4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include <linux/user_namespace.h>
40 static LIST_HEAD(super_blocks
);
41 static DEFINE_SPINLOCK(sb_lock
);
43 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static unsigned long super_cache_scan(struct shrinker
*shrink
,
57 struct shrink_control
*sc
)
59 struct super_block
*sb
;
66 sb
= container_of(shrink
, struct super_block
, s_shrink
);
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
72 if (!(sc
->gfp_mask
& __GFP_FS
))
75 if (!trylock_super(sb
))
78 if (sb
->s_op
->nr_cached_objects
)
79 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
81 inodes
= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
82 dentries
= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
83 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
87 /* proportion the scan between the caches */
88 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
89 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
90 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
, total_objects
);
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
96 * Ensure that we always scan at least one object - memcg kmem
97 * accounting uses this to fully empty the caches.
99 sc
->nr_to_scan
= dentries
+ 1;
100 freed
= prune_dcache_sb(sb
, sc
);
101 sc
->nr_to_scan
= inodes
+ 1;
102 freed
+= prune_icache_sb(sb
, sc
);
105 sc
->nr_to_scan
= fs_objects
+ 1;
106 freed
+= sb
->s_op
->free_cached_objects(sb
, sc
);
109 up_read(&sb
->s_umount
);
113 static unsigned long super_cache_count(struct shrinker
*shrink
,
114 struct shrink_control
*sc
)
116 struct super_block
*sb
;
117 long total_objects
= 0;
119 sb
= container_of(shrink
, struct super_block
, s_shrink
);
122 * Don't call trylock_super as it is a potential
123 * scalability bottleneck. The counts could get updated
124 * between super_cache_count and super_cache_scan anyway.
125 * Call to super_cache_count with shrinker_rwsem held
126 * ensures the safety of call to list_lru_shrink_count() and
127 * s_op->nr_cached_objects().
129 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
130 total_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
132 total_objects
+= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
133 total_objects
+= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
135 total_objects
= vfs_pressure_ratio(total_objects
);
136 return total_objects
;
139 static void destroy_super_work(struct work_struct
*work
)
141 struct super_block
*s
= container_of(work
, struct super_block
,
145 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
146 percpu_free_rwsem(&s
->s_writers
.rw_sem
[i
]);
150 static void destroy_super_rcu(struct rcu_head
*head
)
152 struct super_block
*s
= container_of(head
, struct super_block
, rcu
);
153 INIT_WORK(&s
->destroy_work
, destroy_super_work
);
154 schedule_work(&s
->destroy_work
);
158 * destroy_super - frees a superblock
159 * @s: superblock to free
161 * Frees a superblock.
163 static void destroy_super(struct super_block
*s
)
165 list_lru_destroy(&s
->s_dentry_lru
);
166 list_lru_destroy(&s
->s_inode_lru
);
168 WARN_ON(!list_empty(&s
->s_mounts
));
169 put_user_ns(s
->s_user_ns
);
172 call_rcu(&s
->rcu
, destroy_super_rcu
);
176 * alloc_super - create new superblock
177 * @type: filesystem type superblock should belong to
178 * @flags: the mount flags
179 * @user_ns: User namespace for the super_block
181 * Allocates and initializes a new &struct super_block. alloc_super()
182 * returns a pointer new superblock or %NULL if allocation had failed.
184 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
,
185 struct user_namespace
*user_ns
)
187 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
188 static const struct super_operations default_op
;
194 INIT_LIST_HEAD(&s
->s_mounts
);
195 s
->s_user_ns
= get_user_ns(user_ns
);
197 if (security_sb_alloc(s
))
200 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
201 if (__percpu_init_rwsem(&s
->s_writers
.rw_sem
[i
],
203 &type
->s_writers_key
[i
]))
206 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
207 s
->s_bdi
= &noop_backing_dev_info
;
209 if (s
->s_user_ns
!= &init_user_ns
)
210 s
->s_iflags
|= SB_I_NODEV
;
211 INIT_HLIST_NODE(&s
->s_instances
);
212 INIT_HLIST_BL_HEAD(&s
->s_anon
);
213 mutex_init(&s
->s_sync_lock
);
214 INIT_LIST_HEAD(&s
->s_inodes
);
215 spin_lock_init(&s
->s_inode_list_lock
);
216 INIT_LIST_HEAD(&s
->s_inodes_wb
);
217 spin_lock_init(&s
->s_inode_wblist_lock
);
219 if (list_lru_init_memcg(&s
->s_dentry_lru
))
221 if (list_lru_init_memcg(&s
->s_inode_lru
))
224 init_rwsem(&s
->s_umount
);
225 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
227 * sget() can have s_umount recursion.
229 * When it cannot find a suitable sb, it allocates a new
230 * one (this one), and tries again to find a suitable old
233 * In case that succeeds, it will acquire the s_umount
234 * lock of the old one. Since these are clearly distrinct
235 * locks, and this object isn't exposed yet, there's no
238 * Annotate this by putting this lock in a different
241 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
243 atomic_set(&s
->s_active
, 1);
244 mutex_init(&s
->s_vfs_rename_mutex
);
245 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
246 mutex_init(&s
->s_dquot
.dqio_mutex
);
247 s
->s_maxbytes
= MAX_NON_LFS
;
248 s
->s_op
= &default_op
;
249 s
->s_time_gran
= 1000000000;
250 s
->cleancache_poolid
= CLEANCACHE_NO_POOL
;
252 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
253 s
->s_shrink
.scan_objects
= super_cache_scan
;
254 s
->s_shrink
.count_objects
= super_cache_count
;
255 s
->s_shrink
.batch
= 1024;
256 s
->s_shrink
.flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
;
264 /* Superblock refcounting */
267 * Drop a superblock's refcount. The caller must hold sb_lock.
269 static void __put_super(struct super_block
*sb
)
271 if (!--sb
->s_count
) {
272 list_del_init(&sb
->s_list
);
278 * put_super - drop a temporary reference to superblock
279 * @sb: superblock in question
281 * Drops a temporary reference, frees superblock if there's no
284 static void put_super(struct super_block
*sb
)
288 spin_unlock(&sb_lock
);
293 * deactivate_locked_super - drop an active reference to superblock
294 * @s: superblock to deactivate
296 * Drops an active reference to superblock, converting it into a temporary
297 * one if there is no other active references left. In that case we
298 * tell fs driver to shut it down and drop the temporary reference we
301 * Caller holds exclusive lock on superblock; that lock is released.
303 void deactivate_locked_super(struct super_block
*s
)
305 struct file_system_type
*fs
= s
->s_type
;
306 if (atomic_dec_and_test(&s
->s_active
)) {
307 cleancache_invalidate_fs(s
);
308 unregister_shrinker(&s
->s_shrink
);
312 * Since list_lru_destroy() may sleep, we cannot call it from
313 * put_super(), where we hold the sb_lock. Therefore we destroy
314 * the lru lists right now.
316 list_lru_destroy(&s
->s_dentry_lru
);
317 list_lru_destroy(&s
->s_inode_lru
);
322 up_write(&s
->s_umount
);
326 EXPORT_SYMBOL(deactivate_locked_super
);
329 * deactivate_super - drop an active reference to superblock
330 * @s: superblock to deactivate
332 * Variant of deactivate_locked_super(), except that superblock is *not*
333 * locked by caller. If we are going to drop the final active reference,
334 * lock will be acquired prior to that.
336 void deactivate_super(struct super_block
*s
)
338 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
339 down_write(&s
->s_umount
);
340 deactivate_locked_super(s
);
344 EXPORT_SYMBOL(deactivate_super
);
347 * grab_super - acquire an active reference
348 * @s: reference we are trying to make active
350 * Tries to acquire an active reference. grab_super() is used when we
351 * had just found a superblock in super_blocks or fs_type->fs_supers
352 * and want to turn it into a full-blown active reference. grab_super()
353 * is called with sb_lock held and drops it. Returns 1 in case of
354 * success, 0 if we had failed (superblock contents was already dead or
355 * dying when grab_super() had been called). Note that this is only
356 * called for superblocks not in rundown mode (== ones still on ->fs_supers
357 * of their type), so increment of ->s_count is OK here.
359 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
362 spin_unlock(&sb_lock
);
363 down_write(&s
->s_umount
);
364 if ((s
->s_flags
& MS_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
368 up_write(&s
->s_umount
);
374 * trylock_super - try to grab ->s_umount shared
375 * @sb: reference we are trying to grab
377 * Try to prevent fs shutdown. This is used in places where we
378 * cannot take an active reference but we need to ensure that the
379 * filesystem is not shut down while we are working on it. It returns
380 * false if we cannot acquire s_umount or if we lose the race and
381 * filesystem already got into shutdown, and returns true with the s_umount
382 * lock held in read mode in case of success. On successful return,
383 * the caller must drop the s_umount lock when done.
385 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
386 * The reason why it's safe is that we are OK with doing trylock instead
387 * of down_read(). There's a couple of places that are OK with that, but
388 * it's very much not a general-purpose interface.
390 bool trylock_super(struct super_block
*sb
)
392 if (down_read_trylock(&sb
->s_umount
)) {
393 if (!hlist_unhashed(&sb
->s_instances
) &&
394 sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
396 up_read(&sb
->s_umount
);
403 * generic_shutdown_super - common helper for ->kill_sb()
404 * @sb: superblock to kill
406 * generic_shutdown_super() does all fs-independent work on superblock
407 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
408 * that need destruction out of superblock, call generic_shutdown_super()
409 * and release aforementioned objects. Note: dentries and inodes _are_
410 * taken care of and do not need specific handling.
412 * Upon calling this function, the filesystem may no longer alter or
413 * rearrange the set of dentries belonging to this super_block, nor may it
414 * change the attachments of dentries to inodes.
416 void generic_shutdown_super(struct super_block
*sb
)
418 const struct super_operations
*sop
= sb
->s_op
;
421 shrink_dcache_for_umount(sb
);
423 sb
->s_flags
&= ~MS_ACTIVE
;
425 fsnotify_unmount_inodes(sb
);
426 cgroup_writeback_umount();
430 if (sb
->s_dio_done_wq
) {
431 destroy_workqueue(sb
->s_dio_done_wq
);
432 sb
->s_dio_done_wq
= NULL
;
438 if (!list_empty(&sb
->s_inodes
)) {
439 printk("VFS: Busy inodes after unmount of %s. "
440 "Self-destruct in 5 seconds. Have a nice day...\n",
445 /* should be initialized for __put_super_and_need_restart() */
446 hlist_del_init(&sb
->s_instances
);
447 spin_unlock(&sb_lock
);
448 up_write(&sb
->s_umount
);
451 EXPORT_SYMBOL(generic_shutdown_super
);
454 * sget_userns - find or create a superblock
455 * @type: filesystem type superblock should belong to
456 * @test: comparison callback
457 * @set: setup callback
458 * @flags: mount flags
459 * @user_ns: User namespace for the super_block
460 * @data: argument to each of them
462 struct super_block
*sget_userns(struct file_system_type
*type
,
463 int (*test
)(struct super_block
*,void *),
464 int (*set
)(struct super_block
*,void *),
465 int flags
, struct user_namespace
*user_ns
,
468 struct super_block
*s
= NULL
;
469 struct super_block
*old
;
472 if (!(flags
& MS_KERNMOUNT
) &&
473 !(type
->fs_flags
& FS_USERNS_MOUNT
) &&
474 !capable(CAP_SYS_ADMIN
))
475 return ERR_PTR(-EPERM
);
479 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
480 if (!test(old
, data
))
482 if (user_ns
!= old
->s_user_ns
) {
483 spin_unlock(&sb_lock
);
485 up_write(&s
->s_umount
);
488 return ERR_PTR(-EBUSY
);
490 if (!grab_super(old
))
493 up_write(&s
->s_umount
);
501 spin_unlock(&sb_lock
);
502 s
= alloc_super(type
, flags
, user_ns
);
504 return ERR_PTR(-ENOMEM
);
510 spin_unlock(&sb_lock
);
511 up_write(&s
->s_umount
);
516 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
517 list_add_tail(&s
->s_list
, &super_blocks
);
518 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
519 spin_unlock(&sb_lock
);
520 get_filesystem(type
);
521 register_shrinker(&s
->s_shrink
);
525 EXPORT_SYMBOL(sget_userns
);
528 * sget - find or create a superblock
529 * @type: filesystem type superblock should belong to
530 * @test: comparison callback
531 * @set: setup callback
532 * @flags: mount flags
533 * @data: argument to each of them
535 struct super_block
*sget(struct file_system_type
*type
,
536 int (*test
)(struct super_block
*,void *),
537 int (*set
)(struct super_block
*,void *),
541 struct user_namespace
*user_ns
= current_user_ns();
543 /* Ensure the requestor has permissions over the target filesystem */
544 if (!(flags
& MS_KERNMOUNT
) && !ns_capable(user_ns
, CAP_SYS_ADMIN
))
545 return ERR_PTR(-EPERM
);
547 return sget_userns(type
, test
, set
, flags
, user_ns
, data
);
552 void drop_super(struct super_block
*sb
)
554 up_read(&sb
->s_umount
);
558 EXPORT_SYMBOL(drop_super
);
560 void drop_super_exclusive(struct super_block
*sb
)
562 up_write(&sb
->s_umount
);
565 EXPORT_SYMBOL(drop_super_exclusive
);
568 * iterate_supers - call function for all active superblocks
569 * @f: function to call
570 * @arg: argument to pass to it
572 * Scans the superblock list and calls given function, passing it
573 * locked superblock and given argument.
575 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
577 struct super_block
*sb
, *p
= NULL
;
580 list_for_each_entry(sb
, &super_blocks
, s_list
) {
581 if (hlist_unhashed(&sb
->s_instances
))
584 spin_unlock(&sb_lock
);
586 down_read(&sb
->s_umount
);
587 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
589 up_read(&sb
->s_umount
);
598 spin_unlock(&sb_lock
);
602 * iterate_supers_type - call function for superblocks of given type
604 * @f: function to call
605 * @arg: argument to pass to it
607 * Scans the superblock list and calls given function, passing it
608 * locked superblock and given argument.
610 void iterate_supers_type(struct file_system_type
*type
,
611 void (*f
)(struct super_block
*, void *), void *arg
)
613 struct super_block
*sb
, *p
= NULL
;
616 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
618 spin_unlock(&sb_lock
);
620 down_read(&sb
->s_umount
);
621 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
623 up_read(&sb
->s_umount
);
632 spin_unlock(&sb_lock
);
635 EXPORT_SYMBOL(iterate_supers_type
);
637 static struct super_block
*__get_super(struct block_device
*bdev
, bool excl
)
639 struct super_block
*sb
;
646 list_for_each_entry(sb
, &super_blocks
, s_list
) {
647 if (hlist_unhashed(&sb
->s_instances
))
649 if (sb
->s_bdev
== bdev
) {
651 spin_unlock(&sb_lock
);
653 down_read(&sb
->s_umount
);
655 down_write(&sb
->s_umount
);
657 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
660 up_read(&sb
->s_umount
);
662 up_write(&sb
->s_umount
);
663 /* nope, got unmounted */
669 spin_unlock(&sb_lock
);
674 * get_super - get the superblock of a device
675 * @bdev: device to get the superblock for
677 * Scans the superblock list and finds the superblock of the file system
678 * mounted on the device given. %NULL is returned if no match is found.
680 struct super_block
*get_super(struct block_device
*bdev
)
682 return __get_super(bdev
, false);
684 EXPORT_SYMBOL(get_super
);
686 static struct super_block
*__get_super_thawed(struct block_device
*bdev
,
690 struct super_block
*s
= __get_super(bdev
, excl
);
691 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
694 up_read(&s
->s_umount
);
696 up_write(&s
->s_umount
);
697 wait_event(s
->s_writers
.wait_unfrozen
,
698 s
->s_writers
.frozen
== SB_UNFROZEN
);
704 * get_super_thawed - get thawed superblock of a device
705 * @bdev: device to get the superblock for
707 * Scans the superblock list and finds the superblock of the file system
708 * mounted on the device. The superblock is returned once it is thawed
709 * (or immediately if it was not frozen). %NULL is returned if no match
712 struct super_block
*get_super_thawed(struct block_device
*bdev
)
714 return __get_super_thawed(bdev
, false);
716 EXPORT_SYMBOL(get_super_thawed
);
719 * get_super_exclusive_thawed - get thawed superblock of a device
720 * @bdev: device to get the superblock for
722 * Scans the superblock list and finds the superblock of the file system
723 * mounted on the device. The superblock is returned once it is thawed
724 * (or immediately if it was not frozen) and s_umount semaphore is held
725 * in exclusive mode. %NULL is returned if no match is found.
727 struct super_block
*get_super_exclusive_thawed(struct block_device
*bdev
)
729 return __get_super_thawed(bdev
, true);
731 EXPORT_SYMBOL(get_super_exclusive_thawed
);
734 * get_active_super - get an active reference to the superblock of a device
735 * @bdev: device to get the superblock for
737 * Scans the superblock list and finds the superblock of the file system
738 * mounted on the device given. Returns the superblock with an active
739 * reference or %NULL if none was found.
741 struct super_block
*get_active_super(struct block_device
*bdev
)
743 struct super_block
*sb
;
750 list_for_each_entry(sb
, &super_blocks
, s_list
) {
751 if (hlist_unhashed(&sb
->s_instances
))
753 if (sb
->s_bdev
== bdev
) {
756 up_write(&sb
->s_umount
);
760 spin_unlock(&sb_lock
);
764 struct super_block
*user_get_super(dev_t dev
)
766 struct super_block
*sb
;
770 list_for_each_entry(sb
, &super_blocks
, s_list
) {
771 if (hlist_unhashed(&sb
->s_instances
))
773 if (sb
->s_dev
== dev
) {
775 spin_unlock(&sb_lock
);
776 down_read(&sb
->s_umount
);
778 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
780 up_read(&sb
->s_umount
);
781 /* nope, got unmounted */
787 spin_unlock(&sb_lock
);
792 * do_remount_sb - asks filesystem to change mount options.
793 * @sb: superblock in question
794 * @flags: numeric part of options
795 * @data: the rest of options
796 * @force: whether or not to force the change
798 * Alters the mount options of a mounted file system.
800 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
805 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
809 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
813 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
816 if (!hlist_empty(&sb
->s_pins
)) {
817 up_write(&sb
->s_umount
);
818 group_pin_kill(&sb
->s_pins
);
819 down_write(&sb
->s_umount
);
822 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
824 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
827 shrink_dcache_sb(sb
);
829 /* If we are remounting RDONLY and current sb is read/write,
830 make sure there are no rw files opened */
833 sb
->s_readonly_remount
= 1;
836 retval
= sb_prepare_remount_readonly(sb
);
842 if (sb
->s_op
->remount_fs
) {
843 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
846 goto cancel_readonly
;
847 /* If forced remount, go ahead despite any errors */
848 WARN(1, "forced remount of a %s fs returned %i\n",
849 sb
->s_type
->name
, retval
);
852 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
853 /* Needs to be ordered wrt mnt_is_readonly() */
855 sb
->s_readonly_remount
= 0;
858 * Some filesystems modify their metadata via some other path than the
859 * bdev buffer cache (eg. use a private mapping, or directories in
860 * pagecache, etc). Also file data modifications go via their own
861 * mappings. So If we try to mount readonly then copy the filesystem
862 * from bdev, we could get stale data, so invalidate it to give a best
863 * effort at coherency.
865 if (remount_ro
&& sb
->s_bdev
)
866 invalidate_bdev(sb
->s_bdev
);
870 sb
->s_readonly_remount
= 0;
874 static void do_emergency_remount(struct work_struct
*work
)
876 struct super_block
*sb
, *p
= NULL
;
879 list_for_each_entry(sb
, &super_blocks
, s_list
) {
880 if (hlist_unhashed(&sb
->s_instances
))
883 spin_unlock(&sb_lock
);
884 down_write(&sb
->s_umount
);
885 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& MS_BORN
) &&
886 !(sb
->s_flags
& MS_RDONLY
)) {
888 * What lock protects sb->s_flags??
890 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
892 up_write(&sb
->s_umount
);
900 spin_unlock(&sb_lock
);
902 printk("Emergency Remount complete\n");
905 void emergency_remount(void)
907 struct work_struct
*work
;
909 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
911 INIT_WORK(work
, do_emergency_remount
);
917 * Unnamed block devices are dummy devices used by virtual
918 * filesystems which don't use real block-devices. -- jrs
921 static DEFINE_IDA(unnamed_dev_ida
);
922 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
923 /* Many userspace utilities consider an FSID of 0 invalid.
924 * Always return at least 1 from get_anon_bdev.
926 static int unnamed_dev_start
= 1;
928 int get_anon_bdev(dev_t
*p
)
934 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
936 spin_lock(&unnamed_dev_lock
);
937 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
939 unnamed_dev_start
= dev
+ 1;
940 spin_unlock(&unnamed_dev_lock
);
941 if (error
== -EAGAIN
)
942 /* We raced and lost with another CPU. */
947 if (dev
>= (1 << MINORBITS
)) {
948 spin_lock(&unnamed_dev_lock
);
949 ida_remove(&unnamed_dev_ida
, dev
);
950 if (unnamed_dev_start
> dev
)
951 unnamed_dev_start
= dev
;
952 spin_unlock(&unnamed_dev_lock
);
955 *p
= MKDEV(0, dev
& MINORMASK
);
958 EXPORT_SYMBOL(get_anon_bdev
);
960 void free_anon_bdev(dev_t dev
)
962 int slot
= MINOR(dev
);
963 spin_lock(&unnamed_dev_lock
);
964 ida_remove(&unnamed_dev_ida
, slot
);
965 if (slot
< unnamed_dev_start
)
966 unnamed_dev_start
= slot
;
967 spin_unlock(&unnamed_dev_lock
);
969 EXPORT_SYMBOL(free_anon_bdev
);
971 int set_anon_super(struct super_block
*s
, void *data
)
973 return get_anon_bdev(&s
->s_dev
);
976 EXPORT_SYMBOL(set_anon_super
);
978 void kill_anon_super(struct super_block
*sb
)
980 dev_t dev
= sb
->s_dev
;
981 generic_shutdown_super(sb
);
985 EXPORT_SYMBOL(kill_anon_super
);
987 void kill_litter_super(struct super_block
*sb
)
990 d_genocide(sb
->s_root
);
994 EXPORT_SYMBOL(kill_litter_super
);
996 static int ns_test_super(struct super_block
*sb
, void *data
)
998 return sb
->s_fs_info
== data
;
1001 static int ns_set_super(struct super_block
*sb
, void *data
)
1003 sb
->s_fs_info
= data
;
1004 return set_anon_super(sb
, NULL
);
1007 struct dentry
*mount_ns(struct file_system_type
*fs_type
,
1008 int flags
, void *data
, void *ns
, struct user_namespace
*user_ns
,
1009 int (*fill_super
)(struct super_block
*, void *, int))
1011 struct super_block
*sb
;
1013 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1014 * over the namespace.
1016 if (!(flags
& MS_KERNMOUNT
) && !ns_capable(user_ns
, CAP_SYS_ADMIN
))
1017 return ERR_PTR(-EPERM
);
1019 sb
= sget_userns(fs_type
, ns_test_super
, ns_set_super
, flags
,
1022 return ERR_CAST(sb
);
1026 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
1028 deactivate_locked_super(sb
);
1029 return ERR_PTR(err
);
1032 sb
->s_flags
|= MS_ACTIVE
;
1035 return dget(sb
->s_root
);
1038 EXPORT_SYMBOL(mount_ns
);
1041 static int set_bdev_super(struct super_block
*s
, void *data
)
1044 s
->s_dev
= s
->s_bdev
->bd_dev
;
1047 * We set the bdi here to the queue backing, file systems can
1048 * overwrite this in ->fill_super()
1050 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
1054 static int test_bdev_super(struct super_block
*s
, void *data
)
1056 return (void *)s
->s_bdev
== data
;
1059 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
1060 int flags
, const char *dev_name
, void *data
,
1061 int (*fill_super
)(struct super_block
*, void *, int))
1063 struct block_device
*bdev
;
1064 struct super_block
*s
;
1065 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
1068 if (!(flags
& MS_RDONLY
))
1069 mode
|= FMODE_WRITE
;
1071 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
1073 return ERR_CAST(bdev
);
1076 * once the super is inserted into the list by sget, s_umount
1077 * will protect the lockfs code from trying to start a snapshot
1078 * while we are mounting
1080 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
1081 if (bdev
->bd_fsfreeze_count
> 0) {
1082 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1086 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| MS_NOSEC
,
1088 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1093 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
1094 deactivate_locked_super(s
);
1100 * s_umount nests inside bd_mutex during
1101 * __invalidate_device(). blkdev_put() acquires
1102 * bd_mutex and can't be called under s_umount. Drop
1103 * s_umount temporarily. This is safe as we're
1104 * holding an active reference.
1106 up_write(&s
->s_umount
);
1107 blkdev_put(bdev
, mode
);
1108 down_write(&s
->s_umount
);
1111 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1112 sb_set_blocksize(s
, block_size(bdev
));
1113 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1115 deactivate_locked_super(s
);
1119 s
->s_flags
|= MS_ACTIVE
;
1123 return dget(s
->s_root
);
1128 blkdev_put(bdev
, mode
);
1130 return ERR_PTR(error
);
1132 EXPORT_SYMBOL(mount_bdev
);
1134 void kill_block_super(struct super_block
*sb
)
1136 struct block_device
*bdev
= sb
->s_bdev
;
1137 fmode_t mode
= sb
->s_mode
;
1139 bdev
->bd_super
= NULL
;
1140 generic_shutdown_super(sb
);
1141 sync_blockdev(bdev
);
1142 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1143 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1146 EXPORT_SYMBOL(kill_block_super
);
1149 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1150 int flags
, void *data
,
1151 int (*fill_super
)(struct super_block
*, void *, int))
1154 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1159 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1161 deactivate_locked_super(s
);
1162 return ERR_PTR(error
);
1164 s
->s_flags
|= MS_ACTIVE
;
1165 return dget(s
->s_root
);
1167 EXPORT_SYMBOL(mount_nodev
);
1169 static int compare_single(struct super_block
*s
, void *p
)
1174 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1175 int flags
, void *data
,
1176 int (*fill_super
)(struct super_block
*, void *, int))
1178 struct super_block
*s
;
1181 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1185 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1187 deactivate_locked_super(s
);
1188 return ERR_PTR(error
);
1190 s
->s_flags
|= MS_ACTIVE
;
1192 do_remount_sb(s
, flags
, data
, 0);
1194 return dget(s
->s_root
);
1196 EXPORT_SYMBOL(mount_single
);
1199 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1201 struct dentry
*root
;
1202 struct super_block
*sb
;
1203 char *secdata
= NULL
;
1204 int error
= -ENOMEM
;
1206 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1207 secdata
= alloc_secdata();
1211 error
= security_sb_copy_data(data
, secdata
);
1213 goto out_free_secdata
;
1216 root
= type
->mount(type
, flags
, name
, data
);
1218 error
= PTR_ERR(root
);
1219 goto out_free_secdata
;
1223 WARN_ON(!sb
->s_bdi
);
1224 sb
->s_flags
|= MS_BORN
;
1226 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1231 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1232 * but s_maxbytes was an unsigned long long for many releases. Throw
1233 * this warning for a little while to try and catch filesystems that
1234 * violate this rule.
1236 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1237 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1239 up_write(&sb
->s_umount
);
1240 free_secdata(secdata
);
1244 deactivate_locked_super(sb
);
1246 free_secdata(secdata
);
1248 return ERR_PTR(error
);
1252 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1255 void __sb_end_write(struct super_block
*sb
, int level
)
1257 percpu_up_read(sb
->s_writers
.rw_sem
+ level
-1);
1259 EXPORT_SYMBOL(__sb_end_write
);
1262 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1265 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1267 bool force_trylock
= false;
1270 #ifdef CONFIG_LOCKDEP
1272 * We want lockdep to tell us about possible deadlocks with freezing
1273 * but it's it bit tricky to properly instrument it. Getting a freeze
1274 * protection works as getting a read lock but there are subtle
1275 * problems. XFS for example gets freeze protection on internal level
1276 * twice in some cases, which is OK only because we already hold a
1277 * freeze protection also on higher level. Due to these cases we have
1278 * to use wait == F (trylock mode) which must not fail.
1283 for (i
= 0; i
< level
- 1; i
++)
1284 if (percpu_rwsem_is_held(sb
->s_writers
.rw_sem
+ i
)) {
1285 force_trylock
= true;
1290 if (wait
&& !force_trylock
)
1291 percpu_down_read(sb
->s_writers
.rw_sem
+ level
-1);
1293 ret
= percpu_down_read_trylock(sb
->s_writers
.rw_sem
+ level
-1);
1295 WARN_ON(force_trylock
&& !ret
);
1298 EXPORT_SYMBOL(__sb_start_write
);
1301 * sb_wait_write - wait until all writers to given file system finish
1302 * @sb: the super for which we wait
1303 * @level: type of writers we wait for (normal vs page fault)
1305 * This function waits until there are no writers of given type to given file
1308 static void sb_wait_write(struct super_block
*sb
, int level
)
1310 percpu_down_write(sb
->s_writers
.rw_sem
+ level
-1);
1314 * We are going to return to userspace and forget about these locks, the
1315 * ownership goes to the caller of thaw_super() which does unlock().
1317 static void lockdep_sb_freeze_release(struct super_block
*sb
)
1321 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1322 percpu_rwsem_release(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1326 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1328 static void lockdep_sb_freeze_acquire(struct super_block
*sb
)
1332 for (level
= 0; level
< SB_FREEZE_LEVELS
; ++level
)
1333 percpu_rwsem_acquire(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1336 static void sb_freeze_unlock(struct super_block
*sb
)
1340 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1341 percpu_up_write(sb
->s_writers
.rw_sem
+ level
);
1345 * freeze_super - lock the filesystem and force it into a consistent state
1346 * @sb: the super to lock
1348 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1349 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1352 * During this function, sb->s_writers.frozen goes through these values:
1354 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1356 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1357 * writes should be blocked, though page faults are still allowed. We wait for
1358 * all writes to complete and then proceed to the next stage.
1360 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1361 * but internal fs threads can still modify the filesystem (although they
1362 * should not dirty new pages or inodes), writeback can run etc. After waiting
1363 * for all running page faults we sync the filesystem which will clean all
1364 * dirty pages and inodes (no new dirty pages or inodes can be created when
1367 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1368 * modification are blocked (e.g. XFS preallocation truncation on inode
1369 * reclaim). This is usually implemented by blocking new transactions for
1370 * filesystems that have them and need this additional guard. After all
1371 * internal writers are finished we call ->freeze_fs() to finish filesystem
1372 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1373 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1375 * sb->s_writers.frozen is protected by sb->s_umount.
1377 int freeze_super(struct super_block
*sb
)
1381 atomic_inc(&sb
->s_active
);
1382 down_write(&sb
->s_umount
);
1383 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1384 deactivate_locked_super(sb
);
1388 if (!(sb
->s_flags
& MS_BORN
)) {
1389 up_write(&sb
->s_umount
);
1390 return 0; /* sic - it's "nothing to do" */
1393 if (sb
->s_flags
& MS_RDONLY
) {
1394 /* Nothing to do really... */
1395 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1396 up_write(&sb
->s_umount
);
1400 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1401 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1402 up_write(&sb
->s_umount
);
1403 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1404 down_write(&sb
->s_umount
);
1406 /* Now we go and block page faults... */
1407 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1408 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1410 /* All writers are done so after syncing there won't be dirty data */
1411 sync_filesystem(sb
);
1413 /* Now wait for internal filesystem counter */
1414 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1415 sb_wait_write(sb
, SB_FREEZE_FS
);
1417 if (sb
->s_op
->freeze_fs
) {
1418 ret
= sb
->s_op
->freeze_fs(sb
);
1421 "VFS:Filesystem freeze failed\n");
1422 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1423 sb_freeze_unlock(sb
);
1424 wake_up(&sb
->s_writers
.wait_unfrozen
);
1425 deactivate_locked_super(sb
);
1430 * For debugging purposes so that fs can warn if it sees write activity
1431 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1433 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1434 lockdep_sb_freeze_release(sb
);
1435 up_write(&sb
->s_umount
);
1438 EXPORT_SYMBOL(freeze_super
);
1441 * thaw_super -- unlock filesystem
1442 * @sb: the super to thaw
1444 * Unlocks the filesystem and marks it writeable again after freeze_super().
1446 int thaw_super(struct super_block
*sb
)
1450 down_write(&sb
->s_umount
);
1451 if (sb
->s_writers
.frozen
!= SB_FREEZE_COMPLETE
) {
1452 up_write(&sb
->s_umount
);
1456 if (sb
->s_flags
& MS_RDONLY
) {
1457 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1461 lockdep_sb_freeze_acquire(sb
);
1463 if (sb
->s_op
->unfreeze_fs
) {
1464 error
= sb
->s_op
->unfreeze_fs(sb
);
1467 "VFS:Filesystem thaw failed\n");
1468 lockdep_sb_freeze_release(sb
);
1469 up_write(&sb
->s_umount
);
1474 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1475 sb_freeze_unlock(sb
);
1477 wake_up(&sb
->s_writers
.wait_unfrozen
);
1478 deactivate_locked_super(sb
);
1481 EXPORT_SYMBOL(thaw_super
);