or committing the transaction. If flush is 0 then no attempts to
5244 * regain reservations will be made and this will fail if there is not enough
5247 static int reserve_metadata_bytes(struct btrfs_root
*root
,
5248 struct btrfs_block_rsv
*block_rsv
,
5250 enum btrfs_reserve_flush_enum flush
)
5254 ret
= __reserve_metadata_bytes(root
, block_rsv
->space_info
, orig_bytes
,
5256 if (ret
== -ENOSPC
&&
5257 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5258 struct btrfs_block_rsv
*global_rsv
=
5259 &root
->fs_info
->global_block_rsv
;
5261 if (block_rsv
!= global_rsv
&&
5262 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5266 trace_btrfs_space_reservation(root
->fs_info
,
5267 "space_info:enospc",
5268 block_rsv
->space_info
->flags
,
5273 static struct btrfs_block_rsv
*get_block_rsv(
5274 const struct btrfs_trans_handle
*trans
,
5275 const struct btrfs_root
*root
)
5277 struct btrfs_block_rsv
*block_rsv
= NULL
;
5279 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5280 (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
) ||
5281 (root
== root
->fs_info
->uuid_root
))
5282 block_rsv
= trans
->block_rsv
;
5285 block_rsv
= root
->block_rsv
;
5288 block_rsv
= &root
->fs_info
->empty_block_rsv
;
5293 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5297 spin_lock(&block_rsv
->lock
);
5298 if (block_rsv
->reserved
>= num_bytes
) {
5299 block_rsv
->reserved
-= num_bytes
;
5300 if (block_rsv
->reserved
< block_rsv
->size
)
5301 block_rsv
->full
= 0;
5304 spin_unlock(&block_rsv
->lock
);
5308 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5309 u64 num_bytes
, int update_size
)
5311 spin_lock(&block_rsv
->lock
);
5312 block_rsv
->reserved
+= num_bytes
;
5314 block_rsv
->size
+= num_bytes
;
5315 else if (block_rsv
->reserved
>= block_rsv
->size
)
5316 block_rsv
->full
= 1;
5317 spin_unlock(&block_rsv
->lock
);
5320 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5321 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5324 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5327 if (global_rsv
->space_info
!= dest
->space_info
)
5330 spin_lock(&global_rsv
->lock
);
5331 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5332 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5333 spin_unlock(&global_rsv
->lock
);
5336 global_rsv
->reserved
-= num_bytes
;
5337 if (global_rsv
->reserved
< global_rsv
->size
)
5338 global_rsv
->full
= 0;
5339 spin_unlock(&global_rsv
->lock
);
5341 block_rsv_add_bytes(dest
, num_bytes
, 1);
5346 * This is for space we already have accounted in space_info->bytes_may_use, so
5347 * basically when we're returning space from block_rsv's.
5349 static void space_info_add_old_bytes(struct btrfs_fs_info
*fs_info
,
5350 struct btrfs_space_info
*space_info
,
5353 struct reserve_ticket
*ticket
;
5354 struct list_head
*head
;
5356 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_NO_FLUSH
;
5357 bool check_overcommit
= false;
5359 spin_lock(&space_info
->lock
);
5360 head
= &space_info
->priority_tickets
;
5363 * If we are over our limit then we need to check and see if we can
5364 * overcommit, and if we can't then we just need to free up our space
5365 * and not satisfy any requests.
5367 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5368 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5369 space_info
->bytes_may_use
;
5370 if (used
- num_bytes
>= space_info
->total_bytes
)
5371 check_overcommit
= true;
5373 while (!list_empty(head
) && num_bytes
) {
5374 ticket
= list_first_entry(head
, struct reserve_ticket
,
5377 * We use 0 bytes because this space is already reserved, so
5378 * adding the ticket space would be a double count.
5380 if (check_overcommit
&&
5381 !can_overcommit(fs_info
->extent_root
, space_info
, 0,
5384 if (num_bytes
>= ticket
->bytes
) {
5385 list_del_init(&ticket
->list
);
5386 num_bytes
-= ticket
->bytes
;
5388 space_info
->tickets_id
++;
5389 wake_up(&ticket
->wait
);
5391 ticket
->bytes
-= num_bytes
;
5396 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5397 head
= &space_info
->tickets
;
5398 flush
= BTRFS_RESERVE_FLUSH_ALL
;
5401 space_info
->bytes_may_use
-= num_bytes
;
5402 trace_btrfs_space_reservation(fs_info
, "space_info",
5403 space_info
->flags
, num_bytes
, 0);
5404 spin_unlock(&space_info
->lock
);
5408 * This is for newly allocated space that isn't accounted in
5409 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5410 * we use this helper.
5412 static void space_info_add_new_bytes(struct btrfs_fs_info
*fs_info
,
5413 struct btrfs_space_info
*space_info
,
5416 struct reserve_ticket
*ticket
;
5417 struct list_head
*head
= &space_info
->priority_tickets
;
5420 while (!list_empty(head
) && num_bytes
) {
5421 ticket
= list_first_entry(head
, struct reserve_ticket
,
5423 if (num_bytes
>= ticket
->bytes
) {
5424 trace_btrfs_space_reservation(fs_info
, "space_info",
5427 list_del_init(&ticket
->list
);
5428 num_bytes
-= ticket
->bytes
;
5429 space_info
->bytes_may_use
+= ticket
->bytes
;
5431 space_info
->tickets_id
++;
5432 wake_up(&ticket
->wait
);
5434 trace_btrfs_space_reservation(fs_info
, "space_info",
5437 space_info
->bytes_may_use
+= num_bytes
;
5438 ticket
->bytes
-= num_bytes
;
5443 if (num_bytes
&& head
== &space_info
->priority_tickets
) {
5444 head
= &space_info
->tickets
;
5449 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5450 struct btrfs_block_rsv
*block_rsv
,
5451 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5453 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5455 spin_lock(&block_rsv
->lock
);
5456 if (num_bytes
== (u64
)-1)
5457 num_bytes
= block_rsv
->size
;
5458 block_rsv
->size
-= num_bytes
;
5459 if (block_rsv
->reserved
>= block_rsv
->size
) {
5460 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5461 block_rsv
->reserved
= block_rsv
->size
;
5462 block_rsv
->full
= 1;
5466 spin_unlock(&block_rsv
->lock
);
5468 if (num_bytes
> 0) {
5470 spin_lock(&dest
->lock
);
5474 bytes_to_add
= dest
->size
- dest
->reserved
;
5475 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5476 dest
->reserved
+= bytes_to_add
;
5477 if (dest
->reserved
>= dest
->size
)
5479 num_bytes
-= bytes_to_add
;
5481 spin_unlock(&dest
->lock
);
5484 space_info_add_old_bytes(fs_info
, space_info
,
5489 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src
,
5490 struct btrfs_block_rsv
*dst
, u64 num_bytes
,
5495 ret
= block_rsv_use_bytes(src
, num_bytes
);
5499 block_rsv_add_bytes(dst
, num_bytes
, update_size
);
5503 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5505 memset(rsv
, 0, sizeof(*rsv
));
5506 spin_lock_init(&rsv
->lock
);
5510 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
5511 unsigned short type
)
5513 struct btrfs_block_rsv
*block_rsv
;
5514 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5516 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5520 btrfs_init_block_rsv(block_rsv
, type
);
5521 block_rsv
->space_info
= __find_space_info(fs_info
,
5522 BTRFS_BLOCK_GROUP_METADATA
);
5526 void btrfs_free_block_rsv(struct btrfs_root
*root
,
5527 struct btrfs_block_rsv
*rsv
)
5531 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5535 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5540 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5541 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5542 enum btrfs_reserve_flush_enum flush
)
5549 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5551 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5558 int btrfs_block_rsv_check(struct btrfs_root
*root
,
5559 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5567 spin_lock(&block_rsv
->lock
);
5568 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5569 if (block_rsv
->reserved
>= num_bytes
)
5571 spin_unlock(&block_rsv
->lock
);
5576 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5577 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5578 enum btrfs_reserve_flush_enum flush
)
5586 spin_lock(&block_rsv
->lock
);
5587 num_bytes
= min_reserved
;
5588 if (block_rsv
->reserved
>= num_bytes
)
5591 num_bytes
-= block_rsv
->reserved
;
5592 spin_unlock(&block_rsv
->lock
);
5597 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5599 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5606 void btrfs_block_rsv_release(struct btrfs_root
*root
,
5607 struct btrfs_block_rsv
*block_rsv
,
5610 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5611 if (global_rsv
== block_rsv
||
5612 block_rsv
->space_info
!= global_rsv
->space_info
)
5614 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
5618 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5620 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5621 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5625 * The global block rsv is based on the size of the extent tree, the
5626 * checksum tree and the root tree. If the fs is empty we want to set
5627 * it to a minimal amount for safety.
5629 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
) +
5630 btrfs_root_used(&fs_info
->csum_root
->root_item
) +
5631 btrfs_root_used(&fs_info
->tree_root
->root_item
);
5632 num_bytes
= max_t(u64
, num_bytes
, SZ_16M
);
5634 spin_lock(&sinfo
->lock
);
5635 spin_lock(&block_rsv
->lock
);
5637 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5639 if (block_rsv
->reserved
< block_rsv
->size
) {
5640 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
5641 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
5642 sinfo
->bytes_may_use
;
5643 if (sinfo
->total_bytes
> num_bytes
) {
5644 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5645 num_bytes
= min(num_bytes
,
5646 block_rsv
->size
- block_rsv
->reserved
);
5647 block_rsv
->reserved
+= num_bytes
;
5648 sinfo
->bytes_may_use
+= num_bytes
;
5649 trace_btrfs_space_reservation(fs_info
, "space_info",
5650 sinfo
->flags
, num_bytes
,
5653 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5654 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5655 sinfo
->bytes_may_use
-= num_bytes
;
5656 trace_btrfs_space_reservation(fs_info
, "space_info",
5657 sinfo
->flags
, num_bytes
, 0);
5658 block_rsv
->reserved
= block_rsv
->size
;
5661 if (block_rsv
->reserved
== block_rsv
->size
)
5662 block_rsv
->full
= 1;
5664 block_rsv
->full
= 0;
5666 spin_unlock(&block_rsv
->lock
);
5667 spin_unlock(&sinfo
->lock
);
5670 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5672 struct btrfs_space_info
*space_info
;
5674 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5675 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5677 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5678 fs_info
->global_block_rsv
.space_info
= space_info
;
5679 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5680 fs_info
->trans_block_rsv
.space_info
= space_info
;
5681 fs_info
->empty_block_rsv
.space_info
= space_info
;
5682 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5684 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5685 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5686 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5687 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5688 if (fs_info
->quota_root
)
5689 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5690 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5692 update_global_block_rsv(fs_info
);
5695 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5697 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5699 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5700 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5701 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5702 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5703 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5704 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5705 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5706 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5709 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5710 struct btrfs_root
*root
)
5712 if (!trans
->block_rsv
)
5715 if (!trans
->bytes_reserved
)
5718 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
5719 trans
->transid
, trans
->bytes_reserved
, 0);
5720 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
5721 trans
->bytes_reserved
= 0;
5725 * To be called after all the new block groups attached to the transaction
5726 * handle have been created (btrfs_create_pending_block_groups()).
5728 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5730 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5732 if (!trans
->chunk_bytes_reserved
)
5735 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5737 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5738 trans
->chunk_bytes_reserved
);
5739 trans
->chunk_bytes_reserved
= 0;
5742 /* Can only return 0 or -ENOSPC */
5743 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5744 struct inode
*inode
)
5746 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5748 * We always use trans->block_rsv here as we will have reserved space
5749 * for our orphan when starting the transaction, using get_block_rsv()
5750 * here will sometimes make us choose the wrong block rsv as we could be
5751 * doing a reloc inode for a non refcounted root.
5753 struct btrfs_block_rsv
*src_rsv
= trans
->block_rsv
;
5754 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5757 * We need to hold space in order to delete our orphan item once we've
5758 * added it, so this takes the reservation so we can release it later
5759 * when we are truly done with the orphan item.
5761 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5762 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5763 btrfs_ino(inode
), num_bytes
, 1);
5764 return btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
, 1);
5767 void btrfs_orphan_release_metadata(struct inode
*inode
)
5769 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5770 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5771 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5772 btrfs_ino(inode
), num_bytes
, 0);
5773 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
5777 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5778 * root: the root of the parent directory
5779 * rsv: block reservation
5780 * items: the number of items that we need do reservation
5781 * qgroup_reserved: used to return the reserved size in qgroup
5783 * This function is used to reserve the space for snapshot/subvolume
5784 * creation and deletion. Those operations are different with the
5785 * common file/directory operations, they change two fs/file trees
5786 * and root tree, the number of items that the qgroup reserves is
5787 * different with the free space reservation. So we can not use
5788 * the space reservation mechanism in start_transaction().
5790 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5791 struct btrfs_block_rsv
*rsv
,
5793 u64
*qgroup_reserved
,
5794 bool use_global_rsv
)
5798 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5800 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &root
->fs_info
->flags
)) {
5801 /* One for parent inode, two for dir entries */
5802 num_bytes
= 3 * root
->nodesize
;
5803 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
);
5810 *qgroup_reserved
= num_bytes
;
5812 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5813 rsv
->space_info
= __find_space_info(root
->fs_info
,
5814 BTRFS_BLOCK_GROUP_METADATA
);
5815 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5816 BTRFS_RESERVE_FLUSH_ALL
);
5818 if (ret
== -ENOSPC
&& use_global_rsv
)
5819 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, 1);
5821 if (ret
&& *qgroup_reserved
)
5822 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
5827 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5828 struct btrfs_block_rsv
*rsv
,
5829 u64 qgroup_reserved
)
5831 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5835 * drop_outstanding_extent - drop an outstanding extent
5836 * @inode: the inode we're dropping the extent for
5837 * @num_bytes: the number of bytes we're releasing.
5839 * This is called when we are freeing up an outstanding extent, either called
5840 * after an error or after an extent is written. This will return the number of
5841 * reserved extents that need to be freed. This must be called with
5842 * BTRFS_I(inode)->lock held.
5844 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
5846 unsigned drop_inode_space
= 0;
5847 unsigned dropped_extents
= 0;
5848 unsigned num_extents
= 0;
5850 num_extents
= (unsigned)div64_u64(num_bytes
+
5851 BTRFS_MAX_EXTENT_SIZE
- 1,
5852 BTRFS_MAX_EXTENT_SIZE
);
5853 ASSERT(num_extents
);
5854 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
5855 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
5857 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5858 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5859 &BTRFS_I(inode
)->runtime_flags
))
5860 drop_inode_space
= 1;
5863 * If we have more or the same amount of outstanding extents than we have
5864 * reserved then we need to leave the reserved extents count alone.
5866 if (BTRFS_I(inode
)->outstanding_extents
>=
5867 BTRFS_I(inode
)->reserved_extents
)
5868 return drop_inode_space
;
5870 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5871 BTRFS_I(inode
)->outstanding_extents
;
5872 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5873 return dropped_extents
+ drop_inode_space
;
5877 * calc_csum_metadata_size - return the amount of metadata space that must be
5878 * reserved/freed for the given bytes.
5879 * @inode: the inode we're manipulating
5880 * @num_bytes: the number of bytes in question
5881 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5883 * This adjusts the number of csum_bytes in the inode and then returns the
5884 * correct amount of metadata that must either be reserved or freed. We
5885 * calculate how many checksums we can fit into one leaf and then divide the
5886 * number of bytes that will need to be checksumed by this value to figure out
5887 * how many checksums will be required. If we are adding bytes then the number
5888 * may go up and we will return the number of additional bytes that must be
5889 * reserved. If it is going down we will return the number of bytes that must
5892 * This must be called with BTRFS_I(inode)->lock held.
5894 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5897 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5898 u64 old_csums
, num_csums
;
5900 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5901 BTRFS_I(inode
)->csum_bytes
== 0)
5904 old_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5906 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5908 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5909 num_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5911 /* No change, no need to reserve more */
5912 if (old_csums
== num_csums
)
5916 return btrfs_calc_trans_metadata_size(root
,
5917 num_csums
- old_csums
);
5919 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5922 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5924 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5925 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5928 unsigned nr_extents
= 0;
5929 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5931 bool delalloc_lock
= true;
5934 bool release_extra
= false;
5936 /* If we are a free space inode we need to not flush since we will be in
5937 * the middle of a transaction commit. We also don't need the delalloc
5938 * mutex since we won't race with anybody. We need this mostly to make
5939 * lockdep shut its filthy mouth.
5941 * If we have a transaction open (can happen if we call truncate_block
5942 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5944 if (btrfs_is_free_space_inode(inode
)) {
5945 flush
= BTRFS_RESERVE_NO_FLUSH
;
5946 delalloc_lock
= false;
5947 } else if (current
->journal_info
) {
5948 flush
= BTRFS_RESERVE_FLUSH_LIMIT
;
5951 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5952 btrfs_transaction_in_commit(root
->fs_info
))
5953 schedule_timeout(1);
5956 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5958 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5960 spin_lock(&BTRFS_I(inode
)->lock
);
5961 nr_extents
= (unsigned)div64_u64(num_bytes
+
5962 BTRFS_MAX_EXTENT_SIZE
- 1,
5963 BTRFS_MAX_EXTENT_SIZE
);
5964 BTRFS_I(inode
)->outstanding_extents
+= nr_extents
;
5967 if (BTRFS_I(inode
)->outstanding_extents
>
5968 BTRFS_I(inode
)->reserved_extents
)
5969 nr_extents
+= BTRFS_I(inode
)->outstanding_extents
-
5970 BTRFS_I(inode
)->reserved_extents
;
5972 /* We always want to reserve a slot for updating the inode. */
5973 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
+ 1);
5974 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5975 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5976 spin_unlock(&BTRFS_I(inode
)->lock
);
5978 if (test_bit(BTRFS_FS_QUOTA_ENABLED
, &root
->fs_info
->flags
)) {
5979 ret
= btrfs_qgroup_reserve_meta(root
,
5980 nr_extents
* root
->nodesize
);
5985 ret
= btrfs_block_rsv_add(root
, block_rsv
, to_reserve
, flush
);
5986 if (unlikely(ret
)) {
5987 btrfs_qgroup_free_meta(root
, nr_extents
* root
->nodesize
);
5991 spin_lock(&BTRFS_I(inode
)->lock
);
5992 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5993 &BTRFS_I(inode
)->runtime_flags
)) {
5994 to_reserve
-= btrfs_calc_trans_metadata_size(root
, 1);
5995 release_extra
= true;
5997 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5998 spin_unlock(&BTRFS_I(inode
)->lock
);
6001 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6004 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6005 btrfs_ino(inode
), to_reserve
, 1);
6007 btrfs_block_rsv_release(root
, block_rsv
,
6008 btrfs_calc_trans_metadata_size(root
,
6013 spin_lock(&BTRFS_I(inode
)->lock
);
6014 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6016 * If the inodes csum_bytes is the same as the original
6017 * csum_bytes then we know we haven't raced with any free()ers
6018 * so we can just reduce our inodes csum bytes and carry on.
6020 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
6021 calc_csum_metadata_size(inode
, num_bytes
, 0);
6023 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
6027 * This is tricky, but first we need to figure out how much we
6028 * freed from any free-ers that occurred during this
6029 * reservation, so we reset ->csum_bytes to the csum_bytes
6030 * before we dropped our lock, and then call the free for the
6031 * number of bytes that were freed while we were trying our
6034 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
6035 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
6036 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
6040 * Now we need to see how much we would have freed had we not
6041 * been making this reservation and our ->csum_bytes were not
6042 * artificially inflated.
6044 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
6045 bytes
= csum_bytes
- orig_csum_bytes
;
6046 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
6049 * Now reset ->csum_bytes to what it should be. If bytes is
6050 * more than to_free then we would have freed more space had we
6051 * not had an artificially high ->csum_bytes, so we need to free
6052 * the remainder. If bytes is the same or less then we don't
6053 * need to do anything, the other free-ers did the correct
6056 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
6057 if (bytes
> to_free
)
6058 to_free
= bytes
- to_free
;
6062 spin_unlock(&BTRFS_I(inode
)->lock
);
6064 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
6067 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
6068 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6069 btrfs_ino(inode
), to_free
, 0);
6072 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
6077 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6078 * @inode: the inode to release the reservation for
6079 * @num_bytes: the number of bytes we're releasing
6081 * This will release the metadata reservation for an inode. This can be called
6082 * once we complete IO for a given set of bytes to release their metadata
6085 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
6087 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6091 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
6092 spin_lock(&BTRFS_I(inode
)->lock
);
6093 dropped
= drop_outstanding_extent(inode
, num_bytes
);
6096 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
6097 spin_unlock(&BTRFS_I(inode
)->lock
);
6099 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
6101 if (btrfs_is_testing(root
->fs_info
))
6104 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
6105 btrfs_ino(inode
), to_free
, 0);
6107 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
6112 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6114 * @inode: inode we're writing to
6115 * @start: start range we are writing to
6116 * @len: how long the range we are writing to
6118 * This will do the following things
6120 * o reserve space in data space info for num bytes
6121 * and reserve precious corresponding qgroup space
6122 * (Done in check_data_free_space)
6124 * o reserve space for metadata space, based on the number of outstanding
6125 * extents and how much csums will be needed
6126 * also reserve metadata space in a per root over-reserve method.
6127 * o add to the inodes->delalloc_bytes
6128 * o add it to the fs_info's delalloc inodes list.
6129 * (Above 3 all done in delalloc_reserve_metadata)
6131 * Return 0 for success
6132 * Return <0 for error(-ENOSPC or -EQUOT)
6134 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 start
, u64 len
)
6138 ret
= btrfs_check_data_free_space(inode
, start
, len
);
6141 ret
= btrfs_delalloc_reserve_metadata(inode
, len
);
6143 btrfs_free_reserved_data_space(inode
, start
, len
);
6148 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6149 * @inode: inode we're releasing space for
6150 * @start: start position of the space already reserved
6151 * @len: the len of the space already reserved
6153 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6154 * called in the case that we don't need the metadata AND data reservations
6155 * anymore. So if there is an error or we insert an inline extent.
6157 * This function will release the metadata space that was not used and will
6158 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6159 * list if there are no delalloc bytes left.
6160 * Also it will handle the qgroup reserved space.
6162 void btrfs_delalloc_release_space(struct inode
*inode
, u64 start
, u64 len
)
6164 btrfs_delalloc_release_metadata(inode
, len
);
6165 btrfs_free_reserved_data_space(inode
, start
, len
);
6168 static int update_block_group(struct btrfs_trans_handle
*trans
,
6169 struct btrfs_root
*root
, u64 bytenr
,
6170 u64 num_bytes
, int alloc
)
6172 struct btrfs_block_group_cache
*cache
= NULL
;
6173 struct btrfs_fs_info
*info
= root
->fs_info
;
6174 u64 total
= num_bytes
;
6179 /* block accounting for super block */
6180 spin_lock(&info
->delalloc_root_lock
);
6181 old_val
= btrfs_super_bytes_used(info
->super_copy
);
6183 old_val
+= num_bytes
;
6185 old_val
-= num_bytes
;
6186 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
6187 spin_unlock(&info
->delalloc_root_lock
);
6190 cache
= btrfs_lookup_block_group(info
, bytenr
);
6193 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
6194 BTRFS_BLOCK_GROUP_RAID1
|
6195 BTRFS_BLOCK_GROUP_RAID10
))
6200 * If this block group has free space cache written out, we
6201 * need to make sure to load it if we are removing space. This
6202 * is because we need the unpinning stage to actually add the
6203 * space back to the block group, otherwise we will leak space.
6205 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
6206 cache_block_group(cache
, 1);
6208 byte_in_group
= bytenr
- cache
->key
.objectid
;
6209 WARN_ON(byte_in_group
> cache
->key
.offset
);
6211 spin_lock(&cache
->space_info
->lock
);
6212 spin_lock(&cache
->lock
);
6214 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
) &&
6215 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6216 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6218 old_val
= btrfs_block_group_used(&cache
->item
);
6219 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6221 old_val
+= num_bytes
;
6222 btrfs_set_block_group_used(&cache
->item
, old_val
);
6223 cache
->reserved
-= num_bytes
;
6224 cache
->space_info
->bytes_reserved
-= num_bytes
;
6225 cache
->space_info
->bytes_used
+= num_bytes
;
6226 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6227 spin_unlock(&cache
->lock
);
6228 spin_unlock(&cache
->space_info
->lock
);
6230 old_val
-= num_bytes
;
6231 btrfs_set_block_group_used(&cache
->item
, old_val
);
6232 cache
->pinned
+= num_bytes
;
6233 cache
->space_info
->bytes_pinned
+= num_bytes
;
6234 cache
->space_info
->bytes_used
-= num_bytes
;
6235 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6236 spin_unlock(&cache
->lock
);
6237 spin_unlock(&cache
->space_info
->lock
);
6239 trace_btrfs_space_reservation(root
->fs_info
, "pinned",
6240 cache
->space_info
->flags
,
6242 set_extent_dirty(info
->pinned_extents
,
6243 bytenr
, bytenr
+ num_bytes
- 1,
6244 GFP_NOFS
| __GFP_NOFAIL
);
6247 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6248 if (list_empty(&cache
->dirty_list
)) {
6249 list_add_tail(&cache
->dirty_list
,
6250 &trans
->transaction
->dirty_bgs
);
6251 trans
->transaction
->num_dirty_bgs
++;
6252 btrfs_get_block_group(cache
);
6254 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6257 * No longer have used bytes in this block group, queue it for
6258 * deletion. We do this after adding the block group to the
6259 * dirty list to avoid races between cleaner kthread and space
6262 if (!alloc
&& old_val
== 0) {
6263 spin_lock(&info
->unused_bgs_lock
);
6264 if (list_empty(&cache
->bg_list
)) {
6265 btrfs_get_block_group(cache
);
6266 list_add_tail(&cache
->bg_list
,
6269 spin_unlock(&info
->unused_bgs_lock
);
6272 btrfs_put_block_group(cache
);
6274 bytenr
+= num_bytes
;
6279 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
6281 struct btrfs_block_group_cache
*cache
;
6284 spin_lock(&root
->fs_info
->block_group_cache_lock
);
6285 bytenr
= root
->fs_info
->first_logical_byte
;
6286 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
6288 if (bytenr
< (u64
)-1)
6291 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
6295 bytenr
= cache
->key
.objectid
;
6296 btrfs_put_block_group(cache
);
6301 static int pin_down_extent(struct btrfs_root
*root
,
6302 struct btrfs_block_group_cache
*cache
,
6303 u64 bytenr
, u64 num_bytes
, int reserved
)
6305 spin_lock(&cache
->space_info
->lock
);
6306 spin_lock(&cache
->lock
);
6307 cache
->pinned
+= num_bytes
;
6308 cache
->space_info
->bytes_pinned
+= num_bytes
;
6310 cache
->reserved
-= num_bytes
;
6311 cache
->space_info
->bytes_reserved
-= num_bytes
;
6313 spin_unlock(&cache
->lock
);
6314 spin_unlock(&cache
->space_info
->lock
);
6316 trace_btrfs_space_reservation(root
->fs_info
, "pinned",
6317 cache
->space_info
->flags
, num_bytes
, 1);
6318 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
6319 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6324 * this function must be called within transaction
6326 int btrfs_pin_extent(struct btrfs_root
*root
,
6327 u64 bytenr
, u64 num_bytes
, int reserved
)
6329 struct btrfs_block_group_cache
*cache
;
6331 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6332 BUG_ON(!cache
); /* Logic error */
6334 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
6336 btrfs_put_block_group(cache
);
6341 * this function must be called within transaction
6343 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
6344 u64 bytenr
, u64 num_bytes
)
6346 struct btrfs_block_group_cache
*cache
;
6349 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6354 * pull in the free space cache (if any) so that our pin
6355 * removes the free space from the cache. We have load_only set
6356 * to one because the slow code to read in the free extents does check
6357 * the pinned extents.
6359 cache_block_group(cache
, 1);
6361 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
6363 /* remove us from the free space cache (if we're there at all) */
6364 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6365 btrfs_put_block_group(cache
);
6369 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
6372 struct btrfs_block_group_cache
*block_group
;
6373 struct btrfs_caching_control
*caching_ctl
;
6375 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
6379 cache_block_group(block_group
, 0);
6380 caching_ctl
= get_caching_control(block_group
);
6384 BUG_ON(!block_group_cache_done(block_group
));
6385 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6387 mutex_lock(&caching_ctl
->mutex
);
6389 if (start
>= caching_ctl
->progress
) {
6390 ret
= add_excluded_extent(root
, start
, num_bytes
);
6391 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6392 ret
= btrfs_remove_free_space(block_group
,
6395 num_bytes
= caching_ctl
->progress
- start
;
6396 ret
= btrfs_remove_free_space(block_group
,
6401 num_bytes
= (start
+ num_bytes
) -
6402 caching_ctl
->progress
;
6403 start
= caching_ctl
->progress
;
6404 ret
= add_excluded_extent(root
, start
, num_bytes
);
6407 mutex_unlock(&caching_ctl
->mutex
);
6408 put_caching_control(caching_ctl
);
6410 btrfs_put_block_group(block_group
);
6414 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
6415 struct extent_buffer
*eb
)
6417 struct btrfs_file_extent_item
*item
;
6418 struct btrfs_key key
;
6422 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
6425 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6426 btrfs_item_key_to_cpu(eb
, &key
, i
);
6427 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6429 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6430 found_type
= btrfs_file_extent_type(eb
, item
);
6431 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6433 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6435 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6436 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6437 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
6444 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6446 atomic_inc(&bg
->reservations
);
6449 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6452 struct btrfs_block_group_cache
*bg
;
6454 bg
= btrfs_lookup_block_group(fs_info
, start
);
6456 if (atomic_dec_and_test(&bg
->reservations
))
6457 wake_up_atomic_t(&bg
->reservations
);
6458 btrfs_put_block_group(bg
);
6461 static int btrfs_wait_bg_reservations_atomic_t(atomic_t
*a
)
6467 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6469 struct btrfs_space_info
*space_info
= bg
->space_info
;
6473 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6477 * Our block group is read only but before we set it to read only,
6478 * some task might have had allocated an extent from it already, but it
6479 * has not yet created a respective ordered extent (and added it to a
6480 * root's list of ordered extents).
6481 * Therefore wait for any task currently allocating extents, since the
6482 * block group's reservations counter is incremented while a read lock
6483 * on the groups' semaphore is held and decremented after releasing
6484 * the read access on that semaphore and creating the ordered extent.
6486 down_write(&space_info
->groups_sem
);
6487 up_write(&space_info
->groups_sem
);
6489 wait_on_atomic_t(&bg
->reservations
,
6490 btrfs_wait_bg_reservations_atomic_t
,
6491 TASK_UNINTERRUPTIBLE
);
6495 * btrfs_add_reserved_bytes - update the block_group and space info counters
6496 * @cache: The cache we are manipulating
6497 * @ram_bytes: The number of bytes of file content, and will be same to
6498 * @num_bytes except for the compress path.
6499 * @num_bytes: The number of bytes in question
6500 * @delalloc: The blocks are allocated for the delalloc write
6502 * This is called by the allocator when it reserves space. Metadata
6503 * reservations should be called with RESERVE_ALLOC so we do the proper
6504 * ENOSPC accounting. For data we handle the reservation through clearing the
6505 * delalloc bits in the io_tree. We have to do this since we could end up
6506 * allocating less disk space for the amount of data we have reserved in the
6507 * case of compression.
6509 * If this is a reservation and the block group has become read only we cannot
6510 * make the reservation and return -EAGAIN, otherwise this function always
6513 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6514 u64 ram_bytes
, u64 num_bytes
, int delalloc
)
6516 struct btrfs_space_info
*space_info
= cache
->space_info
;
6519 spin_lock(&space_info
->lock
);
6520 spin_lock(&cache
->lock
);
6524 cache
->reserved
+= num_bytes
;
6525 space_info
->bytes_reserved
+= num_bytes
;
6527 trace_btrfs_space_reservation(cache
->fs_info
,
6528 "space_info", space_info
->flags
,
6530 space_info
->bytes_may_use
-= ram_bytes
;
6532 cache
->delalloc_bytes
+= num_bytes
;
6534 spin_unlock(&cache
->lock
);
6535 spin_unlock(&space_info
->lock
);
6540 * btrfs_free_reserved_bytes - update the block_group and space info counters
6541 * @cache: The cache we are manipulating
6542 * @num_bytes: The number of bytes in question
6543 * @delalloc: The blocks are allocated for the delalloc write
6545 * This is called by somebody who is freeing space that was never actually used
6546 * on disk. For example if you reserve some space for a new leaf in transaction
6547 * A and before transaction A commits you free that leaf, you call this with
6548 * reserve set to 0 in order to clear the reservation.
6551 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6552 u64 num_bytes
, int delalloc
)
6554 struct btrfs_space_info
*space_info
= cache
->space_info
;
6557 spin_lock(&space_info
->lock
);
6558 spin_lock(&cache
->lock
);
6560 space_info
->bytes_readonly
+= num_bytes
;
6561 cache
->reserved
-= num_bytes
;
6562 space_info
->bytes_reserved
-= num_bytes
;
6565 cache
->delalloc_bytes
-= num_bytes
;
6566 spin_unlock(&cache
->lock
);
6567 spin_unlock(&space_info
->lock
);
6570 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
6571 struct btrfs_root
*root
)
6573 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6574 struct btrfs_caching_control
*next
;
6575 struct btrfs_caching_control
*caching_ctl
;
6576 struct btrfs_block_group_cache
*cache
;
6578 down_write(&fs_info
->commit_root_sem
);
6580 list_for_each_entry_safe(caching_ctl
, next
,
6581 &fs_info
->caching_block_groups
, list
) {
6582 cache
= caching_ctl
->block_group
;
6583 if (block_group_cache_done(cache
)) {
6584 cache
->last_byte_to_unpin
= (u64
)-1;
6585 list_del_init(&caching_ctl
->list
);
6586 put_caching_control(caching_ctl
);
6588 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6592 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6593 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6595 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6597 up_write(&fs_info
->commit_root_sem
);
6599 update_global_block_rsv(fs_info
);
6603 * Returns the free cluster for the given space info and sets empty_cluster to
6604 * what it should be based on the mount options.
6606 static struct btrfs_free_cluster
*
6607 fetch_cluster_info(struct btrfs_root
*root
, struct btrfs_space_info
*space_info
,
6610 struct btrfs_free_cluster
*ret
= NULL
;
6611 bool ssd
= btrfs_test_opt(root
->fs_info
, SSD
);
6614 if (btrfs_mixed_space_info(space_info
))
6618 *empty_cluster
= SZ_2M
;
6619 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6620 ret
= &root
->fs_info
->meta_alloc_cluster
;
6622 *empty_cluster
= SZ_64K
;
6623 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) && ssd
) {
6624 ret
= &root
->fs_info
->data_alloc_cluster
;
6630 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
6631 const bool return_free_space
)
6633 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6634 struct btrfs_block_group_cache
*cache
= NULL
;
6635 struct btrfs_space_info
*space_info
;
6636 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6637 struct btrfs_free_cluster
*cluster
= NULL
;
6639 u64 total_unpinned
= 0;
6640 u64 empty_cluster
= 0;
6643 while (start
<= end
) {
6646 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6648 btrfs_put_block_group(cache
);
6650 cache
= btrfs_lookup_block_group(fs_info
, start
);
6651 BUG_ON(!cache
); /* Logic error */
6653 cluster
= fetch_cluster_info(root
,
6656 empty_cluster
<<= 1;
6659 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6660 len
= min(len
, end
+ 1 - start
);
6662 if (start
< cache
->last_byte_to_unpin
) {
6663 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6664 if (return_free_space
)
6665 btrfs_add_free_space(cache
, start
, len
);
6669 total_unpinned
+= len
;
6670 space_info
= cache
->space_info
;
6673 * If this space cluster has been marked as fragmented and we've
6674 * unpinned enough in this block group to potentially allow a
6675 * cluster to be created inside of it go ahead and clear the
6678 if (cluster
&& cluster
->fragmented
&&
6679 total_unpinned
> empty_cluster
) {
6680 spin_lock(&cluster
->lock
);
6681 cluster
->fragmented
= 0;
6682 spin_unlock(&cluster
->lock
);
6685 spin_lock(&space_info
->lock
);
6686 spin_lock(&cache
->lock
);
6687 cache
->pinned
-= len
;
6688 space_info
->bytes_pinned
-= len
;
6690 trace_btrfs_space_reservation(fs_info
, "pinned",
6691 space_info
->flags
, len
, 0);
6692 space_info
->max_extent_size
= 0;
6693 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6695 space_info
->bytes_readonly
+= len
;
6698 spin_unlock(&cache
->lock
);
6699 if (!readonly
&& return_free_space
&&
6700 global_rsv
->space_info
== space_info
) {
6702 WARN_ON(!return_free_space
);
6703 spin_lock(&global_rsv
->lock
);
6704 if (!global_rsv
->full
) {
6705 to_add
= min(len
, global_rsv
->size
-
6706 global_rsv
->reserved
);
6707 global_rsv
->reserved
+= to_add
;
6708 space_info
->bytes_may_use
+= to_add
;
6709 if (global_rsv
->reserved
>= global_rsv
->size
)
6710 global_rsv
->full
= 1;
6711 trace_btrfs_space_reservation(fs_info
,
6717 spin_unlock(&global_rsv
->lock
);
6718 /* Add to any tickets we may have */
6720 space_info_add_new_bytes(fs_info
, space_info
,
6723 spin_unlock(&space_info
->lock
);
6727 btrfs_put_block_group(cache
);
6731 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6732 struct btrfs_root
*root
)
6734 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6735 struct btrfs_block_group_cache
*block_group
, *tmp
;
6736 struct list_head
*deleted_bgs
;
6737 struct extent_io_tree
*unpin
;
6742 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6743 unpin
= &fs_info
->freed_extents
[1];
6745 unpin
= &fs_info
->freed_extents
[0];
6747 while (!trans
->aborted
) {
6748 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6749 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6750 EXTENT_DIRTY
, NULL
);
6752 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6756 if (btrfs_test_opt(root
->fs_info
, DISCARD
))
6757 ret
= btrfs_discard_extent(root
, start
,
6758 end
+ 1 - start
, NULL
);
6760 clear_extent_dirty(unpin
, start
, end
);
6761 unpin_extent_range(root
, start
, end
, true);
6762 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6767 * Transaction is finished. We don't need the lock anymore. We
6768 * do need to clean up the block groups in case of a transaction
6771 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6772 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6776 if (!trans
->aborted
)
6777 ret
= btrfs_discard_extent(root
,
6778 block_group
->key
.objectid
,
6779 block_group
->key
.offset
,
6782 list_del_init(&block_group
->bg_list
);
6783 btrfs_put_block_group_trimming(block_group
);
6784 btrfs_put_block_group(block_group
);
6787 const char *errstr
= btrfs_decode_error(ret
);
6789 "Discard failed while removing blockgroup: errno=%d %s\n",
6797 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
6798 u64 owner
, u64 root_objectid
)
6800 struct btrfs_space_info
*space_info
;
6803 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6804 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
6805 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
6807 flags
= BTRFS_BLOCK_GROUP_METADATA
;
6809 flags
= BTRFS_BLOCK_GROUP_DATA
;
6812 space_info
= __find_space_info(fs_info
, flags
);
6813 BUG_ON(!space_info
); /* Logic bug */
6814 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
6818 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6819 struct btrfs_root
*root
,
6820 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6821 u64 root_objectid
, u64 owner_objectid
,
6822 u64 owner_offset
, int refs_to_drop
,
6823 struct btrfs_delayed_extent_op
*extent_op
)
6825 struct btrfs_key key
;
6826 struct btrfs_path
*path
;
6827 struct btrfs_fs_info
*info
= root
->fs_info
;
6828 struct btrfs_root
*extent_root
= info
->extent_root
;
6829 struct extent_buffer
*leaf
;
6830 struct btrfs_extent_item
*ei
;
6831 struct btrfs_extent_inline_ref
*iref
;
6834 int extent_slot
= 0;
6835 int found_extent
= 0;
6839 u64 bytenr
= node
->bytenr
;
6840 u64 num_bytes
= node
->num_bytes
;
6842 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6845 path
= btrfs_alloc_path();
6849 path
->reada
= READA_FORWARD
;
6850 path
->leave_spinning
= 1;
6852 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6853 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6856 skinny_metadata
= 0;
6858 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
6859 bytenr
, num_bytes
, parent
,
6860 root_objectid
, owner_objectid
,
6863 extent_slot
= path
->slots
[0];
6864 while (extent_slot
>= 0) {
6865 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6867 if (key
.objectid
!= bytenr
)
6869 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6870 key
.offset
== num_bytes
) {
6874 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6875 key
.offset
== owner_objectid
) {
6879 if (path
->slots
[0] - extent_slot
> 5)
6883 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6884 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6885 if (found_extent
&& item_size
< sizeof(*ei
))
6888 if (!found_extent
) {
6890 ret
= remove_extent_backref(trans
, extent_root
, path
,
6892 is_data
, &last_ref
);
6894 btrfs_abort_transaction(trans
, ret
);
6897 btrfs_release_path(path
);
6898 path
->leave_spinning
= 1;
6900 key
.objectid
= bytenr
;
6901 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6902 key
.offset
= num_bytes
;
6904 if (!is_data
&& skinny_metadata
) {
6905 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6906 key
.offset
= owner_objectid
;
6909 ret
= btrfs_search_slot(trans
, extent_root
,
6911 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6913 * Couldn't find our skinny metadata item,
6914 * see if we have ye olde extent item.
6917 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6919 if (key
.objectid
== bytenr
&&
6920 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6921 key
.offset
== num_bytes
)
6925 if (ret
> 0 && skinny_metadata
) {
6926 skinny_metadata
= false;
6927 key
.objectid
= bytenr
;
6928 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6929 key
.offset
= num_bytes
;
6930 btrfs_release_path(path
);
6931 ret
= btrfs_search_slot(trans
, extent_root
,
6937 "umm, got %d back from search, was looking for %llu",
6940 btrfs_print_leaf(extent_root
,
6944 btrfs_abort_transaction(trans
, ret
);
6947 extent_slot
= path
->slots
[0];
6949 } else if (WARN_ON(ret
== -ENOENT
)) {
6950 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6952 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6953 bytenr
, parent
, root_objectid
, owner_objectid
,
6955 btrfs_abort_transaction(trans
, ret
);
6958 btrfs_abort_transaction(trans
, ret
);
6962 leaf
= path
->nodes
[0];
6963 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6965 if (item_size
< sizeof(*ei
)) {
6966 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6967 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
6970 btrfs_abort_transaction(trans
, ret
);
6974 btrfs_release_path(path
);
6975 path
->leave_spinning
= 1;
6977 key
.objectid
= bytenr
;
6978 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6979 key
.offset
= num_bytes
;
6981 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6985 "umm, got %d back from search, was looking for %llu",
6987 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6990 btrfs_abort_transaction(trans
, ret
);
6994 extent_slot
= path
->slots
[0];
6995 leaf
= path
->nodes
[0];
6996 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6999 BUG_ON(item_size
< sizeof(*ei
));
7000 ei
= btrfs_item_ptr(leaf
, extent_slot
,
7001 struct btrfs_extent_item
);
7002 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
7003 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
7004 struct btrfs_tree_block_info
*bi
;
7005 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
7006 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
7007 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
7010 refs
= btrfs_extent_refs(leaf
, ei
);
7011 if (refs
< refs_to_drop
) {
7013 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7014 refs_to_drop
, refs
, bytenr
);
7016 btrfs_abort_transaction(trans
, ret
);
7019 refs
-= refs_to_drop
;
7023 __run_delayed_extent_op(extent_op
, leaf
, ei
);
7025 * In the case of inline back ref, reference count will
7026 * be updated by remove_extent_backref
7029 BUG_ON(!found_extent
);
7031 btrfs_set_extent_refs(leaf
, ei
, refs
);
7032 btrfs_mark_buffer_dirty(leaf
);
7035 ret
= remove_extent_backref(trans
, extent_root
, path
,
7037 is_data
, &last_ref
);
7039 btrfs_abort_transaction(trans
, ret
);
7043 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
7047 BUG_ON(is_data
&& refs_to_drop
!=
7048 extent_data_ref_count(path
, iref
));
7050 BUG_ON(path
->slots
[0] != extent_slot
);
7052 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
7053 path
->slots
[0] = extent_slot
;
7059 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
7062 btrfs_abort_transaction(trans
, ret
);
7065 btrfs_release_path(path
);
7068 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
7070 btrfs_abort_transaction(trans
, ret
);
7075 ret
= add_to_free_space_tree(trans
, root
->fs_info
, bytenr
,
7078 btrfs_abort_transaction(trans
, ret
);
7082 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
7084 btrfs_abort_transaction(trans
, ret
);
7088 btrfs_release_path(path
);
7091 btrfs_free_path(path
);
7096 * when we free an block, it is possible (and likely) that we free the last
7097 * delayed ref for that extent as well. This searches the delayed ref tree for
7098 * a given extent, and if there are no other delayed refs to be processed, it
7099 * removes it from the tree.
7101 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
7102 struct btrfs_root
*root
, u64 bytenr
)
7104 struct btrfs_delayed_ref_head
*head
;
7105 struct btrfs_delayed_ref_root
*delayed_refs
;
7108 delayed_refs
= &trans
->transaction
->delayed_refs
;
7109 spin_lock(&delayed_refs
->lock
);
7110 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
7112 goto out_delayed_unlock
;
7114 spin_lock(&head
->lock
);
7115 if (!list_empty(&head
->ref_list
))
7118 if (head
->extent_op
) {
7119 if (!head
->must_insert_reserved
)
7121 btrfs_free_delayed_extent_op(head
->extent_op
);
7122 head
->extent_op
= NULL
;
7126 * waiting for the lock here would deadlock. If someone else has it
7127 * locked they are already in the process of dropping it anyway
7129 if (!mutex_trylock(&head
->mutex
))
7133 * at this point we have a head with no other entries. Go
7134 * ahead and process it.
7136 head
->node
.in_tree
= 0;
7137 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
7139 atomic_dec(&delayed_refs
->num_entries
);
7142 * we don't take a ref on the node because we're removing it from the
7143 * tree, so we just steal the ref the tree was holding.
7145 delayed_refs
->num_heads
--;
7146 if (head
->processing
== 0)
7147 delayed_refs
->num_heads_ready
--;
7148 head
->processing
= 0;
7149 spin_unlock(&head
->lock
);
7150 spin_unlock(&delayed_refs
->lock
);
7152 BUG_ON(head
->extent_op
);
7153 if (head
->must_insert_reserved
)
7156 mutex_unlock(&head
->mutex
);
7157 btrfs_put_delayed_ref(&head
->node
);
7160 spin_unlock(&head
->lock
);
7163 spin_unlock(&delayed_refs
->lock
);
7167 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
7168 struct btrfs_root
*root
,
7169 struct extent_buffer
*buf
,
7170 u64 parent
, int last_ref
)
7175 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7176 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
7177 buf
->start
, buf
->len
,
7178 parent
, root
->root_key
.objectid
,
7179 btrfs_header_level(buf
),
7180 BTRFS_DROP_DELAYED_REF
, NULL
);
7181 BUG_ON(ret
); /* -ENOMEM */
7187 if (btrfs_header_generation(buf
) == trans
->transid
) {
7188 struct btrfs_block_group_cache
*cache
;
7190 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7191 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
7196 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
7198 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
7199 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
7200 btrfs_put_block_group(cache
);
7204 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
7206 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
7207 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
7208 btrfs_put_block_group(cache
);
7209 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
7214 add_pinned_bytes(root
->fs_info
, buf
->len
,
7215 btrfs_header_level(buf
),
7216 root
->root_key
.objectid
);
7219 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7222 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
7225 /* Can return -ENOMEM */
7226 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7227 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
7228 u64 owner
, u64 offset
)
7231 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7233 if (btrfs_is_testing(fs_info
))
7236 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
7239 * tree log blocks never actually go into the extent allocation
7240 * tree, just update pinning info and exit early.
7242 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7243 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
7244 /* unlocks the pinned mutex */
7245 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
7247 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7248 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7250 parent
, root_objectid
, (int)owner
,
7251 BTRFS_DROP_DELAYED_REF
, NULL
);
7253 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7255 parent
, root_objectid
, owner
,
7257 BTRFS_DROP_DELAYED_REF
, NULL
);
7263 * when we wait for progress in the block group caching, its because
7264 * our allocation attempt failed at least once. So, we must sleep
7265 * and let some progress happen before we try again.
7267 * This function will sleep at least once waiting for new free space to
7268 * show up, and then it will check the block group free space numbers
7269 * for our min num_bytes. Another option is to have it go ahead
7270 * and look in the rbtree for a free extent of a given size, but this
7273 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7274 * any of the information in this block group.
7276 static noinline
void
7277 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7280 struct btrfs_caching_control
*caching_ctl
;
7282 caching_ctl
= get_caching_control(cache
);
7286 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7287 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7289 put_caching_control(caching_ctl
);
7293 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7295 struct btrfs_caching_control
*caching_ctl
;
7298 caching_ctl
= get_caching_control(cache
);
7300 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7302 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7303 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7305 put_caching_control(caching_ctl
);
7309 int __get_raid_index(u64 flags
)
7311 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7312 return BTRFS_RAID_RAID10
;
7313 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7314 return BTRFS_RAID_RAID1
;
7315 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7316 return BTRFS_RAID_DUP
;
7317 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7318 return BTRFS_RAID_RAID0
;
7319 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7320 return BTRFS_RAID_RAID5
;
7321 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7322 return BTRFS_RAID_RAID6
;
7324 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7327 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7329 return __get_raid_index(cache
->flags
);
7332 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7333 [BTRFS_RAID_RAID10
] = "raid10",
7334 [BTRFS_RAID_RAID1
] = "raid1",
7335 [BTRFS_RAID_DUP
] = "dup",
7336 [BTRFS_RAID_RAID0
] = "raid0",
7337 [BTRFS_RAID_SINGLE
] = "single",
7338 [BTRFS_RAID_RAID5
] = "raid5",
7339 [BTRFS_RAID_RAID6
] = "raid6",
7342 static const char *get_raid_name(enum btrfs_raid_types type
)
7344 if (type
>= BTRFS_NR_RAID_TYPES
)
7347 return btrfs_raid_type_names
[type
];
7350 enum btrfs_loop_type
{
7351 LOOP_CACHING_NOWAIT
= 0,
7352 LOOP_CACHING_WAIT
= 1,
7353 LOOP_ALLOC_CHUNK
= 2,
7354 LOOP_NO_EMPTY_SIZE
= 3,
7358 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7362 down_read(&cache
->data_rwsem
);
7366 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7369 btrfs_get_block_group(cache
);
7371 down_read(&cache
->data_rwsem
);
7374 static struct btrfs_block_group_cache
*
7375 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7376 struct btrfs_free_cluster
*cluster
,
7379 struct btrfs_block_group_cache
*used_bg
= NULL
;
7381 spin_lock(&cluster
->refill_lock
);
7383 used_bg
= cluster
->block_group
;
7387 if (used_bg
== block_group
)
7390 btrfs_get_block_group(used_bg
);
7395 if (down_read_trylock(&used_bg
->data_rwsem
))
7398 spin_unlock(&cluster
->refill_lock
);
7400 down_read(&used_bg
->data_rwsem
);
7402 spin_lock(&cluster
->refill_lock
);
7403 if (used_bg
== cluster
->block_group
)
7406 up_read(&used_bg
->data_rwsem
);
7407 btrfs_put_block_group(used_bg
);
7412 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7416 up_read(&cache
->data_rwsem
);
7417 btrfs_put_block_group(cache
);
7421 * walks the btree of allocated extents and find a hole of a given size.
7422 * The key ins is changed to record the hole:
7423 * ins->objectid == start position
7424 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7425 * ins->offset == the size of the hole.
7426 * Any available blocks before search_start are skipped.
7428 * If there is no suitable free space, we will record the max size of
7429 * the free space extent currently.
7431 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
7432 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
7433 u64 hint_byte
, struct btrfs_key
*ins
,
7434 u64 flags
, int delalloc
)
7437 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
7438 struct btrfs_free_cluster
*last_ptr
= NULL
;
7439 struct btrfs_block_group_cache
*block_group
= NULL
;
7440 u64 search_start
= 0;
7441 u64 max_extent_size
= 0;
7442 u64 empty_cluster
= 0;
7443 struct btrfs_space_info
*space_info
;
7445 int index
= __get_raid_index(flags
);
7446 bool failed_cluster_refill
= false;
7447 bool failed_alloc
= false;
7448 bool use_cluster
= true;
7449 bool have_caching_bg
= false;
7450 bool orig_have_caching_bg
= false;
7451 bool full_search
= false;
7453 WARN_ON(num_bytes
< root
->sectorsize
);
7454 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7458 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
7460 space_info
= __find_space_info(root
->fs_info
, flags
);
7462 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
7467 * If our free space is heavily fragmented we may not be able to make
7468 * big contiguous allocations, so instead of doing the expensive search
7469 * for free space, simply return ENOSPC with our max_extent_size so we
7470 * can go ahead and search for a more manageable chunk.
7472 * If our max_extent_size is large enough for our allocation simply
7473 * disable clustering since we will likely not be able to find enough
7474 * space to create a cluster and induce latency trying.
7476 if (unlikely(space_info
->max_extent_size
)) {
7477 spin_lock(&space_info
->lock
);
7478 if (space_info
->max_extent_size
&&
7479 num_bytes
> space_info
->max_extent_size
) {
7480 ins
->offset
= space_info
->max_extent_size
;
7481 spin_unlock(&space_info
->lock
);
7483 } else if (space_info
->max_extent_size
) {
7484 use_cluster
= false;
7486 spin_unlock(&space_info
->lock
);
7489 last_ptr
= fetch_cluster_info(orig_root
, space_info
, &empty_cluster
);
7491 spin_lock(&last_ptr
->lock
);
7492 if (last_ptr
->block_group
)
7493 hint_byte
= last_ptr
->window_start
;
7494 if (last_ptr
->fragmented
) {
7496 * We still set window_start so we can keep track of the
7497 * last place we found an allocation to try and save
7500 hint_byte
= last_ptr
->window_start
;
7501 use_cluster
= false;
7503 spin_unlock(&last_ptr
->lock
);
7506 search_start
= max(search_start
, first_logical_byte(root
, 0));
7507 search_start
= max(search_start
, hint_byte
);
7508 if (search_start
== hint_byte
) {
7509 block_group
= btrfs_lookup_block_group(root
->fs_info
,
7512 * we don't want to use the block group if it doesn't match our
7513 * allocation bits, or if its not cached.
7515 * However if we are re-searching with an ideal block group
7516 * picked out then we don't care that the block group is cached.
7518 if (block_group
&& block_group_bits(block_group
, flags
) &&
7519 block_group
->cached
!= BTRFS_CACHE_NO
) {
7520 down_read(&space_info
->groups_sem
);
7521 if (list_empty(&block_group
->list
) ||
7524 * someone is removing this block group,
7525 * we can't jump into the have_block_group
7526 * target because our list pointers are not
7529 btrfs_put_block_group(block_group
);
7530 up_read(&space_info
->groups_sem
);
7532 index
= get_block_group_index(block_group
);
7533 btrfs_lock_block_group(block_group
, delalloc
);
7534 goto have_block_group
;
7536 } else if (block_group
) {
7537 btrfs_put_block_group(block_group
);
7541 have_caching_bg
= false;
7542 if (index
== 0 || index
== __get_raid_index(flags
))
7544 down_read(&space_info
->groups_sem
);
7545 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7550 btrfs_grab_block_group(block_group
, delalloc
);
7551 search_start
= block_group
->key
.objectid
;
7554 * this can happen if we end up cycling through all the
7555 * raid types, but we want to make sure we only allocate
7556 * for the proper type.
7558 if (!block_group_bits(block_group
, flags
)) {
7559 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7560 BTRFS_BLOCK_GROUP_RAID1
|
7561 BTRFS_BLOCK_GROUP_RAID5
|
7562 BTRFS_BLOCK_GROUP_RAID6
|
7563 BTRFS_BLOCK_GROUP_RAID10
;
7566 * if they asked for extra copies and this block group
7567 * doesn't provide them, bail. This does allow us to
7568 * fill raid0 from raid1.
7570 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7575 cached
= block_group_cache_done(block_group
);
7576 if (unlikely(!cached
)) {
7577 have_caching_bg
= true;
7578 ret
= cache_block_group(block_group
, 0);
7583 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7585 if (unlikely(block_group
->ro
))
7589 * Ok we want to try and use the cluster allocator, so
7592 if (last_ptr
&& use_cluster
) {
7593 struct btrfs_block_group_cache
*used_block_group
;
7594 unsigned long aligned_cluster
;
7596 * the refill lock keeps out other
7597 * people trying to start a new cluster
7599 used_block_group
= btrfs_lock_cluster(block_group
,
7602 if (!used_block_group
)
7603 goto refill_cluster
;
7605 if (used_block_group
!= block_group
&&
7606 (used_block_group
->ro
||
7607 !block_group_bits(used_block_group
, flags
)))
7608 goto release_cluster
;
7610 offset
= btrfs_alloc_from_cluster(used_block_group
,
7613 used_block_group
->key
.objectid
,
7616 /* we have a block, we're done */
7617 spin_unlock(&last_ptr
->refill_lock
);
7618 trace_btrfs_reserve_extent_cluster(root
,
7620 search_start
, num_bytes
);
7621 if (used_block_group
!= block_group
) {
7622 btrfs_release_block_group(block_group
,
7624 block_group
= used_block_group
;
7629 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7631 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7632 * set up a new clusters, so lets just skip it
7633 * and let the allocator find whatever block
7634 * it can find. If we reach this point, we
7635 * will have tried the cluster allocator
7636 * plenty of times and not have found
7637 * anything, so we are likely way too
7638 * fragmented for the clustering stuff to find
7641 * However, if the cluster is taken from the
7642 * current block group, release the cluster
7643 * first, so that we stand a better chance of
7644 * succeeding in the unclustered
7646 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7647 used_block_group
!= block_group
) {
7648 spin_unlock(&last_ptr
->refill_lock
);
7649 btrfs_release_block_group(used_block_group
,
7651 goto unclustered_alloc
;
7655 * this cluster didn't work out, free it and
7658 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7660 if (used_block_group
!= block_group
)
7661 btrfs_release_block_group(used_block_group
,
7664 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7665 spin_unlock(&last_ptr
->refill_lock
);
7666 goto unclustered_alloc
;
7669 aligned_cluster
= max_t(unsigned long,
7670 empty_cluster
+ empty_size
,
7671 block_group
->full_stripe_len
);
7673 /* allocate a cluster in this block group */
7674 ret
= btrfs_find_space_cluster(root
, block_group
,
7675 last_ptr
, search_start
,
7680 * now pull our allocation out of this
7683 offset
= btrfs_alloc_from_cluster(block_group
,
7689 /* we found one, proceed */
7690 spin_unlock(&last_ptr
->refill_lock
);
7691 trace_btrfs_reserve_extent_cluster(root
,
7692 block_group
, search_start
,
7696 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7697 && !failed_cluster_refill
) {
7698 spin_unlock(&last_ptr
->refill_lock
);
7700 failed_cluster_refill
= true;
7701 wait_block_group_cache_progress(block_group
,
7702 num_bytes
+ empty_cluster
+ empty_size
);
7703 goto have_block_group
;
7707 * at this point we either didn't find a cluster
7708 * or we weren't able to allocate a block from our
7709 * cluster. Free the cluster we've been trying
7710 * to use, and go to the next block group
7712 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7713 spin_unlock(&last_ptr
->refill_lock
);
7719 * We are doing an unclustered alloc, set the fragmented flag so
7720 * we don't bother trying to setup a cluster again until we get
7723 if (unlikely(last_ptr
)) {
7724 spin_lock(&last_ptr
->lock
);
7725 last_ptr
->fragmented
= 1;
7726 spin_unlock(&last_ptr
->lock
);
7728 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
7730 block_group
->free_space_ctl
->free_space
<
7731 num_bytes
+ empty_cluster
+ empty_size
) {
7732 if (block_group
->free_space_ctl
->free_space
>
7735 block_group
->free_space_ctl
->free_space
;
7736 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7739 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7741 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7742 num_bytes
, empty_size
,
7745 * If we didn't find a chunk, and we haven't failed on this
7746 * block group before, and this block group is in the middle of
7747 * caching and we are ok with waiting, then go ahead and wait
7748 * for progress to be made, and set failed_alloc to true.
7750 * If failed_alloc is true then we've already waited on this
7751 * block group once and should move on to the next block group.
7753 if (!offset
&& !failed_alloc
&& !cached
&&
7754 loop
> LOOP_CACHING_NOWAIT
) {
7755 wait_block_group_cache_progress(block_group
,
7756 num_bytes
+ empty_size
);
7757 failed_alloc
= true;
7758 goto have_block_group
;
7759 } else if (!offset
) {
7763 search_start
= ALIGN(offset
, root
->stripesize
);
7765 /* move on to the next group */
7766 if (search_start
+ num_bytes
>
7767 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7768 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7772 if (offset
< search_start
)
7773 btrfs_add_free_space(block_group
, offset
,
7774 search_start
- offset
);
7775 BUG_ON(offset
> search_start
);
7777 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
7778 num_bytes
, delalloc
);
7779 if (ret
== -EAGAIN
) {
7780 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7783 btrfs_inc_block_group_reservations(block_group
);
7785 /* we are all good, lets return */
7786 ins
->objectid
= search_start
;
7787 ins
->offset
= num_bytes
;
7789 trace_btrfs_reserve_extent(orig_root
, block_group
,
7790 search_start
, num_bytes
);
7791 btrfs_release_block_group(block_group
, delalloc
);
7794 failed_cluster_refill
= false;
7795 failed_alloc
= false;
7796 BUG_ON(index
!= get_block_group_index(block_group
));
7797 btrfs_release_block_group(block_group
, delalloc
);
7799 up_read(&space_info
->groups_sem
);
7801 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7802 && !orig_have_caching_bg
)
7803 orig_have_caching_bg
= true;
7805 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7808 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7812 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7813 * caching kthreads as we move along
7814 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7815 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7816 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7819 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7821 if (loop
== LOOP_CACHING_NOWAIT
) {
7823 * We want to skip the LOOP_CACHING_WAIT step if we
7824 * don't have any uncached bgs and we've already done a
7825 * full search through.
7827 if (orig_have_caching_bg
|| !full_search
)
7828 loop
= LOOP_CACHING_WAIT
;
7830 loop
= LOOP_ALLOC_CHUNK
;
7835 if (loop
== LOOP_ALLOC_CHUNK
) {
7836 struct btrfs_trans_handle
*trans
;
7839 trans
= current
->journal_info
;
7843 trans
= btrfs_join_transaction(root
);
7845 if (IS_ERR(trans
)) {
7846 ret
= PTR_ERR(trans
);
7850 ret
= do_chunk_alloc(trans
, root
, flags
,
7854 * If we can't allocate a new chunk we've already looped
7855 * through at least once, move on to the NO_EMPTY_SIZE
7859 loop
= LOOP_NO_EMPTY_SIZE
;
7862 * Do not bail out on ENOSPC since we
7863 * can do more things.
7865 if (ret
< 0 && ret
!= -ENOSPC
)
7866 btrfs_abort_transaction(trans
, ret
);
7870 btrfs_end_transaction(trans
, root
);
7875 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7877 * Don't loop again if we already have no empty_size and
7880 if (empty_size
== 0 &&
7881 empty_cluster
== 0) {
7890 } else if (!ins
->objectid
) {
7892 } else if (ins
->objectid
) {
7893 if (!use_cluster
&& last_ptr
) {
7894 spin_lock(&last_ptr
->lock
);
7895 last_ptr
->window_start
= ins
->objectid
;
7896 spin_unlock(&last_ptr
->lock
);
7901 if (ret
== -ENOSPC
) {
7902 spin_lock(&space_info
->lock
);
7903 space_info
->max_extent_size
= max_extent_size
;
7904 spin_unlock(&space_info
->lock
);
7905 ins
->offset
= max_extent_size
;
7910 static void dump_space_info(struct btrfs_fs_info
*fs_info
,
7911 struct btrfs_space_info
*info
, u64 bytes
,
7912 int dump_block_groups
)
7914 struct btrfs_block_group_cache
*cache
;
7917 spin_lock(&info
->lock
);
7918 btrfs_info(fs_info
, "space_info %llu has %llu free, is %sfull",
7920 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
7921 info
->bytes_reserved
- info
->bytes_readonly
-
7922 info
->bytes_may_use
, (info
->full
) ? "" : "not ");
7924 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7925 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7926 info
->bytes_reserved
, info
->bytes_may_use
,
7927 info
->bytes_readonly
);
7928 spin_unlock(&info
->lock
);
7930 if (!dump_block_groups
)
7933 down_read(&info
->groups_sem
);
7935 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7936 spin_lock(&cache
->lock
);
7938 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7939 cache
->key
.objectid
, cache
->key
.offset
,
7940 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7941 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7942 btrfs_dump_free_space(cache
, bytes
);
7943 spin_unlock(&cache
->lock
);
7945 if (++index
< BTRFS_NR_RAID_TYPES
)
7947 up_read(&info
->groups_sem
);
7950 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
7951 u64 num_bytes
, u64 min_alloc_size
,
7952 u64 empty_size
, u64 hint_byte
,
7953 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7955 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7956 bool final_tried
= num_bytes
== min_alloc_size
;
7960 flags
= btrfs_get_alloc_profile(root
, is_data
);
7962 WARN_ON(num_bytes
< root
->sectorsize
);
7963 ret
= find_free_extent(root
, ram_bytes
, num_bytes
, empty_size
,
7964 hint_byte
, ins
, flags
, delalloc
);
7965 if (!ret
&& !is_data
) {
7966 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
7967 } else if (ret
== -ENOSPC
) {
7968 if (!final_tried
&& ins
->offset
) {
7969 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
7970 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
7971 num_bytes
= max(num_bytes
, min_alloc_size
);
7972 ram_bytes
= num_bytes
;
7973 if (num_bytes
== min_alloc_size
)
7976 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
7977 struct btrfs_space_info
*sinfo
;
7979 sinfo
= __find_space_info(fs_info
, flags
);
7980 btrfs_err(root
->fs_info
,
7981 "allocation failed flags %llu, wanted %llu",
7984 dump_space_info(fs_info
, sinfo
, num_bytes
, 1);
7991 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
7993 int pin
, int delalloc
)
7995 struct btrfs_block_group_cache
*cache
;
7998 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
8000 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
8006 pin_down_extent(root
, cache
, start
, len
, 1);
8008 if (btrfs_test_opt(root
->fs_info
, DISCARD
))
8009 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
8010 btrfs_add_free_space(cache
, start
, len
);
8011 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
8012 trace_btrfs_reserved_extent_free(root
, start
, len
);
8015 btrfs_put_block_group(cache
);
8019 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
8020 u64 start
, u64 len
, int delalloc
)
8022 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
8025 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
8028 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
8031 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8032 struct btrfs_root
*root
,
8033 u64 parent
, u64 root_objectid
,
8034 u64 flags
, u64 owner
, u64 offset
,
8035 struct btrfs_key
*ins
, int ref_mod
)
8038 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8039 struct btrfs_extent_item
*extent_item
;
8040 struct btrfs_extent_inline_ref
*iref
;
8041 struct btrfs_path
*path
;
8042 struct extent_buffer
*leaf
;
8047 type
= BTRFS_SHARED_DATA_REF_KEY
;
8049 type
= BTRFS_EXTENT_DATA_REF_KEY
;
8051 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
8053 path
= btrfs_alloc_path();
8057 path
->leave_spinning
= 1;
8058 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8061 btrfs_free_path(path
);
8065 leaf
= path
->nodes
[0];
8066 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8067 struct btrfs_extent_item
);
8068 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
8069 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8070 btrfs_set_extent_flags(leaf
, extent_item
,
8071 flags
| BTRFS_EXTENT_FLAG_DATA
);
8073 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8074 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
8076 struct btrfs_shared_data_ref
*ref
;
8077 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
8078 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8079 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
8081 struct btrfs_extent_data_ref
*ref
;
8082 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
8083 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
8084 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
8085 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
8086 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
8089 btrfs_mark_buffer_dirty(path
->nodes
[0]);
8090 btrfs_free_path(path
);
8092 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8097 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
8098 if (ret
) { /* -ENOENT, logic error */
8099 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8100 ins
->objectid
, ins
->offset
);
8103 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
8107 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
8108 struct btrfs_root
*root
,
8109 u64 parent
, u64 root_objectid
,
8110 u64 flags
, struct btrfs_disk_key
*key
,
8111 int level
, struct btrfs_key
*ins
)
8114 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
8115 struct btrfs_extent_item
*extent_item
;
8116 struct btrfs_tree_block_info
*block_info
;
8117 struct btrfs_extent_inline_ref
*iref
;
8118 struct btrfs_path
*path
;
8119 struct extent_buffer
*leaf
;
8120 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
8121 u64 num_bytes
= ins
->offset
;
8122 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
8125 if (!skinny_metadata
)
8126 size
+= sizeof(*block_info
);
8128 path
= btrfs_alloc_path();
8130 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
8135 path
->leave_spinning
= 1;
8136 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
8139 btrfs_free_path(path
);
8140 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
8145 leaf
= path
->nodes
[0];
8146 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
8147 struct btrfs_extent_item
);
8148 btrfs_set_extent_refs(leaf
, extent_item
, 1);
8149 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
8150 btrfs_set_extent_flags(leaf
, extent_item
,
8151 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
8153 if (skinny_metadata
) {
8154 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
8155 num_bytes
= root
->nodesize
;
8157 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
8158 btrfs_set_tree_block_key(leaf
, block_info
, key
);
8159 btrfs_set_tree_block_level(leaf
, block_info
, level
);
8160 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
8164 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
8165 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8166 BTRFS_SHARED_BLOCK_REF_KEY
);
8167 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
8169 btrfs_set_extent_inline_ref_type(leaf
, iref
,
8170 BTRFS_TREE_BLOCK_REF_KEY
);
8171 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
8174 btrfs_mark_buffer_dirty(leaf
);
8175 btrfs_free_path(path
);
8177 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
8182 ret
= update_block_group(trans
, root
, ins
->objectid
, root
->nodesize
,
8184 if (ret
) { /* -ENOENT, logic error */
8185 btrfs_err(fs_info
, "update block group failed for %llu %llu",
8186 ins
->objectid
, ins
->offset
);
8190 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
8194 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
8195 struct btrfs_root
*root
,
8196 u64 root_objectid
, u64 owner
,
8197 u64 offset
, u64 ram_bytes
,
8198 struct btrfs_key
*ins
)
8202 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
8204 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
8206 root_objectid
, owner
, offset
,
8207 ram_bytes
, BTRFS_ADD_DELAYED_EXTENT
,
8213 * this is used by the tree logging recovery code. It records that
8214 * an extent has been allocated and makes sure to clear the free
8215 * space cache bits as well
8217 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
8218 struct btrfs_root
*root
,
8219 u64 root_objectid
, u64 owner
, u64 offset
,
8220 struct btrfs_key
*ins
)
8223 struct btrfs_block_group_cache
*block_group
;
8224 struct btrfs_space_info
*space_info
;
8227 * Mixed block groups will exclude before processing the log so we only
8228 * need to do the exclude dance if this fs isn't mixed.
8230 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
8231 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
8236 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
8240 space_info
= block_group
->space_info
;
8241 spin_lock(&space_info
->lock
);
8242 spin_lock(&block_group
->lock
);
8243 space_info
->bytes_reserved
+= ins
->offset
;
8244 block_group
->reserved
+= ins
->offset
;
8245 spin_unlock(&block_group
->lock
);
8246 spin_unlock(&space_info
->lock
);
8248 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
8249 0, owner
, offset
, ins
, 1);
8250 btrfs_put_block_group(block_group
);
8254 static struct extent_buffer
*
8255 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8256 u64 bytenr
, int level
)
8258 struct extent_buffer
*buf
;
8260 buf
= btrfs_find_create_tree_block(root
, bytenr
);
8264 btrfs_set_header_generation(buf
, trans
->transid
);
8265 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8266 btrfs_tree_lock(buf
);
8267 clean_tree_block(trans
, root
->fs_info
, buf
);
8268 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8270 btrfs_set_lock_blocking(buf
);
8271 set_extent_buffer_uptodate(buf
);
8273 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8274 buf
->log_index
= root
->log_transid
% 2;
8276 * we allow two log transactions at a time, use different
8277 * EXENT bit to differentiate dirty pages.
8279 if (buf
->log_index
== 0)
8280 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8281 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8283 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8284 buf
->start
+ buf
->len
- 1);
8286 buf
->log_index
= -1;
8287 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8288 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8290 trans
->dirty
= true;
8291 /* this returns a buffer locked for blocking */
8295 static struct btrfs_block_rsv
*
8296 use_block_rsv(struct btrfs_trans_handle
*trans
,
8297 struct btrfs_root
*root
, u32 blocksize
)
8299 struct btrfs_block_rsv
*block_rsv
;
8300 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
8302 bool global_updated
= false;
8304 block_rsv
= get_block_rsv(trans
, root
);
8306 if (unlikely(block_rsv
->size
== 0))
8309 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8313 if (block_rsv
->failfast
)
8314 return ERR_PTR(ret
);
8316 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8317 global_updated
= true;
8318 update_global_block_rsv(root
->fs_info
);
8322 if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
8323 static DEFINE_RATELIMIT_STATE(_rs
,
8324 DEFAULT_RATELIMIT_INTERVAL
* 10,
8325 /*DEFAULT_RATELIMIT_BURST*/ 1);
8326 if (__ratelimit(&_rs
))
8328 "BTRFS: block rsv returned %d\n", ret
);
8331 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8332 BTRFS_RESERVE_NO_FLUSH
);
8336 * If we couldn't reserve metadata bytes try and use some from
8337 * the global reserve if its space type is the same as the global
8340 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8341 block_rsv
->space_info
== global_rsv
->space_info
) {
8342 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8346 return ERR_PTR(ret
);
8349 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8350 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8352 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8353 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8357 * finds a free extent and does all the dirty work required for allocation
8358 * returns the tree buffer or an ERR_PTR on error.
8360 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8361 struct btrfs_root
*root
,
8362 u64 parent
, u64 root_objectid
,
8363 struct btrfs_disk_key
*key
, int level
,
8364 u64 hint
, u64 empty_size
)
8366 struct btrfs_key ins
;
8367 struct btrfs_block_rsv
*block_rsv
;
8368 struct extent_buffer
*buf
;
8369 struct btrfs_delayed_extent_op
*extent_op
;
8372 u32 blocksize
= root
->nodesize
;
8373 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
8376 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8377 if (btrfs_is_testing(root
->fs_info
)) {
8378 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8381 root
->alloc_bytenr
+= blocksize
;
8386 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8387 if (IS_ERR(block_rsv
))
8388 return ERR_CAST(block_rsv
);
8390 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
8391 empty_size
, hint
, &ins
, 0, 0);
8395 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8398 goto out_free_reserved
;
8401 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8403 parent
= ins
.objectid
;
8404 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8408 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8409 extent_op
= btrfs_alloc_delayed_extent_op();
8415 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8417 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8418 extent_op
->flags_to_set
= flags
;
8419 extent_op
->update_key
= skinny_metadata
? false : true;
8420 extent_op
->update_flags
= true;
8421 extent_op
->is_data
= false;
8422 extent_op
->level
= level
;
8424 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
8425 ins
.objectid
, ins
.offset
,
8426 parent
, root_objectid
, level
,
8427 BTRFS_ADD_DELAYED_EXTENT
,
8430 goto out_free_delayed
;
8435 btrfs_free_delayed_extent_op(extent_op
);
8437 free_extent_buffer(buf
);
8439 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 0);
8441 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
8442 return ERR_PTR(ret
);
8445 struct walk_control
{
8446 u64 refs
[BTRFS_MAX_LEVEL
];
8447 u64 flags
[BTRFS_MAX_LEVEL
];
8448 struct btrfs_key update_progress
;
8459 #define DROP_REFERENCE 1
8460 #define UPDATE_BACKREF 2
8462 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8463 struct btrfs_root
*root
,
8464 struct walk_control
*wc
,
8465 struct btrfs_path
*path
)
8472 struct btrfs_key key
;
8473 struct extent_buffer
*eb
;
8478 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8479 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8480 wc
->reada_count
= max(wc
->reada_count
, 2);
8482 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8483 wc
->reada_count
= min_t(int, wc
->reada_count
,
8484 BTRFS_NODEPTRS_PER_BLOCK(root
));
8487 eb
= path
->nodes
[wc
->level
];
8488 nritems
= btrfs_header_nritems(eb
);
8490 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8491 if (nread
>= wc
->reada_count
)
8495 bytenr
= btrfs_node_blockptr(eb
, slot
);
8496 generation
= btrfs_node_ptr_generation(eb
, slot
);
8498 if (slot
== path
->slots
[wc
->level
])
8501 if (wc
->stage
== UPDATE_BACKREF
&&
8502 generation
<= root
->root_key
.offset
)
8505 /* We don't lock the tree block, it's OK to be racy here */
8506 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
8507 wc
->level
- 1, 1, &refs
,
8509 /* We don't care about errors in readahead. */
8514 if (wc
->stage
== DROP_REFERENCE
) {
8518 if (wc
->level
== 1 &&
8519 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8521 if (!wc
->update_ref
||
8522 generation
<= root
->root_key
.offset
)
8524 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8525 ret
= btrfs_comp_cpu_keys(&key
,
8526 &wc
->update_progress
);
8530 if (wc
->level
== 1 &&
8531 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8535 readahead_tree_block(root
, bytenr
);
8538 wc
->reada_slot
= slot
;
8541 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
8542 struct btrfs_root
*root
,
8543 struct extent_buffer
*eb
)
8545 int nr
= btrfs_header_nritems(eb
);
8546 int i
, extent_type
, ret
;
8547 struct btrfs_key key
;
8548 struct btrfs_file_extent_item
*fi
;
8549 u64 bytenr
, num_bytes
;
8551 /* We can be called directly from walk_up_proc() */
8552 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &root
->fs_info
->flags
))
8555 for (i
= 0; i
< nr
; i
++) {
8556 btrfs_item_key_to_cpu(eb
, &key
, i
);
8558 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
8561 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
8562 /* filter out non qgroup-accountable extents */
8563 extent_type
= btrfs_file_extent_type(eb
, fi
);
8565 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
8568 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
8572 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
8574 ret
= btrfs_qgroup_insert_dirty_extent(trans
, root
->fs_info
,
8575 bytenr
, num_bytes
, GFP_NOFS
);
8583 * Walk up the tree from the bottom, freeing leaves and any interior
8584 * nodes which have had all slots visited. If a node (leaf or
8585 * interior) is freed, the node above it will have it's slot
8586 * incremented. The root node will never be freed.
8588 * At the end of this function, we should have a path which has all
8589 * slots incremented to the next position for a search. If we need to
8590 * read a new node it will be NULL and the node above it will have the
8591 * correct slot selected for a later read.
8593 * If we increment the root nodes slot counter past the number of
8594 * elements, 1 is returned to signal completion of the search.
8596 static int adjust_slots_upwards(struct btrfs_root
*root
,
8597 struct btrfs_path
*path
, int root_level
)
8601 struct extent_buffer
*eb
;
8603 if (root_level
== 0)
8606 while (level
<= root_level
) {
8607 eb
= path
->nodes
[level
];
8608 nr
= btrfs_header_nritems(eb
);
8609 path
->slots
[level
]++;
8610 slot
= path
->slots
[level
];
8611 if (slot
>= nr
|| level
== 0) {
8613 * Don't free the root - we will detect this
8614 * condition after our loop and return a
8615 * positive value for caller to stop walking the tree.
8617 if (level
!= root_level
) {
8618 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8619 path
->locks
[level
] = 0;
8621 free_extent_buffer(eb
);
8622 path
->nodes
[level
] = NULL
;
8623 path
->slots
[level
] = 0;
8627 * We have a valid slot to walk back down
8628 * from. Stop here so caller can process these
8637 eb
= path
->nodes
[root_level
];
8638 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
8645 * root_eb is the subtree root and is locked before this function is called.
8647 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
8648 struct btrfs_root
*root
,
8649 struct extent_buffer
*root_eb
,
8655 struct extent_buffer
*eb
= root_eb
;
8656 struct btrfs_path
*path
= NULL
;
8658 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
8659 BUG_ON(root_eb
== NULL
);
8661 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &root
->fs_info
->flags
))
8664 if (!extent_buffer_uptodate(root_eb
)) {
8665 ret
= btrfs_read_buffer(root_eb
, root_gen
);
8670 if (root_level
== 0) {
8671 ret
= account_leaf_items(trans
, root
, root_eb
);
8675 path
= btrfs_alloc_path();
8680 * Walk down the tree. Missing extent blocks are filled in as
8681 * we go. Metadata is accounted every time we read a new
8684 * When we reach a leaf, we account for file extent items in it,
8685 * walk back up the tree (adjusting slot pointers as we go)
8686 * and restart the search process.
8688 extent_buffer_get(root_eb
); /* For path */
8689 path
->nodes
[root_level
] = root_eb
;
8690 path
->slots
[root_level
] = 0;
8691 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
8694 while (level
>= 0) {
8695 if (path
->nodes
[level
] == NULL
) {
8700 /* We need to get child blockptr/gen from
8701 * parent before we can read it. */
8702 eb
= path
->nodes
[level
+ 1];
8703 parent_slot
= path
->slots
[level
+ 1];
8704 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
8705 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
8707 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
8711 } else if (!extent_buffer_uptodate(eb
)) {
8712 free_extent_buffer(eb
);
8717 path
->nodes
[level
] = eb
;
8718 path
->slots
[level
] = 0;
8720 btrfs_tree_read_lock(eb
);
8721 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
8722 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
8724 ret
= btrfs_qgroup_insert_dirty_extent(trans
,
8725 root
->fs_info
, child_bytenr
,
8726 root
->nodesize
, GFP_NOFS
);
8732 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
8736 /* Nonzero return here means we completed our search */
8737 ret
= adjust_slots_upwards(root
, path
, root_level
);
8741 /* Restart search with new slots */
8750 btrfs_free_path(path
);
8756 * helper to process tree block while walking down the tree.
8758 * when wc->stage == UPDATE_BACKREF, this function updates
8759 * back refs for pointers in the block.
8761 * NOTE: return value 1 means we should stop walking down.
8763 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8764 struct btrfs_root
*root
,
8765 struct btrfs_path
*path
,
8766 struct walk_control
*wc
, int lookup_info
)
8768 int level
= wc
->level
;
8769 struct extent_buffer
*eb
= path
->nodes
[level
];
8770 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8773 if (wc
->stage
== UPDATE_BACKREF
&&
8774 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8778 * when reference count of tree block is 1, it won't increase
8779 * again. once full backref flag is set, we never clear it.
8782 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8783 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8784 BUG_ON(!path
->locks
[level
]);
8785 ret
= btrfs_lookup_extent_info(trans
, root
,
8786 eb
->start
, level
, 1,
8789 BUG_ON(ret
== -ENOMEM
);
8792 BUG_ON(wc
->refs
[level
] == 0);
8795 if (wc
->stage
== DROP_REFERENCE
) {
8796 if (wc
->refs
[level
] > 1)
8799 if (path
->locks
[level
] && !wc
->keep_locks
) {
8800 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8801 path
->locks
[level
] = 0;
8806 /* wc->stage == UPDATE_BACKREF */
8807 if (!(wc
->flags
[level
] & flag
)) {
8808 BUG_ON(!path
->locks
[level
]);
8809 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8810 BUG_ON(ret
); /* -ENOMEM */
8811 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8812 BUG_ON(ret
); /* -ENOMEM */
8813 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
8815 btrfs_header_level(eb
), 0);
8816 BUG_ON(ret
); /* -ENOMEM */
8817 wc
->flags
[level
] |= flag
;
8821 * the block is shared by multiple trees, so it's not good to
8822 * keep the tree lock
8824 if (path
->locks
[level
] && level
> 0) {
8825 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8826 path
->locks
[level
] = 0;
8832 * helper to process tree block pointer.
8834 * when wc->stage == DROP_REFERENCE, this function checks
8835 * reference count of the block pointed to. if the block
8836 * is shared and we need update back refs for the subtree
8837 * rooted at the block, this function changes wc->stage to
8838 * UPDATE_BACKREF. if the block is shared and there is no
8839 * need to update back, this function drops the reference
8842 * NOTE: return value 1 means we should stop walking down.
8844 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8845 struct btrfs_root
*root
,
8846 struct btrfs_path
*path
,
8847 struct walk_control
*wc
, int *lookup_info
)
8853 struct btrfs_key key
;
8854 struct extent_buffer
*next
;
8855 int level
= wc
->level
;
8858 bool need_account
= false;
8860 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8861 path
->slots
[level
]);
8863 * if the lower level block was created before the snapshot
8864 * was created, we know there is no need to update back refs
8867 if (wc
->stage
== UPDATE_BACKREF
&&
8868 generation
<= root
->root_key
.offset
) {
8873 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8874 blocksize
= root
->nodesize
;
8876 next
= btrfs_find_tree_block(root
->fs_info
, bytenr
);
8878 next
= btrfs_find_create_tree_block(root
, bytenr
);
8880 return PTR_ERR(next
);
8882 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8886 btrfs_tree_lock(next
);
8887 btrfs_set_lock_blocking(next
);
8889 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
8890 &wc
->refs
[level
- 1],
8891 &wc
->flags
[level
- 1]);
8895 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8896 btrfs_err(root
->fs_info
, "Missing references.");
8902 if (wc
->stage
== DROP_REFERENCE
) {
8903 if (wc
->refs
[level
- 1] > 1) {
8904 need_account
= true;
8906 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8909 if (!wc
->update_ref
||
8910 generation
<= root
->root_key
.offset
)
8913 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8914 path
->slots
[level
]);
8915 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8919 wc
->stage
= UPDATE_BACKREF
;
8920 wc
->shared_level
= level
- 1;
8924 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8928 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8929 btrfs_tree_unlock(next
);
8930 free_extent_buffer(next
);
8936 if (reada
&& level
== 1)
8937 reada_walk_down(trans
, root
, wc
, path
);
8938 next
= read_tree_block(root
, bytenr
, generation
);
8940 return PTR_ERR(next
);
8941 } else if (!extent_buffer_uptodate(next
)) {
8942 free_extent_buffer(next
);
8945 btrfs_tree_lock(next
);
8946 btrfs_set_lock_blocking(next
);
8950 ASSERT(level
== btrfs_header_level(next
));
8951 if (level
!= btrfs_header_level(next
)) {
8952 btrfs_err(root
->fs_info
, "mismatched level");
8956 path
->nodes
[level
] = next
;
8957 path
->slots
[level
] = 0;
8958 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8964 wc
->refs
[level
- 1] = 0;
8965 wc
->flags
[level
- 1] = 0;
8966 if (wc
->stage
== DROP_REFERENCE
) {
8967 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8968 parent
= path
->nodes
[level
]->start
;
8970 ASSERT(root
->root_key
.objectid
==
8971 btrfs_header_owner(path
->nodes
[level
]));
8972 if (root
->root_key
.objectid
!=
8973 btrfs_header_owner(path
->nodes
[level
])) {
8974 btrfs_err(root
->fs_info
,
8975 "mismatched block owner");
8983 ret
= account_shared_subtree(trans
, root
, next
,
8984 generation
, level
- 1);
8986 btrfs_err_rl(root
->fs_info
,
8987 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8991 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
8992 root
->root_key
.objectid
, level
- 1, 0);
9001 btrfs_tree_unlock(next
);
9002 free_extent_buffer(next
);
9008 * helper to process tree block while walking up the tree.
9010 * when wc->stage == DROP_REFERENCE, this function drops
9011 * reference count on the block.
9013 * when wc->stage == UPDATE_BACKREF, this function changes
9014 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9015 * to UPDATE_BACKREF previously while processing the block.
9017 * NOTE: return value 1 means we should stop walking up.
9019 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
9020 struct btrfs_root
*root
,
9021 struct btrfs_path
*path
,
9022 struct walk_control
*wc
)
9025 int level
= wc
->level
;
9026 struct extent_buffer
*eb
= path
->nodes
[level
];
9029 if (wc
->stage
== UPDATE_BACKREF
) {
9030 BUG_ON(wc
->shared_level
< level
);
9031 if (level
< wc
->shared_level
)
9034 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
9038 wc
->stage
= DROP_REFERENCE
;
9039 wc
->shared_level
= -1;
9040 path
->slots
[level
] = 0;
9043 * check reference count again if the block isn't locked.
9044 * we should start walking down the tree again if reference
9047 if (!path
->locks
[level
]) {
9049 btrfs_tree_lock(eb
);
9050 btrfs_set_lock_blocking(eb
);
9051 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9053 ret
= btrfs_lookup_extent_info(trans
, root
,
9054 eb
->start
, level
, 1,
9058 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9059 path
->locks
[level
] = 0;
9062 BUG_ON(wc
->refs
[level
] == 0);
9063 if (wc
->refs
[level
] == 1) {
9064 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
9065 path
->locks
[level
] = 0;
9071 /* wc->stage == DROP_REFERENCE */
9072 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
9074 if (wc
->refs
[level
] == 1) {
9076 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9077 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
9079 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
9080 BUG_ON(ret
); /* -ENOMEM */
9081 ret
= account_leaf_items(trans
, root
, eb
);
9083 btrfs_err_rl(root
->fs_info
,
9084 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9088 /* make block locked assertion in clean_tree_block happy */
9089 if (!path
->locks
[level
] &&
9090 btrfs_header_generation(eb
) == trans
->transid
) {
9091 btrfs_tree_lock(eb
);
9092 btrfs_set_lock_blocking(eb
);
9093 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9095 clean_tree_block(trans
, root
->fs_info
, eb
);
9098 if (eb
== root
->node
) {
9099 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9102 BUG_ON(root
->root_key
.objectid
!=
9103 btrfs_header_owner(eb
));
9105 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
9106 parent
= path
->nodes
[level
+ 1]->start
;
9108 BUG_ON(root
->root_key
.objectid
!=
9109 btrfs_header_owner(path
->nodes
[level
+ 1]));
9112 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
9114 wc
->refs
[level
] = 0;
9115 wc
->flags
[level
] = 0;
9119 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
9120 struct btrfs_root
*root
,
9121 struct btrfs_path
*path
,
9122 struct walk_control
*wc
)
9124 int level
= wc
->level
;
9125 int lookup_info
= 1;
9128 while (level
>= 0) {
9129 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
9136 if (path
->slots
[level
] >=
9137 btrfs_header_nritems(path
->nodes
[level
]))
9140 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
9142 path
->slots
[level
]++;
9151 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
9152 struct btrfs_root
*root
,
9153 struct btrfs_path
*path
,
9154 struct walk_control
*wc
, int max_level
)
9156 int level
= wc
->level
;
9159 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
9160 while (level
< max_level
&& path
->nodes
[level
]) {
9162 if (path
->slots
[level
] + 1 <
9163 btrfs_header_nritems(path
->nodes
[level
])) {
9164 path
->slots
[level
]++;
9167 ret
= walk_up_proc(trans
, root
, path
, wc
);
9171 if (path
->locks
[level
]) {
9172 btrfs_tree_unlock_rw(path
->nodes
[level
],
9173 path
->locks
[level
]);
9174 path
->locks
[level
] = 0;
9176 free_extent_buffer(path
->nodes
[level
]);
9177 path
->nodes
[level
] = NULL
;
9185 * drop a subvolume tree.
9187 * this function traverses the tree freeing any blocks that only
9188 * referenced by the tree.
9190 * when a shared tree block is found. this function decreases its
9191 * reference count by one. if update_ref is true, this function
9192 * also make sure backrefs for the shared block and all lower level
9193 * blocks are properly updated.
9195 * If called with for_reloc == 0, may exit early with -EAGAIN
9197 int btrfs_drop_snapshot(struct btrfs_root
*root
,
9198 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
9201 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9202 struct btrfs_path
*path
;
9203 struct btrfs_trans_handle
*trans
;
9204 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
9205 struct btrfs_root_item
*root_item
= &root
->root_item
;
9206 struct walk_control
*wc
;
9207 struct btrfs_key key
;
9211 bool root_dropped
= false;
9213 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->objectid
);
9215 path
= btrfs_alloc_path();
9221 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9223 btrfs_free_path(path
);
9228 trans
= btrfs_start_transaction(tree_root
, 0);
9229 if (IS_ERR(trans
)) {
9230 err
= PTR_ERR(trans
);
9235 trans
->block_rsv
= block_rsv
;
9237 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9238 level
= btrfs_header_level(root
->node
);
9239 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9240 btrfs_set_lock_blocking(path
->nodes
[level
]);
9241 path
->slots
[level
] = 0;
9242 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9243 memset(&wc
->update_progress
, 0,
9244 sizeof(wc
->update_progress
));
9246 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9247 memcpy(&wc
->update_progress
, &key
,
9248 sizeof(wc
->update_progress
));
9250 level
= root_item
->drop_level
;
9252 path
->lowest_level
= level
;
9253 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9254 path
->lowest_level
= 0;
9262 * unlock our path, this is safe because only this
9263 * function is allowed to delete this snapshot
9265 btrfs_unlock_up_safe(path
, 0);
9267 level
= btrfs_header_level(root
->node
);
9269 btrfs_tree_lock(path
->nodes
[level
]);
9270 btrfs_set_lock_blocking(path
->nodes
[level
]);
9271 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9273 ret
= btrfs_lookup_extent_info(trans
, root
,
9274 path
->nodes
[level
]->start
,
9275 level
, 1, &wc
->refs
[level
],
9281 BUG_ON(wc
->refs
[level
] == 0);
9283 if (level
== root_item
->drop_level
)
9286 btrfs_tree_unlock(path
->nodes
[level
]);
9287 path
->locks
[level
] = 0;
9288 WARN_ON(wc
->refs
[level
] != 1);
9294 wc
->shared_level
= -1;
9295 wc
->stage
= DROP_REFERENCE
;
9296 wc
->update_ref
= update_ref
;
9298 wc
->for_reloc
= for_reloc
;
9299 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9303 ret
= walk_down_tree(trans
, root
, path
, wc
);
9309 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9316 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9320 if (wc
->stage
== DROP_REFERENCE
) {
9322 btrfs_node_key(path
->nodes
[level
],
9323 &root_item
->drop_progress
,
9324 path
->slots
[level
]);
9325 root_item
->drop_level
= level
;
9328 BUG_ON(wc
->level
== 0);
9329 if (btrfs_should_end_transaction(trans
, tree_root
) ||
9330 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
9331 ret
= btrfs_update_root(trans
, tree_root
,
9335 btrfs_abort_transaction(trans
, ret
);
9340 btrfs_end_transaction_throttle(trans
, tree_root
);
9341 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
9342 btrfs_debug(fs_info
,
9343 "drop snapshot early exit");
9348 trans
= btrfs_start_transaction(tree_root
, 0);
9349 if (IS_ERR(trans
)) {
9350 err
= PTR_ERR(trans
);
9354 trans
->block_rsv
= block_rsv
;
9357 btrfs_release_path(path
);
9361 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
9363 btrfs_abort_transaction(trans
, ret
);
9367 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9368 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9371 btrfs_abort_transaction(trans
, ret
);
9374 } else if (ret
> 0) {
9375 /* if we fail to delete the orphan item this time
9376 * around, it'll get picked up the next time.
9378 * The most common failure here is just -ENOENT.
9380 btrfs_del_orphan_item(trans
, tree_root
,
9381 root
->root_key
.objectid
);
9385 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9386 btrfs_add_dropped_root(trans
, root
);
9388 free_extent_buffer(root
->node
);
9389 free_extent_buffer(root
->commit_root
);
9390 btrfs_put_fs_root(root
);
9392 root_dropped
= true;
9394 btrfs_end_transaction_throttle(trans
, tree_root
);
9397 btrfs_free_path(path
);
9400 * So if we need to stop dropping the snapshot for whatever reason we
9401 * need to make sure to add it back to the dead root list so that we
9402 * keep trying to do the work later. This also cleans up roots if we
9403 * don't have it in the radix (like when we recover after a power fail
9404 * or unmount) so we don't leak memory.
9406 if (!for_reloc
&& root_dropped
== false)
9407 btrfs_add_dead_root(root
);
9408 if (err
&& err
!= -EAGAIN
)
9409 btrfs_handle_fs_error(fs_info
, err
, NULL
);
9414 * drop subtree rooted at tree block 'node'.
9416 * NOTE: this function will unlock and release tree block 'node'
9417 * only used by relocation code
9419 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9420 struct btrfs_root
*root
,
9421 struct extent_buffer
*node
,
9422 struct extent_buffer
*parent
)
9424 struct btrfs_path
*path
;
9425 struct walk_control
*wc
;
9431 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9433 path
= btrfs_alloc_path();
9437 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9439 btrfs_free_path(path
);
9443 btrfs_assert_tree_locked(parent
);
9444 parent_level
= btrfs_header_level(parent
);
9445 extent_buffer_get(parent
);
9446 path
->nodes
[parent_level
] = parent
;
9447 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9449 btrfs_assert_tree_locked(node
);
9450 level
= btrfs_header_level(node
);
9451 path
->nodes
[level
] = node
;
9452 path
->slots
[level
] = 0;
9453 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9455 wc
->refs
[parent_level
] = 1;
9456 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9458 wc
->shared_level
= -1;
9459 wc
->stage
= DROP_REFERENCE
;
9463 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9466 wret
= walk_down_tree(trans
, root
, path
, wc
);
9472 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9480 btrfs_free_path(path
);
9484 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
9490 * if restripe for this chunk_type is on pick target profile and
9491 * return, otherwise do the usual balance
9493 stripped
= get_restripe_target(root
->fs_info
, flags
);
9495 return extended_to_chunk(stripped
);
9497 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
9499 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9500 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9501 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9503 if (num_devices
== 1) {
9504 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9505 stripped
= flags
& ~stripped
;
9507 /* turn raid0 into single device chunks */
9508 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9511 /* turn mirroring into duplication */
9512 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9513 BTRFS_BLOCK_GROUP_RAID10
))
9514 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9516 /* they already had raid on here, just return */
9517 if (flags
& stripped
)
9520 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9521 stripped
= flags
& ~stripped
;
9523 /* switch duplicated blocks with raid1 */
9524 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9525 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9527 /* this is drive concat, leave it alone */
9533 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9535 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9537 u64 min_allocable_bytes
;
9541 * We need some metadata space and system metadata space for
9542 * allocating chunks in some corner cases until we force to set
9543 * it to be readonly.
9546 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9548 min_allocable_bytes
= SZ_1M
;
9550 min_allocable_bytes
= 0;
9552 spin_lock(&sinfo
->lock
);
9553 spin_lock(&cache
->lock
);
9561 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9562 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9564 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
9565 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
9566 min_allocable_bytes
<= sinfo
->total_bytes
) {
9567 sinfo
->bytes_readonly
+= num_bytes
;
9569 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9573 spin_unlock(&cache
->lock
);
9574 spin_unlock(&sinfo
->lock
);
9578 int btrfs_inc_block_group_ro(struct btrfs_root
*root
,
9579 struct btrfs_block_group_cache
*cache
)
9582 struct btrfs_trans_handle
*trans
;
9587 trans
= btrfs_join_transaction(root
);
9589 return PTR_ERR(trans
);
9592 * we're not allowed to set block groups readonly after the dirty
9593 * block groups cache has started writing. If it already started,
9594 * back off and let this transaction commit
9596 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
9597 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9598 u64 transid
= trans
->transid
;
9600 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9601 btrfs_end_transaction(trans
, root
);
9603 ret
= btrfs_wait_for_commit(root
, transid
);
9610 * if we are changing raid levels, try to allocate a corresponding
9611 * block group with the new raid level.
9613 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9614 if (alloc_flags
!= cache
->flags
) {
9615 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9618 * ENOSPC is allowed here, we may have enough space
9619 * already allocated at the new raid level to
9628 ret
= inc_block_group_ro(cache
, 0);
9631 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
9632 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9636 ret
= inc_block_group_ro(cache
, 0);
9638 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9639 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9640 lock_chunks(root
->fs_info
->chunk_root
);
9641 check_system_chunk(trans
, root
, alloc_flags
);
9642 unlock_chunks(root
->fs_info
->chunk_root
);
9644 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9646 btrfs_end_transaction(trans
, root
);
9650 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9651 struct btrfs_root
*root
, u64 type
)
9653 u64 alloc_flags
= get_alloc_profile(root
, type
);
9654 return do_chunk_alloc(trans
, root
, alloc_flags
,
9659 * helper to account the unused space of all the readonly block group in the
9660 * space_info. takes mirrors into account.
9662 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9664 struct btrfs_block_group_cache
*block_group
;
9668 /* It's df, we don't care if it's racy */
9669 if (list_empty(&sinfo
->ro_bgs
))
9672 spin_lock(&sinfo
->lock
);
9673 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9674 spin_lock(&block_group
->lock
);
9676 if (!block_group
->ro
) {
9677 spin_unlock(&block_group
->lock
);
9681 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9682 BTRFS_BLOCK_GROUP_RAID10
|
9683 BTRFS_BLOCK_GROUP_DUP
))
9688 free_bytes
+= (block_group
->key
.offset
-
9689 btrfs_block_group_used(&block_group
->item
)) *
9692 spin_unlock(&block_group
->lock
);
9694 spin_unlock(&sinfo
->lock
);
9699 void btrfs_dec_block_group_ro(struct btrfs_root
*root
,
9700 struct btrfs_block_group_cache
*cache
)
9702 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9707 spin_lock(&sinfo
->lock
);
9708 spin_lock(&cache
->lock
);
9710 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9711 cache
->pinned
- cache
->bytes_super
-
9712 btrfs_block_group_used(&cache
->item
);
9713 sinfo
->bytes_readonly
-= num_bytes
;
9714 list_del_init(&cache
->ro_list
);
9716 spin_unlock(&cache
->lock
);
9717 spin_unlock(&sinfo
->lock
);
9721 * checks to see if its even possible to relocate this block group.
9723 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9724 * ok to go ahead and try.
9726 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
9728 struct btrfs_block_group_cache
*block_group
;
9729 struct btrfs_space_info
*space_info
;
9730 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
9731 struct btrfs_device
*device
;
9732 struct btrfs_trans_handle
*trans
;
9742 debug
= btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
);
9744 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
9746 /* odd, couldn't find the block group, leave it alone */
9749 btrfs_warn(root
->fs_info
,
9750 "can't find block group for bytenr %llu",
9755 min_free
= btrfs_block_group_used(&block_group
->item
);
9757 /* no bytes used, we're good */
9761 space_info
= block_group
->space_info
;
9762 spin_lock(&space_info
->lock
);
9764 full
= space_info
->full
;
9767 * if this is the last block group we have in this space, we can't
9768 * relocate it unless we're able to allocate a new chunk below.
9770 * Otherwise, we need to make sure we have room in the space to handle
9771 * all of the extents from this block group. If we can, we're good
9773 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9774 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
9775 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
9776 min_free
< space_info
->total_bytes
)) {
9777 spin_unlock(&space_info
->lock
);
9780 spin_unlock(&space_info
->lock
);
9783 * ok we don't have enough space, but maybe we have free space on our
9784 * devices to allocate new chunks for relocation, so loop through our
9785 * alloc devices and guess if we have enough space. if this block
9786 * group is going to be restriped, run checks against the target
9787 * profile instead of the current one.
9799 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
9801 index
= __get_raid_index(extended_to_chunk(target
));
9804 * this is just a balance, so if we were marked as full
9805 * we know there is no space for a new chunk
9809 btrfs_warn(root
->fs_info
,
9810 "no space to alloc new chunk for block group %llu",
9811 block_group
->key
.objectid
);
9815 index
= get_block_group_index(block_group
);
9818 if (index
== BTRFS_RAID_RAID10
) {
9822 } else if (index
== BTRFS_RAID_RAID1
) {
9824 } else if (index
== BTRFS_RAID_DUP
) {
9827 } else if (index
== BTRFS_RAID_RAID0
) {
9828 dev_min
= fs_devices
->rw_devices
;
9829 min_free
= div64_u64(min_free
, dev_min
);
9832 /* We need to do this so that we can look at pending chunks */
9833 trans
= btrfs_join_transaction(root
);
9834 if (IS_ERR(trans
)) {
9835 ret
= PTR_ERR(trans
);
9839 mutex_lock(&root
->fs_info
->chunk_mutex
);
9840 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9844 * check to make sure we can actually find a chunk with enough
9845 * space to fit our block group in.
9847 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9848 !device
->is_tgtdev_for_dev_replace
) {
9849 ret
= find_free_dev_extent(trans
, device
, min_free
,
9854 if (dev_nr
>= dev_min
)
9860 if (debug
&& ret
== -1)
9861 btrfs_warn(root
->fs_info
,
9862 "no space to allocate a new chunk for block group %llu",
9863 block_group
->key
.objectid
);
9864 mutex_unlock(&root
->fs_info
->chunk_mutex
);
9865 btrfs_end_transaction(trans
, root
);
9867 btrfs_put_block_group(block_group
);
9871 static int find_first_block_group(struct btrfs_root
*root
,
9872 struct btrfs_path
*path
, struct btrfs_key
*key
)
9875 struct btrfs_key found_key
;
9876 struct extent_buffer
*leaf
;
9879 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9884 slot
= path
->slots
[0];
9885 leaf
= path
->nodes
[0];
9886 if (slot
>= btrfs_header_nritems(leaf
)) {
9887 ret
= btrfs_next_leaf(root
, path
);
9894 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9896 if (found_key
.objectid
>= key
->objectid
&&
9897 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9898 struct extent_map_tree
*em_tree
;
9899 struct extent_map
*em
;
9901 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9902 read_lock(&em_tree
->lock
);
9903 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9905 read_unlock(&em_tree
->lock
);
9907 btrfs_err(root
->fs_info
,
9908 "logical %llu len %llu found bg but no related chunk",
9909 found_key
.objectid
, found_key
.offset
);
9914 free_extent_map(em
);
9923 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9925 struct btrfs_block_group_cache
*block_group
;
9929 struct inode
*inode
;
9931 block_group
= btrfs_lookup_first_block_group(info
, last
);
9932 while (block_group
) {
9933 spin_lock(&block_group
->lock
);
9934 if (block_group
->iref
)
9936 spin_unlock(&block_group
->lock
);
9937 block_group
= next_block_group(info
->tree_root
,
9947 inode
= block_group
->inode
;
9948 block_group
->iref
= 0;
9949 block_group
->inode
= NULL
;
9950 spin_unlock(&block_group
->lock
);
9951 ASSERT(block_group
->io_ctl
.inode
== NULL
);
9953 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9954 btrfs_put_block_group(block_group
);
9958 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9960 struct btrfs_block_group_cache
*block_group
;
9961 struct btrfs_space_info
*space_info
;
9962 struct btrfs_caching_control
*caching_ctl
;
9965 down_write(&info
->commit_root_sem
);
9966 while (!list_empty(&info
->caching_block_groups
)) {
9967 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9968 struct btrfs_caching_control
, list
);
9969 list_del(&caching_ctl
->list
);
9970 put_caching_control(caching_ctl
);
9972 up_write(&info
->commit_root_sem
);
9974 spin_lock(&info
->unused_bgs_lock
);
9975 while (!list_empty(&info
->unused_bgs
)) {
9976 block_group
= list_first_entry(&info
->unused_bgs
,
9977 struct btrfs_block_group_cache
,
9979 list_del_init(&block_group
->bg_list
);
9980 btrfs_put_block_group(block_group
);
9982 spin_unlock(&info
->unused_bgs_lock
);
9984 spin_lock(&info
->block_group_cache_lock
);
9985 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9986 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9988 rb_erase(&block_group
->cache_node
,
9989 &info
->block_group_cache_tree
);
9990 RB_CLEAR_NODE(&block_group
->cache_node
);
9991 spin_unlock(&info
->block_group_cache_lock
);
9993 down_write(&block_group
->space_info
->groups_sem
);
9994 list_del(&block_group
->list
);
9995 up_write(&block_group
->space_info
->groups_sem
);
9997 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9998 wait_block_group_cache_done(block_group
);
10001 * We haven't cached this block group, which means we could
10002 * possibly have excluded extents on this block group.
10004 if (block_group
->cached
== BTRFS_CACHE_NO
||
10005 block_group
->cached
== BTRFS_CACHE_ERROR
)
10006 free_excluded_extents(info
->extent_root
, block_group
);
10008 btrfs_remove_free_space_cache(block_group
);
10009 ASSERT(list_empty(&block_group
->dirty_list
));
10010 ASSERT(list_empty(&block_group
->io_list
));
10011 ASSERT(list_empty(&block_group
->bg_list
));
10012 ASSERT(atomic_read(&block_group
->count
) == 1);
10013 btrfs_put_block_group(block_group
);
10015 spin_lock(&info
->block_group_cache_lock
);
10017 spin_unlock(&info
->block_group_cache_lock
);
10019 /* now that all the block groups are freed, go through and
10020 * free all the space_info structs. This is only called during
10021 * the final stages of unmount, and so we know nobody is
10022 * using them. We call synchronize_rcu() once before we start,
10023 * just to be on the safe side.
10027 release_global_block_rsv(info
);
10029 while (!list_empty(&info
->space_info
)) {
10032 space_info
= list_entry(info
->space_info
.next
,
10033 struct btrfs_space_info
,
10037 * Do not hide this behind enospc_debug, this is actually
10038 * important and indicates a real bug if this happens.
10040 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
10041 space_info
->bytes_reserved
> 0 ||
10042 space_info
->bytes_may_use
> 0))
10043 dump_space_info(info
, space_info
, 0, 0);
10044 list_del(&space_info
->list
);
10045 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
10046 struct kobject
*kobj
;
10047 kobj
= space_info
->block_group_kobjs
[i
];
10048 space_info
->block_group_kobjs
[i
] = NULL
;
10054 kobject_del(&space_info
->kobj
);
10055 kobject_put(&space_info
->kobj
);
10060 static void __link_block_group(struct btrfs_space_info
*space_info
,
10061 struct btrfs_block_group_cache
*cache
)
10063 int index
= get_block_group_index(cache
);
10064 bool first
= false;
10066 down_write(&space_info
->groups_sem
);
10067 if (list_empty(&space_info
->block_groups
[index
]))
10069 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
10070 up_write(&space_info
->groups_sem
);
10073 struct raid_kobject
*rkobj
;
10076 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
10079 rkobj
->raid_type
= index
;
10080 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
10081 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
10082 "%s", get_raid_name(index
));
10084 kobject_put(&rkobj
->kobj
);
10087 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
10092 btrfs_warn(cache
->fs_info
,
10093 "failed to add kobject for block cache, ignoring");
10096 static struct btrfs_block_group_cache
*
10097 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
10099 struct btrfs_block_group_cache
*cache
;
10101 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
10105 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
10107 if (!cache
->free_space_ctl
) {
10112 cache
->key
.objectid
= start
;
10113 cache
->key
.offset
= size
;
10114 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10116 cache
->sectorsize
= root
->sectorsize
;
10117 cache
->fs_info
= root
->fs_info
;
10118 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
10119 &root
->fs_info
->mapping_tree
,
10121 set_free_space_tree_thresholds(cache
);
10123 atomic_set(&cache
->count
, 1);
10124 spin_lock_init(&cache
->lock
);
10125 init_rwsem(&cache
->data_rwsem
);
10126 INIT_LIST_HEAD(&cache
->list
);
10127 INIT_LIST_HEAD(&cache
->cluster_list
);
10128 INIT_LIST_HEAD(&cache
->bg_list
);
10129 INIT_LIST_HEAD(&cache
->ro_list
);
10130 INIT_LIST_HEAD(&cache
->dirty_list
);
10131 INIT_LIST_HEAD(&cache
->io_list
);
10132 btrfs_init_free_space_ctl(cache
);
10133 atomic_set(&cache
->trimming
, 0);
10134 mutex_init(&cache
->free_space_lock
);
10139 int btrfs_read_block_groups(struct btrfs_root
*root
)
10141 struct btrfs_path
*path
;
10143 struct btrfs_block_group_cache
*cache
;
10144 struct btrfs_fs_info
*info
= root
->fs_info
;
10145 struct btrfs_space_info
*space_info
;
10146 struct btrfs_key key
;
10147 struct btrfs_key found_key
;
10148 struct extent_buffer
*leaf
;
10149 int need_clear
= 0;
10154 feature
= btrfs_super_incompat_flags(info
->super_copy
);
10155 mixed
= !!(feature
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
);
10157 root
= info
->extent_root
;
10160 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
10161 path
= btrfs_alloc_path();
10164 path
->reada
= READA_FORWARD
;
10166 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
10167 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
) &&
10168 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
10170 if (btrfs_test_opt(root
->fs_info
, CLEAR_CACHE
))
10174 ret
= find_first_block_group(root
, path
, &key
);
10180 leaf
= path
->nodes
[0];
10181 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
10183 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
10192 * When we mount with old space cache, we need to
10193 * set BTRFS_DC_CLEAR and set dirty flag.
10195 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10196 * truncate the old free space cache inode and
10198 * b) Setting 'dirty flag' makes sure that we flush
10199 * the new space cache info onto disk.
10201 if (btrfs_test_opt(root
->fs_info
, SPACE_CACHE
))
10202 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
10205 read_extent_buffer(leaf
, &cache
->item
,
10206 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
10207 sizeof(cache
->item
));
10208 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
10210 ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
10211 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
10213 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10214 cache
->key
.objectid
);
10219 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
10220 btrfs_release_path(path
);
10223 * We need to exclude the super stripes now so that the space
10224 * info has super bytes accounted for, otherwise we'll think
10225 * we have more space than we actually do.
10227 ret
= exclude_super_stripes(root
, cache
);
10230 * We may have excluded something, so call this just in
10233 free_excluded_extents(root
, cache
);
10234 btrfs_put_block_group(cache
);
10239 * check for two cases, either we are full, and therefore
10240 * don't need to bother with the caching work since we won't
10241 * find any space, or we are empty, and we can just add all
10242 * the space in and be done with it. This saves us _alot_ of
10243 * time, particularly in the full case.
10245 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
10246 cache
->last_byte_to_unpin
= (u64
)-1;
10247 cache
->cached
= BTRFS_CACHE_FINISHED
;
10248 free_excluded_extents(root
, cache
);
10249 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10250 cache
->last_byte_to_unpin
= (u64
)-1;
10251 cache
->cached
= BTRFS_CACHE_FINISHED
;
10252 add_new_free_space(cache
, root
->fs_info
,
10253 found_key
.objectid
,
10254 found_key
.objectid
+
10256 free_excluded_extents(root
, cache
);
10259 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10261 btrfs_remove_free_space_cache(cache
);
10262 btrfs_put_block_group(cache
);
10266 trace_btrfs_add_block_group(root
->fs_info
, cache
, 0);
10267 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
10268 btrfs_block_group_used(&cache
->item
),
10269 cache
->bytes_super
, &space_info
);
10271 btrfs_remove_free_space_cache(cache
);
10272 spin_lock(&info
->block_group_cache_lock
);
10273 rb_erase(&cache
->cache_node
,
10274 &info
->block_group_cache_tree
);
10275 RB_CLEAR_NODE(&cache
->cache_node
);
10276 spin_unlock(&info
->block_group_cache_lock
);
10277 btrfs_put_block_group(cache
);
10281 cache
->space_info
= space_info
;
10283 __link_block_group(space_info
, cache
);
10285 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
10286 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
10287 inc_block_group_ro(cache
, 1);
10288 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10289 spin_lock(&info
->unused_bgs_lock
);
10290 /* Should always be true but just in case. */
10291 if (list_empty(&cache
->bg_list
)) {
10292 btrfs_get_block_group(cache
);
10293 list_add_tail(&cache
->bg_list
,
10294 &info
->unused_bgs
);
10296 spin_unlock(&info
->unused_bgs_lock
);
10300 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
10301 if (!(get_alloc_profile(root
, space_info
->flags
) &
10302 (BTRFS_BLOCK_GROUP_RAID10
|
10303 BTRFS_BLOCK_GROUP_RAID1
|
10304 BTRFS_BLOCK_GROUP_RAID5
|
10305 BTRFS_BLOCK_GROUP_RAID6
|
10306 BTRFS_BLOCK_GROUP_DUP
)))
10309 * avoid allocating from un-mirrored block group if there are
10310 * mirrored block groups.
10312 list_for_each_entry(cache
,
10313 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10315 inc_block_group_ro(cache
, 1);
10316 list_for_each_entry(cache
,
10317 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10319 inc_block_group_ro(cache
, 1);
10322 init_global_block_rsv(info
);
10325 btrfs_free_path(path
);
10329 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10330 struct btrfs_root
*root
)
10332 struct btrfs_block_group_cache
*block_group
, *tmp
;
10333 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
10334 struct btrfs_block_group_item item
;
10335 struct btrfs_key key
;
10337 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10339 trans
->can_flush_pending_bgs
= false;
10340 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
10344 spin_lock(&block_group
->lock
);
10345 memcpy(&item
, &block_group
->item
, sizeof(item
));
10346 memcpy(&key
, &block_group
->key
, sizeof(key
));
10347 spin_unlock(&block_group
->lock
);
10349 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10352 btrfs_abort_transaction(trans
, ret
);
10353 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
10354 key
.objectid
, key
.offset
);
10356 btrfs_abort_transaction(trans
, ret
);
10357 add_block_group_free_space(trans
, root
->fs_info
, block_group
);
10358 /* already aborted the transaction if it failed. */
10360 list_del_init(&block_group
->bg_list
);
10362 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10365 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10366 struct btrfs_root
*root
, u64 bytes_used
,
10367 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
10371 struct btrfs_root
*extent_root
;
10372 struct btrfs_block_group_cache
*cache
;
10373 extent_root
= root
->fs_info
->extent_root
;
10375 btrfs_set_log_full_commit(root
->fs_info
, trans
);
10377 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
10381 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10382 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
10383 btrfs_set_block_group_flags(&cache
->item
, type
);
10385 cache
->flags
= type
;
10386 cache
->last_byte_to_unpin
= (u64
)-1;
10387 cache
->cached
= BTRFS_CACHE_FINISHED
;
10388 cache
->needs_free_space
= 1;
10389 ret
= exclude_super_stripes(root
, cache
);
10392 * We may have excluded something, so call this just in
10395 free_excluded_extents(root
, cache
);
10396 btrfs_put_block_group(cache
);
10400 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
10401 chunk_offset
+ size
);
10403 free_excluded_extents(root
, cache
);
10405 #ifdef CONFIG_BTRFS_DEBUG
10406 if (btrfs_should_fragment_free_space(root
, cache
)) {
10407 u64 new_bytes_used
= size
- bytes_used
;
10409 bytes_used
+= new_bytes_used
>> 1;
10410 fragment_free_space(root
, cache
);
10414 * Call to ensure the corresponding space_info object is created and
10415 * assigned to our block group, but don't update its counters just yet.
10416 * We want our bg to be added to the rbtree with its ->space_info set.
10418 ret
= update_space_info(root
->fs_info
, cache
->flags
, 0, 0, 0,
10419 &cache
->space_info
);
10421 btrfs_remove_free_space_cache(cache
);
10422 btrfs_put_block_group(cache
);
10426 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10428 btrfs_remove_free_space_cache(cache
);
10429 btrfs_put_block_group(cache
);
10434 * Now that our block group has its ->space_info set and is inserted in
10435 * the rbtree, update the space info's counters.
10437 trace_btrfs_add_block_group(root
->fs_info
, cache
, 1);
10438 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
10439 cache
->bytes_super
, &cache
->space_info
);
10441 btrfs_remove_free_space_cache(cache
);
10442 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10443 rb_erase(&cache
->cache_node
,
10444 &root
->fs_info
->block_group_cache_tree
);
10445 RB_CLEAR_NODE(&cache
->cache_node
);
10446 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10447 btrfs_put_block_group(cache
);
10450 update_global_block_rsv(root
->fs_info
);
10452 __link_block_group(cache
->space_info
, cache
);
10454 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10456 set_avail_alloc_bits(extent_root
->fs_info
, type
);
10460 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10462 u64 extra_flags
= chunk_to_extended(flags
) &
10463 BTRFS_EXTENDED_PROFILE_MASK
;
10465 write_seqlock(&fs_info
->profiles_lock
);
10466 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10467 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10468 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10469 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10470 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10471 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10472 write_sequnlock(&fs_info
->profiles_lock
);
10475 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10476 struct btrfs_root
*root
, u64 group_start
,
10477 struct extent_map
*em
)
10479 struct btrfs_path
*path
;
10480 struct btrfs_block_group_cache
*block_group
;
10481 struct btrfs_free_cluster
*cluster
;
10482 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
10483 struct btrfs_key key
;
10484 struct inode
*inode
;
10485 struct kobject
*kobj
= NULL
;
10489 struct btrfs_caching_control
*caching_ctl
= NULL
;
10492 root
= root
->fs_info
->extent_root
;
10494 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
10495 BUG_ON(!block_group
);
10496 BUG_ON(!block_group
->ro
);
10499 * Free the reserved super bytes from this block group before
10502 free_excluded_extents(root
, block_group
);
10504 memcpy(&key
, &block_group
->key
, sizeof(key
));
10505 index
= get_block_group_index(block_group
);
10506 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10507 BTRFS_BLOCK_GROUP_RAID1
|
10508 BTRFS_BLOCK_GROUP_RAID10
))
10513 /* make sure this block group isn't part of an allocation cluster */
10514 cluster
= &root
->fs_info
->data_alloc_cluster
;
10515 spin_lock(&cluster
->refill_lock
);
10516 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10517 spin_unlock(&cluster
->refill_lock
);
10520 * make sure this block group isn't part of a metadata
10521 * allocation cluster
10523 cluster
= &root
->fs_info
->meta_alloc_cluster
;
10524 spin_lock(&cluster
->refill_lock
);
10525 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10526 spin_unlock(&cluster
->refill_lock
);
10528 path
= btrfs_alloc_path();
10535 * get the inode first so any iput calls done for the io_list
10536 * aren't the final iput (no unlinks allowed now)
10538 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
10540 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10542 * make sure our free spache cache IO is done before remove the
10545 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10546 if (!list_empty(&block_group
->io_list
)) {
10547 list_del_init(&block_group
->io_list
);
10549 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10551 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10552 btrfs_wait_cache_io(root
, trans
, block_group
,
10553 &block_group
->io_ctl
, path
,
10554 block_group
->key
.objectid
);
10555 btrfs_put_block_group(block_group
);
10556 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10559 if (!list_empty(&block_group
->dirty_list
)) {
10560 list_del_init(&block_group
->dirty_list
);
10561 btrfs_put_block_group(block_group
);
10563 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10564 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10566 if (!IS_ERR(inode
)) {
10567 ret
= btrfs_orphan_add(trans
, inode
);
10569 btrfs_add_delayed_iput(inode
);
10572 clear_nlink(inode
);
10573 /* One for the block groups ref */
10574 spin_lock(&block_group
->lock
);
10575 if (block_group
->iref
) {
10576 block_group
->iref
= 0;
10577 block_group
->inode
= NULL
;
10578 spin_unlock(&block_group
->lock
);
10581 spin_unlock(&block_group
->lock
);
10583 /* One for our lookup ref */
10584 btrfs_add_delayed_iput(inode
);
10587 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10588 key
.offset
= block_group
->key
.objectid
;
10591 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10595 btrfs_release_path(path
);
10597 ret
= btrfs_del_item(trans
, tree_root
, path
);
10600 btrfs_release_path(path
);
10603 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10604 rb_erase(&block_group
->cache_node
,
10605 &root
->fs_info
->block_group_cache_tree
);
10606 RB_CLEAR_NODE(&block_group
->cache_node
);
10608 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10609 root
->fs_info
->first_logical_byte
= (u64
)-1;
10610 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10612 down_write(&block_group
->space_info
->groups_sem
);
10614 * we must use list_del_init so people can check to see if they
10615 * are still on the list after taking the semaphore
10617 list_del_init(&block_group
->list
);
10618 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10619 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10620 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10621 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
10623 up_write(&block_group
->space_info
->groups_sem
);
10629 if (block_group
->has_caching_ctl
)
10630 caching_ctl
= get_caching_control(block_group
);
10631 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10632 wait_block_group_cache_done(block_group
);
10633 if (block_group
->has_caching_ctl
) {
10634 down_write(&root
->fs_info
->commit_root_sem
);
10635 if (!caching_ctl
) {
10636 struct btrfs_caching_control
*ctl
;
10638 list_for_each_entry(ctl
,
10639 &root
->fs_info
->caching_block_groups
, list
)
10640 if (ctl
->block_group
== block_group
) {
10642 atomic_inc(&caching_ctl
->count
);
10647 list_del_init(&caching_ctl
->list
);
10648 up_write(&root
->fs_info
->commit_root_sem
);
10650 /* Once for the caching bgs list and once for us. */
10651 put_caching_control(caching_ctl
);
10652 put_caching_control(caching_ctl
);
10656 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10657 if (!list_empty(&block_group
->dirty_list
)) {
10660 if (!list_empty(&block_group
->io_list
)) {
10663 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10664 btrfs_remove_free_space_cache(block_group
);
10666 spin_lock(&block_group
->space_info
->lock
);
10667 list_del_init(&block_group
->ro_list
);
10669 if (btrfs_test_opt(root
->fs_info
, ENOSPC_DEBUG
)) {
10670 WARN_ON(block_group
->space_info
->total_bytes
10671 < block_group
->key
.offset
);
10672 WARN_ON(block_group
->space_info
->bytes_readonly
10673 < block_group
->key
.offset
);
10674 WARN_ON(block_group
->space_info
->disk_total
10675 < block_group
->key
.offset
* factor
);
10677 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10678 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10679 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10681 spin_unlock(&block_group
->space_info
->lock
);
10683 memcpy(&key
, &block_group
->key
, sizeof(key
));
10686 if (!list_empty(&em
->list
)) {
10687 /* We're in the transaction->pending_chunks list. */
10688 free_extent_map(em
);
10690 spin_lock(&block_group
->lock
);
10691 block_group
->removed
= 1;
10693 * At this point trimming can't start on this block group, because we
10694 * removed the block group from the tree fs_info->block_group_cache_tree
10695 * so no one can't find it anymore and even if someone already got this
10696 * block group before we removed it from the rbtree, they have already
10697 * incremented block_group->trimming - if they didn't, they won't find
10698 * any free space entries because we already removed them all when we
10699 * called btrfs_remove_free_space_cache().
10701 * And we must not remove the extent map from the fs_info->mapping_tree
10702 * to prevent the same logical address range and physical device space
10703 * ranges from being reused for a new block group. This is because our
10704 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10705 * completely transactionless, so while it is trimming a range the
10706 * currently running transaction might finish and a new one start,
10707 * allowing for new block groups to be created that can reuse the same
10708 * physical device locations unless we take this special care.
10710 * There may also be an implicit trim operation if the file system
10711 * is mounted with -odiscard. The same protections must remain
10712 * in place until the extents have been discarded completely when
10713 * the transaction commit has completed.
10715 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10717 * Make sure a trimmer task always sees the em in the pinned_chunks list
10718 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10719 * before checking block_group->removed).
10723 * Our em might be in trans->transaction->pending_chunks which
10724 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10725 * and so is the fs_info->pinned_chunks list.
10727 * So at this point we must be holding the chunk_mutex to avoid
10728 * any races with chunk allocation (more specifically at
10729 * volumes.c:contains_pending_extent()), to ensure it always
10730 * sees the em, either in the pending_chunks list or in the
10731 * pinned_chunks list.
10733 list_move_tail(&em
->list
, &root
->fs_info
->pinned_chunks
);
10735 spin_unlock(&block_group
->lock
);
10738 struct extent_map_tree
*em_tree
;
10740 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
10741 write_lock(&em_tree
->lock
);
10743 * The em might be in the pending_chunks list, so make sure the
10744 * chunk mutex is locked, since remove_extent_mapping() will
10745 * delete us from that list.
10747 remove_extent_mapping(em_tree
, em
);
10748 write_unlock(&em_tree
->lock
);
10749 /* once for the tree */
10750 free_extent_map(em
);
10753 unlock_chunks(root
);
10755 ret
= remove_block_group_free_space(trans
, root
->fs_info
, block_group
);
10759 btrfs_put_block_group(block_group
);
10760 btrfs_put_block_group(block_group
);
10762 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10768 ret
= btrfs_del_item(trans
, root
, path
);
10770 btrfs_free_path(path
);
10774 struct btrfs_trans_handle
*
10775 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10776 const u64 chunk_offset
)
10778 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10779 struct extent_map
*em
;
10780 struct map_lookup
*map
;
10781 unsigned int num_items
;
10783 read_lock(&em_tree
->lock
);
10784 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10785 read_unlock(&em_tree
->lock
);
10786 ASSERT(em
&& em
->start
== chunk_offset
);
10789 * We need to reserve 3 + N units from the metadata space info in order
10790 * to remove a block group (done at btrfs_remove_chunk() and at
10791 * btrfs_remove_block_group()), which are used for:
10793 * 1 unit for adding the free space inode's orphan (located in the tree
10795 * 1 unit for deleting the block group item (located in the extent
10797 * 1 unit for deleting the free space item (located in tree of tree
10799 * N units for deleting N device extent items corresponding to each
10800 * stripe (located in the device tree).
10802 * In order to remove a block group we also need to reserve units in the
10803 * system space info in order to update the chunk tree (update one or
10804 * more device items and remove one chunk item), but this is done at
10805 * btrfs_remove_chunk() through a call to check_system_chunk().
10807 map
= em
->map_lookup
;
10808 num_items
= 3 + map
->num_stripes
;
10809 free_extent_map(em
);
10811 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10816 * Process the unused_bgs list and remove any that don't have any allocated
10817 * space inside of them.
10819 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10821 struct btrfs_block_group_cache
*block_group
;
10822 struct btrfs_space_info
*space_info
;
10823 struct btrfs_root
*root
= fs_info
->extent_root
;
10824 struct btrfs_trans_handle
*trans
;
10827 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
10830 spin_lock(&fs_info
->unused_bgs_lock
);
10831 while (!list_empty(&fs_info
->unused_bgs
)) {
10835 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10836 struct btrfs_block_group_cache
,
10838 list_del_init(&block_group
->bg_list
);
10840 space_info
= block_group
->space_info
;
10842 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10843 btrfs_put_block_group(block_group
);
10846 spin_unlock(&fs_info
->unused_bgs_lock
);
10848 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10850 /* Don't want to race with allocators so take the groups_sem */
10851 down_write(&space_info
->groups_sem
);
10852 spin_lock(&block_group
->lock
);
10853 if (block_group
->reserved
||
10854 btrfs_block_group_used(&block_group
->item
) ||
10856 list_is_singular(&block_group
->list
)) {
10858 * We want to bail if we made new allocations or have
10859 * outstanding allocations in this block group. We do
10860 * the ro check in case balance is currently acting on
10861 * this block group.
10863 spin_unlock(&block_group
->lock
);
10864 up_write(&space_info
->groups_sem
);
10867 spin_unlock(&block_group
->lock
);
10869 /* We don't want to force the issue, only flip if it's ok. */
10870 ret
= inc_block_group_ro(block_group
, 0);
10871 up_write(&space_info
->groups_sem
);
10878 * Want to do this before we do anything else so we can recover
10879 * properly if we fail to join the transaction.
10881 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10882 block_group
->key
.objectid
);
10883 if (IS_ERR(trans
)) {
10884 btrfs_dec_block_group_ro(root
, block_group
);
10885 ret
= PTR_ERR(trans
);
10890 * We could have pending pinned extents for this block group,
10891 * just delete them, we don't care about them anymore.
10893 start
= block_group
->key
.objectid
;
10894 end
= start
+ block_group
->key
.offset
- 1;
10896 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10897 * btrfs_finish_extent_commit(). If we are at transaction N,
10898 * another task might be running finish_extent_commit() for the
10899 * previous transaction N - 1, and have seen a range belonging
10900 * to the block group in freed_extents[] before we were able to
10901 * clear the whole block group range from freed_extents[]. This
10902 * means that task can lookup for the block group after we
10903 * unpinned it from freed_extents[] and removed it, leading to
10904 * a BUG_ON() at btrfs_unpin_extent_range().
10906 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10907 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10910 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10911 btrfs_dec_block_group_ro(root
, block_group
);
10914 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10917 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10918 btrfs_dec_block_group_ro(root
, block_group
);
10921 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10923 /* Reset pinned so btrfs_put_block_group doesn't complain */
10924 spin_lock(&space_info
->lock
);
10925 spin_lock(&block_group
->lock
);
10927 space_info
->bytes_pinned
-= block_group
->pinned
;
10928 space_info
->bytes_readonly
+= block_group
->pinned
;
10929 percpu_counter_add(&space_info
->total_bytes_pinned
,
10930 -block_group
->pinned
);
10931 block_group
->pinned
= 0;
10933 spin_unlock(&block_group
->lock
);
10934 spin_unlock(&space_info
->lock
);
10936 /* DISCARD can flip during remount */
10937 trimming
= btrfs_test_opt(root
->fs_info
, DISCARD
);
10939 /* Implicit trim during transaction commit. */
10941 btrfs_get_block_group_trimming(block_group
);
10944 * Btrfs_remove_chunk will abort the transaction if things go
10947 ret
= btrfs_remove_chunk(trans
, root
,
10948 block_group
->key
.objectid
);
10952 btrfs_put_block_group_trimming(block_group
);
10957 * If we're not mounted with -odiscard, we can just forget
10958 * about this block group. Otherwise we'll need to wait
10959 * until transaction commit to do the actual discard.
10962 spin_lock(&fs_info
->unused_bgs_lock
);
10964 * A concurrent scrub might have added us to the list
10965 * fs_info->unused_bgs, so use a list_move operation
10966 * to add the block group to the deleted_bgs list.
10968 list_move(&block_group
->bg_list
,
10969 &trans
->transaction
->deleted_bgs
);
10970 spin_unlock(&fs_info
->unused_bgs_lock
);
10971 btrfs_get_block_group(block_group
);
10974 btrfs_end_transaction(trans
, root
);
10976 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10977 btrfs_put_block_group(block_group
);
10978 spin_lock(&fs_info
->unused_bgs_lock
);
10980 spin_unlock(&fs_info
->unused_bgs_lock
);
10983 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10985 struct btrfs_space_info
*space_info
;
10986 struct btrfs_super_block
*disk_super
;
10992 disk_super
= fs_info
->super_copy
;
10993 if (!btrfs_super_root(disk_super
))
10996 features
= btrfs_super_incompat_flags(disk_super
);
10997 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
11000 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
11001 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
11006 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
11007 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
11009 flags
= BTRFS_BLOCK_GROUP_METADATA
;
11010 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
11014 flags
= BTRFS_BLOCK_GROUP_DATA
;
11015 ret
= update_space_info(fs_info
, flags
, 0, 0, 0, &space_info
);
11021 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
11023 return unpin_extent_range(root
, start
, end
, false);
11027 * It used to be that old block groups would be left around forever.
11028 * Iterating over them would be enough to trim unused space. Since we
11029 * now automatically remove them, we also need to iterate over unallocated
11032 * We don't want a transaction for this since the discard may take a
11033 * substantial amount of time. We don't require that a transaction be
11034 * running, but we do need to take a running transaction into account
11035 * to ensure that we're not discarding chunks that were released in
11036 * the current transaction.
11038 * Holding the chunks lock will prevent other threads from allocating
11039 * or releasing chunks, but it won't prevent a running transaction
11040 * from committing and releasing the memory that the pending chunks
11041 * list head uses. For that, we need to take a reference to the
11044 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
11045 u64 minlen
, u64
*trimmed
)
11047 u64 start
= 0, len
= 0;
11052 /* Not writeable = nothing to do. */
11053 if (!device
->writeable
)
11056 /* No free space = nothing to do. */
11057 if (device
->total_bytes
<= device
->bytes_used
)
11063 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
11064 struct btrfs_transaction
*trans
;
11067 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
11071 down_read(&fs_info
->commit_root_sem
);
11073 spin_lock(&fs_info
->trans_lock
);
11074 trans
= fs_info
->running_transaction
;
11076 atomic_inc(&trans
->use_count
);
11077 spin_unlock(&fs_info
->trans_lock
);
11079 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
11082 btrfs_put_transaction(trans
);
11085 up_read(&fs_info
->commit_root_sem
);
11086 mutex_unlock(&fs_info
->chunk_mutex
);
11087 if (ret
== -ENOSPC
)
11092 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
11093 up_read(&fs_info
->commit_root_sem
);
11094 mutex_unlock(&fs_info
->chunk_mutex
);
11102 if (fatal_signal_pending(current
)) {
11103 ret
= -ERESTARTSYS
;
11113 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
11115 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
11116 struct btrfs_block_group_cache
*cache
= NULL
;
11117 struct btrfs_device
*device
;
11118 struct list_head
*devices
;
11123 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
11127 * try to trim all FS space, our block group may start from non-zero.
11129 if (range
->len
== total_bytes
)
11130 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
11132 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
11135 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
11136 btrfs_put_block_group(cache
);
11140 start
= max(range
->start
, cache
->key
.objectid
);
11141 end
= min(range
->start
+ range
->len
,
11142 cache
->key
.objectid
+ cache
->key
.offset
);
11144 if (end
- start
>= range
->minlen
) {
11145 if (!block_group_cache_done(cache
)) {
11146 ret
= cache_block_group(cache
, 0);
11148 btrfs_put_block_group(cache
);
11151 ret
= wait_block_group_cache_done(cache
);
11153 btrfs_put_block_group(cache
);
11157 ret
= btrfs_trim_block_group(cache
,
11163 trimmed
+= group_trimmed
;
11165 btrfs_put_block_group(cache
);
11170 cache
= next_block_group(fs_info
->tree_root
, cache
);
11173 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
11174 devices
= &root
->fs_info
->fs_devices
->alloc_list
;
11175 list_for_each_entry(device
, devices
, dev_alloc_list
) {
11176 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
11181 trimmed
+= group_trimmed
;
11183 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
11185 range
->len
= trimmed
;
11190 * btrfs_{start,end}_write_no_snapshoting() are similar to
11191 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11192 * data into the page cache through nocow before the subvolume is snapshoted,
11193 * but flush the data into disk after the snapshot creation, or to prevent
11194 * operations while snapshoting is ongoing and that cause the snapshot to be
11195 * inconsistent (writes followed by expanding truncates for example).
11197 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
11199 percpu_counter_dec(&root
->subv_writers
->counter
);
11201 * Make sure counter is updated before we wake up waiters.
11204 if (waitqueue_active(&root
->subv_writers
->wait
))
11205 wake_up(&root
->subv_writers
->wait
);
11208 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
11210 if (atomic_read(&root
->will_be_snapshoted
))
11213 percpu_counter_inc(&root
->subv_writers
->counter
);
11215 * Make sure counter is updated before we check for snapshot creation.
11218 if (atomic_read(&root
->will_be_snapshoted
)) {
11219 btrfs_end_write_no_snapshoting(root
);
11225 static int wait_snapshoting_atomic_t(atomic_t
*a
)
11231 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
11236 ret
= btrfs_start_write_no_snapshoting(root
);
11239 wait_on_atomic_t(&root
->will_be_snapshoted
,
11240 wait_snapshoting_atomic_t
,
11241 TASK_UNINTERRUPTIBLE
);