rtc: stm32: fix comparison warnings
[linux/fpc-iii.git] / block / blk-mq.c
bloba8e67a155d04f6d937e890473b1647fbe95d210f
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
27 #include <trace/events/block.h>
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
36 static DEFINE_MUTEX(all_q_mutex);
37 static LIST_HEAD(all_q_list);
40 * Check if any of the ctx's have pending work in this hardware queue
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 return sbitmap_any_bit_set(&hctx->ctx_map);
48 * Mark this ctx as having pending work in this hardware queue
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
63 void blk_mq_freeze_queue_start(struct request_queue *q)
65 int freeze_depth;
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
69 percpu_ref_kill(&q->q_usage_counter);
70 blk_mq_run_hw_queues(q, false);
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
84 void blk_freeze_queue(struct request_queue *q)
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
97 void blk_mq_freeze_queue(struct request_queue *q)
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
103 blk_freeze_queue(q);
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
107 void blk_mq_unfreeze_queue(struct request_queue *q)
109 int freeze_depth;
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
114 percpu_ref_reinit(&q->q_usage_counter);
115 wake_up_all(&q->mq_freeze_wq);
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
128 void blk_mq_quiesce_queue(struct request_queue *q)
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
134 blk_mq_stop_hw_queues(q);
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
142 if (rcu)
143 synchronize_rcu();
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
147 void blk_mq_wake_waiters(struct request_queue *q)
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
161 wake_up_all(&q->mq_freeze_wq);
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
166 return blk_mq_has_free_tags(hctx->tags);
168 EXPORT_SYMBOL(blk_mq_can_queue);
170 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 struct request *rq, unsigned int op)
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
176 rq->mq_ctx = ctx;
177 rq->cmd_flags = op;
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
184 rq->rq_disk = NULL;
185 rq->part = NULL;
186 rq->start_time = jiffies;
187 #ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
189 set_start_time_ns(rq);
190 rq->io_start_time_ns = 0;
191 #endif
192 rq->nr_phys_segments = 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195 #endif
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
200 rq->cmd = rq->__cmd;
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
207 INIT_LIST_HEAD(&rq->timeout_list);
208 rq->timeout = 0;
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
214 ctx->rq_dispatched[op_is_sync(op)]++;
217 static struct request *
218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
220 struct request *rq;
221 unsigned int tag;
223 tag = blk_mq_get_tag(data);
224 if (tag != BLK_MQ_TAG_FAIL) {
225 rq = data->hctx->tags->rqs[tag];
227 if (blk_mq_tag_busy(data->hctx)) {
228 rq->rq_flags = RQF_MQ_INFLIGHT;
229 atomic_inc(&data->hctx->nr_active);
232 rq->tag = tag;
233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 return rq;
237 return NULL;
240 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241 unsigned int flags)
243 struct blk_mq_ctx *ctx;
244 struct blk_mq_hw_ctx *hctx;
245 struct request *rq;
246 struct blk_mq_alloc_data alloc_data;
247 int ret;
249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 if (ret)
251 return ERR_PTR(ret);
253 ctx = blk_mq_get_ctx(q);
254 hctx = blk_mq_map_queue(q, ctx->cpu);
255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256 rq = __blk_mq_alloc_request(&alloc_data, rw);
257 blk_mq_put_ctx(ctx);
259 if (!rq) {
260 blk_queue_exit(q);
261 return ERR_PTR(-EWOULDBLOCK);
264 rq->__data_len = 0;
265 rq->__sector = (sector_t) -1;
266 rq->bio = rq->biotail = NULL;
267 return rq;
269 EXPORT_SYMBOL(blk_mq_alloc_request);
271 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272 unsigned int flags, unsigned int hctx_idx)
274 struct blk_mq_hw_ctx *hctx;
275 struct blk_mq_ctx *ctx;
276 struct request *rq;
277 struct blk_mq_alloc_data alloc_data;
278 int ret;
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
284 * a specific queue.
286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287 return ERR_PTR(-EINVAL);
289 if (hctx_idx >= q->nr_hw_queues)
290 return ERR_PTR(-EIO);
292 ret = blk_queue_enter(q, true);
293 if (ret)
294 return ERR_PTR(ret);
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
300 hctx = q->queue_hw_ctx[hctx_idx];
301 if (!blk_mq_hw_queue_mapped(hctx)) {
302 ret = -EXDEV;
303 goto out_queue_exit;
305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308 rq = __blk_mq_alloc_request(&alloc_data, rw);
309 if (!rq) {
310 ret = -EWOULDBLOCK;
311 goto out_queue_exit;
314 return rq;
316 out_queue_exit:
317 blk_queue_exit(q);
318 return ERR_PTR(ret);
320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
322 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323 struct blk_mq_ctx *ctx, struct request *rq)
325 const int tag = rq->tag;
326 struct request_queue *q = rq->q;
328 if (rq->rq_flags & RQF_MQ_INFLIGHT)
329 atomic_dec(&hctx->nr_active);
331 wbt_done(q->rq_wb, &rq->issue_stat);
332 rq->rq_flags = 0;
334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
336 blk_mq_put_tag(hctx, ctx, tag);
337 blk_queue_exit(q);
340 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
344 ctx->rq_completed[rq_is_sync(rq)]++;
345 __blk_mq_free_request(hctx, ctx, rq);
348 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
350 void blk_mq_free_request(struct request *rq)
352 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
354 EXPORT_SYMBOL_GPL(blk_mq_free_request);
356 inline void __blk_mq_end_request(struct request *rq, int error)
358 blk_account_io_done(rq);
360 if (rq->end_io) {
361 wbt_done(rq->q->rq_wb, &rq->issue_stat);
362 rq->end_io(rq, error);
363 } else {
364 if (unlikely(blk_bidi_rq(rq)))
365 blk_mq_free_request(rq->next_rq);
366 blk_mq_free_request(rq);
369 EXPORT_SYMBOL(__blk_mq_end_request);
371 void blk_mq_end_request(struct request *rq, int error)
373 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374 BUG();
375 __blk_mq_end_request(rq, error);
377 EXPORT_SYMBOL(blk_mq_end_request);
379 static void __blk_mq_complete_request_remote(void *data)
381 struct request *rq = data;
383 rq->q->softirq_done_fn(rq);
386 static void blk_mq_ipi_complete_request(struct request *rq)
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
389 bool shared = false;
390 int cpu;
392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
393 rq->q->softirq_done_fn(rq);
394 return;
397 cpu = get_cpu();
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399 shared = cpus_share_cache(cpu, ctx->cpu);
401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
402 rq->csd.func = __blk_mq_complete_request_remote;
403 rq->csd.info = rq;
404 rq->csd.flags = 0;
405 smp_call_function_single_async(ctx->cpu, &rq->csd);
406 } else {
407 rq->q->softirq_done_fn(rq);
409 put_cpu();
412 static void blk_mq_stat_add(struct request *rq)
414 if (rq->rq_flags & RQF_STATS) {
416 * We could rq->mq_ctx here, but there's less of a risk
417 * of races if we have the completion event add the stats
418 * to the local software queue.
420 struct blk_mq_ctx *ctx;
422 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
423 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
427 static void __blk_mq_complete_request(struct request *rq)
429 struct request_queue *q = rq->q;
431 blk_mq_stat_add(rq);
433 if (!q->softirq_done_fn)
434 blk_mq_end_request(rq, rq->errors);
435 else
436 blk_mq_ipi_complete_request(rq);
440 * blk_mq_complete_request - end I/O on a request
441 * @rq: the request being processed
443 * Description:
444 * Ends all I/O on a request. It does not handle partial completions.
445 * The actual completion happens out-of-order, through a IPI handler.
447 void blk_mq_complete_request(struct request *rq, int error)
449 struct request_queue *q = rq->q;
451 if (unlikely(blk_should_fake_timeout(q)))
452 return;
453 if (!blk_mark_rq_complete(rq)) {
454 rq->errors = error;
455 __blk_mq_complete_request(rq);
458 EXPORT_SYMBOL(blk_mq_complete_request);
460 int blk_mq_request_started(struct request *rq)
462 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
464 EXPORT_SYMBOL_GPL(blk_mq_request_started);
466 void blk_mq_start_request(struct request *rq)
468 struct request_queue *q = rq->q;
470 trace_block_rq_issue(q, rq);
472 rq->resid_len = blk_rq_bytes(rq);
473 if (unlikely(blk_bidi_rq(rq)))
474 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
476 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
477 blk_stat_set_issue_time(&rq->issue_stat);
478 rq->rq_flags |= RQF_STATS;
479 wbt_issue(q->rq_wb, &rq->issue_stat);
482 blk_add_timer(rq);
485 * Ensure that ->deadline is visible before set the started
486 * flag and clear the completed flag.
488 smp_mb__before_atomic();
491 * Mark us as started and clear complete. Complete might have been
492 * set if requeue raced with timeout, which then marked it as
493 * complete. So be sure to clear complete again when we start
494 * the request, otherwise we'll ignore the completion event.
496 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
497 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
498 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
499 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
501 if (q->dma_drain_size && blk_rq_bytes(rq)) {
503 * Make sure space for the drain appears. We know we can do
504 * this because max_hw_segments has been adjusted to be one
505 * fewer than the device can handle.
507 rq->nr_phys_segments++;
510 EXPORT_SYMBOL(blk_mq_start_request);
512 static void __blk_mq_requeue_request(struct request *rq)
514 struct request_queue *q = rq->q;
516 trace_block_rq_requeue(q, rq);
517 wbt_requeue(q->rq_wb, &rq->issue_stat);
519 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
520 if (q->dma_drain_size && blk_rq_bytes(rq))
521 rq->nr_phys_segments--;
525 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
527 __blk_mq_requeue_request(rq);
529 BUG_ON(blk_queued_rq(rq));
530 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
532 EXPORT_SYMBOL(blk_mq_requeue_request);
534 static void blk_mq_requeue_work(struct work_struct *work)
536 struct request_queue *q =
537 container_of(work, struct request_queue, requeue_work.work);
538 LIST_HEAD(rq_list);
539 struct request *rq, *next;
540 unsigned long flags;
542 spin_lock_irqsave(&q->requeue_lock, flags);
543 list_splice_init(&q->requeue_list, &rq_list);
544 spin_unlock_irqrestore(&q->requeue_lock, flags);
546 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
547 if (!(rq->rq_flags & RQF_SOFTBARRIER))
548 continue;
550 rq->rq_flags &= ~RQF_SOFTBARRIER;
551 list_del_init(&rq->queuelist);
552 blk_mq_insert_request(rq, true, false, false);
555 while (!list_empty(&rq_list)) {
556 rq = list_entry(rq_list.next, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 blk_mq_insert_request(rq, false, false, false);
561 blk_mq_run_hw_queues(q, false);
564 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
565 bool kick_requeue_list)
567 struct request_queue *q = rq->q;
568 unsigned long flags;
571 * We abuse this flag that is otherwise used by the I/O scheduler to
572 * request head insertation from the workqueue.
574 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
576 spin_lock_irqsave(&q->requeue_lock, flags);
577 if (at_head) {
578 rq->rq_flags |= RQF_SOFTBARRIER;
579 list_add(&rq->queuelist, &q->requeue_list);
580 } else {
581 list_add_tail(&rq->queuelist, &q->requeue_list);
583 spin_unlock_irqrestore(&q->requeue_lock, flags);
585 if (kick_requeue_list)
586 blk_mq_kick_requeue_list(q);
588 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
590 void blk_mq_kick_requeue_list(struct request_queue *q)
592 kblockd_schedule_delayed_work(&q->requeue_work, 0);
594 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
596 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
597 unsigned long msecs)
599 kblockd_schedule_delayed_work(&q->requeue_work,
600 msecs_to_jiffies(msecs));
602 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
604 void blk_mq_abort_requeue_list(struct request_queue *q)
606 unsigned long flags;
607 LIST_HEAD(rq_list);
609 spin_lock_irqsave(&q->requeue_lock, flags);
610 list_splice_init(&q->requeue_list, &rq_list);
611 spin_unlock_irqrestore(&q->requeue_lock, flags);
613 while (!list_empty(&rq_list)) {
614 struct request *rq;
616 rq = list_first_entry(&rq_list, struct request, queuelist);
617 list_del_init(&rq->queuelist);
618 rq->errors = -EIO;
619 blk_mq_end_request(rq, rq->errors);
622 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
624 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
626 if (tag < tags->nr_tags) {
627 prefetch(tags->rqs[tag]);
628 return tags->rqs[tag];
631 return NULL;
633 EXPORT_SYMBOL(blk_mq_tag_to_rq);
635 struct blk_mq_timeout_data {
636 unsigned long next;
637 unsigned int next_set;
640 void blk_mq_rq_timed_out(struct request *req, bool reserved)
642 struct blk_mq_ops *ops = req->q->mq_ops;
643 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
646 * We know that complete is set at this point. If STARTED isn't set
647 * anymore, then the request isn't active and the "timeout" should
648 * just be ignored. This can happen due to the bitflag ordering.
649 * Timeout first checks if STARTED is set, and if it is, assumes
650 * the request is active. But if we race with completion, then
651 * we both flags will get cleared. So check here again, and ignore
652 * a timeout event with a request that isn't active.
654 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
655 return;
657 if (ops->timeout)
658 ret = ops->timeout(req, reserved);
660 switch (ret) {
661 case BLK_EH_HANDLED:
662 __blk_mq_complete_request(req);
663 break;
664 case BLK_EH_RESET_TIMER:
665 blk_add_timer(req);
666 blk_clear_rq_complete(req);
667 break;
668 case BLK_EH_NOT_HANDLED:
669 break;
670 default:
671 printk(KERN_ERR "block: bad eh return: %d\n", ret);
672 break;
676 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
677 struct request *rq, void *priv, bool reserved)
679 struct blk_mq_timeout_data *data = priv;
681 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
683 * If a request wasn't started before the queue was
684 * marked dying, kill it here or it'll go unnoticed.
686 if (unlikely(blk_queue_dying(rq->q))) {
687 rq->errors = -EIO;
688 blk_mq_end_request(rq, rq->errors);
690 return;
693 if (time_after_eq(jiffies, rq->deadline)) {
694 if (!blk_mark_rq_complete(rq))
695 blk_mq_rq_timed_out(rq, reserved);
696 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
697 data->next = rq->deadline;
698 data->next_set = 1;
702 static void blk_mq_timeout_work(struct work_struct *work)
704 struct request_queue *q =
705 container_of(work, struct request_queue, timeout_work);
706 struct blk_mq_timeout_data data = {
707 .next = 0,
708 .next_set = 0,
710 int i;
712 /* A deadlock might occur if a request is stuck requiring a
713 * timeout at the same time a queue freeze is waiting
714 * completion, since the timeout code would not be able to
715 * acquire the queue reference here.
717 * That's why we don't use blk_queue_enter here; instead, we use
718 * percpu_ref_tryget directly, because we need to be able to
719 * obtain a reference even in the short window between the queue
720 * starting to freeze, by dropping the first reference in
721 * blk_mq_freeze_queue_start, and the moment the last request is
722 * consumed, marked by the instant q_usage_counter reaches
723 * zero.
725 if (!percpu_ref_tryget(&q->q_usage_counter))
726 return;
728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
730 if (data.next_set) {
731 data.next = blk_rq_timeout(round_jiffies_up(data.next));
732 mod_timer(&q->timeout, data.next);
733 } else {
734 struct blk_mq_hw_ctx *hctx;
736 queue_for_each_hw_ctx(q, hctx, i) {
737 /* the hctx may be unmapped, so check it here */
738 if (blk_mq_hw_queue_mapped(hctx))
739 blk_mq_tag_idle(hctx);
742 blk_queue_exit(q);
746 * Reverse check our software queue for entries that we could potentially
747 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
748 * too much time checking for merges.
750 static bool blk_mq_attempt_merge(struct request_queue *q,
751 struct blk_mq_ctx *ctx, struct bio *bio)
753 struct request *rq;
754 int checked = 8;
756 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
757 int el_ret;
759 if (!checked--)
760 break;
762 if (!blk_rq_merge_ok(rq, bio))
763 continue;
765 el_ret = blk_try_merge(rq, bio);
766 if (el_ret == ELEVATOR_BACK_MERGE) {
767 if (bio_attempt_back_merge(q, rq, bio)) {
768 ctx->rq_merged++;
769 return true;
771 break;
772 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
773 if (bio_attempt_front_merge(q, rq, bio)) {
774 ctx->rq_merged++;
775 return true;
777 break;
781 return false;
784 struct flush_busy_ctx_data {
785 struct blk_mq_hw_ctx *hctx;
786 struct list_head *list;
789 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
791 struct flush_busy_ctx_data *flush_data = data;
792 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
793 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
795 sbitmap_clear_bit(sb, bitnr);
796 spin_lock(&ctx->lock);
797 list_splice_tail_init(&ctx->rq_list, flush_data->list);
798 spin_unlock(&ctx->lock);
799 return true;
803 * Process software queues that have been marked busy, splicing them
804 * to the for-dispatch
806 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
808 struct flush_busy_ctx_data data = {
809 .hctx = hctx,
810 .list = list,
813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
816 static inline unsigned int queued_to_index(unsigned int queued)
818 if (!queued)
819 return 0;
821 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
824 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
826 struct request_queue *q = hctx->queue;
827 struct request *rq;
828 LIST_HEAD(driver_list);
829 struct list_head *dptr;
830 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
833 * Start off with dptr being NULL, so we start the first request
834 * immediately, even if we have more pending.
836 dptr = NULL;
839 * Now process all the entries, sending them to the driver.
841 queued = 0;
842 while (!list_empty(list)) {
843 struct blk_mq_queue_data bd;
845 rq = list_first_entry(list, struct request, queuelist);
846 list_del_init(&rq->queuelist);
848 bd.rq = rq;
849 bd.list = dptr;
850 bd.last = list_empty(list);
852 ret = q->mq_ops->queue_rq(hctx, &bd);
853 switch (ret) {
854 case BLK_MQ_RQ_QUEUE_OK:
855 queued++;
856 break;
857 case BLK_MQ_RQ_QUEUE_BUSY:
858 list_add(&rq->queuelist, list);
859 __blk_mq_requeue_request(rq);
860 break;
861 default:
862 pr_err("blk-mq: bad return on queue: %d\n", ret);
863 case BLK_MQ_RQ_QUEUE_ERROR:
864 rq->errors = -EIO;
865 blk_mq_end_request(rq, rq->errors);
866 break;
869 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
870 break;
873 * We've done the first request. If we have more than 1
874 * left in the list, set dptr to defer issue.
876 if (!dptr && list->next != list->prev)
877 dptr = &driver_list;
880 hctx->dispatched[queued_to_index(queued)]++;
883 * Any items that need requeuing? Stuff them into hctx->dispatch,
884 * that is where we will continue on next queue run.
886 if (!list_empty(list)) {
887 spin_lock(&hctx->lock);
888 list_splice(list, &hctx->dispatch);
889 spin_unlock(&hctx->lock);
892 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
893 * it's possible the queue is stopped and restarted again
894 * before this. Queue restart will dispatch requests. And since
895 * requests in rq_list aren't added into hctx->dispatch yet,
896 * the requests in rq_list might get lost.
898 * blk_mq_run_hw_queue() already checks the STOPPED bit
900 blk_mq_run_hw_queue(hctx, true);
903 return ret != BLK_MQ_RQ_QUEUE_BUSY;
907 * Run this hardware queue, pulling any software queues mapped to it in.
908 * Note that this function currently has various problems around ordering
909 * of IO. In particular, we'd like FIFO behaviour on handling existing
910 * items on the hctx->dispatch list. Ignore that for now.
912 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
914 LIST_HEAD(rq_list);
915 LIST_HEAD(driver_list);
917 if (unlikely(blk_mq_hctx_stopped(hctx)))
918 return;
920 hctx->run++;
923 * Touch any software queue that has pending entries.
925 flush_busy_ctxs(hctx, &rq_list);
928 * If we have previous entries on our dispatch list, grab them
929 * and stuff them at the front for more fair dispatch.
931 if (!list_empty_careful(&hctx->dispatch)) {
932 spin_lock(&hctx->lock);
933 if (!list_empty(&hctx->dispatch))
934 list_splice_init(&hctx->dispatch, &rq_list);
935 spin_unlock(&hctx->lock);
938 blk_mq_dispatch_rq_list(hctx, &rq_list);
941 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
943 int srcu_idx;
945 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
946 cpu_online(hctx->next_cpu));
948 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
949 rcu_read_lock();
950 blk_mq_process_rq_list(hctx);
951 rcu_read_unlock();
952 } else {
953 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
954 blk_mq_process_rq_list(hctx);
955 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
960 * It'd be great if the workqueue API had a way to pass
961 * in a mask and had some smarts for more clever placement.
962 * For now we just round-robin here, switching for every
963 * BLK_MQ_CPU_WORK_BATCH queued items.
965 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
967 if (hctx->queue->nr_hw_queues == 1)
968 return WORK_CPU_UNBOUND;
970 if (--hctx->next_cpu_batch <= 0) {
971 int next_cpu;
973 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
974 if (next_cpu >= nr_cpu_ids)
975 next_cpu = cpumask_first(hctx->cpumask);
977 hctx->next_cpu = next_cpu;
978 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
981 return hctx->next_cpu;
984 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
986 if (unlikely(blk_mq_hctx_stopped(hctx) ||
987 !blk_mq_hw_queue_mapped(hctx)))
988 return;
990 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
991 int cpu = get_cpu();
992 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
993 __blk_mq_run_hw_queue(hctx);
994 put_cpu();
995 return;
998 put_cpu();
1001 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1004 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1006 struct blk_mq_hw_ctx *hctx;
1007 int i;
1009 queue_for_each_hw_ctx(q, hctx, i) {
1010 if ((!blk_mq_hctx_has_pending(hctx) &&
1011 list_empty_careful(&hctx->dispatch)) ||
1012 blk_mq_hctx_stopped(hctx))
1013 continue;
1015 blk_mq_run_hw_queue(hctx, async);
1018 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1021 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1022 * @q: request queue.
1024 * The caller is responsible for serializing this function against
1025 * blk_mq_{start,stop}_hw_queue().
1027 bool blk_mq_queue_stopped(struct request_queue *q)
1029 struct blk_mq_hw_ctx *hctx;
1030 int i;
1032 queue_for_each_hw_ctx(q, hctx, i)
1033 if (blk_mq_hctx_stopped(hctx))
1034 return true;
1036 return false;
1038 EXPORT_SYMBOL(blk_mq_queue_stopped);
1040 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1042 cancel_work(&hctx->run_work);
1043 cancel_delayed_work(&hctx->delay_work);
1044 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1046 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1048 void blk_mq_stop_hw_queues(struct request_queue *q)
1050 struct blk_mq_hw_ctx *hctx;
1051 int i;
1053 queue_for_each_hw_ctx(q, hctx, i)
1054 blk_mq_stop_hw_queue(hctx);
1056 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1058 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1060 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1062 blk_mq_run_hw_queue(hctx, false);
1064 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1066 void blk_mq_start_hw_queues(struct request_queue *q)
1068 struct blk_mq_hw_ctx *hctx;
1069 int i;
1071 queue_for_each_hw_ctx(q, hctx, i)
1072 blk_mq_start_hw_queue(hctx);
1074 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1076 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1078 if (!blk_mq_hctx_stopped(hctx))
1079 return;
1081 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1082 blk_mq_run_hw_queue(hctx, async);
1084 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1086 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1088 struct blk_mq_hw_ctx *hctx;
1089 int i;
1091 queue_for_each_hw_ctx(q, hctx, i)
1092 blk_mq_start_stopped_hw_queue(hctx, async);
1094 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1096 static void blk_mq_run_work_fn(struct work_struct *work)
1098 struct blk_mq_hw_ctx *hctx;
1100 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1102 __blk_mq_run_hw_queue(hctx);
1105 static void blk_mq_delay_work_fn(struct work_struct *work)
1107 struct blk_mq_hw_ctx *hctx;
1109 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1111 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1112 __blk_mq_run_hw_queue(hctx);
1115 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1117 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1118 return;
1120 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1121 &hctx->delay_work, msecs_to_jiffies(msecs));
1123 EXPORT_SYMBOL(blk_mq_delay_queue);
1125 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1126 struct request *rq,
1127 bool at_head)
1129 struct blk_mq_ctx *ctx = rq->mq_ctx;
1131 trace_block_rq_insert(hctx->queue, rq);
1133 if (at_head)
1134 list_add(&rq->queuelist, &ctx->rq_list);
1135 else
1136 list_add_tail(&rq->queuelist, &ctx->rq_list);
1139 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1140 struct request *rq, bool at_head)
1142 struct blk_mq_ctx *ctx = rq->mq_ctx;
1144 __blk_mq_insert_req_list(hctx, rq, at_head);
1145 blk_mq_hctx_mark_pending(hctx, ctx);
1148 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1149 bool async)
1151 struct blk_mq_ctx *ctx = rq->mq_ctx;
1152 struct request_queue *q = rq->q;
1153 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1155 spin_lock(&ctx->lock);
1156 __blk_mq_insert_request(hctx, rq, at_head);
1157 spin_unlock(&ctx->lock);
1159 if (run_queue)
1160 blk_mq_run_hw_queue(hctx, async);
1163 static void blk_mq_insert_requests(struct request_queue *q,
1164 struct blk_mq_ctx *ctx,
1165 struct list_head *list,
1166 int depth,
1167 bool from_schedule)
1170 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1172 trace_block_unplug(q, depth, !from_schedule);
1175 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1176 * offline now
1178 spin_lock(&ctx->lock);
1179 while (!list_empty(list)) {
1180 struct request *rq;
1182 rq = list_first_entry(list, struct request, queuelist);
1183 BUG_ON(rq->mq_ctx != ctx);
1184 list_del_init(&rq->queuelist);
1185 __blk_mq_insert_req_list(hctx, rq, false);
1187 blk_mq_hctx_mark_pending(hctx, ctx);
1188 spin_unlock(&ctx->lock);
1190 blk_mq_run_hw_queue(hctx, from_schedule);
1193 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1195 struct request *rqa = container_of(a, struct request, queuelist);
1196 struct request *rqb = container_of(b, struct request, queuelist);
1198 return !(rqa->mq_ctx < rqb->mq_ctx ||
1199 (rqa->mq_ctx == rqb->mq_ctx &&
1200 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1203 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1205 struct blk_mq_ctx *this_ctx;
1206 struct request_queue *this_q;
1207 struct request *rq;
1208 LIST_HEAD(list);
1209 LIST_HEAD(ctx_list);
1210 unsigned int depth;
1212 list_splice_init(&plug->mq_list, &list);
1214 list_sort(NULL, &list, plug_ctx_cmp);
1216 this_q = NULL;
1217 this_ctx = NULL;
1218 depth = 0;
1220 while (!list_empty(&list)) {
1221 rq = list_entry_rq(list.next);
1222 list_del_init(&rq->queuelist);
1223 BUG_ON(!rq->q);
1224 if (rq->mq_ctx != this_ctx) {
1225 if (this_ctx) {
1226 blk_mq_insert_requests(this_q, this_ctx,
1227 &ctx_list, depth,
1228 from_schedule);
1231 this_ctx = rq->mq_ctx;
1232 this_q = rq->q;
1233 depth = 0;
1236 depth++;
1237 list_add_tail(&rq->queuelist, &ctx_list);
1241 * If 'this_ctx' is set, we know we have entries to complete
1242 * on 'ctx_list'. Do those.
1244 if (this_ctx) {
1245 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1246 from_schedule);
1250 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1252 init_request_from_bio(rq, bio);
1254 blk_account_io_start(rq, true);
1257 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1259 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1260 !blk_queue_nomerges(hctx->queue);
1263 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1264 struct blk_mq_ctx *ctx,
1265 struct request *rq, struct bio *bio)
1267 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1268 blk_mq_bio_to_request(rq, bio);
1269 spin_lock(&ctx->lock);
1270 insert_rq:
1271 __blk_mq_insert_request(hctx, rq, false);
1272 spin_unlock(&ctx->lock);
1273 return false;
1274 } else {
1275 struct request_queue *q = hctx->queue;
1277 spin_lock(&ctx->lock);
1278 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1279 blk_mq_bio_to_request(rq, bio);
1280 goto insert_rq;
1283 spin_unlock(&ctx->lock);
1284 __blk_mq_free_request(hctx, ctx, rq);
1285 return true;
1289 static struct request *blk_mq_map_request(struct request_queue *q,
1290 struct bio *bio,
1291 struct blk_mq_alloc_data *data)
1293 struct blk_mq_hw_ctx *hctx;
1294 struct blk_mq_ctx *ctx;
1295 struct request *rq;
1297 blk_queue_enter_live(q);
1298 ctx = blk_mq_get_ctx(q);
1299 hctx = blk_mq_map_queue(q, ctx->cpu);
1301 trace_block_getrq(q, bio, bio->bi_opf);
1302 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1303 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1305 data->hctx->queued++;
1306 return rq;
1309 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1311 int ret;
1312 struct request_queue *q = rq->q;
1313 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1314 struct blk_mq_queue_data bd = {
1315 .rq = rq,
1316 .list = NULL,
1317 .last = 1
1319 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1321 if (blk_mq_hctx_stopped(hctx))
1322 goto insert;
1325 * For OK queue, we are done. For error, kill it. Any other
1326 * error (busy), just add it to our list as we previously
1327 * would have done
1329 ret = q->mq_ops->queue_rq(hctx, &bd);
1330 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1331 *cookie = new_cookie;
1332 return;
1335 __blk_mq_requeue_request(rq);
1337 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1338 *cookie = BLK_QC_T_NONE;
1339 rq->errors = -EIO;
1340 blk_mq_end_request(rq, rq->errors);
1341 return;
1344 insert:
1345 blk_mq_insert_request(rq, false, true, true);
1349 * Multiple hardware queue variant. This will not use per-process plugs,
1350 * but will attempt to bypass the hctx queueing if we can go straight to
1351 * hardware for SYNC IO.
1353 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1355 const int is_sync = op_is_sync(bio->bi_opf);
1356 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1357 struct blk_mq_alloc_data data;
1358 struct request *rq;
1359 unsigned int request_count = 0, srcu_idx;
1360 struct blk_plug *plug;
1361 struct request *same_queue_rq = NULL;
1362 blk_qc_t cookie;
1363 unsigned int wb_acct;
1365 blk_queue_bounce(q, &bio);
1367 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1368 bio_io_error(bio);
1369 return BLK_QC_T_NONE;
1372 blk_queue_split(q, &bio, q->bio_split);
1374 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1375 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1376 return BLK_QC_T_NONE;
1378 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1380 rq = blk_mq_map_request(q, bio, &data);
1381 if (unlikely(!rq)) {
1382 __wbt_done(q->rq_wb, wb_acct);
1383 return BLK_QC_T_NONE;
1386 wbt_track(&rq->issue_stat, wb_acct);
1388 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1390 if (unlikely(is_flush_fua)) {
1391 blk_mq_bio_to_request(rq, bio);
1392 blk_insert_flush(rq);
1393 goto run_queue;
1396 plug = current->plug;
1398 * If the driver supports defer issued based on 'last', then
1399 * queue it up like normal since we can potentially save some
1400 * CPU this way.
1402 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1403 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1404 struct request *old_rq = NULL;
1406 blk_mq_bio_to_request(rq, bio);
1409 * We do limited plugging. If the bio can be merged, do that.
1410 * Otherwise the existing request in the plug list will be
1411 * issued. So the plug list will have one request at most
1413 if (plug) {
1415 * The plug list might get flushed before this. If that
1416 * happens, same_queue_rq is invalid and plug list is
1417 * empty
1419 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1420 old_rq = same_queue_rq;
1421 list_del_init(&old_rq->queuelist);
1423 list_add_tail(&rq->queuelist, &plug->mq_list);
1424 } else /* is_sync */
1425 old_rq = rq;
1426 blk_mq_put_ctx(data.ctx);
1427 if (!old_rq)
1428 goto done;
1430 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1431 rcu_read_lock();
1432 blk_mq_try_issue_directly(old_rq, &cookie);
1433 rcu_read_unlock();
1434 } else {
1435 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1436 blk_mq_try_issue_directly(old_rq, &cookie);
1437 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1439 goto done;
1442 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1444 * For a SYNC request, send it to the hardware immediately. For
1445 * an ASYNC request, just ensure that we run it later on. The
1446 * latter allows for merging opportunities and more efficient
1447 * dispatching.
1449 run_queue:
1450 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1452 blk_mq_put_ctx(data.ctx);
1453 done:
1454 return cookie;
1458 * Single hardware queue variant. This will attempt to use any per-process
1459 * plug for merging and IO deferral.
1461 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1463 const int is_sync = op_is_sync(bio->bi_opf);
1464 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1465 struct blk_plug *plug;
1466 unsigned int request_count = 0;
1467 struct blk_mq_alloc_data data;
1468 struct request *rq;
1469 blk_qc_t cookie;
1470 unsigned int wb_acct;
1472 blk_queue_bounce(q, &bio);
1474 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1475 bio_io_error(bio);
1476 return BLK_QC_T_NONE;
1479 blk_queue_split(q, &bio, q->bio_split);
1481 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1482 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1483 return BLK_QC_T_NONE;
1484 } else
1485 request_count = blk_plug_queued_count(q);
1487 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1489 rq = blk_mq_map_request(q, bio, &data);
1490 if (unlikely(!rq)) {
1491 __wbt_done(q->rq_wb, wb_acct);
1492 return BLK_QC_T_NONE;
1495 wbt_track(&rq->issue_stat, wb_acct);
1497 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1499 if (unlikely(is_flush_fua)) {
1500 blk_mq_bio_to_request(rq, bio);
1501 blk_insert_flush(rq);
1502 goto run_queue;
1506 * A task plug currently exists. Since this is completely lockless,
1507 * utilize that to temporarily store requests until the task is
1508 * either done or scheduled away.
1510 plug = current->plug;
1511 if (plug) {
1512 struct request *last = NULL;
1514 blk_mq_bio_to_request(rq, bio);
1517 * @request_count may become stale because of schedule
1518 * out, so check the list again.
1520 if (list_empty(&plug->mq_list))
1521 request_count = 0;
1522 if (!request_count)
1523 trace_block_plug(q);
1524 else
1525 last = list_entry_rq(plug->mq_list.prev);
1527 blk_mq_put_ctx(data.ctx);
1529 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1530 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1531 blk_flush_plug_list(plug, false);
1532 trace_block_plug(q);
1535 list_add_tail(&rq->queuelist, &plug->mq_list);
1536 return cookie;
1539 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1541 * For a SYNC request, send it to the hardware immediately. For
1542 * an ASYNC request, just ensure that we run it later on. The
1543 * latter allows for merging opportunities and more efficient
1544 * dispatching.
1546 run_queue:
1547 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1550 blk_mq_put_ctx(data.ctx);
1551 return cookie;
1554 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1555 struct blk_mq_tags *tags, unsigned int hctx_idx)
1557 struct page *page;
1559 if (tags->rqs && set->ops->exit_request) {
1560 int i;
1562 for (i = 0; i < tags->nr_tags; i++) {
1563 if (!tags->rqs[i])
1564 continue;
1565 set->ops->exit_request(set->driver_data, tags->rqs[i],
1566 hctx_idx, i);
1567 tags->rqs[i] = NULL;
1571 while (!list_empty(&tags->page_list)) {
1572 page = list_first_entry(&tags->page_list, struct page, lru);
1573 list_del_init(&page->lru);
1575 * Remove kmemleak object previously allocated in
1576 * blk_mq_init_rq_map().
1578 kmemleak_free(page_address(page));
1579 __free_pages(page, page->private);
1582 kfree(tags->rqs);
1584 blk_mq_free_tags(tags);
1587 static size_t order_to_size(unsigned int order)
1589 return (size_t)PAGE_SIZE << order;
1592 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1593 unsigned int hctx_idx)
1595 struct blk_mq_tags *tags;
1596 unsigned int i, j, entries_per_page, max_order = 4;
1597 size_t rq_size, left;
1599 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1600 set->numa_node,
1601 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1602 if (!tags)
1603 return NULL;
1605 INIT_LIST_HEAD(&tags->page_list);
1607 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1608 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1609 set->numa_node);
1610 if (!tags->rqs) {
1611 blk_mq_free_tags(tags);
1612 return NULL;
1616 * rq_size is the size of the request plus driver payload, rounded
1617 * to the cacheline size
1619 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1620 cache_line_size());
1621 left = rq_size * set->queue_depth;
1623 for (i = 0; i < set->queue_depth; ) {
1624 int this_order = max_order;
1625 struct page *page;
1626 int to_do;
1627 void *p;
1629 while (this_order && left < order_to_size(this_order - 1))
1630 this_order--;
1632 do {
1633 page = alloc_pages_node(set->numa_node,
1634 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1635 this_order);
1636 if (page)
1637 break;
1638 if (!this_order--)
1639 break;
1640 if (order_to_size(this_order) < rq_size)
1641 break;
1642 } while (1);
1644 if (!page)
1645 goto fail;
1647 page->private = this_order;
1648 list_add_tail(&page->lru, &tags->page_list);
1650 p = page_address(page);
1652 * Allow kmemleak to scan these pages as they contain pointers
1653 * to additional allocations like via ops->init_request().
1655 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1656 entries_per_page = order_to_size(this_order) / rq_size;
1657 to_do = min(entries_per_page, set->queue_depth - i);
1658 left -= to_do * rq_size;
1659 for (j = 0; j < to_do; j++) {
1660 tags->rqs[i] = p;
1661 if (set->ops->init_request) {
1662 if (set->ops->init_request(set->driver_data,
1663 tags->rqs[i], hctx_idx, i,
1664 set->numa_node)) {
1665 tags->rqs[i] = NULL;
1666 goto fail;
1670 p += rq_size;
1671 i++;
1674 return tags;
1676 fail:
1677 blk_mq_free_rq_map(set, tags, hctx_idx);
1678 return NULL;
1682 * 'cpu' is going away. splice any existing rq_list entries from this
1683 * software queue to the hw queue dispatch list, and ensure that it
1684 * gets run.
1686 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1688 struct blk_mq_hw_ctx *hctx;
1689 struct blk_mq_ctx *ctx;
1690 LIST_HEAD(tmp);
1692 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1693 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1695 spin_lock(&ctx->lock);
1696 if (!list_empty(&ctx->rq_list)) {
1697 list_splice_init(&ctx->rq_list, &tmp);
1698 blk_mq_hctx_clear_pending(hctx, ctx);
1700 spin_unlock(&ctx->lock);
1702 if (list_empty(&tmp))
1703 return 0;
1705 spin_lock(&hctx->lock);
1706 list_splice_tail_init(&tmp, &hctx->dispatch);
1707 spin_unlock(&hctx->lock);
1709 blk_mq_run_hw_queue(hctx, true);
1710 return 0;
1713 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1715 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1716 &hctx->cpuhp_dead);
1719 /* hctx->ctxs will be freed in queue's release handler */
1720 static void blk_mq_exit_hctx(struct request_queue *q,
1721 struct blk_mq_tag_set *set,
1722 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1724 unsigned flush_start_tag = set->queue_depth;
1726 blk_mq_tag_idle(hctx);
1728 if (set->ops->exit_request)
1729 set->ops->exit_request(set->driver_data,
1730 hctx->fq->flush_rq, hctx_idx,
1731 flush_start_tag + hctx_idx);
1733 if (set->ops->exit_hctx)
1734 set->ops->exit_hctx(hctx, hctx_idx);
1736 if (hctx->flags & BLK_MQ_F_BLOCKING)
1737 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1739 blk_mq_remove_cpuhp(hctx);
1740 blk_free_flush_queue(hctx->fq);
1741 sbitmap_free(&hctx->ctx_map);
1744 static void blk_mq_exit_hw_queues(struct request_queue *q,
1745 struct blk_mq_tag_set *set, int nr_queue)
1747 struct blk_mq_hw_ctx *hctx;
1748 unsigned int i;
1750 queue_for_each_hw_ctx(q, hctx, i) {
1751 if (i == nr_queue)
1752 break;
1753 blk_mq_exit_hctx(q, set, hctx, i);
1757 static void blk_mq_free_hw_queues(struct request_queue *q,
1758 struct blk_mq_tag_set *set)
1760 struct blk_mq_hw_ctx *hctx;
1761 unsigned int i;
1763 queue_for_each_hw_ctx(q, hctx, i)
1764 free_cpumask_var(hctx->cpumask);
1767 static int blk_mq_init_hctx(struct request_queue *q,
1768 struct blk_mq_tag_set *set,
1769 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1771 int node;
1772 unsigned flush_start_tag = set->queue_depth;
1774 node = hctx->numa_node;
1775 if (node == NUMA_NO_NODE)
1776 node = hctx->numa_node = set->numa_node;
1778 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1779 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1780 spin_lock_init(&hctx->lock);
1781 INIT_LIST_HEAD(&hctx->dispatch);
1782 hctx->queue = q;
1783 hctx->queue_num = hctx_idx;
1784 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1786 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1788 hctx->tags = set->tags[hctx_idx];
1791 * Allocate space for all possible cpus to avoid allocation at
1792 * runtime
1794 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1795 GFP_KERNEL, node);
1796 if (!hctx->ctxs)
1797 goto unregister_cpu_notifier;
1799 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1800 node))
1801 goto free_ctxs;
1803 hctx->nr_ctx = 0;
1805 if (set->ops->init_hctx &&
1806 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1807 goto free_bitmap;
1809 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1810 if (!hctx->fq)
1811 goto exit_hctx;
1813 if (set->ops->init_request &&
1814 set->ops->init_request(set->driver_data,
1815 hctx->fq->flush_rq, hctx_idx,
1816 flush_start_tag + hctx_idx, node))
1817 goto free_fq;
1819 if (hctx->flags & BLK_MQ_F_BLOCKING)
1820 init_srcu_struct(&hctx->queue_rq_srcu);
1822 return 0;
1824 free_fq:
1825 kfree(hctx->fq);
1826 exit_hctx:
1827 if (set->ops->exit_hctx)
1828 set->ops->exit_hctx(hctx, hctx_idx);
1829 free_bitmap:
1830 sbitmap_free(&hctx->ctx_map);
1831 free_ctxs:
1832 kfree(hctx->ctxs);
1833 unregister_cpu_notifier:
1834 blk_mq_remove_cpuhp(hctx);
1835 return -1;
1838 static void blk_mq_init_cpu_queues(struct request_queue *q,
1839 unsigned int nr_hw_queues)
1841 unsigned int i;
1843 for_each_possible_cpu(i) {
1844 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1845 struct blk_mq_hw_ctx *hctx;
1847 memset(__ctx, 0, sizeof(*__ctx));
1848 __ctx->cpu = i;
1849 spin_lock_init(&__ctx->lock);
1850 INIT_LIST_HEAD(&__ctx->rq_list);
1851 __ctx->queue = q;
1852 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1853 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1855 /* If the cpu isn't online, the cpu is mapped to first hctx */
1856 if (!cpu_online(i))
1857 continue;
1859 hctx = blk_mq_map_queue(q, i);
1862 * Set local node, IFF we have more than one hw queue. If
1863 * not, we remain on the home node of the device
1865 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1866 hctx->numa_node = local_memory_node(cpu_to_node(i));
1870 static void blk_mq_map_swqueue(struct request_queue *q,
1871 const struct cpumask *online_mask)
1873 unsigned int i, hctx_idx;
1874 struct blk_mq_hw_ctx *hctx;
1875 struct blk_mq_ctx *ctx;
1876 struct blk_mq_tag_set *set = q->tag_set;
1879 * Avoid others reading imcomplete hctx->cpumask through sysfs
1881 mutex_lock(&q->sysfs_lock);
1883 queue_for_each_hw_ctx(q, hctx, i) {
1884 cpumask_clear(hctx->cpumask);
1885 hctx->nr_ctx = 0;
1889 * Map software to hardware queues
1891 for_each_possible_cpu(i) {
1892 /* If the cpu isn't online, the cpu is mapped to first hctx */
1893 if (!cpumask_test_cpu(i, online_mask))
1894 continue;
1896 hctx_idx = q->mq_map[i];
1897 /* unmapped hw queue can be remapped after CPU topo changed */
1898 if (!set->tags[hctx_idx]) {
1899 set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx);
1902 * If tags initialization fail for some hctx,
1903 * that hctx won't be brought online. In this
1904 * case, remap the current ctx to hctx[0] which
1905 * is guaranteed to always have tags allocated
1907 if (!set->tags[hctx_idx])
1908 q->mq_map[i] = 0;
1911 ctx = per_cpu_ptr(q->queue_ctx, i);
1912 hctx = blk_mq_map_queue(q, i);
1914 cpumask_set_cpu(i, hctx->cpumask);
1915 ctx->index_hw = hctx->nr_ctx;
1916 hctx->ctxs[hctx->nr_ctx++] = ctx;
1919 mutex_unlock(&q->sysfs_lock);
1921 queue_for_each_hw_ctx(q, hctx, i) {
1923 * If no software queues are mapped to this hardware queue,
1924 * disable it and free the request entries.
1926 if (!hctx->nr_ctx) {
1927 /* Never unmap queue 0. We need it as a
1928 * fallback in case of a new remap fails
1929 * allocation
1931 if (i && set->tags[i]) {
1932 blk_mq_free_rq_map(set, set->tags[i], i);
1933 set->tags[i] = NULL;
1935 hctx->tags = NULL;
1936 continue;
1939 hctx->tags = set->tags[i];
1940 WARN_ON(!hctx->tags);
1943 * Set the map size to the number of mapped software queues.
1944 * This is more accurate and more efficient than looping
1945 * over all possibly mapped software queues.
1947 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1950 * Initialize batch roundrobin counts
1952 hctx->next_cpu = cpumask_first(hctx->cpumask);
1953 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1957 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1959 struct blk_mq_hw_ctx *hctx;
1960 int i;
1962 queue_for_each_hw_ctx(q, hctx, i) {
1963 if (shared)
1964 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1965 else
1966 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1970 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1972 struct request_queue *q;
1974 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1975 blk_mq_freeze_queue(q);
1976 queue_set_hctx_shared(q, shared);
1977 blk_mq_unfreeze_queue(q);
1981 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1983 struct blk_mq_tag_set *set = q->tag_set;
1985 mutex_lock(&set->tag_list_lock);
1986 list_del_init(&q->tag_set_list);
1987 if (list_is_singular(&set->tag_list)) {
1988 /* just transitioned to unshared */
1989 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1990 /* update existing queue */
1991 blk_mq_update_tag_set_depth(set, false);
1993 mutex_unlock(&set->tag_list_lock);
1996 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1997 struct request_queue *q)
1999 q->tag_set = set;
2001 mutex_lock(&set->tag_list_lock);
2003 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2004 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2005 set->flags |= BLK_MQ_F_TAG_SHARED;
2006 /* update existing queue */
2007 blk_mq_update_tag_set_depth(set, true);
2009 if (set->flags & BLK_MQ_F_TAG_SHARED)
2010 queue_set_hctx_shared(q, true);
2011 list_add_tail(&q->tag_set_list, &set->tag_list);
2013 mutex_unlock(&set->tag_list_lock);
2017 * It is the actual release handler for mq, but we do it from
2018 * request queue's release handler for avoiding use-after-free
2019 * and headache because q->mq_kobj shouldn't have been introduced,
2020 * but we can't group ctx/kctx kobj without it.
2022 void blk_mq_release(struct request_queue *q)
2024 struct blk_mq_hw_ctx *hctx;
2025 unsigned int i;
2027 /* hctx kobj stays in hctx */
2028 queue_for_each_hw_ctx(q, hctx, i) {
2029 if (!hctx)
2030 continue;
2031 kfree(hctx->ctxs);
2032 kfree(hctx);
2035 q->mq_map = NULL;
2037 kfree(q->queue_hw_ctx);
2039 /* ctx kobj stays in queue_ctx */
2040 free_percpu(q->queue_ctx);
2043 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2045 struct request_queue *uninit_q, *q;
2047 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2048 if (!uninit_q)
2049 return ERR_PTR(-ENOMEM);
2051 q = blk_mq_init_allocated_queue(set, uninit_q);
2052 if (IS_ERR(q))
2053 blk_cleanup_queue(uninit_q);
2055 return q;
2057 EXPORT_SYMBOL(blk_mq_init_queue);
2059 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2060 struct request_queue *q)
2062 int i, j;
2063 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2065 blk_mq_sysfs_unregister(q);
2066 for (i = 0; i < set->nr_hw_queues; i++) {
2067 int node;
2069 if (hctxs[i])
2070 continue;
2072 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2073 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2074 GFP_KERNEL, node);
2075 if (!hctxs[i])
2076 break;
2078 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2079 node)) {
2080 kfree(hctxs[i]);
2081 hctxs[i] = NULL;
2082 break;
2085 atomic_set(&hctxs[i]->nr_active, 0);
2086 hctxs[i]->numa_node = node;
2087 hctxs[i]->queue_num = i;
2089 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2090 free_cpumask_var(hctxs[i]->cpumask);
2091 kfree(hctxs[i]);
2092 hctxs[i] = NULL;
2093 break;
2095 blk_mq_hctx_kobj_init(hctxs[i]);
2097 for (j = i; j < q->nr_hw_queues; j++) {
2098 struct blk_mq_hw_ctx *hctx = hctxs[j];
2100 if (hctx) {
2101 if (hctx->tags) {
2102 blk_mq_free_rq_map(set, hctx->tags, j);
2103 set->tags[j] = NULL;
2105 blk_mq_exit_hctx(q, set, hctx, j);
2106 free_cpumask_var(hctx->cpumask);
2107 kobject_put(&hctx->kobj);
2108 kfree(hctx->ctxs);
2109 kfree(hctx);
2110 hctxs[j] = NULL;
2114 q->nr_hw_queues = i;
2115 blk_mq_sysfs_register(q);
2118 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2119 struct request_queue *q)
2121 /* mark the queue as mq asap */
2122 q->mq_ops = set->ops;
2124 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2125 if (!q->queue_ctx)
2126 goto err_exit;
2128 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2129 GFP_KERNEL, set->numa_node);
2130 if (!q->queue_hw_ctx)
2131 goto err_percpu;
2133 q->mq_map = set->mq_map;
2135 blk_mq_realloc_hw_ctxs(set, q);
2136 if (!q->nr_hw_queues)
2137 goto err_hctxs;
2139 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2140 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2142 q->nr_queues = nr_cpu_ids;
2144 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2146 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2147 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2149 q->sg_reserved_size = INT_MAX;
2151 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2152 INIT_LIST_HEAD(&q->requeue_list);
2153 spin_lock_init(&q->requeue_lock);
2155 if (q->nr_hw_queues > 1)
2156 blk_queue_make_request(q, blk_mq_make_request);
2157 else
2158 blk_queue_make_request(q, blk_sq_make_request);
2161 * Do this after blk_queue_make_request() overrides it...
2163 q->nr_requests = set->queue_depth;
2166 * Default to classic polling
2168 q->poll_nsec = -1;
2170 if (set->ops->complete)
2171 blk_queue_softirq_done(q, set->ops->complete);
2173 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2175 get_online_cpus();
2176 mutex_lock(&all_q_mutex);
2178 list_add_tail(&q->all_q_node, &all_q_list);
2179 blk_mq_add_queue_tag_set(set, q);
2180 blk_mq_map_swqueue(q, cpu_online_mask);
2182 mutex_unlock(&all_q_mutex);
2183 put_online_cpus();
2185 return q;
2187 err_hctxs:
2188 kfree(q->queue_hw_ctx);
2189 err_percpu:
2190 free_percpu(q->queue_ctx);
2191 err_exit:
2192 q->mq_ops = NULL;
2193 return ERR_PTR(-ENOMEM);
2195 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2197 void blk_mq_free_queue(struct request_queue *q)
2199 struct blk_mq_tag_set *set = q->tag_set;
2201 mutex_lock(&all_q_mutex);
2202 list_del_init(&q->all_q_node);
2203 mutex_unlock(&all_q_mutex);
2205 wbt_exit(q);
2207 blk_mq_del_queue_tag_set(q);
2209 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2210 blk_mq_free_hw_queues(q, set);
2213 /* Basically redo blk_mq_init_queue with queue frozen */
2214 static void blk_mq_queue_reinit(struct request_queue *q,
2215 const struct cpumask *online_mask)
2217 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2219 blk_mq_sysfs_unregister(q);
2222 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2223 * we should change hctx numa_node according to new topology (this
2224 * involves free and re-allocate memory, worthy doing?)
2227 blk_mq_map_swqueue(q, online_mask);
2229 blk_mq_sysfs_register(q);
2233 * New online cpumask which is going to be set in this hotplug event.
2234 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2235 * one-by-one and dynamically allocating this could result in a failure.
2237 static struct cpumask cpuhp_online_new;
2239 static void blk_mq_queue_reinit_work(void)
2241 struct request_queue *q;
2243 mutex_lock(&all_q_mutex);
2245 * We need to freeze and reinit all existing queues. Freezing
2246 * involves synchronous wait for an RCU grace period and doing it
2247 * one by one may take a long time. Start freezing all queues in
2248 * one swoop and then wait for the completions so that freezing can
2249 * take place in parallel.
2251 list_for_each_entry(q, &all_q_list, all_q_node)
2252 blk_mq_freeze_queue_start(q);
2253 list_for_each_entry(q, &all_q_list, all_q_node)
2254 blk_mq_freeze_queue_wait(q);
2256 list_for_each_entry(q, &all_q_list, all_q_node)
2257 blk_mq_queue_reinit(q, &cpuhp_online_new);
2259 list_for_each_entry(q, &all_q_list, all_q_node)
2260 blk_mq_unfreeze_queue(q);
2262 mutex_unlock(&all_q_mutex);
2265 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2267 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2268 blk_mq_queue_reinit_work();
2269 return 0;
2273 * Before hotadded cpu starts handling requests, new mappings must be
2274 * established. Otherwise, these requests in hw queue might never be
2275 * dispatched.
2277 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2278 * for CPU0, and ctx1 for CPU1).
2280 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2281 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2283 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2284 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2285 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2286 * is ignored.
2288 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2290 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2291 cpumask_set_cpu(cpu, &cpuhp_online_new);
2292 blk_mq_queue_reinit_work();
2293 return 0;
2296 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2298 int i;
2300 for (i = 0; i < set->nr_hw_queues; i++) {
2301 set->tags[i] = blk_mq_init_rq_map(set, i);
2302 if (!set->tags[i])
2303 goto out_unwind;
2306 return 0;
2308 out_unwind:
2309 while (--i >= 0)
2310 blk_mq_free_rq_map(set, set->tags[i], i);
2312 return -ENOMEM;
2316 * Allocate the request maps associated with this tag_set. Note that this
2317 * may reduce the depth asked for, if memory is tight. set->queue_depth
2318 * will be updated to reflect the allocated depth.
2320 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2322 unsigned int depth;
2323 int err;
2325 depth = set->queue_depth;
2326 do {
2327 err = __blk_mq_alloc_rq_maps(set);
2328 if (!err)
2329 break;
2331 set->queue_depth >>= 1;
2332 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2333 err = -ENOMEM;
2334 break;
2336 } while (set->queue_depth);
2338 if (!set->queue_depth || err) {
2339 pr_err("blk-mq: failed to allocate request map\n");
2340 return -ENOMEM;
2343 if (depth != set->queue_depth)
2344 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2345 depth, set->queue_depth);
2347 return 0;
2351 * Alloc a tag set to be associated with one or more request queues.
2352 * May fail with EINVAL for various error conditions. May adjust the
2353 * requested depth down, if if it too large. In that case, the set
2354 * value will be stored in set->queue_depth.
2356 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2358 int ret;
2360 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2362 if (!set->nr_hw_queues)
2363 return -EINVAL;
2364 if (!set->queue_depth)
2365 return -EINVAL;
2366 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2367 return -EINVAL;
2369 if (!set->ops->queue_rq)
2370 return -EINVAL;
2372 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2373 pr_info("blk-mq: reduced tag depth to %u\n",
2374 BLK_MQ_MAX_DEPTH);
2375 set->queue_depth = BLK_MQ_MAX_DEPTH;
2379 * If a crashdump is active, then we are potentially in a very
2380 * memory constrained environment. Limit us to 1 queue and
2381 * 64 tags to prevent using too much memory.
2383 if (is_kdump_kernel()) {
2384 set->nr_hw_queues = 1;
2385 set->queue_depth = min(64U, set->queue_depth);
2388 * There is no use for more h/w queues than cpus.
2390 if (set->nr_hw_queues > nr_cpu_ids)
2391 set->nr_hw_queues = nr_cpu_ids;
2393 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2394 GFP_KERNEL, set->numa_node);
2395 if (!set->tags)
2396 return -ENOMEM;
2398 ret = -ENOMEM;
2399 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2400 GFP_KERNEL, set->numa_node);
2401 if (!set->mq_map)
2402 goto out_free_tags;
2404 if (set->ops->map_queues)
2405 ret = set->ops->map_queues(set);
2406 else
2407 ret = blk_mq_map_queues(set);
2408 if (ret)
2409 goto out_free_mq_map;
2411 ret = blk_mq_alloc_rq_maps(set);
2412 if (ret)
2413 goto out_free_mq_map;
2415 mutex_init(&set->tag_list_lock);
2416 INIT_LIST_HEAD(&set->tag_list);
2418 return 0;
2420 out_free_mq_map:
2421 kfree(set->mq_map);
2422 set->mq_map = NULL;
2423 out_free_tags:
2424 kfree(set->tags);
2425 set->tags = NULL;
2426 return ret;
2428 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2430 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2432 int i;
2434 for (i = 0; i < nr_cpu_ids; i++) {
2435 if (set->tags[i])
2436 blk_mq_free_rq_map(set, set->tags[i], i);
2439 kfree(set->mq_map);
2440 set->mq_map = NULL;
2442 kfree(set->tags);
2443 set->tags = NULL;
2445 EXPORT_SYMBOL(blk_mq_free_tag_set);
2447 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2449 struct blk_mq_tag_set *set = q->tag_set;
2450 struct blk_mq_hw_ctx *hctx;
2451 int i, ret;
2453 if (!set || nr > set->queue_depth)
2454 return -EINVAL;
2456 ret = 0;
2457 queue_for_each_hw_ctx(q, hctx, i) {
2458 if (!hctx->tags)
2459 continue;
2460 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2461 if (ret)
2462 break;
2465 if (!ret)
2466 q->nr_requests = nr;
2468 return ret;
2471 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2473 struct request_queue *q;
2475 if (nr_hw_queues > nr_cpu_ids)
2476 nr_hw_queues = nr_cpu_ids;
2477 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2478 return;
2480 list_for_each_entry(q, &set->tag_list, tag_set_list)
2481 blk_mq_freeze_queue(q);
2483 set->nr_hw_queues = nr_hw_queues;
2484 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2485 blk_mq_realloc_hw_ctxs(set, q);
2487 if (q->nr_hw_queues > 1)
2488 blk_queue_make_request(q, blk_mq_make_request);
2489 else
2490 blk_queue_make_request(q, blk_sq_make_request);
2492 blk_mq_queue_reinit(q, cpu_online_mask);
2495 list_for_each_entry(q, &set->tag_list, tag_set_list)
2496 blk_mq_unfreeze_queue(q);
2498 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2500 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2501 struct blk_mq_hw_ctx *hctx,
2502 struct request *rq)
2504 struct blk_rq_stat stat[2];
2505 unsigned long ret = 0;
2508 * If stats collection isn't on, don't sleep but turn it on for
2509 * future users
2511 if (!blk_stat_enable(q))
2512 return 0;
2515 * We don't have to do this once per IO, should optimize this
2516 * to just use the current window of stats until it changes
2518 memset(&stat, 0, sizeof(stat));
2519 blk_hctx_stat_get(hctx, stat);
2522 * As an optimistic guess, use half of the mean service time
2523 * for this type of request. We can (and should) make this smarter.
2524 * For instance, if the completion latencies are tight, we can
2525 * get closer than just half the mean. This is especially
2526 * important on devices where the completion latencies are longer
2527 * than ~10 usec.
2529 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2530 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2531 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2532 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2534 return ret;
2537 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2538 struct blk_mq_hw_ctx *hctx,
2539 struct request *rq)
2541 struct hrtimer_sleeper hs;
2542 enum hrtimer_mode mode;
2543 unsigned int nsecs;
2544 ktime_t kt;
2546 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2547 return false;
2550 * poll_nsec can be:
2552 * -1: don't ever hybrid sleep
2553 * 0: use half of prev avg
2554 * >0: use this specific value
2556 if (q->poll_nsec == -1)
2557 return false;
2558 else if (q->poll_nsec > 0)
2559 nsecs = q->poll_nsec;
2560 else
2561 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2563 if (!nsecs)
2564 return false;
2566 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2569 * This will be replaced with the stats tracking code, using
2570 * 'avg_completion_time / 2' as the pre-sleep target.
2572 kt = nsecs;
2574 mode = HRTIMER_MODE_REL;
2575 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2576 hrtimer_set_expires(&hs.timer, kt);
2578 hrtimer_init_sleeper(&hs, current);
2579 do {
2580 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2581 break;
2582 set_current_state(TASK_UNINTERRUPTIBLE);
2583 hrtimer_start_expires(&hs.timer, mode);
2584 if (hs.task)
2585 io_schedule();
2586 hrtimer_cancel(&hs.timer);
2587 mode = HRTIMER_MODE_ABS;
2588 } while (hs.task && !signal_pending(current));
2590 __set_current_state(TASK_RUNNING);
2591 destroy_hrtimer_on_stack(&hs.timer);
2592 return true;
2595 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2597 struct request_queue *q = hctx->queue;
2598 long state;
2601 * If we sleep, have the caller restart the poll loop to reset
2602 * the state. Like for the other success return cases, the
2603 * caller is responsible for checking if the IO completed. If
2604 * the IO isn't complete, we'll get called again and will go
2605 * straight to the busy poll loop.
2607 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2608 return true;
2610 hctx->poll_considered++;
2612 state = current->state;
2613 while (!need_resched()) {
2614 int ret;
2616 hctx->poll_invoked++;
2618 ret = q->mq_ops->poll(hctx, rq->tag);
2619 if (ret > 0) {
2620 hctx->poll_success++;
2621 set_current_state(TASK_RUNNING);
2622 return true;
2625 if (signal_pending_state(state, current))
2626 set_current_state(TASK_RUNNING);
2628 if (current->state == TASK_RUNNING)
2629 return true;
2630 if (ret < 0)
2631 break;
2632 cpu_relax();
2635 return false;
2638 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2640 struct blk_mq_hw_ctx *hctx;
2641 struct blk_plug *plug;
2642 struct request *rq;
2644 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2645 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2646 return false;
2648 plug = current->plug;
2649 if (plug)
2650 blk_flush_plug_list(plug, false);
2652 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2653 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2655 return __blk_mq_poll(hctx, rq);
2657 EXPORT_SYMBOL_GPL(blk_mq_poll);
2659 void blk_mq_disable_hotplug(void)
2661 mutex_lock(&all_q_mutex);
2664 void blk_mq_enable_hotplug(void)
2666 mutex_unlock(&all_q_mutex);
2669 static int __init blk_mq_init(void)
2671 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2672 blk_mq_hctx_notify_dead);
2674 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2675 blk_mq_queue_reinit_prepare,
2676 blk_mq_queue_reinit_dead);
2677 return 0;
2679 subsys_initcall(blk_mq_init);