Merge tag 'phy-for-4.20-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon...
[linux/fpc-iii.git] / mm / memblock.c
blob9a2d5ae81ae1cf4217ed3174d72667be276769da
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/kmemleak.h>
21 #include <linux/seq_file.h>
22 #include <linux/memblock.h>
24 #include <asm/sections.h>
25 #include <linux/io.h>
27 #include "internal.h"
29 /**
30 * DOC: memblock overview
32 * Memblock is a method of managing memory regions during the early
33 * boot period when the usual kernel memory allocators are not up and
34 * running.
36 * Memblock views the system memory as collections of contiguous
37 * regions. There are several types of these collections:
39 * * ``memory`` - describes the physical memory available to the
40 * kernel; this may differ from the actual physical memory installed
41 * in the system, for instance when the memory is restricted with
42 * ``mem=`` command line parameter
43 * * ``reserved`` - describes the regions that were allocated
44 * * ``physmap`` - describes the actual physical memory regardless of
45 * the possible restrictions; the ``physmap`` type is only available
46 * on some architectures.
48 * Each region is represented by :c:type:`struct memblock_region` that
49 * defines the region extents, its attributes and NUMA node id on NUMA
50 * systems. Every memory type is described by the :c:type:`struct
51 * memblock_type` which contains an array of memory regions along with
52 * the allocator metadata. The memory types are nicely wrapped with
53 * :c:type:`struct memblock`. This structure is statically initialzed
54 * at build time. The region arrays for the "memory" and "reserved"
55 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
56 * "physmap" type to %INIT_PHYSMEM_REGIONS.
57 * The :c:func:`memblock_allow_resize` enables automatic resizing of
58 * the region arrays during addition of new regions. This feature
59 * should be used with care so that memory allocated for the region
60 * array will not overlap with areas that should be reserved, for
61 * example initrd.
63 * The early architecture setup should tell memblock what the physical
64 * memory layout is by using :c:func:`memblock_add` or
65 * :c:func:`memblock_add_node` functions. The first function does not
66 * assign the region to a NUMA node and it is appropriate for UMA
67 * systems. Yet, it is possible to use it on NUMA systems as well and
68 * assign the region to a NUMA node later in the setup process using
69 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
70 * performs such an assignment directly.
72 * Once memblock is setup the memory can be allocated using either
73 * memblock or bootmem APIs.
75 * As the system boot progresses, the architecture specific
76 * :c:func:`mem_init` function frees all the memory to the buddy page
77 * allocator.
79 * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
80 * memblock data structures will be discarded after the system
81 * initialization compltes.
84 #ifndef CONFIG_NEED_MULTIPLE_NODES
85 struct pglist_data __refdata contig_page_data;
86 EXPORT_SYMBOL(contig_page_data);
87 #endif
89 unsigned long max_low_pfn;
90 unsigned long min_low_pfn;
91 unsigned long max_pfn;
92 unsigned long long max_possible_pfn;
94 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
95 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
96 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
97 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
98 #endif
100 struct memblock memblock __initdata_memblock = {
101 .memory.regions = memblock_memory_init_regions,
102 .memory.cnt = 1, /* empty dummy entry */
103 .memory.max = INIT_MEMBLOCK_REGIONS,
104 .memory.name = "memory",
106 .reserved.regions = memblock_reserved_init_regions,
107 .reserved.cnt = 1, /* empty dummy entry */
108 .reserved.max = INIT_MEMBLOCK_REGIONS,
109 .reserved.name = "reserved",
111 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
112 .physmem.regions = memblock_physmem_init_regions,
113 .physmem.cnt = 1, /* empty dummy entry */
114 .physmem.max = INIT_PHYSMEM_REGIONS,
115 .physmem.name = "physmem",
116 #endif
118 .bottom_up = false,
119 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
122 int memblock_debug __initdata_memblock;
123 static bool system_has_some_mirror __initdata_memblock = false;
124 static int memblock_can_resize __initdata_memblock;
125 static int memblock_memory_in_slab __initdata_memblock = 0;
126 static int memblock_reserved_in_slab __initdata_memblock = 0;
128 enum memblock_flags __init_memblock choose_memblock_flags(void)
130 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
133 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
134 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
136 return *size = min(*size, PHYS_ADDR_MAX - base);
140 * Address comparison utilities
142 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
143 phys_addr_t base2, phys_addr_t size2)
145 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
148 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
149 phys_addr_t base, phys_addr_t size)
151 unsigned long i;
153 for (i = 0; i < type->cnt; i++)
154 if (memblock_addrs_overlap(base, size, type->regions[i].base,
155 type->regions[i].size))
156 break;
157 return i < type->cnt;
161 * __memblock_find_range_bottom_up - find free area utility in bottom-up
162 * @start: start of candidate range
163 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
164 * %MEMBLOCK_ALLOC_ACCESSIBLE
165 * @size: size of free area to find
166 * @align: alignment of free area to find
167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
168 * @flags: pick from blocks based on memory attributes
170 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
172 * Return:
173 * Found address on success, 0 on failure.
175 static phys_addr_t __init_memblock
176 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
177 phys_addr_t size, phys_addr_t align, int nid,
178 enum memblock_flags flags)
180 phys_addr_t this_start, this_end, cand;
181 u64 i;
183 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
184 this_start = clamp(this_start, start, end);
185 this_end = clamp(this_end, start, end);
187 cand = round_up(this_start, align);
188 if (cand < this_end && this_end - cand >= size)
189 return cand;
192 return 0;
196 * __memblock_find_range_top_down - find free area utility, in top-down
197 * @start: start of candidate range
198 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
199 * %MEMBLOCK_ALLOC_ACCESSIBLE
200 * @size: size of free area to find
201 * @align: alignment of free area to find
202 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
203 * @flags: pick from blocks based on memory attributes
205 * Utility called from memblock_find_in_range_node(), find free area top-down.
207 * Return:
208 * Found address on success, 0 on failure.
210 static phys_addr_t __init_memblock
211 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
212 phys_addr_t size, phys_addr_t align, int nid,
213 enum memblock_flags flags)
215 phys_addr_t this_start, this_end, cand;
216 u64 i;
218 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
219 NULL) {
220 this_start = clamp(this_start, start, end);
221 this_end = clamp(this_end, start, end);
223 if (this_end < size)
224 continue;
226 cand = round_down(this_end - size, align);
227 if (cand >= this_start)
228 return cand;
231 return 0;
235 * memblock_find_in_range_node - find free area in given range and node
236 * @size: size of free area to find
237 * @align: alignment of free area to find
238 * @start: start of candidate range
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
240 * %MEMBLOCK_ALLOC_ACCESSIBLE
241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
242 * @flags: pick from blocks based on memory attributes
244 * Find @size free area aligned to @align in the specified range and node.
246 * When allocation direction is bottom-up, the @start should be greater
247 * than the end of the kernel image. Otherwise, it will be trimmed. The
248 * reason is that we want the bottom-up allocation just near the kernel
249 * image so it is highly likely that the allocated memory and the kernel
250 * will reside in the same node.
252 * If bottom-up allocation failed, will try to allocate memory top-down.
254 * Return:
255 * Found address on success, 0 on failure.
257 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
258 phys_addr_t align, phys_addr_t start,
259 phys_addr_t end, int nid,
260 enum memblock_flags flags)
262 phys_addr_t kernel_end, ret;
264 /* pump up @end */
265 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
266 end = memblock.current_limit;
268 /* avoid allocating the first page */
269 start = max_t(phys_addr_t, start, PAGE_SIZE);
270 end = max(start, end);
271 kernel_end = __pa_symbol(_end);
274 * try bottom-up allocation only when bottom-up mode
275 * is set and @end is above the kernel image.
277 if (memblock_bottom_up() && end > kernel_end) {
278 phys_addr_t bottom_up_start;
280 /* make sure we will allocate above the kernel */
281 bottom_up_start = max(start, kernel_end);
283 /* ok, try bottom-up allocation first */
284 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
285 size, align, nid, flags);
286 if (ret)
287 return ret;
290 * we always limit bottom-up allocation above the kernel,
291 * but top-down allocation doesn't have the limit, so
292 * retrying top-down allocation may succeed when bottom-up
293 * allocation failed.
295 * bottom-up allocation is expected to be fail very rarely,
296 * so we use WARN_ONCE() here to see the stack trace if
297 * fail happens.
299 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
300 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
303 return __memblock_find_range_top_down(start, end, size, align, nid,
304 flags);
308 * memblock_find_in_range - find free area in given range
309 * @start: start of candidate range
310 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
311 * %MEMBLOCK_ALLOC_ACCESSIBLE
312 * @size: size of free area to find
313 * @align: alignment of free area to find
315 * Find @size free area aligned to @align in the specified range.
317 * Return:
318 * Found address on success, 0 on failure.
320 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
321 phys_addr_t end, phys_addr_t size,
322 phys_addr_t align)
324 phys_addr_t ret;
325 enum memblock_flags flags = choose_memblock_flags();
327 again:
328 ret = memblock_find_in_range_node(size, align, start, end,
329 NUMA_NO_NODE, flags);
331 if (!ret && (flags & MEMBLOCK_MIRROR)) {
332 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
333 &size);
334 flags &= ~MEMBLOCK_MIRROR;
335 goto again;
338 return ret;
341 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
343 type->total_size -= type->regions[r].size;
344 memmove(&type->regions[r], &type->regions[r + 1],
345 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
346 type->cnt--;
348 /* Special case for empty arrays */
349 if (type->cnt == 0) {
350 WARN_ON(type->total_size != 0);
351 type->cnt = 1;
352 type->regions[0].base = 0;
353 type->regions[0].size = 0;
354 type->regions[0].flags = 0;
355 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
359 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
361 * memblock_discard - discard memory and reserved arrays if they were allocated
363 void __init memblock_discard(void)
365 phys_addr_t addr, size;
367 if (memblock.reserved.regions != memblock_reserved_init_regions) {
368 addr = __pa(memblock.reserved.regions);
369 size = PAGE_ALIGN(sizeof(struct memblock_region) *
370 memblock.reserved.max);
371 __memblock_free_late(addr, size);
374 if (memblock.memory.regions != memblock_memory_init_regions) {
375 addr = __pa(memblock.memory.regions);
376 size = PAGE_ALIGN(sizeof(struct memblock_region) *
377 memblock.memory.max);
378 __memblock_free_late(addr, size);
381 #endif
384 * memblock_double_array - double the size of the memblock regions array
385 * @type: memblock type of the regions array being doubled
386 * @new_area_start: starting address of memory range to avoid overlap with
387 * @new_area_size: size of memory range to avoid overlap with
389 * Double the size of the @type regions array. If memblock is being used to
390 * allocate memory for a new reserved regions array and there is a previously
391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
392 * waiting to be reserved, ensure the memory used by the new array does
393 * not overlap.
395 * Return:
396 * 0 on success, -1 on failure.
398 static int __init_memblock memblock_double_array(struct memblock_type *type,
399 phys_addr_t new_area_start,
400 phys_addr_t new_area_size)
402 struct memblock_region *new_array, *old_array;
403 phys_addr_t old_alloc_size, new_alloc_size;
404 phys_addr_t old_size, new_size, addr, new_end;
405 int use_slab = slab_is_available();
406 int *in_slab;
408 /* We don't allow resizing until we know about the reserved regions
409 * of memory that aren't suitable for allocation
411 if (!memblock_can_resize)
412 return -1;
414 /* Calculate new doubled size */
415 old_size = type->max * sizeof(struct memblock_region);
416 new_size = old_size << 1;
418 * We need to allocated new one align to PAGE_SIZE,
419 * so we can free them completely later.
421 old_alloc_size = PAGE_ALIGN(old_size);
422 new_alloc_size = PAGE_ALIGN(new_size);
424 /* Retrieve the slab flag */
425 if (type == &memblock.memory)
426 in_slab = &memblock_memory_in_slab;
427 else
428 in_slab = &memblock_reserved_in_slab;
430 /* Try to find some space for it.
432 * WARNING: We assume that either slab_is_available() and we use it or
433 * we use MEMBLOCK for allocations. That means that this is unsafe to
434 * use when bootmem is currently active (unless bootmem itself is
435 * implemented on top of MEMBLOCK which isn't the case yet)
437 * This should however not be an issue for now, as we currently only
438 * call into MEMBLOCK while it's still active, or much later when slab
439 * is active for memory hotplug operations
441 if (use_slab) {
442 new_array = kmalloc(new_size, GFP_KERNEL);
443 addr = new_array ? __pa(new_array) : 0;
444 } else {
445 /* only exclude range when trying to double reserved.regions */
446 if (type != &memblock.reserved)
447 new_area_start = new_area_size = 0;
449 addr = memblock_find_in_range(new_area_start + new_area_size,
450 memblock.current_limit,
451 new_alloc_size, PAGE_SIZE);
452 if (!addr && new_area_size)
453 addr = memblock_find_in_range(0,
454 min(new_area_start, memblock.current_limit),
455 new_alloc_size, PAGE_SIZE);
457 new_array = addr ? __va(addr) : NULL;
459 if (!addr) {
460 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
461 type->name, type->max, type->max * 2);
462 return -1;
465 new_end = addr + new_size - 1;
466 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
467 type->name, type->max * 2, &addr, &new_end);
470 * Found space, we now need to move the array over before we add the
471 * reserved region since it may be our reserved array itself that is
472 * full.
474 memcpy(new_array, type->regions, old_size);
475 memset(new_array + type->max, 0, old_size);
476 old_array = type->regions;
477 type->regions = new_array;
478 type->max <<= 1;
480 /* Free old array. We needn't free it if the array is the static one */
481 if (*in_slab)
482 kfree(old_array);
483 else if (old_array != memblock_memory_init_regions &&
484 old_array != memblock_reserved_init_regions)
485 memblock_free(__pa(old_array), old_alloc_size);
488 * Reserve the new array if that comes from the memblock. Otherwise, we
489 * needn't do it
491 if (!use_slab)
492 BUG_ON(memblock_reserve(addr, new_alloc_size));
494 /* Update slab flag */
495 *in_slab = use_slab;
497 return 0;
501 * memblock_merge_regions - merge neighboring compatible regions
502 * @type: memblock type to scan
504 * Scan @type and merge neighboring compatible regions.
506 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
508 int i = 0;
510 /* cnt never goes below 1 */
511 while (i < type->cnt - 1) {
512 struct memblock_region *this = &type->regions[i];
513 struct memblock_region *next = &type->regions[i + 1];
515 if (this->base + this->size != next->base ||
516 memblock_get_region_node(this) !=
517 memblock_get_region_node(next) ||
518 this->flags != next->flags) {
519 BUG_ON(this->base + this->size > next->base);
520 i++;
521 continue;
524 this->size += next->size;
525 /* move forward from next + 1, index of which is i + 2 */
526 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
527 type->cnt--;
532 * memblock_insert_region - insert new memblock region
533 * @type: memblock type to insert into
534 * @idx: index for the insertion point
535 * @base: base address of the new region
536 * @size: size of the new region
537 * @nid: node id of the new region
538 * @flags: flags of the new region
540 * Insert new memblock region [@base, @base + @size) into @type at @idx.
541 * @type must already have extra room to accommodate the new region.
543 static void __init_memblock memblock_insert_region(struct memblock_type *type,
544 int idx, phys_addr_t base,
545 phys_addr_t size,
546 int nid,
547 enum memblock_flags flags)
549 struct memblock_region *rgn = &type->regions[idx];
551 BUG_ON(type->cnt >= type->max);
552 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
553 rgn->base = base;
554 rgn->size = size;
555 rgn->flags = flags;
556 memblock_set_region_node(rgn, nid);
557 type->cnt++;
558 type->total_size += size;
562 * memblock_add_range - add new memblock region
563 * @type: memblock type to add new region into
564 * @base: base address of the new region
565 * @size: size of the new region
566 * @nid: nid of the new region
567 * @flags: flags of the new region
569 * Add new memblock region [@base, @base + @size) into @type. The new region
570 * is allowed to overlap with existing ones - overlaps don't affect already
571 * existing regions. @type is guaranteed to be minimal (all neighbouring
572 * compatible regions are merged) after the addition.
574 * Return:
575 * 0 on success, -errno on failure.
577 int __init_memblock memblock_add_range(struct memblock_type *type,
578 phys_addr_t base, phys_addr_t size,
579 int nid, enum memblock_flags flags)
581 bool insert = false;
582 phys_addr_t obase = base;
583 phys_addr_t end = base + memblock_cap_size(base, &size);
584 int idx, nr_new;
585 struct memblock_region *rgn;
587 if (!size)
588 return 0;
590 /* special case for empty array */
591 if (type->regions[0].size == 0) {
592 WARN_ON(type->cnt != 1 || type->total_size);
593 type->regions[0].base = base;
594 type->regions[0].size = size;
595 type->regions[0].flags = flags;
596 memblock_set_region_node(&type->regions[0], nid);
597 type->total_size = size;
598 return 0;
600 repeat:
602 * The following is executed twice. Once with %false @insert and
603 * then with %true. The first counts the number of regions needed
604 * to accommodate the new area. The second actually inserts them.
606 base = obase;
607 nr_new = 0;
609 for_each_memblock_type(idx, type, rgn) {
610 phys_addr_t rbase = rgn->base;
611 phys_addr_t rend = rbase + rgn->size;
613 if (rbase >= end)
614 break;
615 if (rend <= base)
616 continue;
618 * @rgn overlaps. If it separates the lower part of new
619 * area, insert that portion.
621 if (rbase > base) {
622 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
623 WARN_ON(nid != memblock_get_region_node(rgn));
624 #endif
625 WARN_ON(flags != rgn->flags);
626 nr_new++;
627 if (insert)
628 memblock_insert_region(type, idx++, base,
629 rbase - base, nid,
630 flags);
632 /* area below @rend is dealt with, forget about it */
633 base = min(rend, end);
636 /* insert the remaining portion */
637 if (base < end) {
638 nr_new++;
639 if (insert)
640 memblock_insert_region(type, idx, base, end - base,
641 nid, flags);
644 if (!nr_new)
645 return 0;
648 * If this was the first round, resize array and repeat for actual
649 * insertions; otherwise, merge and return.
651 if (!insert) {
652 while (type->cnt + nr_new > type->max)
653 if (memblock_double_array(type, obase, size) < 0)
654 return -ENOMEM;
655 insert = true;
656 goto repeat;
657 } else {
658 memblock_merge_regions(type);
659 return 0;
664 * memblock_add_node - add new memblock region within a NUMA node
665 * @base: base address of the new region
666 * @size: size of the new region
667 * @nid: nid of the new region
669 * Add new memblock region [@base, @base + @size) to the "memory"
670 * type. See memblock_add_range() description for mode details
672 * Return:
673 * 0 on success, -errno on failure.
675 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
676 int nid)
678 return memblock_add_range(&memblock.memory, base, size, nid, 0);
682 * memblock_add - add new memblock region
683 * @base: base address of the new region
684 * @size: size of the new region
686 * Add new memblock region [@base, @base + @size) to the "memory"
687 * type. See memblock_add_range() description for mode details
689 * Return:
690 * 0 on success, -errno on failure.
692 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
694 phys_addr_t end = base + size - 1;
696 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
697 &base, &end, (void *)_RET_IP_);
699 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
703 * memblock_isolate_range - isolate given range into disjoint memblocks
704 * @type: memblock type to isolate range for
705 * @base: base of range to isolate
706 * @size: size of range to isolate
707 * @start_rgn: out parameter for the start of isolated region
708 * @end_rgn: out parameter for the end of isolated region
710 * Walk @type and ensure that regions don't cross the boundaries defined by
711 * [@base, @base + @size). Crossing regions are split at the boundaries,
712 * which may create at most two more regions. The index of the first
713 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
715 * Return:
716 * 0 on success, -errno on failure.
718 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
719 phys_addr_t base, phys_addr_t size,
720 int *start_rgn, int *end_rgn)
722 phys_addr_t end = base + memblock_cap_size(base, &size);
723 int idx;
724 struct memblock_region *rgn;
726 *start_rgn = *end_rgn = 0;
728 if (!size)
729 return 0;
731 /* we'll create at most two more regions */
732 while (type->cnt + 2 > type->max)
733 if (memblock_double_array(type, base, size) < 0)
734 return -ENOMEM;
736 for_each_memblock_type(idx, type, rgn) {
737 phys_addr_t rbase = rgn->base;
738 phys_addr_t rend = rbase + rgn->size;
740 if (rbase >= end)
741 break;
742 if (rend <= base)
743 continue;
745 if (rbase < base) {
747 * @rgn intersects from below. Split and continue
748 * to process the next region - the new top half.
750 rgn->base = base;
751 rgn->size -= base - rbase;
752 type->total_size -= base - rbase;
753 memblock_insert_region(type, idx, rbase, base - rbase,
754 memblock_get_region_node(rgn),
755 rgn->flags);
756 } else if (rend > end) {
758 * @rgn intersects from above. Split and redo the
759 * current region - the new bottom half.
761 rgn->base = end;
762 rgn->size -= end - rbase;
763 type->total_size -= end - rbase;
764 memblock_insert_region(type, idx--, rbase, end - rbase,
765 memblock_get_region_node(rgn),
766 rgn->flags);
767 } else {
768 /* @rgn is fully contained, record it */
769 if (!*end_rgn)
770 *start_rgn = idx;
771 *end_rgn = idx + 1;
775 return 0;
778 static int __init_memblock memblock_remove_range(struct memblock_type *type,
779 phys_addr_t base, phys_addr_t size)
781 int start_rgn, end_rgn;
782 int i, ret;
784 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
785 if (ret)
786 return ret;
788 for (i = end_rgn - 1; i >= start_rgn; i--)
789 memblock_remove_region(type, i);
790 return 0;
793 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
795 phys_addr_t end = base + size - 1;
797 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
798 &base, &end, (void *)_RET_IP_);
800 return memblock_remove_range(&memblock.memory, base, size);
804 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
806 phys_addr_t end = base + size - 1;
808 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
809 &base, &end, (void *)_RET_IP_);
811 kmemleak_free_part_phys(base, size);
812 return memblock_remove_range(&memblock.reserved, base, size);
815 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
817 phys_addr_t end = base + size - 1;
819 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
820 &base, &end, (void *)_RET_IP_);
822 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
826 * memblock_setclr_flag - set or clear flag for a memory region
827 * @base: base address of the region
828 * @size: size of the region
829 * @set: set or clear the flag
830 * @flag: the flag to udpate
832 * This function isolates region [@base, @base + @size), and sets/clears flag
834 * Return: 0 on success, -errno on failure.
836 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
837 phys_addr_t size, int set, int flag)
839 struct memblock_type *type = &memblock.memory;
840 int i, ret, start_rgn, end_rgn;
842 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
843 if (ret)
844 return ret;
846 for (i = start_rgn; i < end_rgn; i++)
847 if (set)
848 memblock_set_region_flags(&type->regions[i], flag);
849 else
850 memblock_clear_region_flags(&type->regions[i], flag);
852 memblock_merge_regions(type);
853 return 0;
857 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
858 * @base: the base phys addr of the region
859 * @size: the size of the region
861 * Return: 0 on success, -errno on failure.
863 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
865 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
869 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
870 * @base: the base phys addr of the region
871 * @size: the size of the region
873 * Return: 0 on success, -errno on failure.
875 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
877 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
881 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
882 * @base: the base phys addr of the region
883 * @size: the size of the region
885 * Return: 0 on success, -errno on failure.
887 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
889 system_has_some_mirror = true;
891 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
895 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
896 * @base: the base phys addr of the region
897 * @size: the size of the region
899 * Return: 0 on success, -errno on failure.
901 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
903 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
907 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
908 * @base: the base phys addr of the region
909 * @size: the size of the region
911 * Return: 0 on success, -errno on failure.
913 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
915 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
919 * __next_reserved_mem_region - next function for for_each_reserved_region()
920 * @idx: pointer to u64 loop variable
921 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
922 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
924 * Iterate over all reserved memory regions.
926 void __init_memblock __next_reserved_mem_region(u64 *idx,
927 phys_addr_t *out_start,
928 phys_addr_t *out_end)
930 struct memblock_type *type = &memblock.reserved;
932 if (*idx < type->cnt) {
933 struct memblock_region *r = &type->regions[*idx];
934 phys_addr_t base = r->base;
935 phys_addr_t size = r->size;
937 if (out_start)
938 *out_start = base;
939 if (out_end)
940 *out_end = base + size - 1;
942 *idx += 1;
943 return;
946 /* signal end of iteration */
947 *idx = ULLONG_MAX;
951 * __next__mem_range - next function for for_each_free_mem_range() etc.
952 * @idx: pointer to u64 loop variable
953 * @nid: node selector, %NUMA_NO_NODE for all nodes
954 * @flags: pick from blocks based on memory attributes
955 * @type_a: pointer to memblock_type from where the range is taken
956 * @type_b: pointer to memblock_type which excludes memory from being taken
957 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
958 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
959 * @out_nid: ptr to int for nid of the range, can be %NULL
961 * Find the first area from *@idx which matches @nid, fill the out
962 * parameters, and update *@idx for the next iteration. The lower 32bit of
963 * *@idx contains index into type_a and the upper 32bit indexes the
964 * areas before each region in type_b. For example, if type_b regions
965 * look like the following,
967 * 0:[0-16), 1:[32-48), 2:[128-130)
969 * The upper 32bit indexes the following regions.
971 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
973 * As both region arrays are sorted, the function advances the two indices
974 * in lockstep and returns each intersection.
976 void __init_memblock __next_mem_range(u64 *idx, int nid,
977 enum memblock_flags flags,
978 struct memblock_type *type_a,
979 struct memblock_type *type_b,
980 phys_addr_t *out_start,
981 phys_addr_t *out_end, int *out_nid)
983 int idx_a = *idx & 0xffffffff;
984 int idx_b = *idx >> 32;
986 if (WARN_ONCE(nid == MAX_NUMNODES,
987 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
988 nid = NUMA_NO_NODE;
990 for (; idx_a < type_a->cnt; idx_a++) {
991 struct memblock_region *m = &type_a->regions[idx_a];
993 phys_addr_t m_start = m->base;
994 phys_addr_t m_end = m->base + m->size;
995 int m_nid = memblock_get_region_node(m);
997 /* only memory regions are associated with nodes, check it */
998 if (nid != NUMA_NO_NODE && nid != m_nid)
999 continue;
1001 /* skip hotpluggable memory regions if needed */
1002 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1003 continue;
1005 /* if we want mirror memory skip non-mirror memory regions */
1006 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1007 continue;
1009 /* skip nomap memory unless we were asked for it explicitly */
1010 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1011 continue;
1013 if (!type_b) {
1014 if (out_start)
1015 *out_start = m_start;
1016 if (out_end)
1017 *out_end = m_end;
1018 if (out_nid)
1019 *out_nid = m_nid;
1020 idx_a++;
1021 *idx = (u32)idx_a | (u64)idx_b << 32;
1022 return;
1025 /* scan areas before each reservation */
1026 for (; idx_b < type_b->cnt + 1; idx_b++) {
1027 struct memblock_region *r;
1028 phys_addr_t r_start;
1029 phys_addr_t r_end;
1031 r = &type_b->regions[idx_b];
1032 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1033 r_end = idx_b < type_b->cnt ?
1034 r->base : PHYS_ADDR_MAX;
1037 * if idx_b advanced past idx_a,
1038 * break out to advance idx_a
1040 if (r_start >= m_end)
1041 break;
1042 /* if the two regions intersect, we're done */
1043 if (m_start < r_end) {
1044 if (out_start)
1045 *out_start =
1046 max(m_start, r_start);
1047 if (out_end)
1048 *out_end = min(m_end, r_end);
1049 if (out_nid)
1050 *out_nid = m_nid;
1052 * The region which ends first is
1053 * advanced for the next iteration.
1055 if (m_end <= r_end)
1056 idx_a++;
1057 else
1058 idx_b++;
1059 *idx = (u32)idx_a | (u64)idx_b << 32;
1060 return;
1065 /* signal end of iteration */
1066 *idx = ULLONG_MAX;
1070 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1072 * @idx: pointer to u64 loop variable
1073 * @nid: node selector, %NUMA_NO_NODE for all nodes
1074 * @flags: pick from blocks based on memory attributes
1075 * @type_a: pointer to memblock_type from where the range is taken
1076 * @type_b: pointer to memblock_type which excludes memory from being taken
1077 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1078 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1079 * @out_nid: ptr to int for nid of the range, can be %NULL
1081 * Finds the next range from type_a which is not marked as unsuitable
1082 * in type_b.
1084 * Reverse of __next_mem_range().
1086 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1087 enum memblock_flags flags,
1088 struct memblock_type *type_a,
1089 struct memblock_type *type_b,
1090 phys_addr_t *out_start,
1091 phys_addr_t *out_end, int *out_nid)
1093 int idx_a = *idx & 0xffffffff;
1094 int idx_b = *idx >> 32;
1096 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1097 nid = NUMA_NO_NODE;
1099 if (*idx == (u64)ULLONG_MAX) {
1100 idx_a = type_a->cnt - 1;
1101 if (type_b != NULL)
1102 idx_b = type_b->cnt;
1103 else
1104 idx_b = 0;
1107 for (; idx_a >= 0; idx_a--) {
1108 struct memblock_region *m = &type_a->regions[idx_a];
1110 phys_addr_t m_start = m->base;
1111 phys_addr_t m_end = m->base + m->size;
1112 int m_nid = memblock_get_region_node(m);
1114 /* only memory regions are associated with nodes, check it */
1115 if (nid != NUMA_NO_NODE && nid != m_nid)
1116 continue;
1118 /* skip hotpluggable memory regions if needed */
1119 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1120 continue;
1122 /* if we want mirror memory skip non-mirror memory regions */
1123 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1124 continue;
1126 /* skip nomap memory unless we were asked for it explicitly */
1127 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1128 continue;
1130 if (!type_b) {
1131 if (out_start)
1132 *out_start = m_start;
1133 if (out_end)
1134 *out_end = m_end;
1135 if (out_nid)
1136 *out_nid = m_nid;
1137 idx_a--;
1138 *idx = (u32)idx_a | (u64)idx_b << 32;
1139 return;
1142 /* scan areas before each reservation */
1143 for (; idx_b >= 0; idx_b--) {
1144 struct memblock_region *r;
1145 phys_addr_t r_start;
1146 phys_addr_t r_end;
1148 r = &type_b->regions[idx_b];
1149 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1150 r_end = idx_b < type_b->cnt ?
1151 r->base : PHYS_ADDR_MAX;
1153 * if idx_b advanced past idx_a,
1154 * break out to advance idx_a
1157 if (r_end <= m_start)
1158 break;
1159 /* if the two regions intersect, we're done */
1160 if (m_end > r_start) {
1161 if (out_start)
1162 *out_start = max(m_start, r_start);
1163 if (out_end)
1164 *out_end = min(m_end, r_end);
1165 if (out_nid)
1166 *out_nid = m_nid;
1167 if (m_start >= r_start)
1168 idx_a--;
1169 else
1170 idx_b--;
1171 *idx = (u32)idx_a | (u64)idx_b << 32;
1172 return;
1176 /* signal end of iteration */
1177 *idx = ULLONG_MAX;
1180 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1182 * Common iterator interface used to define for_each_mem_pfn_range().
1184 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1185 unsigned long *out_start_pfn,
1186 unsigned long *out_end_pfn, int *out_nid)
1188 struct memblock_type *type = &memblock.memory;
1189 struct memblock_region *r;
1191 while (++*idx < type->cnt) {
1192 r = &type->regions[*idx];
1194 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1195 continue;
1196 if (nid == MAX_NUMNODES || nid == r->nid)
1197 break;
1199 if (*idx >= type->cnt) {
1200 *idx = -1;
1201 return;
1204 if (out_start_pfn)
1205 *out_start_pfn = PFN_UP(r->base);
1206 if (out_end_pfn)
1207 *out_end_pfn = PFN_DOWN(r->base + r->size);
1208 if (out_nid)
1209 *out_nid = r->nid;
1213 * memblock_set_node - set node ID on memblock regions
1214 * @base: base of area to set node ID for
1215 * @size: size of area to set node ID for
1216 * @type: memblock type to set node ID for
1217 * @nid: node ID to set
1219 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1220 * Regions which cross the area boundaries are split as necessary.
1222 * Return:
1223 * 0 on success, -errno on failure.
1225 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1226 struct memblock_type *type, int nid)
1228 int start_rgn, end_rgn;
1229 int i, ret;
1231 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1232 if (ret)
1233 return ret;
1235 for (i = start_rgn; i < end_rgn; i++)
1236 memblock_set_region_node(&type->regions[i], nid);
1238 memblock_merge_regions(type);
1239 return 0;
1241 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1243 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1244 phys_addr_t align, phys_addr_t start,
1245 phys_addr_t end, int nid,
1246 enum memblock_flags flags)
1248 phys_addr_t found;
1250 if (!align) {
1251 /* Can't use WARNs this early in boot on powerpc */
1252 dump_stack();
1253 align = SMP_CACHE_BYTES;
1256 found = memblock_find_in_range_node(size, align, start, end, nid,
1257 flags);
1258 if (found && !memblock_reserve(found, size)) {
1260 * The min_count is set to 0 so that memblock allocations are
1261 * never reported as leaks.
1263 kmemleak_alloc_phys(found, size, 0, 0);
1264 return found;
1266 return 0;
1269 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1270 phys_addr_t start, phys_addr_t end,
1271 enum memblock_flags flags)
1273 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1274 flags);
1277 phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1278 phys_addr_t align, phys_addr_t max_addr,
1279 int nid, enum memblock_flags flags)
1281 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1284 phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1286 enum memblock_flags flags = choose_memblock_flags();
1287 phys_addr_t ret;
1289 again:
1290 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1291 nid, flags);
1293 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1294 flags &= ~MEMBLOCK_MIRROR;
1295 goto again;
1297 return ret;
1300 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1302 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1303 MEMBLOCK_NONE);
1306 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1308 phys_addr_t alloc;
1310 alloc = __memblock_alloc_base(size, align, max_addr);
1312 if (alloc == 0)
1313 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1314 &size, &max_addr);
1316 return alloc;
1319 phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
1321 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1324 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1326 phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
1328 if (res)
1329 return res;
1330 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1334 * memblock_alloc_internal - allocate boot memory block
1335 * @size: size of memory block to be allocated in bytes
1336 * @align: alignment of the region and block's size
1337 * @min_addr: the lower bound of the memory region to allocate (phys address)
1338 * @max_addr: the upper bound of the memory region to allocate (phys address)
1339 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1341 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1342 * will fall back to memory below @min_addr. Also, allocation may fall back
1343 * to any node in the system if the specified node can not
1344 * hold the requested memory.
1346 * The allocation is performed from memory region limited by
1347 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1349 * The phys address of allocated boot memory block is converted to virtual and
1350 * allocated memory is reset to 0.
1352 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1353 * allocated boot memory block, so that it is never reported as leaks.
1355 * Return:
1356 * Virtual address of allocated memory block on success, NULL on failure.
1358 static void * __init memblock_alloc_internal(
1359 phys_addr_t size, phys_addr_t align,
1360 phys_addr_t min_addr, phys_addr_t max_addr,
1361 int nid)
1363 phys_addr_t alloc;
1364 void *ptr;
1365 enum memblock_flags flags = choose_memblock_flags();
1367 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1368 nid = NUMA_NO_NODE;
1371 * Detect any accidental use of these APIs after slab is ready, as at
1372 * this moment memblock may be deinitialized already and its
1373 * internal data may be destroyed (after execution of memblock_free_all)
1375 if (WARN_ON_ONCE(slab_is_available()))
1376 return kzalloc_node(size, GFP_NOWAIT, nid);
1378 if (!align) {
1379 dump_stack();
1380 align = SMP_CACHE_BYTES;
1383 if (max_addr > memblock.current_limit)
1384 max_addr = memblock.current_limit;
1385 again:
1386 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1387 nid, flags);
1388 if (alloc && !memblock_reserve(alloc, size))
1389 goto done;
1391 if (nid != NUMA_NO_NODE) {
1392 alloc = memblock_find_in_range_node(size, align, min_addr,
1393 max_addr, NUMA_NO_NODE,
1394 flags);
1395 if (alloc && !memblock_reserve(alloc, size))
1396 goto done;
1399 if (min_addr) {
1400 min_addr = 0;
1401 goto again;
1404 if (flags & MEMBLOCK_MIRROR) {
1405 flags &= ~MEMBLOCK_MIRROR;
1406 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1407 &size);
1408 goto again;
1411 return NULL;
1412 done:
1413 ptr = phys_to_virt(alloc);
1416 * The min_count is set to 0 so that bootmem allocated blocks
1417 * are never reported as leaks. This is because many of these blocks
1418 * are only referred via the physical address which is not
1419 * looked up by kmemleak.
1421 kmemleak_alloc(ptr, size, 0, 0);
1423 return ptr;
1427 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1428 * memory and without panicking
1429 * @size: size of memory block to be allocated in bytes
1430 * @align: alignment of the region and block's size
1431 * @min_addr: the lower bound of the memory region from where the allocation
1432 * is preferred (phys address)
1433 * @max_addr: the upper bound of the memory region from where the allocation
1434 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1435 * allocate only from memory limited by memblock.current_limit value
1436 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1438 * Public function, provides additional debug information (including caller
1439 * info), if enabled. Does not zero allocated memory, does not panic if request
1440 * cannot be satisfied.
1442 * Return:
1443 * Virtual address of allocated memory block on success, NULL on failure.
1445 void * __init memblock_alloc_try_nid_raw(
1446 phys_addr_t size, phys_addr_t align,
1447 phys_addr_t min_addr, phys_addr_t max_addr,
1448 int nid)
1450 void *ptr;
1452 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1453 __func__, (u64)size, (u64)align, nid, &min_addr,
1454 &max_addr, (void *)_RET_IP_);
1456 ptr = memblock_alloc_internal(size, align,
1457 min_addr, max_addr, nid);
1458 if (ptr && size > 0)
1459 page_init_poison(ptr, size);
1461 return ptr;
1465 * memblock_alloc_try_nid_nopanic - allocate boot memory block
1466 * @size: size of memory block to be allocated in bytes
1467 * @align: alignment of the region and block's size
1468 * @min_addr: the lower bound of the memory region from where the allocation
1469 * is preferred (phys address)
1470 * @max_addr: the upper bound of the memory region from where the allocation
1471 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1472 * allocate only from memory limited by memblock.current_limit value
1473 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1475 * Public function, provides additional debug information (including caller
1476 * info), if enabled. This function zeroes the allocated memory.
1478 * Return:
1479 * Virtual address of allocated memory block on success, NULL on failure.
1481 void * __init memblock_alloc_try_nid_nopanic(
1482 phys_addr_t size, phys_addr_t align,
1483 phys_addr_t min_addr, phys_addr_t max_addr,
1484 int nid)
1486 void *ptr;
1488 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1489 __func__, (u64)size, (u64)align, nid, &min_addr,
1490 &max_addr, (void *)_RET_IP_);
1492 ptr = memblock_alloc_internal(size, align,
1493 min_addr, max_addr, nid);
1494 if (ptr)
1495 memset(ptr, 0, size);
1496 return ptr;
1500 * memblock_alloc_try_nid - allocate boot memory block with panicking
1501 * @size: size of memory block to be allocated in bytes
1502 * @align: alignment of the region and block's size
1503 * @min_addr: the lower bound of the memory region from where the allocation
1504 * is preferred (phys address)
1505 * @max_addr: the upper bound of the memory region from where the allocation
1506 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1507 * allocate only from memory limited by memblock.current_limit value
1508 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1510 * Public panicking version of memblock_alloc_try_nid_nopanic()
1511 * which provides debug information (including caller info), if enabled,
1512 * and panics if the request can not be satisfied.
1514 * Return:
1515 * Virtual address of allocated memory block on success, NULL on failure.
1517 void * __init memblock_alloc_try_nid(
1518 phys_addr_t size, phys_addr_t align,
1519 phys_addr_t min_addr, phys_addr_t max_addr,
1520 int nid)
1522 void *ptr;
1524 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1525 __func__, (u64)size, (u64)align, nid, &min_addr,
1526 &max_addr, (void *)_RET_IP_);
1527 ptr = memblock_alloc_internal(size, align,
1528 min_addr, max_addr, nid);
1529 if (ptr) {
1530 memset(ptr, 0, size);
1531 return ptr;
1534 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1535 __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
1536 return NULL;
1540 * __memblock_free_early - free boot memory block
1541 * @base: phys starting address of the boot memory block
1542 * @size: size of the boot memory block in bytes
1544 * Free boot memory block previously allocated by memblock_alloc_xx() API.
1545 * The freeing memory will not be released to the buddy allocator.
1547 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1549 phys_addr_t end = base + size - 1;
1551 memblock_dbg("%s: [%pa-%pa] %pF\n",
1552 __func__, &base, &end, (void *)_RET_IP_);
1553 kmemleak_free_part_phys(base, size);
1554 memblock_remove_range(&memblock.reserved, base, size);
1558 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1559 * @base: phys starting address of the boot memory block
1560 * @size: size of the boot memory block in bytes
1562 * This is only useful when the bootmem allocator has already been torn
1563 * down, but we are still initializing the system. Pages are released directly
1564 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1566 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1568 phys_addr_t cursor, end;
1570 end = base + size - 1;
1571 memblock_dbg("%s: [%pa-%pa] %pF\n",
1572 __func__, &base, &end, (void *)_RET_IP_);
1573 kmemleak_free_part_phys(base, size);
1574 cursor = PFN_UP(base);
1575 end = PFN_DOWN(base + size);
1577 for (; cursor < end; cursor++) {
1578 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1579 totalram_pages++;
1584 * Remaining API functions
1587 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1589 return memblock.memory.total_size;
1592 phys_addr_t __init_memblock memblock_reserved_size(void)
1594 return memblock.reserved.total_size;
1597 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1599 unsigned long pages = 0;
1600 struct memblock_region *r;
1601 unsigned long start_pfn, end_pfn;
1603 for_each_memblock(memory, r) {
1604 start_pfn = memblock_region_memory_base_pfn(r);
1605 end_pfn = memblock_region_memory_end_pfn(r);
1606 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1607 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1608 pages += end_pfn - start_pfn;
1611 return PFN_PHYS(pages);
1614 /* lowest address */
1615 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1617 return memblock.memory.regions[0].base;
1620 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1622 int idx = memblock.memory.cnt - 1;
1624 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1627 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1629 phys_addr_t max_addr = PHYS_ADDR_MAX;
1630 struct memblock_region *r;
1633 * translate the memory @limit size into the max address within one of
1634 * the memory memblock regions, if the @limit exceeds the total size
1635 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1637 for_each_memblock(memory, r) {
1638 if (limit <= r->size) {
1639 max_addr = r->base + limit;
1640 break;
1642 limit -= r->size;
1645 return max_addr;
1648 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1650 phys_addr_t max_addr = PHYS_ADDR_MAX;
1652 if (!limit)
1653 return;
1655 max_addr = __find_max_addr(limit);
1657 /* @limit exceeds the total size of the memory, do nothing */
1658 if (max_addr == PHYS_ADDR_MAX)
1659 return;
1661 /* truncate both memory and reserved regions */
1662 memblock_remove_range(&memblock.memory, max_addr,
1663 PHYS_ADDR_MAX);
1664 memblock_remove_range(&memblock.reserved, max_addr,
1665 PHYS_ADDR_MAX);
1668 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1670 int start_rgn, end_rgn;
1671 int i, ret;
1673 if (!size)
1674 return;
1676 ret = memblock_isolate_range(&memblock.memory, base, size,
1677 &start_rgn, &end_rgn);
1678 if (ret)
1679 return;
1681 /* remove all the MAP regions */
1682 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1683 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1684 memblock_remove_region(&memblock.memory, i);
1686 for (i = start_rgn - 1; i >= 0; i--)
1687 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688 memblock_remove_region(&memblock.memory, i);
1690 /* truncate the reserved regions */
1691 memblock_remove_range(&memblock.reserved, 0, base);
1692 memblock_remove_range(&memblock.reserved,
1693 base + size, PHYS_ADDR_MAX);
1696 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1698 phys_addr_t max_addr;
1700 if (!limit)
1701 return;
1703 max_addr = __find_max_addr(limit);
1705 /* @limit exceeds the total size of the memory, do nothing */
1706 if (max_addr == PHYS_ADDR_MAX)
1707 return;
1709 memblock_cap_memory_range(0, max_addr);
1712 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1714 unsigned int left = 0, right = type->cnt;
1716 do {
1717 unsigned int mid = (right + left) / 2;
1719 if (addr < type->regions[mid].base)
1720 right = mid;
1721 else if (addr >= (type->regions[mid].base +
1722 type->regions[mid].size))
1723 left = mid + 1;
1724 else
1725 return mid;
1726 } while (left < right);
1727 return -1;
1730 bool __init memblock_is_reserved(phys_addr_t addr)
1732 return memblock_search(&memblock.reserved, addr) != -1;
1735 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1737 return memblock_search(&memblock.memory, addr) != -1;
1740 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1742 int i = memblock_search(&memblock.memory, addr);
1744 if (i == -1)
1745 return false;
1746 return !memblock_is_nomap(&memblock.memory.regions[i]);
1749 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1751 unsigned long *start_pfn, unsigned long *end_pfn)
1753 struct memblock_type *type = &memblock.memory;
1754 int mid = memblock_search(type, PFN_PHYS(pfn));
1756 if (mid == -1)
1757 return -1;
1759 *start_pfn = PFN_DOWN(type->regions[mid].base);
1760 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1762 return type->regions[mid].nid;
1764 #endif
1767 * memblock_is_region_memory - check if a region is a subset of memory
1768 * @base: base of region to check
1769 * @size: size of region to check
1771 * Check if the region [@base, @base + @size) is a subset of a memory block.
1773 * Return:
1774 * 0 if false, non-zero if true
1776 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1778 int idx = memblock_search(&memblock.memory, base);
1779 phys_addr_t end = base + memblock_cap_size(base, &size);
1781 if (idx == -1)
1782 return false;
1783 return (memblock.memory.regions[idx].base +
1784 memblock.memory.regions[idx].size) >= end;
1788 * memblock_is_region_reserved - check if a region intersects reserved memory
1789 * @base: base of region to check
1790 * @size: size of region to check
1792 * Check if the region [@base, @base + @size) intersects a reserved
1793 * memory block.
1795 * Return:
1796 * True if they intersect, false if not.
1798 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1800 memblock_cap_size(base, &size);
1801 return memblock_overlaps_region(&memblock.reserved, base, size);
1804 void __init_memblock memblock_trim_memory(phys_addr_t align)
1806 phys_addr_t start, end, orig_start, orig_end;
1807 struct memblock_region *r;
1809 for_each_memblock(memory, r) {
1810 orig_start = r->base;
1811 orig_end = r->base + r->size;
1812 start = round_up(orig_start, align);
1813 end = round_down(orig_end, align);
1815 if (start == orig_start && end == orig_end)
1816 continue;
1818 if (start < end) {
1819 r->base = start;
1820 r->size = end - start;
1821 } else {
1822 memblock_remove_region(&memblock.memory,
1823 r - memblock.memory.regions);
1824 r--;
1829 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1831 memblock.current_limit = limit;
1834 phys_addr_t __init_memblock memblock_get_current_limit(void)
1836 return memblock.current_limit;
1839 static void __init_memblock memblock_dump(struct memblock_type *type)
1841 phys_addr_t base, end, size;
1842 enum memblock_flags flags;
1843 int idx;
1844 struct memblock_region *rgn;
1846 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1848 for_each_memblock_type(idx, type, rgn) {
1849 char nid_buf[32] = "";
1851 base = rgn->base;
1852 size = rgn->size;
1853 end = base + size - 1;
1854 flags = rgn->flags;
1855 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1856 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1857 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1858 memblock_get_region_node(rgn));
1859 #endif
1860 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1861 type->name, idx, &base, &end, &size, nid_buf, flags);
1865 void __init_memblock __memblock_dump_all(void)
1867 pr_info("MEMBLOCK configuration:\n");
1868 pr_info(" memory size = %pa reserved size = %pa\n",
1869 &memblock.memory.total_size,
1870 &memblock.reserved.total_size);
1872 memblock_dump(&memblock.memory);
1873 memblock_dump(&memblock.reserved);
1874 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1875 memblock_dump(&memblock.physmem);
1876 #endif
1879 void __init memblock_allow_resize(void)
1881 memblock_can_resize = 1;
1884 static int __init early_memblock(char *p)
1886 if (p && strstr(p, "debug"))
1887 memblock_debug = 1;
1888 return 0;
1890 early_param("memblock", early_memblock);
1892 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1894 int order;
1896 while (start < end) {
1897 order = min(MAX_ORDER - 1UL, __ffs(start));
1899 while (start + (1UL << order) > end)
1900 order--;
1902 memblock_free_pages(pfn_to_page(start), start, order);
1904 start += (1UL << order);
1908 static unsigned long __init __free_memory_core(phys_addr_t start,
1909 phys_addr_t end)
1911 unsigned long start_pfn = PFN_UP(start);
1912 unsigned long end_pfn = min_t(unsigned long,
1913 PFN_DOWN(end), max_low_pfn);
1915 if (start_pfn >= end_pfn)
1916 return 0;
1918 __free_pages_memory(start_pfn, end_pfn);
1920 return end_pfn - start_pfn;
1923 static unsigned long __init free_low_memory_core_early(void)
1925 unsigned long count = 0;
1926 phys_addr_t start, end;
1927 u64 i;
1929 memblock_clear_hotplug(0, -1);
1931 for_each_reserved_mem_region(i, &start, &end)
1932 reserve_bootmem_region(start, end);
1935 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1936 * because in some case like Node0 doesn't have RAM installed
1937 * low ram will be on Node1
1939 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1940 NULL)
1941 count += __free_memory_core(start, end);
1943 return count;
1946 static int reset_managed_pages_done __initdata;
1948 void reset_node_managed_pages(pg_data_t *pgdat)
1950 struct zone *z;
1952 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1953 z->managed_pages = 0;
1956 void __init reset_all_zones_managed_pages(void)
1958 struct pglist_data *pgdat;
1960 if (reset_managed_pages_done)
1961 return;
1963 for_each_online_pgdat(pgdat)
1964 reset_node_managed_pages(pgdat);
1966 reset_managed_pages_done = 1;
1970 * memblock_free_all - release free pages to the buddy allocator
1972 * Return: the number of pages actually released.
1974 unsigned long __init memblock_free_all(void)
1976 unsigned long pages;
1978 reset_all_zones_managed_pages();
1980 pages = free_low_memory_core_early();
1981 totalram_pages += pages;
1983 return pages;
1986 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1988 static int memblock_debug_show(struct seq_file *m, void *private)
1990 struct memblock_type *type = m->private;
1991 struct memblock_region *reg;
1992 int i;
1993 phys_addr_t end;
1995 for (i = 0; i < type->cnt; i++) {
1996 reg = &type->regions[i];
1997 end = reg->base + reg->size - 1;
1999 seq_printf(m, "%4d: ", i);
2000 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2002 return 0;
2004 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2006 static int __init memblock_init_debugfs(void)
2008 struct dentry *root = debugfs_create_dir("memblock", NULL);
2009 if (!root)
2010 return -ENXIO;
2011 debugfs_create_file("memory", 0444, root,
2012 &memblock.memory, &memblock_debug_fops);
2013 debugfs_create_file("reserved", 0444, root,
2014 &memblock.reserved, &memblock_debug_fops);
2015 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2016 debugfs_create_file("physmem", 0444, root,
2017 &memblock.physmem, &memblock_debug_fops);
2018 #endif
2020 return 0;
2022 __initcall(memblock_init_debugfs);
2024 #endif /* CONFIG_DEBUG_FS */