2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
53 #include <asm/cacheflush.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
59 #include <asm/debugreg.h>
63 void jprobe_return_end(void);
65 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
66 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
77 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 * Groups, and some special opcodes can not boost.
79 * This is non-const and volatile to keep gcc from statically
80 * optimizing it out, as variable_test_bit makes gcc think only
81 * *(unsigned long*) is used.
83 static volatile u32 twobyte_is_boostable
[256 / 32] = {
84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
85 /* ---------------------------------------------- */
86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
102 /* ----------------------------------------------- */
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107 struct kretprobe_blackpoint kretprobe_blacklist
[] = {
108 {"__switch_to", }, /* This function switches only current task, but
109 doesn't switch kernel stack.*/
110 {NULL
, NULL
} /* Terminator */
113 const int kretprobe_blacklist_size
= ARRAY_SIZE(kretprobe_blacklist
);
115 static void __kprobes
__synthesize_relative_insn(void *from
, void *to
, u8 op
)
117 struct __arch_relative_insn
{
122 insn
= (struct __arch_relative_insn
*)from
;
123 insn
->raddr
= (s32
)((long)(to
) - ((long)(from
) + 5));
127 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
128 void __kprobes
synthesize_reljump(void *from
, void *to
)
130 __synthesize_relative_insn(from
, to
, RELATIVEJUMP_OPCODE
);
133 /* Insert a call instruction at address 'from', which calls address 'to'.*/
134 void __kprobes
synthesize_relcall(void *from
, void *to
)
136 __synthesize_relative_insn(from
, to
, RELATIVECALL_OPCODE
);
140 * Skip the prefixes of the instruction.
142 static kprobe_opcode_t
*__kprobes
skip_prefixes(kprobe_opcode_t
*insn
)
146 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
147 while (inat_is_legacy_prefix(attr
)) {
149 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
152 if (inat_is_rex_prefix(attr
))
159 * Returns non-zero if opcode is boostable.
160 * RIP relative instructions are adjusted at copying time in 64 bits mode
162 int __kprobes
can_boost(kprobe_opcode_t
*opcodes
)
164 kprobe_opcode_t opcode
;
165 kprobe_opcode_t
*orig_opcodes
= opcodes
;
167 if (search_exception_tables((unsigned long)opcodes
))
168 return 0; /* Page fault may occur on this address. */
171 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
173 opcode
= *(opcodes
++);
175 /* 2nd-byte opcode */
176 if (opcode
== 0x0f) {
177 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
179 return test_bit(*opcodes
,
180 (unsigned long *)twobyte_is_boostable
);
183 switch (opcode
& 0xf0) {
186 goto retry
; /* REX prefix is boostable */
189 if (0x63 < opcode
&& opcode
< 0x67)
190 goto retry
; /* prefixes */
191 /* can't boost Address-size override and bound */
192 return (opcode
!= 0x62 && opcode
!= 0x67);
194 return 0; /* can't boost conditional jump */
196 /* can't boost software-interruptions */
197 return (0xc1 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
199 /* can boost AA* and XLAT */
200 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
202 /* can boost in/out and absolute jmps */
203 return ((opcode
& 0x04) || opcode
== 0xea);
205 if ((opcode
& 0x0c) == 0 && opcode
!= 0xf1)
206 goto retry
; /* lock/rep(ne) prefix */
207 /* clear and set flags are boostable */
208 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
210 /* segment override prefixes are boostable */
211 if (opcode
== 0x26 || opcode
== 0x36 || opcode
== 0x3e)
212 goto retry
; /* prefixes */
213 /* CS override prefix and call are not boostable */
214 return (opcode
!= 0x2e && opcode
!= 0x9a);
219 __recover_probed_insn(kprobe_opcode_t
*buf
, unsigned long addr
)
223 kp
= get_kprobe((void *)addr
);
224 /* There is no probe, return original address */
229 * Basically, kp->ainsn.insn has an original instruction.
230 * However, RIP-relative instruction can not do single-stepping
231 * at different place, __copy_instruction() tweaks the displacement of
232 * that instruction. In that case, we can't recover the instruction
233 * from the kp->ainsn.insn.
235 * On the other hand, kp->opcode has a copy of the first byte of
236 * the probed instruction, which is overwritten by int3. And
237 * the instruction at kp->addr is not modified by kprobes except
238 * for the first byte, we can recover the original instruction
239 * from it and kp->opcode.
241 memcpy(buf
, kp
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
243 return (unsigned long)buf
;
247 * Recover the probed instruction at addr for further analysis.
248 * Caller must lock kprobes by kprobe_mutex, or disable preemption
249 * for preventing to release referencing kprobes.
251 unsigned long recover_probed_instruction(kprobe_opcode_t
*buf
, unsigned long addr
)
253 unsigned long __addr
;
255 __addr
= __recover_optprobed_insn(buf
, addr
);
259 return __recover_probed_insn(buf
, addr
);
262 /* Check if paddr is at an instruction boundary */
263 static int __kprobes
can_probe(unsigned long paddr
)
265 unsigned long addr
, __addr
, offset
= 0;
267 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
269 if (!kallsyms_lookup_size_offset(paddr
, NULL
, &offset
))
272 /* Decode instructions */
273 addr
= paddr
- offset
;
274 while (addr
< paddr
) {
276 * Check if the instruction has been modified by another
277 * kprobe, in which case we replace the breakpoint by the
278 * original instruction in our buffer.
279 * Also, jump optimization will change the breakpoint to
280 * relative-jump. Since the relative-jump itself is
281 * normally used, we just go through if there is no kprobe.
283 __addr
= recover_probed_instruction(buf
, addr
);
284 kernel_insn_init(&insn
, (void *)__addr
);
285 insn_get_length(&insn
);
288 * Another debugging subsystem might insert this breakpoint.
289 * In that case, we can't recover it.
291 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
296 return (addr
== paddr
);
300 * Returns non-zero if opcode modifies the interrupt flag.
302 static int __kprobes
is_IF_modifier(kprobe_opcode_t
*insn
)
305 insn
= skip_prefixes(insn
);
310 case 0xcf: /* iret/iretd */
311 case 0x9d: /* popf/popfd */
319 * Copy an instruction and adjust the displacement if the instruction
320 * uses the %rip-relative addressing mode.
321 * If it does, Return the address of the 32-bit displacement word.
322 * If not, return null.
323 * Only applicable to 64-bit x86.
325 int __kprobes
__copy_instruction(u8
*dest
, u8
*src
)
328 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
330 kernel_insn_init(&insn
, (void *)recover_probed_instruction(buf
, (unsigned long)src
));
331 insn_get_length(&insn
);
332 /* Another subsystem puts a breakpoint, failed to recover */
333 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
335 memcpy(dest
, insn
.kaddr
, insn
.length
);
338 if (insn_rip_relative(&insn
)) {
341 kernel_insn_init(&insn
, dest
);
342 insn_get_displacement(&insn
);
344 * The copied instruction uses the %rip-relative addressing
345 * mode. Adjust the displacement for the difference between
346 * the original location of this instruction and the location
347 * of the copy that will actually be run. The tricky bit here
348 * is making sure that the sign extension happens correctly in
349 * this calculation, since we need a signed 32-bit result to
350 * be sign-extended to 64 bits when it's added to the %rip
351 * value and yield the same 64-bit result that the sign-
352 * extension of the original signed 32-bit displacement would
355 newdisp
= (u8
*) src
+ (s64
) insn
.displacement
.value
- (u8
*) dest
;
356 BUG_ON((s64
) (s32
) newdisp
!= newdisp
); /* Sanity check. */
357 disp
= (u8
*) dest
+ insn_offset_displacement(&insn
);
358 *(s32
*) disp
= (s32
) newdisp
;
364 static void __kprobes
arch_copy_kprobe(struct kprobe
*p
)
366 /* Copy an instruction with recovering if other optprobe modifies it.*/
367 __copy_instruction(p
->ainsn
.insn
, p
->addr
);
370 * __copy_instruction can modify the displacement of the instruction,
371 * but it doesn't affect boostable check.
373 if (can_boost(p
->ainsn
.insn
))
374 p
->ainsn
.boostable
= 0;
376 p
->ainsn
.boostable
= -1;
378 /* Also, displacement change doesn't affect the first byte */
379 p
->opcode
= p
->ainsn
.insn
[0];
382 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
384 if (alternatives_text_reserved(p
->addr
, p
->addr
))
387 if (!can_probe((unsigned long)p
->addr
))
389 /* insn: must be on special executable page on x86. */
390 p
->ainsn
.insn
= get_insn_slot();
397 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
399 text_poke(p
->addr
, ((unsigned char []){BREAKPOINT_INSTRUCTION
}), 1);
402 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
404 text_poke(p
->addr
, &p
->opcode
, 1);
407 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
410 free_insn_slot(p
->ainsn
.insn
, (p
->ainsn
.boostable
== 1));
411 p
->ainsn
.insn
= NULL
;
415 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
417 kcb
->prev_kprobe
.kp
= kprobe_running();
418 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
419 kcb
->prev_kprobe
.old_flags
= kcb
->kprobe_old_flags
;
420 kcb
->prev_kprobe
.saved_flags
= kcb
->kprobe_saved_flags
;
423 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
425 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
426 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
427 kcb
->kprobe_old_flags
= kcb
->prev_kprobe
.old_flags
;
428 kcb
->kprobe_saved_flags
= kcb
->prev_kprobe
.saved_flags
;
431 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
432 struct kprobe_ctlblk
*kcb
)
434 __this_cpu_write(current_kprobe
, p
);
435 kcb
->kprobe_saved_flags
= kcb
->kprobe_old_flags
436 = (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
437 if (is_IF_modifier(p
->ainsn
.insn
))
438 kcb
->kprobe_saved_flags
&= ~X86_EFLAGS_IF
;
441 static void __kprobes
clear_btf(void)
443 if (test_thread_flag(TIF_BLOCKSTEP
)) {
444 unsigned long debugctl
= get_debugctlmsr();
446 debugctl
&= ~DEBUGCTLMSR_BTF
;
447 update_debugctlmsr(debugctl
);
451 static void __kprobes
restore_btf(void)
453 if (test_thread_flag(TIF_BLOCKSTEP
)) {
454 unsigned long debugctl
= get_debugctlmsr();
456 debugctl
|= DEBUGCTLMSR_BTF
;
457 update_debugctlmsr(debugctl
);
462 arch_prepare_kretprobe(struct kretprobe_instance
*ri
, struct pt_regs
*regs
)
464 unsigned long *sara
= stack_addr(regs
);
466 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
468 /* Replace the return addr with trampoline addr */
469 *sara
= (unsigned long) &kretprobe_trampoline
;
472 static void __kprobes
473 setup_singlestep(struct kprobe
*p
, struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
, int reenter
)
475 if (setup_detour_execution(p
, regs
, reenter
))
478 #if !defined(CONFIG_PREEMPT)
479 if (p
->ainsn
.boostable
== 1 && !p
->post_handler
) {
480 /* Boost up -- we can execute copied instructions directly */
482 reset_current_kprobe();
484 * Reentering boosted probe doesn't reset current_kprobe,
485 * nor set current_kprobe, because it doesn't use single
488 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
489 preempt_enable_no_resched();
494 save_previous_kprobe(kcb
);
495 set_current_kprobe(p
, regs
, kcb
);
496 kcb
->kprobe_status
= KPROBE_REENTER
;
498 kcb
->kprobe_status
= KPROBE_HIT_SS
;
499 /* Prepare real single stepping */
501 regs
->flags
|= X86_EFLAGS_TF
;
502 regs
->flags
&= ~X86_EFLAGS_IF
;
503 /* single step inline if the instruction is an int3 */
504 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
505 regs
->ip
= (unsigned long)p
->addr
;
507 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
511 * We have reentered the kprobe_handler(), since another probe was hit while
512 * within the handler. We save the original kprobes variables and just single
513 * step on the instruction of the new probe without calling any user handlers.
516 reenter_kprobe(struct kprobe
*p
, struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
518 switch (kcb
->kprobe_status
) {
519 case KPROBE_HIT_SSDONE
:
520 case KPROBE_HIT_ACTIVE
:
521 kprobes_inc_nmissed_count(p
);
522 setup_singlestep(p
, regs
, kcb
, 1);
525 /* A probe has been hit in the codepath leading up to, or just
526 * after, single-stepping of a probed instruction. This entire
527 * codepath should strictly reside in .kprobes.text section.
528 * Raise a BUG or we'll continue in an endless reentering loop
529 * and eventually a stack overflow.
531 printk(KERN_WARNING
"Unrecoverable kprobe detected at %p.\n",
536 /* impossible cases */
545 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
546 * remain disabled throughout this function.
548 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
550 kprobe_opcode_t
*addr
;
552 struct kprobe_ctlblk
*kcb
;
554 addr
= (kprobe_opcode_t
*)(regs
->ip
- sizeof(kprobe_opcode_t
));
556 * We don't want to be preempted for the entire
557 * duration of kprobe processing. We conditionally
558 * re-enable preemption at the end of this function,
559 * and also in reenter_kprobe() and setup_singlestep().
563 kcb
= get_kprobe_ctlblk();
564 p
= get_kprobe(addr
);
567 if (kprobe_running()) {
568 if (reenter_kprobe(p
, regs
, kcb
))
571 set_current_kprobe(p
, regs
, kcb
);
572 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
575 * If we have no pre-handler or it returned 0, we
576 * continue with normal processing. If we have a
577 * pre-handler and it returned non-zero, it prepped
578 * for calling the break_handler below on re-entry
579 * for jprobe processing, so get out doing nothing
582 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
))
583 setup_singlestep(p
, regs
, kcb
, 0);
586 } else if (*addr
!= BREAKPOINT_INSTRUCTION
) {
588 * The breakpoint instruction was removed right
589 * after we hit it. Another cpu has removed
590 * either a probepoint or a debugger breakpoint
591 * at this address. In either case, no further
592 * handling of this interrupt is appropriate.
593 * Back up over the (now missing) int3 and run
594 * the original instruction.
596 regs
->ip
= (unsigned long)addr
;
597 preempt_enable_no_resched();
599 } else if (kprobe_running()) {
600 p
= __this_cpu_read(current_kprobe
);
601 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
602 if (!skip_singlestep(p
, regs
, kcb
))
603 setup_singlestep(p
, regs
, kcb
, 0);
606 } /* else: not a kprobe fault; let the kernel handle it */
608 preempt_enable_no_resched();
613 * When a retprobed function returns, this code saves registers and
614 * calls trampoline_handler() runs, which calls the kretprobe's handler.
616 static void __used __kprobes
kretprobe_trampoline_holder(void)
619 ".global kretprobe_trampoline\n"
620 "kretprobe_trampoline: \n"
622 /* We don't bother saving the ss register */
627 " call trampoline_handler\n"
628 /* Replace saved sp with true return address. */
629 " movq %rax, 152(%rsp)\n"
636 " call trampoline_handler\n"
637 /* Move flags to cs */
638 " movl 56(%esp), %edx\n"
639 " movl %edx, 52(%esp)\n"
640 /* Replace saved flags with true return address. */
641 " movl %eax, 56(%esp)\n"
649 * Called from kretprobe_trampoline
651 static __used __kprobes
void *trampoline_handler(struct pt_regs
*regs
)
653 struct kretprobe_instance
*ri
= NULL
;
654 struct hlist_head
*head
, empty_rp
;
655 struct hlist_node
*tmp
;
656 unsigned long flags
, orig_ret_address
= 0;
657 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
658 kprobe_opcode_t
*correct_ret_addr
= NULL
;
660 INIT_HLIST_HEAD(&empty_rp
);
661 kretprobe_hash_lock(current
, &head
, &flags
);
662 /* fixup registers */
664 regs
->cs
= __KERNEL_CS
;
666 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
669 regs
->ip
= trampoline_address
;
670 regs
->orig_ax
= ~0UL;
673 * It is possible to have multiple instances associated with a given
674 * task either because multiple functions in the call path have
675 * return probes installed on them, and/or more than one
676 * return probe was registered for a target function.
678 * We can handle this because:
679 * - instances are always pushed into the head of the list
680 * - when multiple return probes are registered for the same
681 * function, the (chronologically) first instance's ret_addr
682 * will be the real return address, and all the rest will
683 * point to kretprobe_trampoline.
685 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
686 if (ri
->task
!= current
)
687 /* another task is sharing our hash bucket */
690 orig_ret_address
= (unsigned long)ri
->ret_addr
;
692 if (orig_ret_address
!= trampoline_address
)
694 * This is the real return address. Any other
695 * instances associated with this task are for
696 * other calls deeper on the call stack
701 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
703 correct_ret_addr
= ri
->ret_addr
;
704 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
705 if (ri
->task
!= current
)
706 /* another task is sharing our hash bucket */
709 orig_ret_address
= (unsigned long)ri
->ret_addr
;
710 if (ri
->rp
&& ri
->rp
->handler
) {
711 __this_cpu_write(current_kprobe
, &ri
->rp
->kp
);
712 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
713 ri
->ret_addr
= correct_ret_addr
;
714 ri
->rp
->handler(ri
, regs
);
715 __this_cpu_write(current_kprobe
, NULL
);
718 recycle_rp_inst(ri
, &empty_rp
);
720 if (orig_ret_address
!= trampoline_address
)
722 * This is the real return address. Any other
723 * instances associated with this task are for
724 * other calls deeper on the call stack
729 kretprobe_hash_unlock(current
, &flags
);
731 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
732 hlist_del(&ri
->hlist
);
735 return (void *)orig_ret_address
;
739 * Called after single-stepping. p->addr is the address of the
740 * instruction whose first byte has been replaced by the "int 3"
741 * instruction. To avoid the SMP problems that can occur when we
742 * temporarily put back the original opcode to single-step, we
743 * single-stepped a copy of the instruction. The address of this
744 * copy is p->ainsn.insn.
746 * This function prepares to return from the post-single-step
747 * interrupt. We have to fix up the stack as follows:
749 * 0) Except in the case of absolute or indirect jump or call instructions,
750 * the new ip is relative to the copied instruction. We need to make
751 * it relative to the original instruction.
753 * 1) If the single-stepped instruction was pushfl, then the TF and IF
754 * flags are set in the just-pushed flags, and may need to be cleared.
756 * 2) If the single-stepped instruction was a call, the return address
757 * that is atop the stack is the address following the copied instruction.
758 * We need to make it the address following the original instruction.
760 * If this is the first time we've single-stepped the instruction at
761 * this probepoint, and the instruction is boostable, boost it: add a
762 * jump instruction after the copied instruction, that jumps to the next
763 * instruction after the probepoint.
765 static void __kprobes
766 resume_execution(struct kprobe
*p
, struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
768 unsigned long *tos
= stack_addr(regs
);
769 unsigned long copy_ip
= (unsigned long)p
->ainsn
.insn
;
770 unsigned long orig_ip
= (unsigned long)p
->addr
;
771 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
774 insn
= skip_prefixes(insn
);
776 regs
->flags
&= ~X86_EFLAGS_TF
;
778 case 0x9c: /* pushfl */
779 *tos
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_IF
);
780 *tos
|= kcb
->kprobe_old_flags
;
782 case 0xc2: /* iret/ret/lret */
787 case 0xea: /* jmp absolute -- ip is correct */
788 /* ip is already adjusted, no more changes required */
789 p
->ainsn
.boostable
= 1;
791 case 0xe8: /* call relative - Fix return addr */
792 *tos
= orig_ip
+ (*tos
- copy_ip
);
795 case 0x9a: /* call absolute -- same as call absolute, indirect */
796 *tos
= orig_ip
+ (*tos
- copy_ip
);
800 if ((insn
[1] & 0x30) == 0x10) {
802 * call absolute, indirect
803 * Fix return addr; ip is correct.
804 * But this is not boostable
806 *tos
= orig_ip
+ (*tos
- copy_ip
);
808 } else if (((insn
[1] & 0x31) == 0x20) ||
809 ((insn
[1] & 0x31) == 0x21)) {
811 * jmp near and far, absolute indirect
812 * ip is correct. And this is boostable
814 p
->ainsn
.boostable
= 1;
821 if (p
->ainsn
.boostable
== 0) {
822 if ((regs
->ip
> copy_ip
) &&
823 (regs
->ip
- copy_ip
) + 5 < MAX_INSN_SIZE
) {
825 * These instructions can be executed directly if it
826 * jumps back to correct address.
828 synthesize_reljump((void *)regs
->ip
,
829 (void *)orig_ip
+ (regs
->ip
- copy_ip
));
830 p
->ainsn
.boostable
= 1;
832 p
->ainsn
.boostable
= -1;
836 regs
->ip
+= orig_ip
- copy_ip
;
843 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
844 * remain disabled throughout this function.
846 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
848 struct kprobe
*cur
= kprobe_running();
849 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
854 resume_execution(cur
, regs
, kcb
);
855 regs
->flags
|= kcb
->kprobe_saved_flags
;
857 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
858 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
859 cur
->post_handler(cur
, regs
, 0);
862 /* Restore back the original saved kprobes variables and continue. */
863 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
864 restore_previous_kprobe(kcb
);
867 reset_current_kprobe();
869 preempt_enable_no_resched();
872 * if somebody else is singlestepping across a probe point, flags
873 * will have TF set, in which case, continue the remaining processing
874 * of do_debug, as if this is not a probe hit.
876 if (regs
->flags
& X86_EFLAGS_TF
)
882 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
884 struct kprobe
*cur
= kprobe_running();
885 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
887 switch (kcb
->kprobe_status
) {
891 * We are here because the instruction being single
892 * stepped caused a page fault. We reset the current
893 * kprobe and the ip points back to the probe address
894 * and allow the page fault handler to continue as a
897 regs
->ip
= (unsigned long)cur
->addr
;
898 regs
->flags
|= kcb
->kprobe_old_flags
;
899 if (kcb
->kprobe_status
== KPROBE_REENTER
)
900 restore_previous_kprobe(kcb
);
902 reset_current_kprobe();
903 preempt_enable_no_resched();
905 case KPROBE_HIT_ACTIVE
:
906 case KPROBE_HIT_SSDONE
:
908 * We increment the nmissed count for accounting,
909 * we can also use npre/npostfault count for accounting
910 * these specific fault cases.
912 kprobes_inc_nmissed_count(cur
);
915 * We come here because instructions in the pre/post
916 * handler caused the page_fault, this could happen
917 * if handler tries to access user space by
918 * copy_from_user(), get_user() etc. Let the
919 * user-specified handler try to fix it first.
921 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
925 * In case the user-specified fault handler returned
926 * zero, try to fix up.
928 if (fixup_exception(regs
))
932 * fixup routine could not handle it,
933 * Let do_page_fault() fix it.
943 * Wrapper routine for handling exceptions.
946 kprobe_exceptions_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
948 struct die_args
*args
= data
;
949 int ret
= NOTIFY_DONE
;
951 if (args
->regs
&& user_mode_vm(args
->regs
))
956 if (kprobe_handler(args
->regs
))
960 if (post_kprobe_handler(args
->regs
)) {
962 * Reset the BS bit in dr6 (pointed by args->err) to
963 * denote completion of processing
965 (*(unsigned long *)ERR_PTR(args
->err
)) &= ~DR_STEP
;
971 * To be potentially processing a kprobe fault and to
972 * trust the result from kprobe_running(), we have
973 * be non-preemptible.
975 if (!preemptible() && kprobe_running() &&
976 kprobe_fault_handler(args
->regs
, args
->trapnr
))
985 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
987 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
989 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
991 kcb
->jprobe_saved_regs
= *regs
;
992 kcb
->jprobe_saved_sp
= stack_addr(regs
);
993 addr
= (unsigned long)(kcb
->jprobe_saved_sp
);
996 * As Linus pointed out, gcc assumes that the callee
997 * owns the argument space and could overwrite it, e.g.
998 * tailcall optimization. So, to be absolutely safe
999 * we also save and restore enough stack bytes to cover
1000 * the argument area.
1002 memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
,
1003 MIN_STACK_SIZE(addr
));
1004 regs
->flags
&= ~X86_EFLAGS_IF
;
1005 trace_hardirqs_off();
1006 regs
->ip
= (unsigned long)(jp
->entry
);
1010 void __kprobes
jprobe_return(void)
1012 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1015 #ifdef CONFIG_X86_64
1016 " xchg %%rbx,%%rsp \n"
1018 " xchgl %%ebx,%%esp \n"
1021 " .globl jprobe_return_end\n"
1022 " jprobe_return_end: \n"
1024 (kcb
->jprobe_saved_sp
):"memory");
1027 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
1029 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
1030 u8
*addr
= (u8
*) (regs
->ip
- 1);
1031 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
1033 if ((addr
> (u8
*) jprobe_return
) &&
1034 (addr
< (u8
*) jprobe_return_end
)) {
1035 if (stack_addr(regs
) != kcb
->jprobe_saved_sp
) {
1036 struct pt_regs
*saved_regs
= &kcb
->jprobe_saved_regs
;
1038 "current sp %p does not match saved sp %p\n",
1039 stack_addr(regs
), kcb
->jprobe_saved_sp
);
1040 printk(KERN_ERR
"Saved registers for jprobe %p\n", jp
);
1041 show_regs(saved_regs
);
1042 printk(KERN_ERR
"Current registers\n");
1046 *regs
= kcb
->jprobe_saved_regs
;
1047 memcpy((kprobe_opcode_t
*)(kcb
->jprobe_saved_sp
),
1049 MIN_STACK_SIZE(kcb
->jprobe_saved_sp
));
1050 preempt_enable_no_resched();
1056 int __init
arch_init_kprobes(void)
1058 return arch_init_optprobes();
1061 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)