2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
27 #include <trace/events/block.h>
29 #include <linux/blk-mq.h>
32 #include "blk-mq-tag.h"
36 static DEFINE_MUTEX(all_q_mutex
);
37 static LIST_HEAD(all_q_list
);
40 * Check if any of the ctx's have pending work in this hardware queue
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
44 return sbitmap_any_bit_set(&hctx
->ctx_map
);
48 * Mark this ctx as having pending work in this hardware queue
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
51 struct blk_mq_ctx
*ctx
)
53 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
54 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
58 struct blk_mq_ctx
*ctx
)
60 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
63 void blk_mq_freeze_queue_start(struct request_queue
*q
)
67 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
68 if (freeze_depth
== 1) {
69 percpu_ref_kill(&q
->q_usage_counter
);
70 blk_mq_run_hw_queues(q
, false);
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
75 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
77 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
84 void blk_freeze_queue(struct request_queue
*q
)
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
93 blk_mq_freeze_queue_start(q
);
94 blk_mq_freeze_queue_wait(q
);
97 void blk_mq_freeze_queue(struct request_queue
*q
)
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
107 void blk_mq_unfreeze_queue(struct request_queue
*q
)
111 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
112 WARN_ON_ONCE(freeze_depth
< 0);
114 percpu_ref_reinit(&q
->q_usage_counter
);
115 wake_up_all(&q
->mq_freeze_wq
);
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
128 void blk_mq_quiesce_queue(struct request_queue
*q
)
130 struct blk_mq_hw_ctx
*hctx
;
134 blk_mq_stop_hw_queues(q
);
136 queue_for_each_hw_ctx(q
, hctx
, i
) {
137 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
138 synchronize_srcu(&hctx
->queue_rq_srcu
);
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
147 void blk_mq_wake_waiters(struct request_queue
*q
)
149 struct blk_mq_hw_ctx
*hctx
;
152 queue_for_each_hw_ctx(q
, hctx
, i
)
153 if (blk_mq_hw_queue_mapped(hctx
))
154 blk_mq_tag_wakeup_all(hctx
->tags
, true);
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
161 wake_up_all(&q
->mq_freeze_wq
);
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
166 return blk_mq_has_free_tags(hctx
->tags
);
168 EXPORT_SYMBOL(blk_mq_can_queue
);
170 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
171 struct request
*rq
, unsigned int op
)
173 INIT_LIST_HEAD(&rq
->queuelist
);
174 /* csd/requeue_work/fifo_time is initialized before use */
178 if (blk_queue_io_stat(q
))
179 rq
->rq_flags
|= RQF_IO_STAT
;
180 /* do not touch atomic flags, it needs atomic ops against the timer */
182 INIT_HLIST_NODE(&rq
->hash
);
183 RB_CLEAR_NODE(&rq
->rb_node
);
186 rq
->start_time
= jiffies
;
187 #ifdef CONFIG_BLK_CGROUP
189 set_start_time_ns(rq
);
190 rq
->io_start_time_ns
= 0;
192 rq
->nr_phys_segments
= 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq
->nr_integrity_segments
= 0;
197 /* tag was already set */
207 INIT_LIST_HEAD(&rq
->timeout_list
);
211 rq
->end_io_data
= NULL
;
214 ctx
->rq_dispatched
[op_is_sync(op
)]++;
217 static struct request
*
218 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, unsigned int op
)
223 tag
= blk_mq_get_tag(data
);
224 if (tag
!= BLK_MQ_TAG_FAIL
) {
225 rq
= data
->hctx
->tags
->rqs
[tag
];
227 if (blk_mq_tag_busy(data
->hctx
)) {
228 rq
->rq_flags
= RQF_MQ_INFLIGHT
;
229 atomic_inc(&data
->hctx
->nr_active
);
233 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, op
);
240 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
,
243 struct blk_mq_ctx
*ctx
;
244 struct blk_mq_hw_ctx
*hctx
;
246 struct blk_mq_alloc_data alloc_data
;
249 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
253 ctx
= blk_mq_get_ctx(q
);
254 hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
255 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
256 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
261 return ERR_PTR(-EWOULDBLOCK
);
265 rq
->__sector
= (sector_t
) -1;
266 rq
->bio
= rq
->biotail
= NULL
;
269 EXPORT_SYMBOL(blk_mq_alloc_request
);
271 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
, int rw
,
272 unsigned int flags
, unsigned int hctx_idx
)
274 struct blk_mq_hw_ctx
*hctx
;
275 struct blk_mq_ctx
*ctx
;
277 struct blk_mq_alloc_data alloc_data
;
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
286 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
287 return ERR_PTR(-EINVAL
);
289 if (hctx_idx
>= q
->nr_hw_queues
)
290 return ERR_PTR(-EIO
);
292 ret
= blk_queue_enter(q
, true);
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
300 hctx
= q
->queue_hw_ctx
[hctx_idx
];
301 if (!blk_mq_hw_queue_mapped(hctx
)) {
305 ctx
= __blk_mq_get_ctx(q
, cpumask_first(hctx
->cpumask
));
307 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
308 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
322 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
323 struct blk_mq_ctx
*ctx
, struct request
*rq
)
325 const int tag
= rq
->tag
;
326 struct request_queue
*q
= rq
->q
;
328 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
329 atomic_dec(&hctx
->nr_active
);
331 wbt_done(q
->rq_wb
, &rq
->issue_stat
);
334 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
335 clear_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
336 blk_mq_put_tag(hctx
, ctx
, tag
);
340 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
342 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
344 ctx
->rq_completed
[rq_is_sync(rq
)]++;
345 __blk_mq_free_request(hctx
, ctx
, rq
);
348 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
350 void blk_mq_free_request(struct request
*rq
)
352 blk_mq_free_hctx_request(blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
), rq
);
354 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
356 inline void __blk_mq_end_request(struct request
*rq
, int error
)
358 blk_account_io_done(rq
);
361 wbt_done(rq
->q
->rq_wb
, &rq
->issue_stat
);
362 rq
->end_io(rq
, error
);
364 if (unlikely(blk_bidi_rq(rq
)))
365 blk_mq_free_request(rq
->next_rq
);
366 blk_mq_free_request(rq
);
369 EXPORT_SYMBOL(__blk_mq_end_request
);
371 void blk_mq_end_request(struct request
*rq
, int error
)
373 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
375 __blk_mq_end_request(rq
, error
);
377 EXPORT_SYMBOL(blk_mq_end_request
);
379 static void __blk_mq_complete_request_remote(void *data
)
381 struct request
*rq
= data
;
383 rq
->q
->softirq_done_fn(rq
);
386 static void blk_mq_ipi_complete_request(struct request
*rq
)
388 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
392 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
393 rq
->q
->softirq_done_fn(rq
);
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
399 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
401 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
402 rq
->csd
.func
= __blk_mq_complete_request_remote
;
405 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
407 rq
->q
->softirq_done_fn(rq
);
412 static void blk_mq_stat_add(struct request
*rq
)
414 if (rq
->rq_flags
& RQF_STATS
) {
416 * We could rq->mq_ctx here, but there's less of a risk
417 * of races if we have the completion event add the stats
418 * to the local software queue.
420 struct blk_mq_ctx
*ctx
;
422 ctx
= __blk_mq_get_ctx(rq
->q
, raw_smp_processor_id());
423 blk_stat_add(&ctx
->stat
[rq_data_dir(rq
)], rq
);
427 static void __blk_mq_complete_request(struct request
*rq
)
429 struct request_queue
*q
= rq
->q
;
433 if (!q
->softirq_done_fn
)
434 blk_mq_end_request(rq
, rq
->errors
);
436 blk_mq_ipi_complete_request(rq
);
440 * blk_mq_complete_request - end I/O on a request
441 * @rq: the request being processed
444 * Ends all I/O on a request. It does not handle partial completions.
445 * The actual completion happens out-of-order, through a IPI handler.
447 void blk_mq_complete_request(struct request
*rq
, int error
)
449 struct request_queue
*q
= rq
->q
;
451 if (unlikely(blk_should_fake_timeout(q
)))
453 if (!blk_mark_rq_complete(rq
)) {
455 __blk_mq_complete_request(rq
);
458 EXPORT_SYMBOL(blk_mq_complete_request
);
460 int blk_mq_request_started(struct request
*rq
)
462 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
464 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
466 void blk_mq_start_request(struct request
*rq
)
468 struct request_queue
*q
= rq
->q
;
470 trace_block_rq_issue(q
, rq
);
472 rq
->resid_len
= blk_rq_bytes(rq
);
473 if (unlikely(blk_bidi_rq(rq
)))
474 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
476 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
477 blk_stat_set_issue_time(&rq
->issue_stat
);
478 rq
->rq_flags
|= RQF_STATS
;
479 wbt_issue(q
->rq_wb
, &rq
->issue_stat
);
485 * Ensure that ->deadline is visible before set the started
486 * flag and clear the completed flag.
488 smp_mb__before_atomic();
491 * Mark us as started and clear complete. Complete might have been
492 * set if requeue raced with timeout, which then marked it as
493 * complete. So be sure to clear complete again when we start
494 * the request, otherwise we'll ignore the completion event.
496 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
497 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
498 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
499 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
501 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
503 * Make sure space for the drain appears. We know we can do
504 * this because max_hw_segments has been adjusted to be one
505 * fewer than the device can handle.
507 rq
->nr_phys_segments
++;
510 EXPORT_SYMBOL(blk_mq_start_request
);
512 static void __blk_mq_requeue_request(struct request
*rq
)
514 struct request_queue
*q
= rq
->q
;
516 trace_block_rq_requeue(q
, rq
);
517 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
519 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
520 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
521 rq
->nr_phys_segments
--;
525 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
527 __blk_mq_requeue_request(rq
);
529 BUG_ON(blk_queued_rq(rq
));
530 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
532 EXPORT_SYMBOL(blk_mq_requeue_request
);
534 static void blk_mq_requeue_work(struct work_struct
*work
)
536 struct request_queue
*q
=
537 container_of(work
, struct request_queue
, requeue_work
.work
);
539 struct request
*rq
, *next
;
542 spin_lock_irqsave(&q
->requeue_lock
, flags
);
543 list_splice_init(&q
->requeue_list
, &rq_list
);
544 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
546 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
547 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
550 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
551 list_del_init(&rq
->queuelist
);
552 blk_mq_insert_request(rq
, true, false, false);
555 while (!list_empty(&rq_list
)) {
556 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
557 list_del_init(&rq
->queuelist
);
558 blk_mq_insert_request(rq
, false, false, false);
561 blk_mq_run_hw_queues(q
, false);
564 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
565 bool kick_requeue_list
)
567 struct request_queue
*q
= rq
->q
;
571 * We abuse this flag that is otherwise used by the I/O scheduler to
572 * request head insertation from the workqueue.
574 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
576 spin_lock_irqsave(&q
->requeue_lock
, flags
);
578 rq
->rq_flags
|= RQF_SOFTBARRIER
;
579 list_add(&rq
->queuelist
, &q
->requeue_list
);
581 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
583 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
585 if (kick_requeue_list
)
586 blk_mq_kick_requeue_list(q
);
588 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
590 void blk_mq_kick_requeue_list(struct request_queue
*q
)
592 kblockd_schedule_delayed_work(&q
->requeue_work
, 0);
594 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
596 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
599 kblockd_schedule_delayed_work(&q
->requeue_work
,
600 msecs_to_jiffies(msecs
));
602 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
604 void blk_mq_abort_requeue_list(struct request_queue
*q
)
609 spin_lock_irqsave(&q
->requeue_lock
, flags
);
610 list_splice_init(&q
->requeue_list
, &rq_list
);
611 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
613 while (!list_empty(&rq_list
)) {
616 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
617 list_del_init(&rq
->queuelist
);
619 blk_mq_end_request(rq
, rq
->errors
);
622 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
624 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
626 if (tag
< tags
->nr_tags
) {
627 prefetch(tags
->rqs
[tag
]);
628 return tags
->rqs
[tag
];
633 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
635 struct blk_mq_timeout_data
{
637 unsigned int next_set
;
640 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
642 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
643 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
646 * We know that complete is set at this point. If STARTED isn't set
647 * anymore, then the request isn't active and the "timeout" should
648 * just be ignored. This can happen due to the bitflag ordering.
649 * Timeout first checks if STARTED is set, and if it is, assumes
650 * the request is active. But if we race with completion, then
651 * we both flags will get cleared. So check here again, and ignore
652 * a timeout event with a request that isn't active.
654 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
658 ret
= ops
->timeout(req
, reserved
);
662 __blk_mq_complete_request(req
);
664 case BLK_EH_RESET_TIMER
:
666 blk_clear_rq_complete(req
);
668 case BLK_EH_NOT_HANDLED
:
671 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
676 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
677 struct request
*rq
, void *priv
, bool reserved
)
679 struct blk_mq_timeout_data
*data
= priv
;
681 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
683 * If a request wasn't started before the queue was
684 * marked dying, kill it here or it'll go unnoticed.
686 if (unlikely(blk_queue_dying(rq
->q
))) {
688 blk_mq_end_request(rq
, rq
->errors
);
693 if (time_after_eq(jiffies
, rq
->deadline
)) {
694 if (!blk_mark_rq_complete(rq
))
695 blk_mq_rq_timed_out(rq
, reserved
);
696 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
697 data
->next
= rq
->deadline
;
702 static void blk_mq_timeout_work(struct work_struct
*work
)
704 struct request_queue
*q
=
705 container_of(work
, struct request_queue
, timeout_work
);
706 struct blk_mq_timeout_data data
= {
712 /* A deadlock might occur if a request is stuck requiring a
713 * timeout at the same time a queue freeze is waiting
714 * completion, since the timeout code would not be able to
715 * acquire the queue reference here.
717 * That's why we don't use blk_queue_enter here; instead, we use
718 * percpu_ref_tryget directly, because we need to be able to
719 * obtain a reference even in the short window between the queue
720 * starting to freeze, by dropping the first reference in
721 * blk_mq_freeze_queue_start, and the moment the last request is
722 * consumed, marked by the instant q_usage_counter reaches
725 if (!percpu_ref_tryget(&q
->q_usage_counter
))
728 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
731 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
732 mod_timer(&q
->timeout
, data
.next
);
734 struct blk_mq_hw_ctx
*hctx
;
736 queue_for_each_hw_ctx(q
, hctx
, i
) {
737 /* the hctx may be unmapped, so check it here */
738 if (blk_mq_hw_queue_mapped(hctx
))
739 blk_mq_tag_idle(hctx
);
746 * Reverse check our software queue for entries that we could potentially
747 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
748 * too much time checking for merges.
750 static bool blk_mq_attempt_merge(struct request_queue
*q
,
751 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
756 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
762 if (!blk_rq_merge_ok(rq
, bio
))
765 el_ret
= blk_try_merge(rq
, bio
);
766 if (el_ret
== ELEVATOR_BACK_MERGE
) {
767 if (bio_attempt_back_merge(q
, rq
, bio
)) {
772 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
773 if (bio_attempt_front_merge(q
, rq
, bio
)) {
784 struct flush_busy_ctx_data
{
785 struct blk_mq_hw_ctx
*hctx
;
786 struct list_head
*list
;
789 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
791 struct flush_busy_ctx_data
*flush_data
= data
;
792 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
793 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
795 sbitmap_clear_bit(sb
, bitnr
);
796 spin_lock(&ctx
->lock
);
797 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
798 spin_unlock(&ctx
->lock
);
803 * Process software queues that have been marked busy, splicing them
804 * to the for-dispatch
806 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
808 struct flush_busy_ctx_data data
= {
813 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
816 static inline unsigned int queued_to_index(unsigned int queued
)
821 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
824 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
826 struct request_queue
*q
= hctx
->queue
;
828 LIST_HEAD(driver_list
);
829 struct list_head
*dptr
;
830 int queued
, ret
= BLK_MQ_RQ_QUEUE_OK
;
833 * Start off with dptr being NULL, so we start the first request
834 * immediately, even if we have more pending.
839 * Now process all the entries, sending them to the driver.
842 while (!list_empty(list
)) {
843 struct blk_mq_queue_data bd
;
845 rq
= list_first_entry(list
, struct request
, queuelist
);
846 list_del_init(&rq
->queuelist
);
850 bd
.last
= list_empty(list
);
852 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
854 case BLK_MQ_RQ_QUEUE_OK
:
857 case BLK_MQ_RQ_QUEUE_BUSY
:
858 list_add(&rq
->queuelist
, list
);
859 __blk_mq_requeue_request(rq
);
862 pr_err("blk-mq: bad return on queue: %d\n", ret
);
863 case BLK_MQ_RQ_QUEUE_ERROR
:
865 blk_mq_end_request(rq
, rq
->errors
);
869 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
873 * We've done the first request. If we have more than 1
874 * left in the list, set dptr to defer issue.
876 if (!dptr
&& list
->next
!= list
->prev
)
880 hctx
->dispatched
[queued_to_index(queued
)]++;
883 * Any items that need requeuing? Stuff them into hctx->dispatch,
884 * that is where we will continue on next queue run.
886 if (!list_empty(list
)) {
887 spin_lock(&hctx
->lock
);
888 list_splice(list
, &hctx
->dispatch
);
889 spin_unlock(&hctx
->lock
);
892 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
893 * it's possible the queue is stopped and restarted again
894 * before this. Queue restart will dispatch requests. And since
895 * requests in rq_list aren't added into hctx->dispatch yet,
896 * the requests in rq_list might get lost.
898 * blk_mq_run_hw_queue() already checks the STOPPED bit
900 blk_mq_run_hw_queue(hctx
, true);
903 return ret
!= BLK_MQ_RQ_QUEUE_BUSY
;
907 * Run this hardware queue, pulling any software queues mapped to it in.
908 * Note that this function currently has various problems around ordering
909 * of IO. In particular, we'd like FIFO behaviour on handling existing
910 * items on the hctx->dispatch list. Ignore that for now.
912 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx
*hctx
)
915 LIST_HEAD(driver_list
);
917 if (unlikely(blk_mq_hctx_stopped(hctx
)))
923 * Touch any software queue that has pending entries.
925 flush_busy_ctxs(hctx
, &rq_list
);
928 * If we have previous entries on our dispatch list, grab them
929 * and stuff them at the front for more fair dispatch.
931 if (!list_empty_careful(&hctx
->dispatch
)) {
932 spin_lock(&hctx
->lock
);
933 if (!list_empty(&hctx
->dispatch
))
934 list_splice_init(&hctx
->dispatch
, &rq_list
);
935 spin_unlock(&hctx
->lock
);
938 blk_mq_dispatch_rq_list(hctx
, &rq_list
);
941 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
945 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
946 cpu_online(hctx
->next_cpu
));
948 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
950 blk_mq_process_rq_list(hctx
);
953 srcu_idx
= srcu_read_lock(&hctx
->queue_rq_srcu
);
954 blk_mq_process_rq_list(hctx
);
955 srcu_read_unlock(&hctx
->queue_rq_srcu
, srcu_idx
);
960 * It'd be great if the workqueue API had a way to pass
961 * in a mask and had some smarts for more clever placement.
962 * For now we just round-robin here, switching for every
963 * BLK_MQ_CPU_WORK_BATCH queued items.
965 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
967 if (hctx
->queue
->nr_hw_queues
== 1)
968 return WORK_CPU_UNBOUND
;
970 if (--hctx
->next_cpu_batch
<= 0) {
973 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
974 if (next_cpu
>= nr_cpu_ids
)
975 next_cpu
= cpumask_first(hctx
->cpumask
);
977 hctx
->next_cpu
= next_cpu
;
978 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
981 return hctx
->next_cpu
;
984 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
986 if (unlikely(blk_mq_hctx_stopped(hctx
) ||
987 !blk_mq_hw_queue_mapped(hctx
)))
990 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
992 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
993 __blk_mq_run_hw_queue(hctx
);
1001 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
);
1004 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1006 struct blk_mq_hw_ctx
*hctx
;
1009 queue_for_each_hw_ctx(q
, hctx
, i
) {
1010 if ((!blk_mq_hctx_has_pending(hctx
) &&
1011 list_empty_careful(&hctx
->dispatch
)) ||
1012 blk_mq_hctx_stopped(hctx
))
1015 blk_mq_run_hw_queue(hctx
, async
);
1018 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1021 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1022 * @q: request queue.
1024 * The caller is responsible for serializing this function against
1025 * blk_mq_{start,stop}_hw_queue().
1027 bool blk_mq_queue_stopped(struct request_queue
*q
)
1029 struct blk_mq_hw_ctx
*hctx
;
1032 queue_for_each_hw_ctx(q
, hctx
, i
)
1033 if (blk_mq_hctx_stopped(hctx
))
1038 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1040 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1042 cancel_work(&hctx
->run_work
);
1043 cancel_delayed_work(&hctx
->delay_work
);
1044 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1046 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1048 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1050 struct blk_mq_hw_ctx
*hctx
;
1053 queue_for_each_hw_ctx(q
, hctx
, i
)
1054 blk_mq_stop_hw_queue(hctx
);
1056 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1058 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1060 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1062 blk_mq_run_hw_queue(hctx
, false);
1064 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1066 void blk_mq_start_hw_queues(struct request_queue
*q
)
1068 struct blk_mq_hw_ctx
*hctx
;
1071 queue_for_each_hw_ctx(q
, hctx
, i
)
1072 blk_mq_start_hw_queue(hctx
);
1074 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1076 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1078 if (!blk_mq_hctx_stopped(hctx
))
1081 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1082 blk_mq_run_hw_queue(hctx
, async
);
1084 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1086 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1088 struct blk_mq_hw_ctx
*hctx
;
1091 queue_for_each_hw_ctx(q
, hctx
, i
)
1092 blk_mq_start_stopped_hw_queue(hctx
, async
);
1094 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1096 static void blk_mq_run_work_fn(struct work_struct
*work
)
1098 struct blk_mq_hw_ctx
*hctx
;
1100 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
);
1102 __blk_mq_run_hw_queue(hctx
);
1105 static void blk_mq_delay_work_fn(struct work_struct
*work
)
1107 struct blk_mq_hw_ctx
*hctx
;
1109 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
1111 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1112 __blk_mq_run_hw_queue(hctx
);
1115 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1117 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
1120 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1121 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
1123 EXPORT_SYMBOL(blk_mq_delay_queue
);
1125 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1129 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1131 trace_block_rq_insert(hctx
->queue
, rq
);
1134 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1136 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1139 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
1140 struct request
*rq
, bool at_head
)
1142 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1144 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1145 blk_mq_hctx_mark_pending(hctx
, ctx
);
1148 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1151 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1152 struct request_queue
*q
= rq
->q
;
1153 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
1155 spin_lock(&ctx
->lock
);
1156 __blk_mq_insert_request(hctx
, rq
, at_head
);
1157 spin_unlock(&ctx
->lock
);
1160 blk_mq_run_hw_queue(hctx
, async
);
1163 static void blk_mq_insert_requests(struct request_queue
*q
,
1164 struct blk_mq_ctx
*ctx
,
1165 struct list_head
*list
,
1170 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
1172 trace_block_unplug(q
, depth
, !from_schedule
);
1175 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1178 spin_lock(&ctx
->lock
);
1179 while (!list_empty(list
)) {
1182 rq
= list_first_entry(list
, struct request
, queuelist
);
1183 BUG_ON(rq
->mq_ctx
!= ctx
);
1184 list_del_init(&rq
->queuelist
);
1185 __blk_mq_insert_req_list(hctx
, rq
, false);
1187 blk_mq_hctx_mark_pending(hctx
, ctx
);
1188 spin_unlock(&ctx
->lock
);
1190 blk_mq_run_hw_queue(hctx
, from_schedule
);
1193 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1195 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1196 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1198 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1199 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1200 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1203 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1205 struct blk_mq_ctx
*this_ctx
;
1206 struct request_queue
*this_q
;
1209 LIST_HEAD(ctx_list
);
1212 list_splice_init(&plug
->mq_list
, &list
);
1214 list_sort(NULL
, &list
, plug_ctx_cmp
);
1220 while (!list_empty(&list
)) {
1221 rq
= list_entry_rq(list
.next
);
1222 list_del_init(&rq
->queuelist
);
1224 if (rq
->mq_ctx
!= this_ctx
) {
1226 blk_mq_insert_requests(this_q
, this_ctx
,
1231 this_ctx
= rq
->mq_ctx
;
1237 list_add_tail(&rq
->queuelist
, &ctx_list
);
1241 * If 'this_ctx' is set, we know we have entries to complete
1242 * on 'ctx_list'. Do those.
1245 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1250 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1252 init_request_from_bio(rq
, bio
);
1254 blk_account_io_start(rq
, true);
1257 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1259 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1260 !blk_queue_nomerges(hctx
->queue
);
1263 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1264 struct blk_mq_ctx
*ctx
,
1265 struct request
*rq
, struct bio
*bio
)
1267 if (!hctx_allow_merges(hctx
) || !bio_mergeable(bio
)) {
1268 blk_mq_bio_to_request(rq
, bio
);
1269 spin_lock(&ctx
->lock
);
1271 __blk_mq_insert_request(hctx
, rq
, false);
1272 spin_unlock(&ctx
->lock
);
1275 struct request_queue
*q
= hctx
->queue
;
1277 spin_lock(&ctx
->lock
);
1278 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1279 blk_mq_bio_to_request(rq
, bio
);
1283 spin_unlock(&ctx
->lock
);
1284 __blk_mq_free_request(hctx
, ctx
, rq
);
1289 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1291 struct blk_mq_alloc_data
*data
)
1293 struct blk_mq_hw_ctx
*hctx
;
1294 struct blk_mq_ctx
*ctx
;
1297 blk_queue_enter_live(q
);
1298 ctx
= blk_mq_get_ctx(q
);
1299 hctx
= blk_mq_map_queue(q
, ctx
->cpu
);
1301 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1302 blk_mq_set_alloc_data(data
, q
, 0, ctx
, hctx
);
1303 rq
= __blk_mq_alloc_request(data
, bio
->bi_opf
);
1305 data
->hctx
->queued
++;
1309 static void blk_mq_try_issue_directly(struct request
*rq
, blk_qc_t
*cookie
)
1312 struct request_queue
*q
= rq
->q
;
1313 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, rq
->mq_ctx
->cpu
);
1314 struct blk_mq_queue_data bd
= {
1319 blk_qc_t new_cookie
= blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
);
1321 if (blk_mq_hctx_stopped(hctx
))
1325 * For OK queue, we are done. For error, kill it. Any other
1326 * error (busy), just add it to our list as we previously
1329 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1330 if (ret
== BLK_MQ_RQ_QUEUE_OK
) {
1331 *cookie
= new_cookie
;
1335 __blk_mq_requeue_request(rq
);
1337 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1338 *cookie
= BLK_QC_T_NONE
;
1340 blk_mq_end_request(rq
, rq
->errors
);
1345 blk_mq_insert_request(rq
, false, true, true);
1349 * Multiple hardware queue variant. This will not use per-process plugs,
1350 * but will attempt to bypass the hctx queueing if we can go straight to
1351 * hardware for SYNC IO.
1353 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1355 const int is_sync
= op_is_sync(bio
->bi_opf
);
1356 const int is_flush_fua
= bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
);
1357 struct blk_mq_alloc_data data
;
1359 unsigned int request_count
= 0, srcu_idx
;
1360 struct blk_plug
*plug
;
1361 struct request
*same_queue_rq
= NULL
;
1363 unsigned int wb_acct
;
1365 blk_queue_bounce(q
, &bio
);
1367 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1369 return BLK_QC_T_NONE
;
1372 blk_queue_split(q
, &bio
, q
->bio_split
);
1374 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1375 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1376 return BLK_QC_T_NONE
;
1378 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1380 rq
= blk_mq_map_request(q
, bio
, &data
);
1381 if (unlikely(!rq
)) {
1382 __wbt_done(q
->rq_wb
, wb_acct
);
1383 return BLK_QC_T_NONE
;
1386 wbt_track(&rq
->issue_stat
, wb_acct
);
1388 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1390 if (unlikely(is_flush_fua
)) {
1391 blk_mq_bio_to_request(rq
, bio
);
1392 blk_insert_flush(rq
);
1396 plug
= current
->plug
;
1398 * If the driver supports defer issued based on 'last', then
1399 * queue it up like normal since we can potentially save some
1402 if (((plug
&& !blk_queue_nomerges(q
)) || is_sync
) &&
1403 !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1404 struct request
*old_rq
= NULL
;
1406 blk_mq_bio_to_request(rq
, bio
);
1409 * We do limited plugging. If the bio can be merged, do that.
1410 * Otherwise the existing request in the plug list will be
1411 * issued. So the plug list will have one request at most
1415 * The plug list might get flushed before this. If that
1416 * happens, same_queue_rq is invalid and plug list is
1419 if (same_queue_rq
&& !list_empty(&plug
->mq_list
)) {
1420 old_rq
= same_queue_rq
;
1421 list_del_init(&old_rq
->queuelist
);
1423 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1424 } else /* is_sync */
1426 blk_mq_put_ctx(data
.ctx
);
1430 if (!(data
.hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1432 blk_mq_try_issue_directly(old_rq
, &cookie
);
1435 srcu_idx
= srcu_read_lock(&data
.hctx
->queue_rq_srcu
);
1436 blk_mq_try_issue_directly(old_rq
, &cookie
);
1437 srcu_read_unlock(&data
.hctx
->queue_rq_srcu
, srcu_idx
);
1442 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1444 * For a SYNC request, send it to the hardware immediately. For
1445 * an ASYNC request, just ensure that we run it later on. The
1446 * latter allows for merging opportunities and more efficient
1450 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1452 blk_mq_put_ctx(data
.ctx
);
1458 * Single hardware queue variant. This will attempt to use any per-process
1459 * plug for merging and IO deferral.
1461 static blk_qc_t
blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1463 const int is_sync
= op_is_sync(bio
->bi_opf
);
1464 const int is_flush_fua
= bio
->bi_opf
& (REQ_PREFLUSH
| REQ_FUA
);
1465 struct blk_plug
*plug
;
1466 unsigned int request_count
= 0;
1467 struct blk_mq_alloc_data data
;
1470 unsigned int wb_acct
;
1472 blk_queue_bounce(q
, &bio
);
1474 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1476 return BLK_QC_T_NONE
;
1479 blk_queue_split(q
, &bio
, q
->bio_split
);
1481 if (!is_flush_fua
&& !blk_queue_nomerges(q
)) {
1482 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1483 return BLK_QC_T_NONE
;
1485 request_count
= blk_plug_queued_count(q
);
1487 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1489 rq
= blk_mq_map_request(q
, bio
, &data
);
1490 if (unlikely(!rq
)) {
1491 __wbt_done(q
->rq_wb
, wb_acct
);
1492 return BLK_QC_T_NONE
;
1495 wbt_track(&rq
->issue_stat
, wb_acct
);
1497 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1499 if (unlikely(is_flush_fua
)) {
1500 blk_mq_bio_to_request(rq
, bio
);
1501 blk_insert_flush(rq
);
1506 * A task plug currently exists. Since this is completely lockless,
1507 * utilize that to temporarily store requests until the task is
1508 * either done or scheduled away.
1510 plug
= current
->plug
;
1512 struct request
*last
= NULL
;
1514 blk_mq_bio_to_request(rq
, bio
);
1517 * @request_count may become stale because of schedule
1518 * out, so check the list again.
1520 if (list_empty(&plug
->mq_list
))
1523 trace_block_plug(q
);
1525 last
= list_entry_rq(plug
->mq_list
.prev
);
1527 blk_mq_put_ctx(data
.ctx
);
1529 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1530 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1531 blk_flush_plug_list(plug
, false);
1532 trace_block_plug(q
);
1535 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1539 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1541 * For a SYNC request, send it to the hardware immediately. For
1542 * an ASYNC request, just ensure that we run it later on. The
1543 * latter allows for merging opportunities and more efficient
1547 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1550 blk_mq_put_ctx(data
.ctx
);
1554 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1555 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1559 if (tags
->rqs
&& set
->ops
->exit_request
) {
1562 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1565 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1567 tags
->rqs
[i
] = NULL
;
1571 while (!list_empty(&tags
->page_list
)) {
1572 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1573 list_del_init(&page
->lru
);
1575 * Remove kmemleak object previously allocated in
1576 * blk_mq_init_rq_map().
1578 kmemleak_free(page_address(page
));
1579 __free_pages(page
, page
->private);
1584 blk_mq_free_tags(tags
);
1587 static size_t order_to_size(unsigned int order
)
1589 return (size_t)PAGE_SIZE
<< order
;
1592 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1593 unsigned int hctx_idx
)
1595 struct blk_mq_tags
*tags
;
1596 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1597 size_t rq_size
, left
;
1599 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1601 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1605 INIT_LIST_HEAD(&tags
->page_list
);
1607 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1608 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1611 blk_mq_free_tags(tags
);
1616 * rq_size is the size of the request plus driver payload, rounded
1617 * to the cacheline size
1619 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1621 left
= rq_size
* set
->queue_depth
;
1623 for (i
= 0; i
< set
->queue_depth
; ) {
1624 int this_order
= max_order
;
1629 while (this_order
&& left
< order_to_size(this_order
- 1))
1633 page
= alloc_pages_node(set
->numa_node
,
1634 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1640 if (order_to_size(this_order
) < rq_size
)
1647 page
->private = this_order
;
1648 list_add_tail(&page
->lru
, &tags
->page_list
);
1650 p
= page_address(page
);
1652 * Allow kmemleak to scan these pages as they contain pointers
1653 * to additional allocations like via ops->init_request().
1655 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1656 entries_per_page
= order_to_size(this_order
) / rq_size
;
1657 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1658 left
-= to_do
* rq_size
;
1659 for (j
= 0; j
< to_do
; j
++) {
1661 if (set
->ops
->init_request
) {
1662 if (set
->ops
->init_request(set
->driver_data
,
1663 tags
->rqs
[i
], hctx_idx
, i
,
1665 tags
->rqs
[i
] = NULL
;
1677 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1682 * 'cpu' is going away. splice any existing rq_list entries from this
1683 * software queue to the hw queue dispatch list, and ensure that it
1686 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
1688 struct blk_mq_hw_ctx
*hctx
;
1689 struct blk_mq_ctx
*ctx
;
1692 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
1693 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1695 spin_lock(&ctx
->lock
);
1696 if (!list_empty(&ctx
->rq_list
)) {
1697 list_splice_init(&ctx
->rq_list
, &tmp
);
1698 blk_mq_hctx_clear_pending(hctx
, ctx
);
1700 spin_unlock(&ctx
->lock
);
1702 if (list_empty(&tmp
))
1705 spin_lock(&hctx
->lock
);
1706 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1707 spin_unlock(&hctx
->lock
);
1709 blk_mq_run_hw_queue(hctx
, true);
1713 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
1715 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
1719 /* hctx->ctxs will be freed in queue's release handler */
1720 static void blk_mq_exit_hctx(struct request_queue
*q
,
1721 struct blk_mq_tag_set
*set
,
1722 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1724 unsigned flush_start_tag
= set
->queue_depth
;
1726 blk_mq_tag_idle(hctx
);
1728 if (set
->ops
->exit_request
)
1729 set
->ops
->exit_request(set
->driver_data
,
1730 hctx
->fq
->flush_rq
, hctx_idx
,
1731 flush_start_tag
+ hctx_idx
);
1733 if (set
->ops
->exit_hctx
)
1734 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1736 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1737 cleanup_srcu_struct(&hctx
->queue_rq_srcu
);
1739 blk_mq_remove_cpuhp(hctx
);
1740 blk_free_flush_queue(hctx
->fq
);
1741 sbitmap_free(&hctx
->ctx_map
);
1744 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1745 struct blk_mq_tag_set
*set
, int nr_queue
)
1747 struct blk_mq_hw_ctx
*hctx
;
1750 queue_for_each_hw_ctx(q
, hctx
, i
) {
1753 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1757 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1758 struct blk_mq_tag_set
*set
)
1760 struct blk_mq_hw_ctx
*hctx
;
1763 queue_for_each_hw_ctx(q
, hctx
, i
)
1764 free_cpumask_var(hctx
->cpumask
);
1767 static int blk_mq_init_hctx(struct request_queue
*q
,
1768 struct blk_mq_tag_set
*set
,
1769 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1772 unsigned flush_start_tag
= set
->queue_depth
;
1774 node
= hctx
->numa_node
;
1775 if (node
== NUMA_NO_NODE
)
1776 node
= hctx
->numa_node
= set
->numa_node
;
1778 INIT_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1779 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1780 spin_lock_init(&hctx
->lock
);
1781 INIT_LIST_HEAD(&hctx
->dispatch
);
1783 hctx
->queue_num
= hctx_idx
;
1784 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
1786 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
1788 hctx
->tags
= set
->tags
[hctx_idx
];
1791 * Allocate space for all possible cpus to avoid allocation at
1794 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1797 goto unregister_cpu_notifier
;
1799 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
1805 if (set
->ops
->init_hctx
&&
1806 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1809 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1813 if (set
->ops
->init_request
&&
1814 set
->ops
->init_request(set
->driver_data
,
1815 hctx
->fq
->flush_rq
, hctx_idx
,
1816 flush_start_tag
+ hctx_idx
, node
))
1819 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1820 init_srcu_struct(&hctx
->queue_rq_srcu
);
1827 if (set
->ops
->exit_hctx
)
1828 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1830 sbitmap_free(&hctx
->ctx_map
);
1833 unregister_cpu_notifier
:
1834 blk_mq_remove_cpuhp(hctx
);
1838 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1839 unsigned int nr_hw_queues
)
1843 for_each_possible_cpu(i
) {
1844 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1845 struct blk_mq_hw_ctx
*hctx
;
1847 memset(__ctx
, 0, sizeof(*__ctx
));
1849 spin_lock_init(&__ctx
->lock
);
1850 INIT_LIST_HEAD(&__ctx
->rq_list
);
1852 blk_stat_init(&__ctx
->stat
[BLK_STAT_READ
]);
1853 blk_stat_init(&__ctx
->stat
[BLK_STAT_WRITE
]);
1855 /* If the cpu isn't online, the cpu is mapped to first hctx */
1859 hctx
= blk_mq_map_queue(q
, i
);
1862 * Set local node, IFF we have more than one hw queue. If
1863 * not, we remain on the home node of the device
1865 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1866 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
1870 static void blk_mq_map_swqueue(struct request_queue
*q
,
1871 const struct cpumask
*online_mask
)
1873 unsigned int i
, hctx_idx
;
1874 struct blk_mq_hw_ctx
*hctx
;
1875 struct blk_mq_ctx
*ctx
;
1876 struct blk_mq_tag_set
*set
= q
->tag_set
;
1879 * Avoid others reading imcomplete hctx->cpumask through sysfs
1881 mutex_lock(&q
->sysfs_lock
);
1883 queue_for_each_hw_ctx(q
, hctx
, i
) {
1884 cpumask_clear(hctx
->cpumask
);
1889 * Map software to hardware queues
1891 for_each_possible_cpu(i
) {
1892 /* If the cpu isn't online, the cpu is mapped to first hctx */
1893 if (!cpumask_test_cpu(i
, online_mask
))
1896 hctx_idx
= q
->mq_map
[i
];
1897 /* unmapped hw queue can be remapped after CPU topo changed */
1898 if (!set
->tags
[hctx_idx
]) {
1899 set
->tags
[hctx_idx
] = blk_mq_init_rq_map(set
, hctx_idx
);
1902 * If tags initialization fail for some hctx,
1903 * that hctx won't be brought online. In this
1904 * case, remap the current ctx to hctx[0] which
1905 * is guaranteed to always have tags allocated
1907 if (!set
->tags
[hctx_idx
])
1911 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1912 hctx
= blk_mq_map_queue(q
, i
);
1914 cpumask_set_cpu(i
, hctx
->cpumask
);
1915 ctx
->index_hw
= hctx
->nr_ctx
;
1916 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1919 mutex_unlock(&q
->sysfs_lock
);
1921 queue_for_each_hw_ctx(q
, hctx
, i
) {
1923 * If no software queues are mapped to this hardware queue,
1924 * disable it and free the request entries.
1926 if (!hctx
->nr_ctx
) {
1927 /* Never unmap queue 0. We need it as a
1928 * fallback in case of a new remap fails
1931 if (i
&& set
->tags
[i
]) {
1932 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1933 set
->tags
[i
] = NULL
;
1939 hctx
->tags
= set
->tags
[i
];
1940 WARN_ON(!hctx
->tags
);
1943 * Set the map size to the number of mapped software queues.
1944 * This is more accurate and more efficient than looping
1945 * over all possibly mapped software queues.
1947 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
1950 * Initialize batch roundrobin counts
1952 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1953 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1957 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
1959 struct blk_mq_hw_ctx
*hctx
;
1962 queue_for_each_hw_ctx(q
, hctx
, i
) {
1964 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1966 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1970 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
, bool shared
)
1972 struct request_queue
*q
;
1974 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1975 blk_mq_freeze_queue(q
);
1976 queue_set_hctx_shared(q
, shared
);
1977 blk_mq_unfreeze_queue(q
);
1981 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1983 struct blk_mq_tag_set
*set
= q
->tag_set
;
1985 mutex_lock(&set
->tag_list_lock
);
1986 list_del_init(&q
->tag_set_list
);
1987 if (list_is_singular(&set
->tag_list
)) {
1988 /* just transitioned to unshared */
1989 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1990 /* update existing queue */
1991 blk_mq_update_tag_set_depth(set
, false);
1993 mutex_unlock(&set
->tag_list_lock
);
1996 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1997 struct request_queue
*q
)
2001 mutex_lock(&set
->tag_list_lock
);
2003 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2004 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2005 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2006 /* update existing queue */
2007 blk_mq_update_tag_set_depth(set
, true);
2009 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2010 queue_set_hctx_shared(q
, true);
2011 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
2013 mutex_unlock(&set
->tag_list_lock
);
2017 * It is the actual release handler for mq, but we do it from
2018 * request queue's release handler for avoiding use-after-free
2019 * and headache because q->mq_kobj shouldn't have been introduced,
2020 * but we can't group ctx/kctx kobj without it.
2022 void blk_mq_release(struct request_queue
*q
)
2024 struct blk_mq_hw_ctx
*hctx
;
2027 /* hctx kobj stays in hctx */
2028 queue_for_each_hw_ctx(q
, hctx
, i
) {
2037 kfree(q
->queue_hw_ctx
);
2039 /* ctx kobj stays in queue_ctx */
2040 free_percpu(q
->queue_ctx
);
2043 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2045 struct request_queue
*uninit_q
, *q
;
2047 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2049 return ERR_PTR(-ENOMEM
);
2051 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2053 blk_cleanup_queue(uninit_q
);
2057 EXPORT_SYMBOL(blk_mq_init_queue
);
2059 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2060 struct request_queue
*q
)
2063 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2065 blk_mq_sysfs_unregister(q
);
2066 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2072 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2073 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
2078 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2085 atomic_set(&hctxs
[i
]->nr_active
, 0);
2086 hctxs
[i
]->numa_node
= node
;
2087 hctxs
[i
]->queue_num
= i
;
2089 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2090 free_cpumask_var(hctxs
[i
]->cpumask
);
2095 blk_mq_hctx_kobj_init(hctxs
[i
]);
2097 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2098 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2102 blk_mq_free_rq_map(set
, hctx
->tags
, j
);
2103 set
->tags
[j
] = NULL
;
2105 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2106 free_cpumask_var(hctx
->cpumask
);
2107 kobject_put(&hctx
->kobj
);
2114 q
->nr_hw_queues
= i
;
2115 blk_mq_sysfs_register(q
);
2118 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2119 struct request_queue
*q
)
2121 /* mark the queue as mq asap */
2122 q
->mq_ops
= set
->ops
;
2124 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2128 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2129 GFP_KERNEL
, set
->numa_node
);
2130 if (!q
->queue_hw_ctx
)
2133 q
->mq_map
= set
->mq_map
;
2135 blk_mq_realloc_hw_ctxs(set
, q
);
2136 if (!q
->nr_hw_queues
)
2139 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2140 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2142 q
->nr_queues
= nr_cpu_ids
;
2144 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2146 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2147 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2149 q
->sg_reserved_size
= INT_MAX
;
2151 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2152 INIT_LIST_HEAD(&q
->requeue_list
);
2153 spin_lock_init(&q
->requeue_lock
);
2155 if (q
->nr_hw_queues
> 1)
2156 blk_queue_make_request(q
, blk_mq_make_request
);
2158 blk_queue_make_request(q
, blk_sq_make_request
);
2161 * Do this after blk_queue_make_request() overrides it...
2163 q
->nr_requests
= set
->queue_depth
;
2166 * Default to classic polling
2170 if (set
->ops
->complete
)
2171 blk_queue_softirq_done(q
, set
->ops
->complete
);
2173 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2176 mutex_lock(&all_q_mutex
);
2178 list_add_tail(&q
->all_q_node
, &all_q_list
);
2179 blk_mq_add_queue_tag_set(set
, q
);
2180 blk_mq_map_swqueue(q
, cpu_online_mask
);
2182 mutex_unlock(&all_q_mutex
);
2188 kfree(q
->queue_hw_ctx
);
2190 free_percpu(q
->queue_ctx
);
2193 return ERR_PTR(-ENOMEM
);
2195 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2197 void blk_mq_free_queue(struct request_queue
*q
)
2199 struct blk_mq_tag_set
*set
= q
->tag_set
;
2201 mutex_lock(&all_q_mutex
);
2202 list_del_init(&q
->all_q_node
);
2203 mutex_unlock(&all_q_mutex
);
2207 blk_mq_del_queue_tag_set(q
);
2209 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2210 blk_mq_free_hw_queues(q
, set
);
2213 /* Basically redo blk_mq_init_queue with queue frozen */
2214 static void blk_mq_queue_reinit(struct request_queue
*q
,
2215 const struct cpumask
*online_mask
)
2217 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2219 blk_mq_sysfs_unregister(q
);
2222 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2223 * we should change hctx numa_node according to new topology (this
2224 * involves free and re-allocate memory, worthy doing?)
2227 blk_mq_map_swqueue(q
, online_mask
);
2229 blk_mq_sysfs_register(q
);
2233 * New online cpumask which is going to be set in this hotplug event.
2234 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2235 * one-by-one and dynamically allocating this could result in a failure.
2237 static struct cpumask cpuhp_online_new
;
2239 static void blk_mq_queue_reinit_work(void)
2241 struct request_queue
*q
;
2243 mutex_lock(&all_q_mutex
);
2245 * We need to freeze and reinit all existing queues. Freezing
2246 * involves synchronous wait for an RCU grace period and doing it
2247 * one by one may take a long time. Start freezing all queues in
2248 * one swoop and then wait for the completions so that freezing can
2249 * take place in parallel.
2251 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2252 blk_mq_freeze_queue_start(q
);
2253 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2254 blk_mq_freeze_queue_wait(q
);
2256 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2257 blk_mq_queue_reinit(q
, &cpuhp_online_new
);
2259 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2260 blk_mq_unfreeze_queue(q
);
2262 mutex_unlock(&all_q_mutex
);
2265 static int blk_mq_queue_reinit_dead(unsigned int cpu
)
2267 cpumask_copy(&cpuhp_online_new
, cpu_online_mask
);
2268 blk_mq_queue_reinit_work();
2273 * Before hotadded cpu starts handling requests, new mappings must be
2274 * established. Otherwise, these requests in hw queue might never be
2277 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2278 * for CPU0, and ctx1 for CPU1).
2280 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2281 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2283 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2284 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2285 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2288 static int blk_mq_queue_reinit_prepare(unsigned int cpu
)
2290 cpumask_copy(&cpuhp_online_new
, cpu_online_mask
);
2291 cpumask_set_cpu(cpu
, &cpuhp_online_new
);
2292 blk_mq_queue_reinit_work();
2296 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2300 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2301 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2310 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2316 * Allocate the request maps associated with this tag_set. Note that this
2317 * may reduce the depth asked for, if memory is tight. set->queue_depth
2318 * will be updated to reflect the allocated depth.
2320 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2325 depth
= set
->queue_depth
;
2327 err
= __blk_mq_alloc_rq_maps(set
);
2331 set
->queue_depth
>>= 1;
2332 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2336 } while (set
->queue_depth
);
2338 if (!set
->queue_depth
|| err
) {
2339 pr_err("blk-mq: failed to allocate request map\n");
2343 if (depth
!= set
->queue_depth
)
2344 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2345 depth
, set
->queue_depth
);
2351 * Alloc a tag set to be associated with one or more request queues.
2352 * May fail with EINVAL for various error conditions. May adjust the
2353 * requested depth down, if if it too large. In that case, the set
2354 * value will be stored in set->queue_depth.
2356 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2360 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2362 if (!set
->nr_hw_queues
)
2364 if (!set
->queue_depth
)
2366 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2369 if (!set
->ops
->queue_rq
)
2372 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2373 pr_info("blk-mq: reduced tag depth to %u\n",
2375 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2379 * If a crashdump is active, then we are potentially in a very
2380 * memory constrained environment. Limit us to 1 queue and
2381 * 64 tags to prevent using too much memory.
2383 if (is_kdump_kernel()) {
2384 set
->nr_hw_queues
= 1;
2385 set
->queue_depth
= min(64U, set
->queue_depth
);
2388 * There is no use for more h/w queues than cpus.
2390 if (set
->nr_hw_queues
> nr_cpu_ids
)
2391 set
->nr_hw_queues
= nr_cpu_ids
;
2393 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2394 GFP_KERNEL
, set
->numa_node
);
2399 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2400 GFP_KERNEL
, set
->numa_node
);
2404 if (set
->ops
->map_queues
)
2405 ret
= set
->ops
->map_queues(set
);
2407 ret
= blk_mq_map_queues(set
);
2409 goto out_free_mq_map
;
2411 ret
= blk_mq_alloc_rq_maps(set
);
2413 goto out_free_mq_map
;
2415 mutex_init(&set
->tag_list_lock
);
2416 INIT_LIST_HEAD(&set
->tag_list
);
2428 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2430 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2434 for (i
= 0; i
< nr_cpu_ids
; i
++) {
2436 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2445 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2447 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2449 struct blk_mq_tag_set
*set
= q
->tag_set
;
2450 struct blk_mq_hw_ctx
*hctx
;
2453 if (!set
|| nr
> set
->queue_depth
)
2457 queue_for_each_hw_ctx(q
, hctx
, i
) {
2460 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2466 q
->nr_requests
= nr
;
2471 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2473 struct request_queue
*q
;
2475 if (nr_hw_queues
> nr_cpu_ids
)
2476 nr_hw_queues
= nr_cpu_ids
;
2477 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2480 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2481 blk_mq_freeze_queue(q
);
2483 set
->nr_hw_queues
= nr_hw_queues
;
2484 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2485 blk_mq_realloc_hw_ctxs(set
, q
);
2487 if (q
->nr_hw_queues
> 1)
2488 blk_queue_make_request(q
, blk_mq_make_request
);
2490 blk_queue_make_request(q
, blk_sq_make_request
);
2492 blk_mq_queue_reinit(q
, cpu_online_mask
);
2495 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2496 blk_mq_unfreeze_queue(q
);
2498 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2500 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
2501 struct blk_mq_hw_ctx
*hctx
,
2504 struct blk_rq_stat stat
[2];
2505 unsigned long ret
= 0;
2508 * If stats collection isn't on, don't sleep but turn it on for
2511 if (!blk_stat_enable(q
))
2515 * We don't have to do this once per IO, should optimize this
2516 * to just use the current window of stats until it changes
2518 memset(&stat
, 0, sizeof(stat
));
2519 blk_hctx_stat_get(hctx
, stat
);
2522 * As an optimistic guess, use half of the mean service time
2523 * for this type of request. We can (and should) make this smarter.
2524 * For instance, if the completion latencies are tight, we can
2525 * get closer than just half the mean. This is especially
2526 * important on devices where the completion latencies are longer
2529 if (req_op(rq
) == REQ_OP_READ
&& stat
[BLK_STAT_READ
].nr_samples
)
2530 ret
= (stat
[BLK_STAT_READ
].mean
+ 1) / 2;
2531 else if (req_op(rq
) == REQ_OP_WRITE
&& stat
[BLK_STAT_WRITE
].nr_samples
)
2532 ret
= (stat
[BLK_STAT_WRITE
].mean
+ 1) / 2;
2537 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
2538 struct blk_mq_hw_ctx
*hctx
,
2541 struct hrtimer_sleeper hs
;
2542 enum hrtimer_mode mode
;
2546 if (test_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
))
2552 * -1: don't ever hybrid sleep
2553 * 0: use half of prev avg
2554 * >0: use this specific value
2556 if (q
->poll_nsec
== -1)
2558 else if (q
->poll_nsec
> 0)
2559 nsecs
= q
->poll_nsec
;
2561 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
2566 set_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
2569 * This will be replaced with the stats tracking code, using
2570 * 'avg_completion_time / 2' as the pre-sleep target.
2574 mode
= HRTIMER_MODE_REL
;
2575 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
2576 hrtimer_set_expires(&hs
.timer
, kt
);
2578 hrtimer_init_sleeper(&hs
, current
);
2580 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
2582 set_current_state(TASK_UNINTERRUPTIBLE
);
2583 hrtimer_start_expires(&hs
.timer
, mode
);
2586 hrtimer_cancel(&hs
.timer
);
2587 mode
= HRTIMER_MODE_ABS
;
2588 } while (hs
.task
&& !signal_pending(current
));
2590 __set_current_state(TASK_RUNNING
);
2591 destroy_hrtimer_on_stack(&hs
.timer
);
2595 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
2597 struct request_queue
*q
= hctx
->queue
;
2601 * If we sleep, have the caller restart the poll loop to reset
2602 * the state. Like for the other success return cases, the
2603 * caller is responsible for checking if the IO completed. If
2604 * the IO isn't complete, we'll get called again and will go
2605 * straight to the busy poll loop.
2607 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
2610 hctx
->poll_considered
++;
2612 state
= current
->state
;
2613 while (!need_resched()) {
2616 hctx
->poll_invoked
++;
2618 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
2620 hctx
->poll_success
++;
2621 set_current_state(TASK_RUNNING
);
2625 if (signal_pending_state(state
, current
))
2626 set_current_state(TASK_RUNNING
);
2628 if (current
->state
== TASK_RUNNING
)
2638 bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
2640 struct blk_mq_hw_ctx
*hctx
;
2641 struct blk_plug
*plug
;
2644 if (!q
->mq_ops
|| !q
->mq_ops
->poll
|| !blk_qc_t_valid(cookie
) ||
2645 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
2648 plug
= current
->plug
;
2650 blk_flush_plug_list(plug
, false);
2652 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
2653 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
2655 return __blk_mq_poll(hctx
, rq
);
2657 EXPORT_SYMBOL_GPL(blk_mq_poll
);
2659 void blk_mq_disable_hotplug(void)
2661 mutex_lock(&all_q_mutex
);
2664 void blk_mq_enable_hotplug(void)
2666 mutex_unlock(&all_q_mutex
);
2669 static int __init
blk_mq_init(void)
2671 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
2672 blk_mq_hctx_notify_dead
);
2674 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE
, "block/mq:prepare",
2675 blk_mq_queue_reinit_prepare
,
2676 blk_mq_queue_reinit_dead
);
2679 subsys_initcall(blk_mq_init
);