2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42 static struct vfsmount
*shm_mnt
;
46 * This virtual memory filesystem is heavily based on the ramfs. It
47 * extends ramfs by the ability to use swap and honor resource limits
48 * which makes it a completely usable filesystem.
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98 * inode->i_private (with i_mutex making sure that it has only one user at
99 * a time): we would prefer not to enlarge the shmem inode just for that.
101 struct shmem_falloc
{
102 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
103 pgoff_t start
; /* start of range currently being fallocated */
104 pgoff_t next
; /* the next page offset to be fallocated */
105 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
106 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages
/ 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
121 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
122 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
123 struct shmem_inode_info
*info
, pgoff_t index
);
124 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
125 struct page
**pagep
, enum sgp_type sgp
,
126 gfp_t gfp
, struct vm_area_struct
*vma
,
127 struct vm_fault
*vmf
, vm_fault_t
*fault_type
);
129 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
130 struct page
**pagep
, enum sgp_type sgp
)
132 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
133 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
136 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
138 return sb
->s_fs_info
;
142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143 * for shared memory and for shared anonymous (/dev/zero) mappings
144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145 * consistent with the pre-accounting of private mappings ...
147 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
149 return (flags
& VM_NORESERVE
) ?
150 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
153 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
155 if (!(flags
& VM_NORESERVE
))
156 vm_unacct_memory(VM_ACCT(size
));
159 static inline int shmem_reacct_size(unsigned long flags
,
160 loff_t oldsize
, loff_t newsize
)
162 if (!(flags
& VM_NORESERVE
)) {
163 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
164 return security_vm_enough_memory_mm(current
->mm
,
165 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
166 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
167 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
173 * ... whereas tmpfs objects are accounted incrementally as
174 * pages are allocated, in order to allow large sparse files.
175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
178 static inline int shmem_acct_block(unsigned long flags
, long pages
)
180 if (!(flags
& VM_NORESERVE
))
183 return security_vm_enough_memory_mm(current
->mm
,
184 pages
* VM_ACCT(PAGE_SIZE
));
187 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
189 if (flags
& VM_NORESERVE
)
190 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
193 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
195 struct shmem_inode_info
*info
= SHMEM_I(inode
);
196 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
198 if (shmem_acct_block(info
->flags
, pages
))
201 if (sbinfo
->max_blocks
) {
202 if (percpu_counter_compare(&sbinfo
->used_blocks
,
203 sbinfo
->max_blocks
- pages
) > 0)
205 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
211 shmem_unacct_blocks(info
->flags
, pages
);
215 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
217 struct shmem_inode_info
*info
= SHMEM_I(inode
);
218 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
220 if (sbinfo
->max_blocks
)
221 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
222 shmem_unacct_blocks(info
->flags
, pages
);
225 static const struct super_operations shmem_ops
;
226 static const struct address_space_operations shmem_aops
;
227 static const struct file_operations shmem_file_operations
;
228 static const struct inode_operations shmem_inode_operations
;
229 static const struct inode_operations shmem_dir_inode_operations
;
230 static const struct inode_operations shmem_special_inode_operations
;
231 static const struct vm_operations_struct shmem_vm_ops
;
232 static struct file_system_type shmem_fs_type
;
234 bool vma_is_shmem(struct vm_area_struct
*vma
)
236 return vma
->vm_ops
== &shmem_vm_ops
;
239 static LIST_HEAD(shmem_swaplist
);
240 static DEFINE_MUTEX(shmem_swaplist_mutex
);
242 static int shmem_reserve_inode(struct super_block
*sb
)
244 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
245 if (sbinfo
->max_inodes
) {
246 spin_lock(&sbinfo
->stat_lock
);
247 if (!sbinfo
->free_inodes
) {
248 spin_unlock(&sbinfo
->stat_lock
);
251 sbinfo
->free_inodes
--;
252 spin_unlock(&sbinfo
->stat_lock
);
257 static void shmem_free_inode(struct super_block
*sb
)
259 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
260 if (sbinfo
->max_inodes
) {
261 spin_lock(&sbinfo
->stat_lock
);
262 sbinfo
->free_inodes
++;
263 spin_unlock(&sbinfo
->stat_lock
);
268 * shmem_recalc_inode - recalculate the block usage of an inode
269 * @inode: inode to recalc
271 * We have to calculate the free blocks since the mm can drop
272 * undirtied hole pages behind our back.
274 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
277 * It has to be called with the spinlock held.
279 static void shmem_recalc_inode(struct inode
*inode
)
281 struct shmem_inode_info
*info
= SHMEM_I(inode
);
284 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
286 info
->alloced
-= freed
;
287 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
288 shmem_inode_unacct_blocks(inode
, freed
);
292 bool shmem_charge(struct inode
*inode
, long pages
)
294 struct shmem_inode_info
*info
= SHMEM_I(inode
);
297 if (!shmem_inode_acct_block(inode
, pages
))
300 spin_lock_irqsave(&info
->lock
, flags
);
301 info
->alloced
+= pages
;
302 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
303 shmem_recalc_inode(inode
);
304 spin_unlock_irqrestore(&info
->lock
, flags
);
305 inode
->i_mapping
->nrpages
+= pages
;
310 void shmem_uncharge(struct inode
*inode
, long pages
)
312 struct shmem_inode_info
*info
= SHMEM_I(inode
);
315 spin_lock_irqsave(&info
->lock
, flags
);
316 info
->alloced
-= pages
;
317 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
318 shmem_recalc_inode(inode
);
319 spin_unlock_irqrestore(&info
->lock
, flags
);
321 shmem_inode_unacct_blocks(inode
, pages
);
325 * Replace item expected in xarray by a new item, while holding xa_lock.
327 static int shmem_replace_entry(struct address_space
*mapping
,
328 pgoff_t index
, void *expected
, void *replacement
)
330 XA_STATE(xas
, &mapping
->i_pages
, index
);
333 VM_BUG_ON(!expected
);
334 VM_BUG_ON(!replacement
);
335 item
= xas_load(&xas
);
336 if (item
!= expected
)
338 xas_store(&xas
, replacement
);
343 * Sometimes, before we decide whether to proceed or to fail, we must check
344 * that an entry was not already brought back from swap by a racing thread.
346 * Checking page is not enough: by the time a SwapCache page is locked, it
347 * might be reused, and again be SwapCache, using the same swap as before.
349 static bool shmem_confirm_swap(struct address_space
*mapping
,
350 pgoff_t index
, swp_entry_t swap
)
352 return xa_load(&mapping
->i_pages
, index
) == swp_to_radix_entry(swap
);
356 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
359 * disables huge pages for the mount;
361 * enables huge pages for the mount;
362 * SHMEM_HUGE_WITHIN_SIZE:
363 * only allocate huge pages if the page will be fully within i_size,
364 * also respect fadvise()/madvise() hints;
366 * only allocate huge pages if requested with fadvise()/madvise();
369 #define SHMEM_HUGE_NEVER 0
370 #define SHMEM_HUGE_ALWAYS 1
371 #define SHMEM_HUGE_WITHIN_SIZE 2
372 #define SHMEM_HUGE_ADVISE 3
376 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
379 * disables huge on shm_mnt and all mounts, for emergency use;
381 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
384 #define SHMEM_HUGE_DENY (-1)
385 #define SHMEM_HUGE_FORCE (-2)
387 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
388 /* ifdef here to avoid bloating shmem.o when not necessary */
390 static int shmem_huge __read_mostly
;
392 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
393 static int shmem_parse_huge(const char *str
)
395 if (!strcmp(str
, "never"))
396 return SHMEM_HUGE_NEVER
;
397 if (!strcmp(str
, "always"))
398 return SHMEM_HUGE_ALWAYS
;
399 if (!strcmp(str
, "within_size"))
400 return SHMEM_HUGE_WITHIN_SIZE
;
401 if (!strcmp(str
, "advise"))
402 return SHMEM_HUGE_ADVISE
;
403 if (!strcmp(str
, "deny"))
404 return SHMEM_HUGE_DENY
;
405 if (!strcmp(str
, "force"))
406 return SHMEM_HUGE_FORCE
;
410 static const char *shmem_format_huge(int huge
)
413 case SHMEM_HUGE_NEVER
:
415 case SHMEM_HUGE_ALWAYS
:
417 case SHMEM_HUGE_WITHIN_SIZE
:
418 return "within_size";
419 case SHMEM_HUGE_ADVISE
:
421 case SHMEM_HUGE_DENY
:
423 case SHMEM_HUGE_FORCE
:
432 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
433 struct shrink_control
*sc
, unsigned long nr_to_split
)
435 LIST_HEAD(list
), *pos
, *next
;
436 LIST_HEAD(to_remove
);
438 struct shmem_inode_info
*info
;
440 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
441 int removed
= 0, split
= 0;
443 if (list_empty(&sbinfo
->shrinklist
))
446 spin_lock(&sbinfo
->shrinklist_lock
);
447 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
448 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
451 inode
= igrab(&info
->vfs_inode
);
453 /* inode is about to be evicted */
455 list_del_init(&info
->shrinklist
);
460 /* Check if there's anything to gain */
461 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
462 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
463 list_move(&info
->shrinklist
, &to_remove
);
468 list_move(&info
->shrinklist
, &list
);
473 spin_unlock(&sbinfo
->shrinklist_lock
);
475 list_for_each_safe(pos
, next
, &to_remove
) {
476 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
477 inode
= &info
->vfs_inode
;
478 list_del_init(&info
->shrinklist
);
482 list_for_each_safe(pos
, next
, &list
) {
485 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
486 inode
= &info
->vfs_inode
;
488 if (nr_to_split
&& split
>= nr_to_split
)
491 page
= find_get_page(inode
->i_mapping
,
492 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
496 /* No huge page at the end of the file: nothing to split */
497 if (!PageTransHuge(page
)) {
503 * Leave the inode on the list if we failed to lock
504 * the page at this time.
506 * Waiting for the lock may lead to deadlock in the
509 if (!trylock_page(page
)) {
514 ret
= split_huge_page(page
);
518 /* If split failed leave the inode on the list */
524 list_del_init(&info
->shrinklist
);
530 spin_lock(&sbinfo
->shrinklist_lock
);
531 list_splice_tail(&list
, &sbinfo
->shrinklist
);
532 sbinfo
->shrinklist_len
-= removed
;
533 spin_unlock(&sbinfo
->shrinklist_lock
);
538 static long shmem_unused_huge_scan(struct super_block
*sb
,
539 struct shrink_control
*sc
)
541 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
543 if (!READ_ONCE(sbinfo
->shrinklist_len
))
546 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
549 static long shmem_unused_huge_count(struct super_block
*sb
,
550 struct shrink_control
*sc
)
552 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
553 return READ_ONCE(sbinfo
->shrinklist_len
);
555 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
557 #define shmem_huge SHMEM_HUGE_DENY
559 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
560 struct shrink_control
*sc
, unsigned long nr_to_split
)
564 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
566 static inline bool is_huge_enabled(struct shmem_sb_info
*sbinfo
)
568 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
569 (shmem_huge
== SHMEM_HUGE_FORCE
|| sbinfo
->huge
) &&
570 shmem_huge
!= SHMEM_HUGE_DENY
)
576 * Like add_to_page_cache_locked, but error if expected item has gone.
578 static int shmem_add_to_page_cache(struct page
*page
,
579 struct address_space
*mapping
,
580 pgoff_t index
, void *expected
, gfp_t gfp
)
582 XA_STATE_ORDER(xas
, &mapping
->i_pages
, index
, compound_order(page
));
584 unsigned long nr
= 1UL << compound_order(page
);
586 VM_BUG_ON_PAGE(PageTail(page
), page
);
587 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
588 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
589 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
590 VM_BUG_ON(expected
&& PageTransHuge(page
));
592 page_ref_add(page
, nr
);
593 page
->mapping
= mapping
;
599 entry
= xas_find_conflict(&xas
);
600 if (entry
!= expected
)
601 xas_set_err(&xas
, -EEXIST
);
602 xas_create_range(&xas
);
606 xas_store(&xas
, page
+ i
);
611 if (PageTransHuge(page
)) {
612 count_vm_event(THP_FILE_ALLOC
);
613 __inc_node_page_state(page
, NR_SHMEM_THPS
);
615 mapping
->nrpages
+= nr
;
616 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
617 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
619 xas_unlock_irq(&xas
);
620 } while (xas_nomem(&xas
, gfp
));
622 if (xas_error(&xas
)) {
623 page
->mapping
= NULL
;
624 page_ref_sub(page
, nr
);
625 return xas_error(&xas
);
632 * Like delete_from_page_cache, but substitutes swap for page.
634 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
636 struct address_space
*mapping
= page
->mapping
;
639 VM_BUG_ON_PAGE(PageCompound(page
), page
);
641 xa_lock_irq(&mapping
->i_pages
);
642 error
= shmem_replace_entry(mapping
, page
->index
, page
, radswap
);
643 page
->mapping
= NULL
;
645 __dec_node_page_state(page
, NR_FILE_PAGES
);
646 __dec_node_page_state(page
, NR_SHMEM
);
647 xa_unlock_irq(&mapping
->i_pages
);
653 * Remove swap entry from page cache, free the swap and its page cache.
655 static int shmem_free_swap(struct address_space
*mapping
,
656 pgoff_t index
, void *radswap
)
660 xa_lock_irq(&mapping
->i_pages
);
661 old
= __xa_cmpxchg(&mapping
->i_pages
, index
, radswap
, NULL
, 0);
662 xa_unlock_irq(&mapping
->i_pages
);
665 free_swap_and_cache(radix_to_swp_entry(radswap
));
670 * Determine (in bytes) how many of the shmem object's pages mapped by the
671 * given offsets are swapped out.
673 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
674 * as long as the inode doesn't go away and racy results are not a problem.
676 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
677 pgoff_t start
, pgoff_t end
)
679 XA_STATE(xas
, &mapping
->i_pages
, start
);
681 unsigned long swapped
= 0;
684 xas_for_each(&xas
, page
, end
- 1) {
685 if (xas_retry(&xas
, page
))
687 if (xa_is_value(page
))
690 if (need_resched()) {
698 return swapped
<< PAGE_SHIFT
;
702 * Determine (in bytes) how many of the shmem object's pages mapped by the
703 * given vma is swapped out.
705 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
706 * as long as the inode doesn't go away and racy results are not a problem.
708 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
710 struct inode
*inode
= file_inode(vma
->vm_file
);
711 struct shmem_inode_info
*info
= SHMEM_I(inode
);
712 struct address_space
*mapping
= inode
->i_mapping
;
713 unsigned long swapped
;
715 /* Be careful as we don't hold info->lock */
716 swapped
= READ_ONCE(info
->swapped
);
719 * The easier cases are when the shmem object has nothing in swap, or
720 * the vma maps it whole. Then we can simply use the stats that we
726 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
727 return swapped
<< PAGE_SHIFT
;
729 /* Here comes the more involved part */
730 return shmem_partial_swap_usage(mapping
,
731 linear_page_index(vma
, vma
->vm_start
),
732 linear_page_index(vma
, vma
->vm_end
));
736 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
738 void shmem_unlock_mapping(struct address_space
*mapping
)
741 pgoff_t indices
[PAGEVEC_SIZE
];
746 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
748 while (!mapping_unevictable(mapping
)) {
750 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
751 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
753 pvec
.nr
= find_get_entries(mapping
, index
,
754 PAGEVEC_SIZE
, pvec
.pages
, indices
);
757 index
= indices
[pvec
.nr
- 1] + 1;
758 pagevec_remove_exceptionals(&pvec
);
759 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
760 pagevec_release(&pvec
);
766 * Remove range of pages and swap entries from page cache, and free them.
767 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
769 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
772 struct address_space
*mapping
= inode
->i_mapping
;
773 struct shmem_inode_info
*info
= SHMEM_I(inode
);
774 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
775 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
776 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
777 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
779 pgoff_t indices
[PAGEVEC_SIZE
];
780 long nr_swaps_freed
= 0;
785 end
= -1; /* unsigned, so actually very big */
789 while (index
< end
) {
790 pvec
.nr
= find_get_entries(mapping
, index
,
791 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
792 pvec
.pages
, indices
);
795 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
796 struct page
*page
= pvec
.pages
[i
];
802 if (xa_is_value(page
)) {
805 nr_swaps_freed
+= !shmem_free_swap(mapping
,
810 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
812 if (!trylock_page(page
))
815 if (PageTransTail(page
)) {
816 /* Middle of THP: zero out the page */
817 clear_highpage(page
);
820 } else if (PageTransHuge(page
)) {
821 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
823 * Range ends in the middle of THP:
826 clear_highpage(page
);
830 index
+= HPAGE_PMD_NR
- 1;
831 i
+= HPAGE_PMD_NR
- 1;
834 if (!unfalloc
|| !PageUptodate(page
)) {
835 VM_BUG_ON_PAGE(PageTail(page
), page
);
836 if (page_mapping(page
) == mapping
) {
837 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
838 truncate_inode_page(mapping
, page
);
843 pagevec_remove_exceptionals(&pvec
);
844 pagevec_release(&pvec
);
850 struct page
*page
= NULL
;
851 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
853 unsigned int top
= PAGE_SIZE
;
858 zero_user_segment(page
, partial_start
, top
);
859 set_page_dirty(page
);
865 struct page
*page
= NULL
;
866 shmem_getpage(inode
, end
, &page
, SGP_READ
);
868 zero_user_segment(page
, 0, partial_end
);
869 set_page_dirty(page
);
878 while (index
< end
) {
881 pvec
.nr
= find_get_entries(mapping
, index
,
882 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
883 pvec
.pages
, indices
);
885 /* If all gone or hole-punch or unfalloc, we're done */
886 if (index
== start
|| end
!= -1)
888 /* But if truncating, restart to make sure all gone */
892 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
893 struct page
*page
= pvec
.pages
[i
];
899 if (xa_is_value(page
)) {
902 if (shmem_free_swap(mapping
, index
, page
)) {
903 /* Swap was replaced by page: retry */
913 if (PageTransTail(page
)) {
914 /* Middle of THP: zero out the page */
915 clear_highpage(page
);
918 * Partial thp truncate due 'start' in middle
919 * of THP: don't need to look on these pages
920 * again on !pvec.nr restart.
922 if (index
!= round_down(end
, HPAGE_PMD_NR
))
925 } else if (PageTransHuge(page
)) {
926 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
928 * Range ends in the middle of THP:
931 clear_highpage(page
);
935 index
+= HPAGE_PMD_NR
- 1;
936 i
+= HPAGE_PMD_NR
- 1;
939 if (!unfalloc
|| !PageUptodate(page
)) {
940 VM_BUG_ON_PAGE(PageTail(page
), page
);
941 if (page_mapping(page
) == mapping
) {
942 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
943 truncate_inode_page(mapping
, page
);
945 /* Page was replaced by swap: retry */
953 pagevec_remove_exceptionals(&pvec
);
954 pagevec_release(&pvec
);
958 spin_lock_irq(&info
->lock
);
959 info
->swapped
-= nr_swaps_freed
;
960 shmem_recalc_inode(inode
);
961 spin_unlock_irq(&info
->lock
);
964 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
966 shmem_undo_range(inode
, lstart
, lend
, false);
967 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
969 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
971 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
972 u32 request_mask
, unsigned int query_flags
)
974 struct inode
*inode
= path
->dentry
->d_inode
;
975 struct shmem_inode_info
*info
= SHMEM_I(inode
);
976 struct shmem_sb_info
*sb_info
= SHMEM_SB(inode
->i_sb
);
978 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
979 spin_lock_irq(&info
->lock
);
980 shmem_recalc_inode(inode
);
981 spin_unlock_irq(&info
->lock
);
983 generic_fillattr(inode
, stat
);
985 if (is_huge_enabled(sb_info
))
986 stat
->blksize
= HPAGE_PMD_SIZE
;
991 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
993 struct inode
*inode
= d_inode(dentry
);
994 struct shmem_inode_info
*info
= SHMEM_I(inode
);
995 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
998 error
= setattr_prepare(dentry
, attr
);
1002 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1003 loff_t oldsize
= inode
->i_size
;
1004 loff_t newsize
= attr
->ia_size
;
1006 /* protected by i_mutex */
1007 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1008 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1011 if (newsize
!= oldsize
) {
1012 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1016 i_size_write(inode
, newsize
);
1017 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1019 if (newsize
<= oldsize
) {
1020 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1021 if (oldsize
> holebegin
)
1022 unmap_mapping_range(inode
->i_mapping
,
1025 shmem_truncate_range(inode
,
1026 newsize
, (loff_t
)-1);
1027 /* unmap again to remove racily COWed private pages */
1028 if (oldsize
> holebegin
)
1029 unmap_mapping_range(inode
->i_mapping
,
1033 * Part of the huge page can be beyond i_size: subject
1034 * to shrink under memory pressure.
1036 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1037 spin_lock(&sbinfo
->shrinklist_lock
);
1039 * _careful to defend against unlocked access to
1040 * ->shrink_list in shmem_unused_huge_shrink()
1042 if (list_empty_careful(&info
->shrinklist
)) {
1043 list_add_tail(&info
->shrinklist
,
1044 &sbinfo
->shrinklist
);
1045 sbinfo
->shrinklist_len
++;
1047 spin_unlock(&sbinfo
->shrinklist_lock
);
1052 setattr_copy(inode
, attr
);
1053 if (attr
->ia_valid
& ATTR_MODE
)
1054 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1058 static void shmem_evict_inode(struct inode
*inode
)
1060 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1061 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1063 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1064 shmem_unacct_size(info
->flags
, inode
->i_size
);
1066 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1067 if (!list_empty(&info
->shrinklist
)) {
1068 spin_lock(&sbinfo
->shrinklist_lock
);
1069 if (!list_empty(&info
->shrinklist
)) {
1070 list_del_init(&info
->shrinklist
);
1071 sbinfo
->shrinklist_len
--;
1073 spin_unlock(&sbinfo
->shrinklist_lock
);
1075 if (!list_empty(&info
->swaplist
)) {
1076 mutex_lock(&shmem_swaplist_mutex
);
1077 list_del_init(&info
->swaplist
);
1078 mutex_unlock(&shmem_swaplist_mutex
);
1082 simple_xattrs_free(&info
->xattrs
);
1083 WARN_ON(inode
->i_blocks
);
1084 shmem_free_inode(inode
->i_sb
);
1088 static unsigned long find_swap_entry(struct xarray
*xa
, void *item
)
1090 XA_STATE(xas
, xa
, 0);
1091 unsigned int checked
= 0;
1095 xas_for_each(&xas
, entry
, ULONG_MAX
) {
1096 if (xas_retry(&xas
, entry
))
1101 if ((checked
% XA_CHECK_SCHED
) != 0)
1108 return entry
? xas
.xa_index
: -1;
1112 * If swap found in inode, free it and move page from swapcache to filecache.
1114 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1115 swp_entry_t swap
, struct page
**pagep
)
1117 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1123 radswap
= swp_to_radix_entry(swap
);
1124 index
= find_swap_entry(&mapping
->i_pages
, radswap
);
1126 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1129 * Move _head_ to start search for next from here.
1130 * But be careful: shmem_evict_inode checks list_empty without taking
1131 * mutex, and there's an instant in list_move_tail when info->swaplist
1132 * would appear empty, if it were the only one on shmem_swaplist.
1134 if (shmem_swaplist
.next
!= &info
->swaplist
)
1135 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1137 gfp
= mapping_gfp_mask(mapping
);
1138 if (shmem_should_replace_page(*pagep
, gfp
)) {
1139 mutex_unlock(&shmem_swaplist_mutex
);
1140 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1141 mutex_lock(&shmem_swaplist_mutex
);
1143 * We needed to drop mutex to make that restrictive page
1144 * allocation, but the inode might have been freed while we
1145 * dropped it: although a racing shmem_evict_inode() cannot
1146 * complete without emptying the page cache, our page lock
1147 * on this swapcache page is not enough to prevent that -
1148 * free_swap_and_cache() of our swap entry will only
1149 * trylock_page(), removing swap from page cache whatever.
1151 * We must not proceed to shmem_add_to_page_cache() if the
1152 * inode has been freed, but of course we cannot rely on
1153 * inode or mapping or info to check that. However, we can
1154 * safely check if our swap entry is still in use (and here
1155 * it can't have got reused for another page): if it's still
1156 * in use, then the inode cannot have been freed yet, and we
1157 * can safely proceed (if it's no longer in use, that tells
1158 * nothing about the inode, but we don't need to unuse swap).
1160 if (!page_swapcount(*pagep
))
1165 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1166 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1167 * beneath us (pagelock doesn't help until the page is in pagecache).
1170 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1172 if (error
!= -ENOMEM
) {
1174 * Truncation and eviction use free_swap_and_cache(), which
1175 * only does trylock page: if we raced, best clean up here.
1177 delete_from_swap_cache(*pagep
);
1178 set_page_dirty(*pagep
);
1180 spin_lock_irq(&info
->lock
);
1182 spin_unlock_irq(&info
->lock
);
1190 * Search through swapped inodes to find and replace swap by page.
1192 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1194 struct list_head
*this, *next
;
1195 struct shmem_inode_info
*info
;
1196 struct mem_cgroup
*memcg
;
1200 * There's a faint possibility that swap page was replaced before
1201 * caller locked it: caller will come back later with the right page.
1203 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1207 * Charge page using GFP_KERNEL while we can wait, before taking
1208 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1209 * Charged back to the user (not to caller) when swap account is used.
1211 error
= mem_cgroup_try_charge_delay(page
, current
->mm
, GFP_KERNEL
,
1215 /* No memory allocation: swap entry occupies the slot for the page */
1218 mutex_lock(&shmem_swaplist_mutex
);
1219 list_for_each_safe(this, next
, &shmem_swaplist
) {
1220 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1222 error
= shmem_unuse_inode(info
, swap
, &page
);
1224 list_del_init(&info
->swaplist
);
1226 if (error
!= -EAGAIN
)
1228 /* found nothing in this: move on to search the next */
1230 mutex_unlock(&shmem_swaplist_mutex
);
1233 if (error
!= -ENOMEM
)
1235 mem_cgroup_cancel_charge(page
, memcg
, false);
1237 mem_cgroup_commit_charge(page
, memcg
, true, false);
1245 * Move the page from the page cache to the swap cache.
1247 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1249 struct shmem_inode_info
*info
;
1250 struct address_space
*mapping
;
1251 struct inode
*inode
;
1255 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1256 BUG_ON(!PageLocked(page
));
1257 mapping
= page
->mapping
;
1258 index
= page
->index
;
1259 inode
= mapping
->host
;
1260 info
= SHMEM_I(inode
);
1261 if (info
->flags
& VM_LOCKED
)
1263 if (!total_swap_pages
)
1267 * Our capabilities prevent regular writeback or sync from ever calling
1268 * shmem_writepage; but a stacking filesystem might use ->writepage of
1269 * its underlying filesystem, in which case tmpfs should write out to
1270 * swap only in response to memory pressure, and not for the writeback
1273 if (!wbc
->for_reclaim
) {
1274 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1279 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1280 * value into swapfile.c, the only way we can correctly account for a
1281 * fallocated page arriving here is now to initialize it and write it.
1283 * That's okay for a page already fallocated earlier, but if we have
1284 * not yet completed the fallocation, then (a) we want to keep track
1285 * of this page in case we have to undo it, and (b) it may not be a
1286 * good idea to continue anyway, once we're pushing into swap. So
1287 * reactivate the page, and let shmem_fallocate() quit when too many.
1289 if (!PageUptodate(page
)) {
1290 if (inode
->i_private
) {
1291 struct shmem_falloc
*shmem_falloc
;
1292 spin_lock(&inode
->i_lock
);
1293 shmem_falloc
= inode
->i_private
;
1295 !shmem_falloc
->waitq
&&
1296 index
>= shmem_falloc
->start
&&
1297 index
< shmem_falloc
->next
)
1298 shmem_falloc
->nr_unswapped
++;
1300 shmem_falloc
= NULL
;
1301 spin_unlock(&inode
->i_lock
);
1305 clear_highpage(page
);
1306 flush_dcache_page(page
);
1307 SetPageUptodate(page
);
1310 swap
= get_swap_page(page
);
1315 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1316 * if it's not already there. Do it now before the page is
1317 * moved to swap cache, when its pagelock no longer protects
1318 * the inode from eviction. But don't unlock the mutex until
1319 * we've incremented swapped, because shmem_unuse_inode() will
1320 * prune a !swapped inode from the swaplist under this mutex.
1322 mutex_lock(&shmem_swaplist_mutex
);
1323 if (list_empty(&info
->swaplist
))
1324 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1326 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1327 spin_lock_irq(&info
->lock
);
1328 shmem_recalc_inode(inode
);
1330 spin_unlock_irq(&info
->lock
);
1332 swap_shmem_alloc(swap
);
1333 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1335 mutex_unlock(&shmem_swaplist_mutex
);
1336 BUG_ON(page_mapped(page
));
1337 swap_writepage(page
, wbc
);
1341 mutex_unlock(&shmem_swaplist_mutex
);
1342 put_swap_page(page
, swap
);
1344 set_page_dirty(page
);
1345 if (wbc
->for_reclaim
)
1346 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1351 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1352 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1356 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1357 return; /* show nothing */
1359 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1361 seq_printf(seq
, ",mpol=%s", buffer
);
1364 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1366 struct mempolicy
*mpol
= NULL
;
1368 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1369 mpol
= sbinfo
->mpol
;
1371 spin_unlock(&sbinfo
->stat_lock
);
1375 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1376 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1379 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1383 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1385 #define vm_policy vm_private_data
1388 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1389 struct shmem_inode_info
*info
, pgoff_t index
)
1391 /* Create a pseudo vma that just contains the policy */
1392 vma_init(vma
, NULL
);
1393 /* Bias interleave by inode number to distribute better across nodes */
1394 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1395 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1398 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1400 /* Drop reference taken by mpol_shared_policy_lookup() */
1401 mpol_cond_put(vma
->vm_policy
);
1404 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1405 struct shmem_inode_info
*info
, pgoff_t index
)
1407 struct vm_area_struct pvma
;
1409 struct vm_fault vmf
;
1411 shmem_pseudo_vma_init(&pvma
, info
, index
);
1414 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1415 shmem_pseudo_vma_destroy(&pvma
);
1420 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1421 struct shmem_inode_info
*info
, pgoff_t index
)
1423 struct vm_area_struct pvma
;
1424 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1428 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1431 hindex
= round_down(index
, HPAGE_PMD_NR
);
1432 if (xa_find(&mapping
->i_pages
, &hindex
, hindex
+ HPAGE_PMD_NR
- 1,
1436 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1437 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1438 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id());
1439 shmem_pseudo_vma_destroy(&pvma
);
1441 prep_transhuge_page(page
);
1445 static struct page
*shmem_alloc_page(gfp_t gfp
,
1446 struct shmem_inode_info
*info
, pgoff_t index
)
1448 struct vm_area_struct pvma
;
1451 shmem_pseudo_vma_init(&pvma
, info
, index
);
1452 page
= alloc_page_vma(gfp
, &pvma
, 0);
1453 shmem_pseudo_vma_destroy(&pvma
);
1458 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1459 struct inode
*inode
,
1460 pgoff_t index
, bool huge
)
1462 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1467 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1469 nr
= huge
? HPAGE_PMD_NR
: 1;
1471 if (!shmem_inode_acct_block(inode
, nr
))
1475 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1477 page
= shmem_alloc_page(gfp
, info
, index
);
1479 __SetPageLocked(page
);
1480 __SetPageSwapBacked(page
);
1485 shmem_inode_unacct_blocks(inode
, nr
);
1487 return ERR_PTR(err
);
1491 * When a page is moved from swapcache to shmem filecache (either by the
1492 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1493 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1494 * ignorance of the mapping it belongs to. If that mapping has special
1495 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1496 * we may need to copy to a suitable page before moving to filecache.
1498 * In a future release, this may well be extended to respect cpuset and
1499 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1500 * but for now it is a simple matter of zone.
1502 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1504 return page_zonenum(page
) > gfp_zone(gfp
);
1507 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1508 struct shmem_inode_info
*info
, pgoff_t index
)
1510 struct page
*oldpage
, *newpage
;
1511 struct address_space
*swap_mapping
;
1516 swap_index
= page_private(oldpage
);
1517 swap_mapping
= page_mapping(oldpage
);
1520 * We have arrived here because our zones are constrained, so don't
1521 * limit chance of success by further cpuset and node constraints.
1523 gfp
&= ~GFP_CONSTRAINT_MASK
;
1524 newpage
= shmem_alloc_page(gfp
, info
, index
);
1529 copy_highpage(newpage
, oldpage
);
1530 flush_dcache_page(newpage
);
1532 __SetPageLocked(newpage
);
1533 __SetPageSwapBacked(newpage
);
1534 SetPageUptodate(newpage
);
1535 set_page_private(newpage
, swap_index
);
1536 SetPageSwapCache(newpage
);
1539 * Our caller will very soon move newpage out of swapcache, but it's
1540 * a nice clean interface for us to replace oldpage by newpage there.
1542 xa_lock_irq(&swap_mapping
->i_pages
);
1543 error
= shmem_replace_entry(swap_mapping
, swap_index
, oldpage
, newpage
);
1545 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1546 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1548 xa_unlock_irq(&swap_mapping
->i_pages
);
1550 if (unlikely(error
)) {
1552 * Is this possible? I think not, now that our callers check
1553 * both PageSwapCache and page_private after getting page lock;
1554 * but be defensive. Reverse old to newpage for clear and free.
1558 mem_cgroup_migrate(oldpage
, newpage
);
1559 lru_cache_add_anon(newpage
);
1563 ClearPageSwapCache(oldpage
);
1564 set_page_private(oldpage
, 0);
1566 unlock_page(oldpage
);
1573 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1575 * If we allocate a new one we do not mark it dirty. That's up to the
1576 * vm. If we swap it in we mark it dirty since we also free the swap
1577 * entry since a page cannot live in both the swap and page cache.
1579 * fault_mm and fault_type are only supplied by shmem_fault:
1580 * otherwise they are NULL.
1582 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1583 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1584 struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
1585 vm_fault_t
*fault_type
)
1587 struct address_space
*mapping
= inode
->i_mapping
;
1588 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1589 struct shmem_sb_info
*sbinfo
;
1590 struct mm_struct
*charge_mm
;
1591 struct mem_cgroup
*memcg
;
1594 enum sgp_type sgp_huge
= sgp
;
1595 pgoff_t hindex
= index
;
1600 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1602 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1606 page
= find_lock_entry(mapping
, index
);
1607 if (xa_is_value(page
)) {
1608 swap
= radix_to_swp_entry(page
);
1612 if (sgp
<= SGP_CACHE
&&
1613 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1618 if (page
&& sgp
== SGP_WRITE
)
1619 mark_page_accessed(page
);
1621 /* fallocated page? */
1622 if (page
&& !PageUptodate(page
)) {
1623 if (sgp
!= SGP_READ
)
1629 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1635 * Fast cache lookup did not find it:
1636 * bring it back from swap or allocate.
1638 sbinfo
= SHMEM_SB(inode
->i_sb
);
1639 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1642 /* Look it up and read it in.. */
1643 page
= lookup_swap_cache(swap
, NULL
, 0);
1645 /* Or update major stats only when swapin succeeds?? */
1647 *fault_type
|= VM_FAULT_MAJOR
;
1648 count_vm_event(PGMAJFAULT
);
1649 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1651 /* Here we actually start the io */
1652 page
= shmem_swapin(swap
, gfp
, info
, index
);
1659 /* We have to do this with page locked to prevent races */
1661 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1662 !shmem_confirm_swap(mapping
, index
, swap
)) {
1663 error
= -EEXIST
; /* try again */
1666 if (!PageUptodate(page
)) {
1670 wait_on_page_writeback(page
);
1672 if (shmem_should_replace_page(page
, gfp
)) {
1673 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1678 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1681 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1682 swp_to_radix_entry(swap
), gfp
);
1684 * We already confirmed swap under page lock, and make
1685 * no memory allocation here, so usually no possibility
1686 * of error; but free_swap_and_cache() only trylocks a
1687 * page, so it is just possible that the entry has been
1688 * truncated or holepunched since swap was confirmed.
1689 * shmem_undo_range() will have done some of the
1690 * unaccounting, now delete_from_swap_cache() will do
1692 * Reset swap.val? No, leave it so "failed" goes back to
1693 * "repeat": reading a hole and writing should succeed.
1696 mem_cgroup_cancel_charge(page
, memcg
, false);
1697 delete_from_swap_cache(page
);
1703 mem_cgroup_commit_charge(page
, memcg
, true, false);
1705 spin_lock_irq(&info
->lock
);
1707 shmem_recalc_inode(inode
);
1708 spin_unlock_irq(&info
->lock
);
1710 if (sgp
== SGP_WRITE
)
1711 mark_page_accessed(page
);
1713 delete_from_swap_cache(page
);
1714 set_page_dirty(page
);
1718 if (vma
&& userfaultfd_missing(vma
)) {
1719 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1723 /* shmem_symlink() */
1724 if (mapping
->a_ops
!= &shmem_aops
)
1726 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1728 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1730 switch (sbinfo
->huge
) {
1733 case SHMEM_HUGE_NEVER
:
1735 case SHMEM_HUGE_WITHIN_SIZE
:
1736 off
= round_up(index
, HPAGE_PMD_NR
);
1737 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1738 if (i_size
>= HPAGE_PMD_SIZE
&&
1739 i_size
>> PAGE_SHIFT
>= off
)
1742 case SHMEM_HUGE_ADVISE
:
1743 if (sgp_huge
== SGP_HUGE
)
1745 /* TODO: implement fadvise() hints */
1750 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1752 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1757 error
= PTR_ERR(page
);
1759 if (error
!= -ENOSPC
)
1762 * Try to reclaim some spece by splitting a huge page
1763 * beyond i_size on the filesystem.
1767 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1768 if (ret
== SHRINK_STOP
)
1776 if (PageTransHuge(page
))
1777 hindex
= round_down(index
, HPAGE_PMD_NR
);
1781 if (sgp
== SGP_WRITE
)
1782 __SetPageReferenced(page
);
1784 error
= mem_cgroup_try_charge_delay(page
, charge_mm
, gfp
, &memcg
,
1785 PageTransHuge(page
));
1788 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1789 NULL
, gfp
& GFP_RECLAIM_MASK
);
1791 mem_cgroup_cancel_charge(page
, memcg
,
1792 PageTransHuge(page
));
1795 mem_cgroup_commit_charge(page
, memcg
, false,
1796 PageTransHuge(page
));
1797 lru_cache_add_anon(page
);
1799 spin_lock_irq(&info
->lock
);
1800 info
->alloced
+= 1 << compound_order(page
);
1801 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1802 shmem_recalc_inode(inode
);
1803 spin_unlock_irq(&info
->lock
);
1806 if (PageTransHuge(page
) &&
1807 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1808 hindex
+ HPAGE_PMD_NR
- 1) {
1810 * Part of the huge page is beyond i_size: subject
1811 * to shrink under memory pressure.
1813 spin_lock(&sbinfo
->shrinklist_lock
);
1815 * _careful to defend against unlocked access to
1816 * ->shrink_list in shmem_unused_huge_shrink()
1818 if (list_empty_careful(&info
->shrinklist
)) {
1819 list_add_tail(&info
->shrinklist
,
1820 &sbinfo
->shrinklist
);
1821 sbinfo
->shrinklist_len
++;
1823 spin_unlock(&sbinfo
->shrinklist_lock
);
1827 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1829 if (sgp
== SGP_FALLOC
)
1833 * Let SGP_WRITE caller clear ends if write does not fill page;
1834 * but SGP_FALLOC on a page fallocated earlier must initialize
1835 * it now, lest undo on failure cancel our earlier guarantee.
1837 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1838 struct page
*head
= compound_head(page
);
1841 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1842 clear_highpage(head
+ i
);
1843 flush_dcache_page(head
+ i
);
1845 SetPageUptodate(head
);
1849 /* Perhaps the file has been truncated since we checked */
1850 if (sgp
<= SGP_CACHE
&&
1851 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1853 ClearPageDirty(page
);
1854 delete_from_page_cache(page
);
1855 spin_lock_irq(&info
->lock
);
1856 shmem_recalc_inode(inode
);
1857 spin_unlock_irq(&info
->lock
);
1862 *pagep
= page
+ index
- hindex
;
1869 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1871 if (PageTransHuge(page
)) {
1877 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1884 if (error
== -ENOSPC
&& !once
++) {
1885 spin_lock_irq(&info
->lock
);
1886 shmem_recalc_inode(inode
);
1887 spin_unlock_irq(&info
->lock
);
1890 if (error
== -EEXIST
)
1896 * This is like autoremove_wake_function, but it removes the wait queue
1897 * entry unconditionally - even if something else had already woken the
1900 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1902 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1903 list_del_init(&wait
->entry
);
1907 static vm_fault_t
shmem_fault(struct vm_fault
*vmf
)
1909 struct vm_area_struct
*vma
= vmf
->vma
;
1910 struct inode
*inode
= file_inode(vma
->vm_file
);
1911 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1914 vm_fault_t ret
= VM_FAULT_LOCKED
;
1917 * Trinity finds that probing a hole which tmpfs is punching can
1918 * prevent the hole-punch from ever completing: which in turn
1919 * locks writers out with its hold on i_mutex. So refrain from
1920 * faulting pages into the hole while it's being punched. Although
1921 * shmem_undo_range() does remove the additions, it may be unable to
1922 * keep up, as each new page needs its own unmap_mapping_range() call,
1923 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1925 * It does not matter if we sometimes reach this check just before the
1926 * hole-punch begins, so that one fault then races with the punch:
1927 * we just need to make racing faults a rare case.
1929 * The implementation below would be much simpler if we just used a
1930 * standard mutex or completion: but we cannot take i_mutex in fault,
1931 * and bloating every shmem inode for this unlikely case would be sad.
1933 if (unlikely(inode
->i_private
)) {
1934 struct shmem_falloc
*shmem_falloc
;
1936 spin_lock(&inode
->i_lock
);
1937 shmem_falloc
= inode
->i_private
;
1939 shmem_falloc
->waitq
&&
1940 vmf
->pgoff
>= shmem_falloc
->start
&&
1941 vmf
->pgoff
< shmem_falloc
->next
) {
1942 wait_queue_head_t
*shmem_falloc_waitq
;
1943 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1945 ret
= VM_FAULT_NOPAGE
;
1946 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1947 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1948 /* It's polite to up mmap_sem if we can */
1949 up_read(&vma
->vm_mm
->mmap_sem
);
1950 ret
= VM_FAULT_RETRY
;
1953 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1954 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1955 TASK_UNINTERRUPTIBLE
);
1956 spin_unlock(&inode
->i_lock
);
1960 * shmem_falloc_waitq points into the shmem_fallocate()
1961 * stack of the hole-punching task: shmem_falloc_waitq
1962 * is usually invalid by the time we reach here, but
1963 * finish_wait() does not dereference it in that case;
1964 * though i_lock needed lest racing with wake_up_all().
1966 spin_lock(&inode
->i_lock
);
1967 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1968 spin_unlock(&inode
->i_lock
);
1971 spin_unlock(&inode
->i_lock
);
1976 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
1977 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
1979 else if (vma
->vm_flags
& VM_HUGEPAGE
)
1982 err
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1983 gfp
, vma
, vmf
, &ret
);
1985 return vmf_error(err
);
1989 unsigned long shmem_get_unmapped_area(struct file
*file
,
1990 unsigned long uaddr
, unsigned long len
,
1991 unsigned long pgoff
, unsigned long flags
)
1993 unsigned long (*get_area
)(struct file
*,
1994 unsigned long, unsigned long, unsigned long, unsigned long);
1996 unsigned long offset
;
1997 unsigned long inflated_len
;
1998 unsigned long inflated_addr
;
1999 unsigned long inflated_offset
;
2001 if (len
> TASK_SIZE
)
2004 get_area
= current
->mm
->get_unmapped_area
;
2005 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2007 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2009 if (IS_ERR_VALUE(addr
))
2011 if (addr
& ~PAGE_MASK
)
2013 if (addr
> TASK_SIZE
- len
)
2016 if (shmem_huge
== SHMEM_HUGE_DENY
)
2018 if (len
< HPAGE_PMD_SIZE
)
2020 if (flags
& MAP_FIXED
)
2023 * Our priority is to support MAP_SHARED mapped hugely;
2024 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2025 * But if caller specified an address hint, respect that as before.
2030 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2031 struct super_block
*sb
;
2034 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2035 sb
= file_inode(file
)->i_sb
;
2038 * Called directly from mm/mmap.c, or drivers/char/mem.c
2039 * for "/dev/zero", to create a shared anonymous object.
2041 if (IS_ERR(shm_mnt
))
2043 sb
= shm_mnt
->mnt_sb
;
2045 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2049 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2050 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2052 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2055 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2056 if (inflated_len
> TASK_SIZE
)
2058 if (inflated_len
< len
)
2061 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2062 if (IS_ERR_VALUE(inflated_addr
))
2064 if (inflated_addr
& ~PAGE_MASK
)
2067 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2068 inflated_addr
+= offset
- inflated_offset
;
2069 if (inflated_offset
> offset
)
2070 inflated_addr
+= HPAGE_PMD_SIZE
;
2072 if (inflated_addr
> TASK_SIZE
- len
)
2074 return inflated_addr
;
2078 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2080 struct inode
*inode
= file_inode(vma
->vm_file
);
2081 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2084 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2087 struct inode
*inode
= file_inode(vma
->vm_file
);
2090 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2091 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2095 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2097 struct inode
*inode
= file_inode(file
);
2098 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2099 int retval
= -ENOMEM
;
2101 spin_lock_irq(&info
->lock
);
2102 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2103 if (!user_shm_lock(inode
->i_size
, user
))
2105 info
->flags
|= VM_LOCKED
;
2106 mapping_set_unevictable(file
->f_mapping
);
2108 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2109 user_shm_unlock(inode
->i_size
, user
);
2110 info
->flags
&= ~VM_LOCKED
;
2111 mapping_clear_unevictable(file
->f_mapping
);
2116 spin_unlock_irq(&info
->lock
);
2120 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2122 file_accessed(file
);
2123 vma
->vm_ops
= &shmem_vm_ops
;
2124 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2125 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2126 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2127 khugepaged_enter(vma
, vma
->vm_flags
);
2132 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2133 umode_t mode
, dev_t dev
, unsigned long flags
)
2135 struct inode
*inode
;
2136 struct shmem_inode_info
*info
;
2137 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2139 if (shmem_reserve_inode(sb
))
2142 inode
= new_inode(sb
);
2144 inode
->i_ino
= get_next_ino();
2145 inode_init_owner(inode
, dir
, mode
);
2146 inode
->i_blocks
= 0;
2147 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2148 inode
->i_generation
= prandom_u32();
2149 info
= SHMEM_I(inode
);
2150 memset(info
, 0, (char *)inode
- (char *)info
);
2151 spin_lock_init(&info
->lock
);
2152 info
->seals
= F_SEAL_SEAL
;
2153 info
->flags
= flags
& VM_NORESERVE
;
2154 INIT_LIST_HEAD(&info
->shrinklist
);
2155 INIT_LIST_HEAD(&info
->swaplist
);
2156 simple_xattrs_init(&info
->xattrs
);
2157 cache_no_acl(inode
);
2159 switch (mode
& S_IFMT
) {
2161 inode
->i_op
= &shmem_special_inode_operations
;
2162 init_special_inode(inode
, mode
, dev
);
2165 inode
->i_mapping
->a_ops
= &shmem_aops
;
2166 inode
->i_op
= &shmem_inode_operations
;
2167 inode
->i_fop
= &shmem_file_operations
;
2168 mpol_shared_policy_init(&info
->policy
,
2169 shmem_get_sbmpol(sbinfo
));
2173 /* Some things misbehave if size == 0 on a directory */
2174 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2175 inode
->i_op
= &shmem_dir_inode_operations
;
2176 inode
->i_fop
= &simple_dir_operations
;
2180 * Must not load anything in the rbtree,
2181 * mpol_free_shared_policy will not be called.
2183 mpol_shared_policy_init(&info
->policy
, NULL
);
2187 lockdep_annotate_inode_mutex_key(inode
);
2189 shmem_free_inode(sb
);
2193 bool shmem_mapping(struct address_space
*mapping
)
2195 return mapping
->a_ops
== &shmem_aops
;
2198 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2200 struct vm_area_struct
*dst_vma
,
2201 unsigned long dst_addr
,
2202 unsigned long src_addr
,
2204 struct page
**pagep
)
2206 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2207 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2208 struct address_space
*mapping
= inode
->i_mapping
;
2209 gfp_t gfp
= mapping_gfp_mask(mapping
);
2210 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2211 struct mem_cgroup
*memcg
;
2215 pte_t _dst_pte
, *dst_pte
;
2219 if (!shmem_inode_acct_block(inode
, 1))
2223 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2225 goto out_unacct_blocks
;
2227 if (!zeropage
) { /* mcopy_atomic */
2228 page_kaddr
= kmap_atomic(page
);
2229 ret
= copy_from_user(page_kaddr
,
2230 (const void __user
*)src_addr
,
2232 kunmap_atomic(page_kaddr
);
2234 /* fallback to copy_from_user outside mmap_sem */
2235 if (unlikely(ret
)) {
2237 shmem_inode_unacct_blocks(inode
, 1);
2238 /* don't free the page */
2241 } else { /* mfill_zeropage_atomic */
2242 clear_highpage(page
);
2249 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2250 __SetPageLocked(page
);
2251 __SetPageSwapBacked(page
);
2252 __SetPageUptodate(page
);
2254 ret
= mem_cgroup_try_charge_delay(page
, dst_mm
, gfp
, &memcg
, false);
2258 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
,
2259 gfp
& GFP_RECLAIM_MASK
);
2261 goto out_release_uncharge
;
2263 mem_cgroup_commit_charge(page
, memcg
, false, false);
2265 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2266 if (dst_vma
->vm_flags
& VM_WRITE
)
2267 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2270 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2271 if (!pte_none(*dst_pte
))
2272 goto out_release_uncharge_unlock
;
2274 lru_cache_add_anon(page
);
2276 spin_lock(&info
->lock
);
2278 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2279 shmem_recalc_inode(inode
);
2280 spin_unlock(&info
->lock
);
2282 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2283 page_add_file_rmap(page
, false);
2284 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2286 /* No need to invalidate - it was non-present before */
2287 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2289 pte_unmap_unlock(dst_pte
, ptl
);
2293 out_release_uncharge_unlock
:
2294 pte_unmap_unlock(dst_pte
, ptl
);
2295 out_release_uncharge
:
2296 mem_cgroup_cancel_charge(page
, memcg
, false);
2301 shmem_inode_unacct_blocks(inode
, 1);
2305 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2307 struct vm_area_struct
*dst_vma
,
2308 unsigned long dst_addr
,
2309 unsigned long src_addr
,
2310 struct page
**pagep
)
2312 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2313 dst_addr
, src_addr
, false, pagep
);
2316 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2318 struct vm_area_struct
*dst_vma
,
2319 unsigned long dst_addr
)
2321 struct page
*page
= NULL
;
2323 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2324 dst_addr
, 0, true, &page
);
2328 static const struct inode_operations shmem_symlink_inode_operations
;
2329 static const struct inode_operations shmem_short_symlink_operations
;
2331 #ifdef CONFIG_TMPFS_XATTR
2332 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2334 #define shmem_initxattrs NULL
2338 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2339 loff_t pos
, unsigned len
, unsigned flags
,
2340 struct page
**pagep
, void **fsdata
)
2342 struct inode
*inode
= mapping
->host
;
2343 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2344 pgoff_t index
= pos
>> PAGE_SHIFT
;
2346 /* i_mutex is held by caller */
2347 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2348 if (info
->seals
& F_SEAL_WRITE
)
2350 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2354 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2358 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2359 loff_t pos
, unsigned len
, unsigned copied
,
2360 struct page
*page
, void *fsdata
)
2362 struct inode
*inode
= mapping
->host
;
2364 if (pos
+ copied
> inode
->i_size
)
2365 i_size_write(inode
, pos
+ copied
);
2367 if (!PageUptodate(page
)) {
2368 struct page
*head
= compound_head(page
);
2369 if (PageTransCompound(page
)) {
2372 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2373 if (head
+ i
== page
)
2375 clear_highpage(head
+ i
);
2376 flush_dcache_page(head
+ i
);
2379 if (copied
< PAGE_SIZE
) {
2380 unsigned from
= pos
& (PAGE_SIZE
- 1);
2381 zero_user_segments(page
, 0, from
,
2382 from
+ copied
, PAGE_SIZE
);
2384 SetPageUptodate(head
);
2386 set_page_dirty(page
);
2393 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2395 struct file
*file
= iocb
->ki_filp
;
2396 struct inode
*inode
= file_inode(file
);
2397 struct address_space
*mapping
= inode
->i_mapping
;
2399 unsigned long offset
;
2400 enum sgp_type sgp
= SGP_READ
;
2403 loff_t
*ppos
= &iocb
->ki_pos
;
2406 * Might this read be for a stacking filesystem? Then when reading
2407 * holes of a sparse file, we actually need to allocate those pages,
2408 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2410 if (!iter_is_iovec(to
))
2413 index
= *ppos
>> PAGE_SHIFT
;
2414 offset
= *ppos
& ~PAGE_MASK
;
2417 struct page
*page
= NULL
;
2419 unsigned long nr
, ret
;
2420 loff_t i_size
= i_size_read(inode
);
2422 end_index
= i_size
>> PAGE_SHIFT
;
2423 if (index
> end_index
)
2425 if (index
== end_index
) {
2426 nr
= i_size
& ~PAGE_MASK
;
2431 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2433 if (error
== -EINVAL
)
2438 if (sgp
== SGP_CACHE
)
2439 set_page_dirty(page
);
2444 * We must evaluate after, since reads (unlike writes)
2445 * are called without i_mutex protection against truncate
2448 i_size
= i_size_read(inode
);
2449 end_index
= i_size
>> PAGE_SHIFT
;
2450 if (index
== end_index
) {
2451 nr
= i_size
& ~PAGE_MASK
;
2462 * If users can be writing to this page using arbitrary
2463 * virtual addresses, take care about potential aliasing
2464 * before reading the page on the kernel side.
2466 if (mapping_writably_mapped(mapping
))
2467 flush_dcache_page(page
);
2469 * Mark the page accessed if we read the beginning.
2472 mark_page_accessed(page
);
2474 page
= ZERO_PAGE(0);
2479 * Ok, we have the page, and it's up-to-date, so
2480 * now we can copy it to user space...
2482 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2485 index
+= offset
>> PAGE_SHIFT
;
2486 offset
&= ~PAGE_MASK
;
2489 if (!iov_iter_count(to
))
2498 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2499 file_accessed(file
);
2500 return retval
? retval
: error
;
2504 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2506 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2507 pgoff_t index
, pgoff_t end
, int whence
)
2510 struct pagevec pvec
;
2511 pgoff_t indices
[PAGEVEC_SIZE
];
2515 pagevec_init(&pvec
);
2516 pvec
.nr
= 1; /* start small: we may be there already */
2518 pvec
.nr
= find_get_entries(mapping
, index
,
2519 pvec
.nr
, pvec
.pages
, indices
);
2521 if (whence
== SEEK_DATA
)
2525 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2526 if (index
< indices
[i
]) {
2527 if (whence
== SEEK_HOLE
) {
2533 page
= pvec
.pages
[i
];
2534 if (page
&& !xa_is_value(page
)) {
2535 if (!PageUptodate(page
))
2539 (page
&& whence
== SEEK_DATA
) ||
2540 (!page
&& whence
== SEEK_HOLE
)) {
2545 pagevec_remove_exceptionals(&pvec
);
2546 pagevec_release(&pvec
);
2547 pvec
.nr
= PAGEVEC_SIZE
;
2553 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2555 struct address_space
*mapping
= file
->f_mapping
;
2556 struct inode
*inode
= mapping
->host
;
2560 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2561 return generic_file_llseek_size(file
, offset
, whence
,
2562 MAX_LFS_FILESIZE
, i_size_read(inode
));
2564 /* We're holding i_mutex so we can access i_size directly */
2566 if (offset
< 0 || offset
>= inode
->i_size
)
2569 start
= offset
>> PAGE_SHIFT
;
2570 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2571 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2572 new_offset
<<= PAGE_SHIFT
;
2573 if (new_offset
> offset
) {
2574 if (new_offset
< inode
->i_size
)
2575 offset
= new_offset
;
2576 else if (whence
== SEEK_DATA
)
2579 offset
= inode
->i_size
;
2584 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2585 inode_unlock(inode
);
2589 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2592 struct inode
*inode
= file_inode(file
);
2593 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2594 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2595 struct shmem_falloc shmem_falloc
;
2596 pgoff_t start
, index
, end
;
2599 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2604 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2605 struct address_space
*mapping
= file
->f_mapping
;
2606 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2607 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2608 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2610 /* protected by i_mutex */
2611 if (info
->seals
& F_SEAL_WRITE
) {
2616 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2617 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2618 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2619 spin_lock(&inode
->i_lock
);
2620 inode
->i_private
= &shmem_falloc
;
2621 spin_unlock(&inode
->i_lock
);
2623 if ((u64
)unmap_end
> (u64
)unmap_start
)
2624 unmap_mapping_range(mapping
, unmap_start
,
2625 1 + unmap_end
- unmap_start
, 0);
2626 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2627 /* No need to unmap again: hole-punching leaves COWed pages */
2629 spin_lock(&inode
->i_lock
);
2630 inode
->i_private
= NULL
;
2631 wake_up_all(&shmem_falloc_waitq
);
2632 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2633 spin_unlock(&inode
->i_lock
);
2638 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2639 error
= inode_newsize_ok(inode
, offset
+ len
);
2643 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2648 start
= offset
>> PAGE_SHIFT
;
2649 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2650 /* Try to avoid a swapstorm if len is impossible to satisfy */
2651 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2656 shmem_falloc
.waitq
= NULL
;
2657 shmem_falloc
.start
= start
;
2658 shmem_falloc
.next
= start
;
2659 shmem_falloc
.nr_falloced
= 0;
2660 shmem_falloc
.nr_unswapped
= 0;
2661 spin_lock(&inode
->i_lock
);
2662 inode
->i_private
= &shmem_falloc
;
2663 spin_unlock(&inode
->i_lock
);
2665 for (index
= start
; index
< end
; index
++) {
2669 * Good, the fallocate(2) manpage permits EINTR: we may have
2670 * been interrupted because we are using up too much memory.
2672 if (signal_pending(current
))
2674 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2677 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2679 /* Remove the !PageUptodate pages we added */
2680 if (index
> start
) {
2681 shmem_undo_range(inode
,
2682 (loff_t
)start
<< PAGE_SHIFT
,
2683 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2689 * Inform shmem_writepage() how far we have reached.
2690 * No need for lock or barrier: we have the page lock.
2692 shmem_falloc
.next
++;
2693 if (!PageUptodate(page
))
2694 shmem_falloc
.nr_falloced
++;
2697 * If !PageUptodate, leave it that way so that freeable pages
2698 * can be recognized if we need to rollback on error later.
2699 * But set_page_dirty so that memory pressure will swap rather
2700 * than free the pages we are allocating (and SGP_CACHE pages
2701 * might still be clean: we now need to mark those dirty too).
2703 set_page_dirty(page
);
2709 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2710 i_size_write(inode
, offset
+ len
);
2711 inode
->i_ctime
= current_time(inode
);
2713 spin_lock(&inode
->i_lock
);
2714 inode
->i_private
= NULL
;
2715 spin_unlock(&inode
->i_lock
);
2717 inode_unlock(inode
);
2721 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2723 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2725 buf
->f_type
= TMPFS_MAGIC
;
2726 buf
->f_bsize
= PAGE_SIZE
;
2727 buf
->f_namelen
= NAME_MAX
;
2728 if (sbinfo
->max_blocks
) {
2729 buf
->f_blocks
= sbinfo
->max_blocks
;
2731 buf
->f_bfree
= sbinfo
->max_blocks
-
2732 percpu_counter_sum(&sbinfo
->used_blocks
);
2734 if (sbinfo
->max_inodes
) {
2735 buf
->f_files
= sbinfo
->max_inodes
;
2736 buf
->f_ffree
= sbinfo
->free_inodes
;
2738 /* else leave those fields 0 like simple_statfs */
2743 * File creation. Allocate an inode, and we're done..
2746 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2748 struct inode
*inode
;
2749 int error
= -ENOSPC
;
2751 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2753 error
= simple_acl_create(dir
, inode
);
2756 error
= security_inode_init_security(inode
, dir
,
2758 shmem_initxattrs
, NULL
);
2759 if (error
&& error
!= -EOPNOTSUPP
)
2763 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2764 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2765 d_instantiate(dentry
, inode
);
2766 dget(dentry
); /* Extra count - pin the dentry in core */
2775 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2777 struct inode
*inode
;
2778 int error
= -ENOSPC
;
2780 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2782 error
= security_inode_init_security(inode
, dir
,
2784 shmem_initxattrs
, NULL
);
2785 if (error
&& error
!= -EOPNOTSUPP
)
2787 error
= simple_acl_create(dir
, inode
);
2790 d_tmpfile(dentry
, inode
);
2798 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2802 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2808 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2811 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2817 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2819 struct inode
*inode
= d_inode(old_dentry
);
2823 * No ordinary (disk based) filesystem counts links as inodes;
2824 * but each new link needs a new dentry, pinning lowmem, and
2825 * tmpfs dentries cannot be pruned until they are unlinked.
2827 ret
= shmem_reserve_inode(inode
->i_sb
);
2831 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2832 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2834 ihold(inode
); /* New dentry reference */
2835 dget(dentry
); /* Extra pinning count for the created dentry */
2836 d_instantiate(dentry
, inode
);
2841 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2843 struct inode
*inode
= d_inode(dentry
);
2845 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2846 shmem_free_inode(inode
->i_sb
);
2848 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2849 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2851 dput(dentry
); /* Undo the count from "create" - this does all the work */
2855 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2857 if (!simple_empty(dentry
))
2860 drop_nlink(d_inode(dentry
));
2862 return shmem_unlink(dir
, dentry
);
2865 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2867 bool old_is_dir
= d_is_dir(old_dentry
);
2868 bool new_is_dir
= d_is_dir(new_dentry
);
2870 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2872 drop_nlink(old_dir
);
2875 drop_nlink(new_dir
);
2879 old_dir
->i_ctime
= old_dir
->i_mtime
=
2880 new_dir
->i_ctime
= new_dir
->i_mtime
=
2881 d_inode(old_dentry
)->i_ctime
=
2882 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2887 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2889 struct dentry
*whiteout
;
2892 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2896 error
= shmem_mknod(old_dir
, whiteout
,
2897 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2903 * Cheat and hash the whiteout while the old dentry is still in
2904 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2906 * d_lookup() will consistently find one of them at this point,
2907 * not sure which one, but that isn't even important.
2914 * The VFS layer already does all the dentry stuff for rename,
2915 * we just have to decrement the usage count for the target if
2916 * it exists so that the VFS layer correctly free's it when it
2919 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2921 struct inode
*inode
= d_inode(old_dentry
);
2922 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2924 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2927 if (flags
& RENAME_EXCHANGE
)
2928 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2930 if (!simple_empty(new_dentry
))
2933 if (flags
& RENAME_WHITEOUT
) {
2936 error
= shmem_whiteout(old_dir
, old_dentry
);
2941 if (d_really_is_positive(new_dentry
)) {
2942 (void) shmem_unlink(new_dir
, new_dentry
);
2943 if (they_are_dirs
) {
2944 drop_nlink(d_inode(new_dentry
));
2945 drop_nlink(old_dir
);
2947 } else if (they_are_dirs
) {
2948 drop_nlink(old_dir
);
2952 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2953 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2954 old_dir
->i_ctime
= old_dir
->i_mtime
=
2955 new_dir
->i_ctime
= new_dir
->i_mtime
=
2956 inode
->i_ctime
= current_time(old_dir
);
2960 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2964 struct inode
*inode
;
2967 len
= strlen(symname
) + 1;
2968 if (len
> PAGE_SIZE
)
2969 return -ENAMETOOLONG
;
2971 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
| 0777, 0,
2976 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2977 shmem_initxattrs
, NULL
);
2979 if (error
!= -EOPNOTSUPP
) {
2986 inode
->i_size
= len
-1;
2987 if (len
<= SHORT_SYMLINK_LEN
) {
2988 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
2989 if (!inode
->i_link
) {
2993 inode
->i_op
= &shmem_short_symlink_operations
;
2995 inode_nohighmem(inode
);
2996 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3001 inode
->i_mapping
->a_ops
= &shmem_aops
;
3002 inode
->i_op
= &shmem_symlink_inode_operations
;
3003 memcpy(page_address(page
), symname
, len
);
3004 SetPageUptodate(page
);
3005 set_page_dirty(page
);
3009 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3010 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3011 d_instantiate(dentry
, inode
);
3016 static void shmem_put_link(void *arg
)
3018 mark_page_accessed(arg
);
3022 static const char *shmem_get_link(struct dentry
*dentry
,
3023 struct inode
*inode
,
3024 struct delayed_call
*done
)
3026 struct page
*page
= NULL
;
3029 page
= find_get_page(inode
->i_mapping
, 0);
3031 return ERR_PTR(-ECHILD
);
3032 if (!PageUptodate(page
)) {
3034 return ERR_PTR(-ECHILD
);
3037 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3039 return ERR_PTR(error
);
3042 set_delayed_call(done
, shmem_put_link
, page
);
3043 return page_address(page
);
3046 #ifdef CONFIG_TMPFS_XATTR
3048 * Superblocks without xattr inode operations may get some security.* xattr
3049 * support from the LSM "for free". As soon as we have any other xattrs
3050 * like ACLs, we also need to implement the security.* handlers at
3051 * filesystem level, though.
3055 * Callback for security_inode_init_security() for acquiring xattrs.
3057 static int shmem_initxattrs(struct inode
*inode
,
3058 const struct xattr
*xattr_array
,
3061 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3062 const struct xattr
*xattr
;
3063 struct simple_xattr
*new_xattr
;
3066 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3067 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3071 len
= strlen(xattr
->name
) + 1;
3072 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3074 if (!new_xattr
->name
) {
3079 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3080 XATTR_SECURITY_PREFIX_LEN
);
3081 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3084 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3090 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3091 struct dentry
*unused
, struct inode
*inode
,
3092 const char *name
, void *buffer
, size_t size
)
3094 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3096 name
= xattr_full_name(handler
, name
);
3097 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3100 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3101 struct dentry
*unused
, struct inode
*inode
,
3102 const char *name
, const void *value
,
3103 size_t size
, int flags
)
3105 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3107 name
= xattr_full_name(handler
, name
);
3108 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3111 static const struct xattr_handler shmem_security_xattr_handler
= {
3112 .prefix
= XATTR_SECURITY_PREFIX
,
3113 .get
= shmem_xattr_handler_get
,
3114 .set
= shmem_xattr_handler_set
,
3117 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3118 .prefix
= XATTR_TRUSTED_PREFIX
,
3119 .get
= shmem_xattr_handler_get
,
3120 .set
= shmem_xattr_handler_set
,
3123 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3124 #ifdef CONFIG_TMPFS_POSIX_ACL
3125 &posix_acl_access_xattr_handler
,
3126 &posix_acl_default_xattr_handler
,
3128 &shmem_security_xattr_handler
,
3129 &shmem_trusted_xattr_handler
,
3133 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3135 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3136 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3138 #endif /* CONFIG_TMPFS_XATTR */
3140 static const struct inode_operations shmem_short_symlink_operations
= {
3141 .get_link
= simple_get_link
,
3142 #ifdef CONFIG_TMPFS_XATTR
3143 .listxattr
= shmem_listxattr
,
3147 static const struct inode_operations shmem_symlink_inode_operations
= {
3148 .get_link
= shmem_get_link
,
3149 #ifdef CONFIG_TMPFS_XATTR
3150 .listxattr
= shmem_listxattr
,
3154 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3156 return ERR_PTR(-ESTALE
);
3159 static int shmem_match(struct inode
*ino
, void *vfh
)
3163 inum
= (inum
<< 32) | fh
[1];
3164 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3167 /* Find any alias of inode, but prefer a hashed alias */
3168 static struct dentry
*shmem_find_alias(struct inode
*inode
)
3170 struct dentry
*alias
= d_find_alias(inode
);
3172 return alias
?: d_find_any_alias(inode
);
3176 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3177 struct fid
*fid
, int fh_len
, int fh_type
)
3179 struct inode
*inode
;
3180 struct dentry
*dentry
= NULL
;
3187 inum
= (inum
<< 32) | fid
->raw
[1];
3189 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3190 shmem_match
, fid
->raw
);
3192 dentry
= shmem_find_alias(inode
);
3199 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3200 struct inode
*parent
)
3204 return FILEID_INVALID
;
3207 if (inode_unhashed(inode
)) {
3208 /* Unfortunately insert_inode_hash is not idempotent,
3209 * so as we hash inodes here rather than at creation
3210 * time, we need a lock to ensure we only try
3213 static DEFINE_SPINLOCK(lock
);
3215 if (inode_unhashed(inode
))
3216 __insert_inode_hash(inode
,
3217 inode
->i_ino
+ inode
->i_generation
);
3221 fh
[0] = inode
->i_generation
;
3222 fh
[1] = inode
->i_ino
;
3223 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3229 static const struct export_operations shmem_export_ops
= {
3230 .get_parent
= shmem_get_parent
,
3231 .encode_fh
= shmem_encode_fh
,
3232 .fh_to_dentry
= shmem_fh_to_dentry
,
3235 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3238 char *this_char
, *value
, *rest
;
3239 struct mempolicy
*mpol
= NULL
;
3243 while (options
!= NULL
) {
3244 this_char
= options
;
3247 * NUL-terminate this option: unfortunately,
3248 * mount options form a comma-separated list,
3249 * but mpol's nodelist may also contain commas.
3251 options
= strchr(options
, ',');
3252 if (options
== NULL
)
3255 if (!isdigit(*options
)) {
3262 if ((value
= strchr(this_char
,'=')) != NULL
) {
3265 pr_err("tmpfs: No value for mount option '%s'\n",
3270 if (!strcmp(this_char
,"size")) {
3271 unsigned long long size
;
3272 size
= memparse(value
,&rest
);
3274 size
<<= PAGE_SHIFT
;
3275 size
*= totalram_pages
;
3281 sbinfo
->max_blocks
=
3282 DIV_ROUND_UP(size
, PAGE_SIZE
);
3283 } else if (!strcmp(this_char
,"nr_blocks")) {
3284 sbinfo
->max_blocks
= memparse(value
, &rest
);
3287 } else if (!strcmp(this_char
,"nr_inodes")) {
3288 sbinfo
->max_inodes
= memparse(value
, &rest
);
3291 } else if (!strcmp(this_char
,"mode")) {
3294 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3297 } else if (!strcmp(this_char
,"uid")) {
3300 uid
= simple_strtoul(value
, &rest
, 0);
3303 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3304 if (!uid_valid(sbinfo
->uid
))
3306 } else if (!strcmp(this_char
,"gid")) {
3309 gid
= simple_strtoul(value
, &rest
, 0);
3312 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3313 if (!gid_valid(sbinfo
->gid
))
3315 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3316 } else if (!strcmp(this_char
, "huge")) {
3318 huge
= shmem_parse_huge(value
);
3321 if (!has_transparent_hugepage() &&
3322 huge
!= SHMEM_HUGE_NEVER
)
3324 sbinfo
->huge
= huge
;
3327 } else if (!strcmp(this_char
,"mpol")) {
3330 if (mpol_parse_str(value
, &mpol
))
3334 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3338 sbinfo
->mpol
= mpol
;
3342 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3350 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3352 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3353 struct shmem_sb_info config
= *sbinfo
;
3354 unsigned long inodes
;
3355 int error
= -EINVAL
;
3358 if (shmem_parse_options(data
, &config
, true))
3361 spin_lock(&sbinfo
->stat_lock
);
3362 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3363 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3365 if (config
.max_inodes
< inodes
)
3368 * Those tests disallow limited->unlimited while any are in use;
3369 * but we must separately disallow unlimited->limited, because
3370 * in that case we have no record of how much is already in use.
3372 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3374 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3378 sbinfo
->huge
= config
.huge
;
3379 sbinfo
->max_blocks
= config
.max_blocks
;
3380 sbinfo
->max_inodes
= config
.max_inodes
;
3381 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3384 * Preserve previous mempolicy unless mpol remount option was specified.
3387 mpol_put(sbinfo
->mpol
);
3388 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3391 spin_unlock(&sbinfo
->stat_lock
);
3395 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3397 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3399 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3400 seq_printf(seq
, ",size=%luk",
3401 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3402 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3403 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3404 if (sbinfo
->mode
!= (0777 | S_ISVTX
))
3405 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3406 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3407 seq_printf(seq
, ",uid=%u",
3408 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3409 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3410 seq_printf(seq
, ",gid=%u",
3411 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3412 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3413 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3415 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3417 shmem_show_mpol(seq
, sbinfo
->mpol
);
3421 #endif /* CONFIG_TMPFS */
3423 static void shmem_put_super(struct super_block
*sb
)
3425 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3427 percpu_counter_destroy(&sbinfo
->used_blocks
);
3428 mpol_put(sbinfo
->mpol
);
3430 sb
->s_fs_info
= NULL
;
3433 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3435 struct inode
*inode
;
3436 struct shmem_sb_info
*sbinfo
;
3439 /* Round up to L1_CACHE_BYTES to resist false sharing */
3440 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3441 L1_CACHE_BYTES
), GFP_KERNEL
);
3445 sbinfo
->mode
= 0777 | S_ISVTX
;
3446 sbinfo
->uid
= current_fsuid();
3447 sbinfo
->gid
= current_fsgid();
3448 sb
->s_fs_info
= sbinfo
;
3452 * Per default we only allow half of the physical ram per
3453 * tmpfs instance, limiting inodes to one per page of lowmem;
3454 * but the internal instance is left unlimited.
3456 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3457 sbinfo
->max_blocks
= shmem_default_max_blocks();
3458 sbinfo
->max_inodes
= shmem_default_max_inodes();
3459 if (shmem_parse_options(data
, sbinfo
, false)) {
3464 sb
->s_flags
|= SB_NOUSER
;
3466 sb
->s_export_op
= &shmem_export_ops
;
3467 sb
->s_flags
|= SB_NOSEC
;
3469 sb
->s_flags
|= SB_NOUSER
;
3472 spin_lock_init(&sbinfo
->stat_lock
);
3473 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3475 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3476 spin_lock_init(&sbinfo
->shrinklist_lock
);
3477 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3479 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3480 sb
->s_blocksize
= PAGE_SIZE
;
3481 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3482 sb
->s_magic
= TMPFS_MAGIC
;
3483 sb
->s_op
= &shmem_ops
;
3484 sb
->s_time_gran
= 1;
3485 #ifdef CONFIG_TMPFS_XATTR
3486 sb
->s_xattr
= shmem_xattr_handlers
;
3488 #ifdef CONFIG_TMPFS_POSIX_ACL
3489 sb
->s_flags
|= SB_POSIXACL
;
3491 uuid_gen(&sb
->s_uuid
);
3493 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3496 inode
->i_uid
= sbinfo
->uid
;
3497 inode
->i_gid
= sbinfo
->gid
;
3498 sb
->s_root
= d_make_root(inode
);
3504 shmem_put_super(sb
);
3508 static struct kmem_cache
*shmem_inode_cachep
;
3510 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3512 struct shmem_inode_info
*info
;
3513 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3516 return &info
->vfs_inode
;
3519 static void shmem_destroy_callback(struct rcu_head
*head
)
3521 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3522 if (S_ISLNK(inode
->i_mode
))
3523 kfree(inode
->i_link
);
3524 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3527 static void shmem_destroy_inode(struct inode
*inode
)
3529 if (S_ISREG(inode
->i_mode
))
3530 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3531 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3534 static void shmem_init_inode(void *foo
)
3536 struct shmem_inode_info
*info
= foo
;
3537 inode_init_once(&info
->vfs_inode
);
3540 static void shmem_init_inodecache(void)
3542 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3543 sizeof(struct shmem_inode_info
),
3544 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3547 static void shmem_destroy_inodecache(void)
3549 kmem_cache_destroy(shmem_inode_cachep
);
3552 static const struct address_space_operations shmem_aops
= {
3553 .writepage
= shmem_writepage
,
3554 .set_page_dirty
= __set_page_dirty_no_writeback
,
3556 .write_begin
= shmem_write_begin
,
3557 .write_end
= shmem_write_end
,
3559 #ifdef CONFIG_MIGRATION
3560 .migratepage
= migrate_page
,
3562 .error_remove_page
= generic_error_remove_page
,
3565 static const struct file_operations shmem_file_operations
= {
3567 .get_unmapped_area
= shmem_get_unmapped_area
,
3569 .llseek
= shmem_file_llseek
,
3570 .read_iter
= shmem_file_read_iter
,
3571 .write_iter
= generic_file_write_iter
,
3572 .fsync
= noop_fsync
,
3573 .splice_read
= generic_file_splice_read
,
3574 .splice_write
= iter_file_splice_write
,
3575 .fallocate
= shmem_fallocate
,
3579 static const struct inode_operations shmem_inode_operations
= {
3580 .getattr
= shmem_getattr
,
3581 .setattr
= shmem_setattr
,
3582 #ifdef CONFIG_TMPFS_XATTR
3583 .listxattr
= shmem_listxattr
,
3584 .set_acl
= simple_set_acl
,
3588 static const struct inode_operations shmem_dir_inode_operations
= {
3590 .create
= shmem_create
,
3591 .lookup
= simple_lookup
,
3593 .unlink
= shmem_unlink
,
3594 .symlink
= shmem_symlink
,
3595 .mkdir
= shmem_mkdir
,
3596 .rmdir
= shmem_rmdir
,
3597 .mknod
= shmem_mknod
,
3598 .rename
= shmem_rename2
,
3599 .tmpfile
= shmem_tmpfile
,
3601 #ifdef CONFIG_TMPFS_XATTR
3602 .listxattr
= shmem_listxattr
,
3604 #ifdef CONFIG_TMPFS_POSIX_ACL
3605 .setattr
= shmem_setattr
,
3606 .set_acl
= simple_set_acl
,
3610 static const struct inode_operations shmem_special_inode_operations
= {
3611 #ifdef CONFIG_TMPFS_XATTR
3612 .listxattr
= shmem_listxattr
,
3614 #ifdef CONFIG_TMPFS_POSIX_ACL
3615 .setattr
= shmem_setattr
,
3616 .set_acl
= simple_set_acl
,
3620 static const struct super_operations shmem_ops
= {
3621 .alloc_inode
= shmem_alloc_inode
,
3622 .destroy_inode
= shmem_destroy_inode
,
3624 .statfs
= shmem_statfs
,
3625 .remount_fs
= shmem_remount_fs
,
3626 .show_options
= shmem_show_options
,
3628 .evict_inode
= shmem_evict_inode
,
3629 .drop_inode
= generic_delete_inode
,
3630 .put_super
= shmem_put_super
,
3631 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3632 .nr_cached_objects
= shmem_unused_huge_count
,
3633 .free_cached_objects
= shmem_unused_huge_scan
,
3637 static const struct vm_operations_struct shmem_vm_ops
= {
3638 .fault
= shmem_fault
,
3639 .map_pages
= filemap_map_pages
,
3641 .set_policy
= shmem_set_policy
,
3642 .get_policy
= shmem_get_policy
,
3646 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3647 int flags
, const char *dev_name
, void *data
)
3649 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3652 static struct file_system_type shmem_fs_type
= {
3653 .owner
= THIS_MODULE
,
3655 .mount
= shmem_mount
,
3656 .kill_sb
= kill_litter_super
,
3657 .fs_flags
= FS_USERNS_MOUNT
,
3660 int __init
shmem_init(void)
3664 /* If rootfs called this, don't re-init */
3665 if (shmem_inode_cachep
)
3668 shmem_init_inodecache();
3670 error
= register_filesystem(&shmem_fs_type
);
3672 pr_err("Could not register tmpfs\n");
3676 shm_mnt
= kern_mount(&shmem_fs_type
);
3677 if (IS_ERR(shm_mnt
)) {
3678 error
= PTR_ERR(shm_mnt
);
3679 pr_err("Could not kern_mount tmpfs\n");
3683 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3684 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
3685 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3687 shmem_huge
= 0; /* just in case it was patched */
3692 unregister_filesystem(&shmem_fs_type
);
3694 shmem_destroy_inodecache();
3695 shm_mnt
= ERR_PTR(error
);
3699 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3700 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3701 struct kobj_attribute
*attr
, char *buf
)
3705 SHMEM_HUGE_WITHIN_SIZE
,
3713 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3714 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3716 count
+= sprintf(buf
+ count
, fmt
,
3717 shmem_format_huge(values
[i
]));
3719 buf
[count
- 1] = '\n';
3723 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3724 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3729 if (count
+ 1 > sizeof(tmp
))
3731 memcpy(tmp
, buf
, count
);
3733 if (count
&& tmp
[count
- 1] == '\n')
3734 tmp
[count
- 1] = '\0';
3736 huge
= shmem_parse_huge(tmp
);
3737 if (huge
== -EINVAL
)
3739 if (!has_transparent_hugepage() &&
3740 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3744 if (shmem_huge
> SHMEM_HUGE_DENY
)
3745 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3749 struct kobj_attribute shmem_enabled_attr
=
3750 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3751 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3753 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3754 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3756 struct inode
*inode
= file_inode(vma
->vm_file
);
3757 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3761 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3763 if (shmem_huge
== SHMEM_HUGE_DENY
)
3765 switch (sbinfo
->huge
) {
3766 case SHMEM_HUGE_NEVER
:
3768 case SHMEM_HUGE_ALWAYS
:
3770 case SHMEM_HUGE_WITHIN_SIZE
:
3771 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3772 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3773 if (i_size
>= HPAGE_PMD_SIZE
&&
3774 i_size
>> PAGE_SHIFT
>= off
)
3777 case SHMEM_HUGE_ADVISE
:
3778 /* TODO: implement fadvise() hints */
3779 return (vma
->vm_flags
& VM_HUGEPAGE
);
3785 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3787 #else /* !CONFIG_SHMEM */
3790 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3792 * This is intended for small system where the benefits of the full
3793 * shmem code (swap-backed and resource-limited) are outweighed by
3794 * their complexity. On systems without swap this code should be
3795 * effectively equivalent, but much lighter weight.
3798 static struct file_system_type shmem_fs_type
= {
3800 .mount
= ramfs_mount
,
3801 .kill_sb
= kill_litter_super
,
3802 .fs_flags
= FS_USERNS_MOUNT
,
3805 int __init
shmem_init(void)
3807 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3809 shm_mnt
= kern_mount(&shmem_fs_type
);
3810 BUG_ON(IS_ERR(shm_mnt
));
3815 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3820 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3825 void shmem_unlock_mapping(struct address_space
*mapping
)
3830 unsigned long shmem_get_unmapped_area(struct file
*file
,
3831 unsigned long addr
, unsigned long len
,
3832 unsigned long pgoff
, unsigned long flags
)
3834 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3838 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3840 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3842 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3844 #define shmem_vm_ops generic_file_vm_ops
3845 #define shmem_file_operations ramfs_file_operations
3846 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3847 #define shmem_acct_size(flags, size) 0
3848 #define shmem_unacct_size(flags, size) do {} while (0)
3850 #endif /* CONFIG_SHMEM */
3854 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
3855 unsigned long flags
, unsigned int i_flags
)
3857 struct inode
*inode
;
3861 return ERR_CAST(mnt
);
3863 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3864 return ERR_PTR(-EINVAL
);
3866 if (shmem_acct_size(flags
, size
))
3867 return ERR_PTR(-ENOMEM
);
3869 inode
= shmem_get_inode(mnt
->mnt_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0,
3871 if (unlikely(!inode
)) {
3872 shmem_unacct_size(flags
, size
);
3873 return ERR_PTR(-ENOSPC
);
3875 inode
->i_flags
|= i_flags
;
3876 inode
->i_size
= size
;
3877 clear_nlink(inode
); /* It is unlinked */
3878 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3880 res
= alloc_file_pseudo(inode
, mnt
, name
, O_RDWR
,
3881 &shmem_file_operations
);
3888 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3889 * kernel internal. There will be NO LSM permission checks against the
3890 * underlying inode. So users of this interface must do LSM checks at a
3891 * higher layer. The users are the big_key and shm implementations. LSM
3892 * checks are provided at the key or shm level rather than the inode.
3893 * @name: name for dentry (to be seen in /proc/<pid>/maps
3894 * @size: size to be set for the file
3895 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3897 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3899 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
3903 * shmem_file_setup - get an unlinked file living in tmpfs
3904 * @name: name for dentry (to be seen in /proc/<pid>/maps
3905 * @size: size to be set for the file
3906 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3908 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3910 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
3912 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3915 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3916 * @mnt: the tmpfs mount where the file will be created
3917 * @name: name for dentry (to be seen in /proc/<pid>/maps
3918 * @size: size to be set for the file
3919 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3921 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
3922 loff_t size
, unsigned long flags
)
3924 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
3926 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
3929 * shmem_zero_setup - setup a shared anonymous mapping
3930 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3932 int shmem_zero_setup(struct vm_area_struct
*vma
)
3935 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3938 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3939 * between XFS directory reading and selinux: since this file is only
3940 * accessible to the user through its mapping, use S_PRIVATE flag to
3941 * bypass file security, in the same way as shmem_kernel_file_setup().
3943 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
3945 return PTR_ERR(file
);
3949 vma
->vm_file
= file
;
3950 vma
->vm_ops
= &shmem_vm_ops
;
3952 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
3953 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
3954 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
3955 khugepaged_enter(vma
, vma
->vm_flags
);
3962 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3963 * @mapping: the page's address_space
3964 * @index: the page index
3965 * @gfp: the page allocator flags to use if allocating
3967 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3968 * with any new page allocations done using the specified allocation flags.
3969 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3970 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3971 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3973 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3974 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3976 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3977 pgoff_t index
, gfp_t gfp
)
3980 struct inode
*inode
= mapping
->host
;
3984 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3985 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
3986 gfp
, NULL
, NULL
, NULL
);
3988 page
= ERR_PTR(error
);
3994 * The tiny !SHMEM case uses ramfs without swap
3996 return read_cache_page_gfp(mapping
, index
, gfp
);
3999 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);