Merge tag 'phy-for-4.20-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon...
[linux/fpc-iii.git] / mm / swapfile.c
blob8688ae65ef58ac639b0b2202039fa22577309350
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 static DEFINE_MUTEX(swapon_mutex);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 static inline unsigned char swap_count(unsigned char ent)
103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
106 /* Reclaim the swap entry anyway if possible */
107 #define TTRS_ANYWAY 0x1
109 * Reclaim the swap entry if there are no more mappings of the
110 * corresponding page
112 #define TTRS_UNMAPPED 0x2
113 /* Reclaim the swap entry if swap is getting full*/
114 #define TTRS_FULL 0x4
116 /* returns 1 if swap entry is freed */
117 static int __try_to_reclaim_swap(struct swap_info_struct *si,
118 unsigned long offset, unsigned long flags)
120 swp_entry_t entry = swp_entry(si->type, offset);
121 struct page *page;
122 int ret = 0;
124 page = find_get_page(swap_address_space(entry), offset);
125 if (!page)
126 return 0;
128 * When this function is called from scan_swap_map_slots() and it's
129 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
130 * here. We have to use trylock for avoiding deadlock. This is a special
131 * case and you should use try_to_free_swap() with explicit lock_page()
132 * in usual operations.
134 if (trylock_page(page)) {
135 if ((flags & TTRS_ANYWAY) ||
136 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
137 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
138 ret = try_to_free_swap(page);
139 unlock_page(page);
141 put_page(page);
142 return ret;
146 * swapon tell device that all the old swap contents can be discarded,
147 * to allow the swap device to optimize its wear-levelling.
149 static int discard_swap(struct swap_info_struct *si)
151 struct swap_extent *se;
152 sector_t start_block;
153 sector_t nr_blocks;
154 int err = 0;
156 /* Do not discard the swap header page! */
157 se = &si->first_swap_extent;
158 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
159 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
160 if (nr_blocks) {
161 err = blkdev_issue_discard(si->bdev, start_block,
162 nr_blocks, GFP_KERNEL, 0);
163 if (err)
164 return err;
165 cond_resched();
168 list_for_each_entry(se, &si->first_swap_extent.list, list) {
169 start_block = se->start_block << (PAGE_SHIFT - 9);
170 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
172 err = blkdev_issue_discard(si->bdev, start_block,
173 nr_blocks, GFP_KERNEL, 0);
174 if (err)
175 break;
177 cond_resched();
179 return err; /* That will often be -EOPNOTSUPP */
183 * swap allocation tell device that a cluster of swap can now be discarded,
184 * to allow the swap device to optimize its wear-levelling.
186 static void discard_swap_cluster(struct swap_info_struct *si,
187 pgoff_t start_page, pgoff_t nr_pages)
189 struct swap_extent *se = si->curr_swap_extent;
190 int found_extent = 0;
192 while (nr_pages) {
193 if (se->start_page <= start_page &&
194 start_page < se->start_page + se->nr_pages) {
195 pgoff_t offset = start_page - se->start_page;
196 sector_t start_block = se->start_block + offset;
197 sector_t nr_blocks = se->nr_pages - offset;
199 if (nr_blocks > nr_pages)
200 nr_blocks = nr_pages;
201 start_page += nr_blocks;
202 nr_pages -= nr_blocks;
204 if (!found_extent++)
205 si->curr_swap_extent = se;
207 start_block <<= PAGE_SHIFT - 9;
208 nr_blocks <<= PAGE_SHIFT - 9;
209 if (blkdev_issue_discard(si->bdev, start_block,
210 nr_blocks, GFP_NOIO, 0))
211 break;
214 se = list_next_entry(se, list);
218 #ifdef CONFIG_THP_SWAP
219 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
221 #define swap_entry_size(size) (size)
222 #else
223 #define SWAPFILE_CLUSTER 256
226 * Define swap_entry_size() as constant to let compiler to optimize
227 * out some code if !CONFIG_THP_SWAP
229 #define swap_entry_size(size) 1
230 #endif
231 #define LATENCY_LIMIT 256
233 static inline void cluster_set_flag(struct swap_cluster_info *info,
234 unsigned int flag)
236 info->flags = flag;
239 static inline unsigned int cluster_count(struct swap_cluster_info *info)
241 return info->data;
244 static inline void cluster_set_count(struct swap_cluster_info *info,
245 unsigned int c)
247 info->data = c;
250 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
251 unsigned int c, unsigned int f)
253 info->flags = f;
254 info->data = c;
257 static inline unsigned int cluster_next(struct swap_cluster_info *info)
259 return info->data;
262 static inline void cluster_set_next(struct swap_cluster_info *info,
263 unsigned int n)
265 info->data = n;
268 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
269 unsigned int n, unsigned int f)
271 info->flags = f;
272 info->data = n;
275 static inline bool cluster_is_free(struct swap_cluster_info *info)
277 return info->flags & CLUSTER_FLAG_FREE;
280 static inline bool cluster_is_null(struct swap_cluster_info *info)
282 return info->flags & CLUSTER_FLAG_NEXT_NULL;
285 static inline void cluster_set_null(struct swap_cluster_info *info)
287 info->flags = CLUSTER_FLAG_NEXT_NULL;
288 info->data = 0;
291 static inline bool cluster_is_huge(struct swap_cluster_info *info)
293 if (IS_ENABLED(CONFIG_THP_SWAP))
294 return info->flags & CLUSTER_FLAG_HUGE;
295 return false;
298 static inline void cluster_clear_huge(struct swap_cluster_info *info)
300 info->flags &= ~CLUSTER_FLAG_HUGE;
303 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
304 unsigned long offset)
306 struct swap_cluster_info *ci;
308 ci = si->cluster_info;
309 if (ci) {
310 ci += offset / SWAPFILE_CLUSTER;
311 spin_lock(&ci->lock);
313 return ci;
316 static inline void unlock_cluster(struct swap_cluster_info *ci)
318 if (ci)
319 spin_unlock(&ci->lock);
323 * Determine the locking method in use for this device. Return
324 * swap_cluster_info if SSD-style cluster-based locking is in place.
326 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
327 struct swap_info_struct *si, unsigned long offset)
329 struct swap_cluster_info *ci;
331 /* Try to use fine-grained SSD-style locking if available: */
332 ci = lock_cluster(si, offset);
333 /* Otherwise, fall back to traditional, coarse locking: */
334 if (!ci)
335 spin_lock(&si->lock);
337 return ci;
340 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
341 struct swap_cluster_info *ci)
343 if (ci)
344 unlock_cluster(ci);
345 else
346 spin_unlock(&si->lock);
349 static inline bool cluster_list_empty(struct swap_cluster_list *list)
351 return cluster_is_null(&list->head);
354 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
356 return cluster_next(&list->head);
359 static void cluster_list_init(struct swap_cluster_list *list)
361 cluster_set_null(&list->head);
362 cluster_set_null(&list->tail);
365 static void cluster_list_add_tail(struct swap_cluster_list *list,
366 struct swap_cluster_info *ci,
367 unsigned int idx)
369 if (cluster_list_empty(list)) {
370 cluster_set_next_flag(&list->head, idx, 0);
371 cluster_set_next_flag(&list->tail, idx, 0);
372 } else {
373 struct swap_cluster_info *ci_tail;
374 unsigned int tail = cluster_next(&list->tail);
377 * Nested cluster lock, but both cluster locks are
378 * only acquired when we held swap_info_struct->lock
380 ci_tail = ci + tail;
381 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
382 cluster_set_next(ci_tail, idx);
383 spin_unlock(&ci_tail->lock);
384 cluster_set_next_flag(&list->tail, idx, 0);
388 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
389 struct swap_cluster_info *ci)
391 unsigned int idx;
393 idx = cluster_next(&list->head);
394 if (cluster_next(&list->tail) == idx) {
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
397 } else
398 cluster_set_next_flag(&list->head,
399 cluster_next(&ci[idx]), 0);
401 return idx;
404 /* Add a cluster to discard list and schedule it to do discard */
405 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
406 unsigned int idx)
409 * If scan_swap_map() can't find a free cluster, it will check
410 * si->swap_map directly. To make sure the discarding cluster isn't
411 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
412 * will be cleared after discard
414 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
415 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
417 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
419 schedule_work(&si->discard_work);
422 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
424 struct swap_cluster_info *ci = si->cluster_info;
426 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
427 cluster_list_add_tail(&si->free_clusters, ci, idx);
431 * Doing discard actually. After a cluster discard is finished, the cluster
432 * will be added to free cluster list. caller should hold si->lock.
434 static void swap_do_scheduled_discard(struct swap_info_struct *si)
436 struct swap_cluster_info *info, *ci;
437 unsigned int idx;
439 info = si->cluster_info;
441 while (!cluster_list_empty(&si->discard_clusters)) {
442 idx = cluster_list_del_first(&si->discard_clusters, info);
443 spin_unlock(&si->lock);
445 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
446 SWAPFILE_CLUSTER);
448 spin_lock(&si->lock);
449 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
450 __free_cluster(si, idx);
451 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
452 0, SWAPFILE_CLUSTER);
453 unlock_cluster(ci);
457 static void swap_discard_work(struct work_struct *work)
459 struct swap_info_struct *si;
461 si = container_of(work, struct swap_info_struct, discard_work);
463 spin_lock(&si->lock);
464 swap_do_scheduled_discard(si);
465 spin_unlock(&si->lock);
468 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
470 struct swap_cluster_info *ci = si->cluster_info;
472 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
473 cluster_list_del_first(&si->free_clusters, ci);
474 cluster_set_count_flag(ci + idx, 0, 0);
477 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
479 struct swap_cluster_info *ci = si->cluster_info + idx;
481 VM_BUG_ON(cluster_count(ci) != 0);
483 * If the swap is discardable, prepare discard the cluster
484 * instead of free it immediately. The cluster will be freed
485 * after discard.
487 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
488 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
489 swap_cluster_schedule_discard(si, idx);
490 return;
493 __free_cluster(si, idx);
497 * The cluster corresponding to page_nr will be used. The cluster will be
498 * removed from free cluster list and its usage counter will be increased.
500 static void inc_cluster_info_page(struct swap_info_struct *p,
501 struct swap_cluster_info *cluster_info, unsigned long page_nr)
503 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
505 if (!cluster_info)
506 return;
507 if (cluster_is_free(&cluster_info[idx]))
508 alloc_cluster(p, idx);
510 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
511 cluster_set_count(&cluster_info[idx],
512 cluster_count(&cluster_info[idx]) + 1);
516 * The cluster corresponding to page_nr decreases one usage. If the usage
517 * counter becomes 0, which means no page in the cluster is in using, we can
518 * optionally discard the cluster and add it to free cluster list.
520 static void dec_cluster_info_page(struct swap_info_struct *p,
521 struct swap_cluster_info *cluster_info, unsigned long page_nr)
523 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
525 if (!cluster_info)
526 return;
528 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
529 cluster_set_count(&cluster_info[idx],
530 cluster_count(&cluster_info[idx]) - 1);
532 if (cluster_count(&cluster_info[idx]) == 0)
533 free_cluster(p, idx);
537 * It's possible scan_swap_map() uses a free cluster in the middle of free
538 * cluster list. Avoiding such abuse to avoid list corruption.
540 static bool
541 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
542 unsigned long offset)
544 struct percpu_cluster *percpu_cluster;
545 bool conflict;
547 offset /= SWAPFILE_CLUSTER;
548 conflict = !cluster_list_empty(&si->free_clusters) &&
549 offset != cluster_list_first(&si->free_clusters) &&
550 cluster_is_free(&si->cluster_info[offset]);
552 if (!conflict)
553 return false;
555 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
556 cluster_set_null(&percpu_cluster->index);
557 return true;
561 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
562 * might involve allocating a new cluster for current CPU too.
564 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
565 unsigned long *offset, unsigned long *scan_base)
567 struct percpu_cluster *cluster;
568 struct swap_cluster_info *ci;
569 bool found_free;
570 unsigned long tmp, max;
572 new_cluster:
573 cluster = this_cpu_ptr(si->percpu_cluster);
574 if (cluster_is_null(&cluster->index)) {
575 if (!cluster_list_empty(&si->free_clusters)) {
576 cluster->index = si->free_clusters.head;
577 cluster->next = cluster_next(&cluster->index) *
578 SWAPFILE_CLUSTER;
579 } else if (!cluster_list_empty(&si->discard_clusters)) {
581 * we don't have free cluster but have some clusters in
582 * discarding, do discard now and reclaim them
584 swap_do_scheduled_discard(si);
585 *scan_base = *offset = si->cluster_next;
586 goto new_cluster;
587 } else
588 return false;
591 found_free = false;
594 * Other CPUs can use our cluster if they can't find a free cluster,
595 * check if there is still free entry in the cluster
597 tmp = cluster->next;
598 max = min_t(unsigned long, si->max,
599 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
600 if (tmp >= max) {
601 cluster_set_null(&cluster->index);
602 goto new_cluster;
604 ci = lock_cluster(si, tmp);
605 while (tmp < max) {
606 if (!si->swap_map[tmp]) {
607 found_free = true;
608 break;
610 tmp++;
612 unlock_cluster(ci);
613 if (!found_free) {
614 cluster_set_null(&cluster->index);
615 goto new_cluster;
617 cluster->next = tmp + 1;
618 *offset = tmp;
619 *scan_base = tmp;
620 return found_free;
623 static void __del_from_avail_list(struct swap_info_struct *p)
625 int nid;
627 for_each_node(nid)
628 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
631 static void del_from_avail_list(struct swap_info_struct *p)
633 spin_lock(&swap_avail_lock);
634 __del_from_avail_list(p);
635 spin_unlock(&swap_avail_lock);
638 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
639 unsigned int nr_entries)
641 unsigned int end = offset + nr_entries - 1;
643 if (offset == si->lowest_bit)
644 si->lowest_bit += nr_entries;
645 if (end == si->highest_bit)
646 si->highest_bit -= nr_entries;
647 si->inuse_pages += nr_entries;
648 if (si->inuse_pages == si->pages) {
649 si->lowest_bit = si->max;
650 si->highest_bit = 0;
651 del_from_avail_list(si);
655 static void add_to_avail_list(struct swap_info_struct *p)
657 int nid;
659 spin_lock(&swap_avail_lock);
660 for_each_node(nid) {
661 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
662 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
664 spin_unlock(&swap_avail_lock);
667 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
670 unsigned long end = offset + nr_entries - 1;
671 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
673 if (offset < si->lowest_bit)
674 si->lowest_bit = offset;
675 if (end > si->highest_bit) {
676 bool was_full = !si->highest_bit;
678 si->highest_bit = end;
679 if (was_full && (si->flags & SWP_WRITEOK))
680 add_to_avail_list(si);
682 atomic_long_add(nr_entries, &nr_swap_pages);
683 si->inuse_pages -= nr_entries;
684 if (si->flags & SWP_BLKDEV)
685 swap_slot_free_notify =
686 si->bdev->bd_disk->fops->swap_slot_free_notify;
687 else
688 swap_slot_free_notify = NULL;
689 while (offset <= end) {
690 frontswap_invalidate_page(si->type, offset);
691 if (swap_slot_free_notify)
692 swap_slot_free_notify(si->bdev, offset);
693 offset++;
697 static int scan_swap_map_slots(struct swap_info_struct *si,
698 unsigned char usage, int nr,
699 swp_entry_t slots[])
701 struct swap_cluster_info *ci;
702 unsigned long offset;
703 unsigned long scan_base;
704 unsigned long last_in_cluster = 0;
705 int latency_ration = LATENCY_LIMIT;
706 int n_ret = 0;
708 if (nr > SWAP_BATCH)
709 nr = SWAP_BATCH;
712 * We try to cluster swap pages by allocating them sequentially
713 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
714 * way, however, we resort to first-free allocation, starting
715 * a new cluster. This prevents us from scattering swap pages
716 * all over the entire swap partition, so that we reduce
717 * overall disk seek times between swap pages. -- sct
718 * But we do now try to find an empty cluster. -Andrea
719 * And we let swap pages go all over an SSD partition. Hugh
722 si->flags += SWP_SCANNING;
723 scan_base = offset = si->cluster_next;
725 /* SSD algorithm */
726 if (si->cluster_info) {
727 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
728 goto checks;
729 else
730 goto scan;
733 if (unlikely(!si->cluster_nr--)) {
734 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
735 si->cluster_nr = SWAPFILE_CLUSTER - 1;
736 goto checks;
739 spin_unlock(&si->lock);
742 * If seek is expensive, start searching for new cluster from
743 * start of partition, to minimize the span of allocated swap.
744 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
745 * case, just handled by scan_swap_map_try_ssd_cluster() above.
747 scan_base = offset = si->lowest_bit;
748 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
750 /* Locate the first empty (unaligned) cluster */
751 for (; last_in_cluster <= si->highest_bit; offset++) {
752 if (si->swap_map[offset])
753 last_in_cluster = offset + SWAPFILE_CLUSTER;
754 else if (offset == last_in_cluster) {
755 spin_lock(&si->lock);
756 offset -= SWAPFILE_CLUSTER - 1;
757 si->cluster_next = offset;
758 si->cluster_nr = SWAPFILE_CLUSTER - 1;
759 goto checks;
761 if (unlikely(--latency_ration < 0)) {
762 cond_resched();
763 latency_ration = LATENCY_LIMIT;
767 offset = scan_base;
768 spin_lock(&si->lock);
769 si->cluster_nr = SWAPFILE_CLUSTER - 1;
772 checks:
773 if (si->cluster_info) {
774 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
775 /* take a break if we already got some slots */
776 if (n_ret)
777 goto done;
778 if (!scan_swap_map_try_ssd_cluster(si, &offset,
779 &scan_base))
780 goto scan;
783 if (!(si->flags & SWP_WRITEOK))
784 goto no_page;
785 if (!si->highest_bit)
786 goto no_page;
787 if (offset > si->highest_bit)
788 scan_base = offset = si->lowest_bit;
790 ci = lock_cluster(si, offset);
791 /* reuse swap entry of cache-only swap if not busy. */
792 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
793 int swap_was_freed;
794 unlock_cluster(ci);
795 spin_unlock(&si->lock);
796 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
797 spin_lock(&si->lock);
798 /* entry was freed successfully, try to use this again */
799 if (swap_was_freed)
800 goto checks;
801 goto scan; /* check next one */
804 if (si->swap_map[offset]) {
805 unlock_cluster(ci);
806 if (!n_ret)
807 goto scan;
808 else
809 goto done;
811 si->swap_map[offset] = usage;
812 inc_cluster_info_page(si, si->cluster_info, offset);
813 unlock_cluster(ci);
815 swap_range_alloc(si, offset, 1);
816 si->cluster_next = offset + 1;
817 slots[n_ret++] = swp_entry(si->type, offset);
819 /* got enough slots or reach max slots? */
820 if ((n_ret == nr) || (offset >= si->highest_bit))
821 goto done;
823 /* search for next available slot */
825 /* time to take a break? */
826 if (unlikely(--latency_ration < 0)) {
827 if (n_ret)
828 goto done;
829 spin_unlock(&si->lock);
830 cond_resched();
831 spin_lock(&si->lock);
832 latency_ration = LATENCY_LIMIT;
835 /* try to get more slots in cluster */
836 if (si->cluster_info) {
837 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 goto checks;
839 else
840 goto done;
842 /* non-ssd case */
843 ++offset;
845 /* non-ssd case, still more slots in cluster? */
846 if (si->cluster_nr && !si->swap_map[offset]) {
847 --si->cluster_nr;
848 goto checks;
851 done:
852 si->flags -= SWP_SCANNING;
853 return n_ret;
855 scan:
856 spin_unlock(&si->lock);
857 while (++offset <= si->highest_bit) {
858 if (!si->swap_map[offset]) {
859 spin_lock(&si->lock);
860 goto checks;
862 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
863 spin_lock(&si->lock);
864 goto checks;
866 if (unlikely(--latency_ration < 0)) {
867 cond_resched();
868 latency_ration = LATENCY_LIMIT;
871 offset = si->lowest_bit;
872 while (offset < scan_base) {
873 if (!si->swap_map[offset]) {
874 spin_lock(&si->lock);
875 goto checks;
877 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
878 spin_lock(&si->lock);
879 goto checks;
881 if (unlikely(--latency_ration < 0)) {
882 cond_resched();
883 latency_ration = LATENCY_LIMIT;
885 offset++;
887 spin_lock(&si->lock);
889 no_page:
890 si->flags -= SWP_SCANNING;
891 return n_ret;
894 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
896 unsigned long idx;
897 struct swap_cluster_info *ci;
898 unsigned long offset, i;
899 unsigned char *map;
902 * Should not even be attempting cluster allocations when huge
903 * page swap is disabled. Warn and fail the allocation.
905 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
906 VM_WARN_ON_ONCE(1);
907 return 0;
910 if (cluster_list_empty(&si->free_clusters))
911 return 0;
913 idx = cluster_list_first(&si->free_clusters);
914 offset = idx * SWAPFILE_CLUSTER;
915 ci = lock_cluster(si, offset);
916 alloc_cluster(si, idx);
917 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
919 map = si->swap_map + offset;
920 for (i = 0; i < SWAPFILE_CLUSTER; i++)
921 map[i] = SWAP_HAS_CACHE;
922 unlock_cluster(ci);
923 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
924 *slot = swp_entry(si->type, offset);
926 return 1;
929 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
931 unsigned long offset = idx * SWAPFILE_CLUSTER;
932 struct swap_cluster_info *ci;
934 ci = lock_cluster(si, offset);
935 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
936 cluster_set_count_flag(ci, 0, 0);
937 free_cluster(si, idx);
938 unlock_cluster(ci);
939 swap_range_free(si, offset, SWAPFILE_CLUSTER);
942 static unsigned long scan_swap_map(struct swap_info_struct *si,
943 unsigned char usage)
945 swp_entry_t entry;
946 int n_ret;
948 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
950 if (n_ret)
951 return swp_offset(entry);
952 else
953 return 0;
957 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
959 unsigned long size = swap_entry_size(entry_size);
960 struct swap_info_struct *si, *next;
961 long avail_pgs;
962 int n_ret = 0;
963 int node;
965 /* Only single cluster request supported */
966 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
968 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
969 if (avail_pgs <= 0)
970 goto noswap;
972 if (n_goal > SWAP_BATCH)
973 n_goal = SWAP_BATCH;
975 if (n_goal > avail_pgs)
976 n_goal = avail_pgs;
978 atomic_long_sub(n_goal * size, &nr_swap_pages);
980 spin_lock(&swap_avail_lock);
982 start_over:
983 node = numa_node_id();
984 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
985 /* requeue si to after same-priority siblings */
986 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
987 spin_unlock(&swap_avail_lock);
988 spin_lock(&si->lock);
989 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
990 spin_lock(&swap_avail_lock);
991 if (plist_node_empty(&si->avail_lists[node])) {
992 spin_unlock(&si->lock);
993 goto nextsi;
995 WARN(!si->highest_bit,
996 "swap_info %d in list but !highest_bit\n",
997 si->type);
998 WARN(!(si->flags & SWP_WRITEOK),
999 "swap_info %d in list but !SWP_WRITEOK\n",
1000 si->type);
1001 __del_from_avail_list(si);
1002 spin_unlock(&si->lock);
1003 goto nextsi;
1005 if (size == SWAPFILE_CLUSTER) {
1006 if (!(si->flags & SWP_FS))
1007 n_ret = swap_alloc_cluster(si, swp_entries);
1008 } else
1009 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1010 n_goal, swp_entries);
1011 spin_unlock(&si->lock);
1012 if (n_ret || size == SWAPFILE_CLUSTER)
1013 goto check_out;
1014 pr_debug("scan_swap_map of si %d failed to find offset\n",
1015 si->type);
1017 spin_lock(&swap_avail_lock);
1018 nextsi:
1020 * if we got here, it's likely that si was almost full before,
1021 * and since scan_swap_map() can drop the si->lock, multiple
1022 * callers probably all tried to get a page from the same si
1023 * and it filled up before we could get one; or, the si filled
1024 * up between us dropping swap_avail_lock and taking si->lock.
1025 * Since we dropped the swap_avail_lock, the swap_avail_head
1026 * list may have been modified; so if next is still in the
1027 * swap_avail_head list then try it, otherwise start over
1028 * if we have not gotten any slots.
1030 if (plist_node_empty(&next->avail_lists[node]))
1031 goto start_over;
1034 spin_unlock(&swap_avail_lock);
1036 check_out:
1037 if (n_ret < n_goal)
1038 atomic_long_add((long)(n_goal - n_ret) * size,
1039 &nr_swap_pages);
1040 noswap:
1041 return n_ret;
1044 /* The only caller of this function is now suspend routine */
1045 swp_entry_t get_swap_page_of_type(int type)
1047 struct swap_info_struct *si;
1048 pgoff_t offset;
1050 si = swap_info[type];
1051 spin_lock(&si->lock);
1052 if (si && (si->flags & SWP_WRITEOK)) {
1053 atomic_long_dec(&nr_swap_pages);
1054 /* This is called for allocating swap entry, not cache */
1055 offset = scan_swap_map(si, 1);
1056 if (offset) {
1057 spin_unlock(&si->lock);
1058 return swp_entry(type, offset);
1060 atomic_long_inc(&nr_swap_pages);
1062 spin_unlock(&si->lock);
1063 return (swp_entry_t) {0};
1066 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1068 struct swap_info_struct *p;
1069 unsigned long offset, type;
1071 if (!entry.val)
1072 goto out;
1073 type = swp_type(entry);
1074 if (type >= nr_swapfiles)
1075 goto bad_nofile;
1076 p = swap_info[type];
1077 if (!(p->flags & SWP_USED))
1078 goto bad_device;
1079 offset = swp_offset(entry);
1080 if (offset >= p->max)
1081 goto bad_offset;
1082 return p;
1084 bad_offset:
1085 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1086 goto out;
1087 bad_device:
1088 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1089 goto out;
1090 bad_nofile:
1091 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1092 out:
1093 return NULL;
1096 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1098 struct swap_info_struct *p;
1100 p = __swap_info_get(entry);
1101 if (!p)
1102 goto out;
1103 if (!p->swap_map[swp_offset(entry)])
1104 goto bad_free;
1105 return p;
1107 bad_free:
1108 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1109 goto out;
1110 out:
1111 return NULL;
1114 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1116 struct swap_info_struct *p;
1118 p = _swap_info_get(entry);
1119 if (p)
1120 spin_lock(&p->lock);
1121 return p;
1124 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1125 struct swap_info_struct *q)
1127 struct swap_info_struct *p;
1129 p = _swap_info_get(entry);
1131 if (p != q) {
1132 if (q != NULL)
1133 spin_unlock(&q->lock);
1134 if (p != NULL)
1135 spin_lock(&p->lock);
1137 return p;
1140 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1141 unsigned long offset,
1142 unsigned char usage)
1144 unsigned char count;
1145 unsigned char has_cache;
1147 count = p->swap_map[offset];
1149 has_cache = count & SWAP_HAS_CACHE;
1150 count &= ~SWAP_HAS_CACHE;
1152 if (usage == SWAP_HAS_CACHE) {
1153 VM_BUG_ON(!has_cache);
1154 has_cache = 0;
1155 } else if (count == SWAP_MAP_SHMEM) {
1157 * Or we could insist on shmem.c using a special
1158 * swap_shmem_free() and free_shmem_swap_and_cache()...
1160 count = 0;
1161 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1162 if (count == COUNT_CONTINUED) {
1163 if (swap_count_continued(p, offset, count))
1164 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1165 else
1166 count = SWAP_MAP_MAX;
1167 } else
1168 count--;
1171 usage = count | has_cache;
1172 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1174 return usage;
1177 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1178 swp_entry_t entry, unsigned char usage)
1180 struct swap_cluster_info *ci;
1181 unsigned long offset = swp_offset(entry);
1183 ci = lock_cluster_or_swap_info(p, offset);
1184 usage = __swap_entry_free_locked(p, offset, usage);
1185 unlock_cluster_or_swap_info(p, ci);
1186 if (!usage)
1187 free_swap_slot(entry);
1189 return usage;
1192 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1194 struct swap_cluster_info *ci;
1195 unsigned long offset = swp_offset(entry);
1196 unsigned char count;
1198 ci = lock_cluster(p, offset);
1199 count = p->swap_map[offset];
1200 VM_BUG_ON(count != SWAP_HAS_CACHE);
1201 p->swap_map[offset] = 0;
1202 dec_cluster_info_page(p, p->cluster_info, offset);
1203 unlock_cluster(ci);
1205 mem_cgroup_uncharge_swap(entry, 1);
1206 swap_range_free(p, offset, 1);
1210 * Caller has made sure that the swap device corresponding to entry
1211 * is still around or has not been recycled.
1213 void swap_free(swp_entry_t entry)
1215 struct swap_info_struct *p;
1217 p = _swap_info_get(entry);
1218 if (p)
1219 __swap_entry_free(p, entry, 1);
1223 * Called after dropping swapcache to decrease refcnt to swap entries.
1225 void put_swap_page(struct page *page, swp_entry_t entry)
1227 unsigned long offset = swp_offset(entry);
1228 unsigned long idx = offset / SWAPFILE_CLUSTER;
1229 struct swap_cluster_info *ci;
1230 struct swap_info_struct *si;
1231 unsigned char *map;
1232 unsigned int i, free_entries = 0;
1233 unsigned char val;
1234 int size = swap_entry_size(hpage_nr_pages(page));
1236 si = _swap_info_get(entry);
1237 if (!si)
1238 return;
1240 ci = lock_cluster_or_swap_info(si, offset);
1241 if (size == SWAPFILE_CLUSTER) {
1242 VM_BUG_ON(!cluster_is_huge(ci));
1243 map = si->swap_map + offset;
1244 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1245 val = map[i];
1246 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1247 if (val == SWAP_HAS_CACHE)
1248 free_entries++;
1250 cluster_clear_huge(ci);
1251 if (free_entries == SWAPFILE_CLUSTER) {
1252 unlock_cluster_or_swap_info(si, ci);
1253 spin_lock(&si->lock);
1254 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1255 swap_free_cluster(si, idx);
1256 spin_unlock(&si->lock);
1257 return;
1260 for (i = 0; i < size; i++, entry.val++) {
1261 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1262 unlock_cluster_or_swap_info(si, ci);
1263 free_swap_slot(entry);
1264 if (i == size - 1)
1265 return;
1266 lock_cluster_or_swap_info(si, offset);
1269 unlock_cluster_or_swap_info(si, ci);
1272 #ifdef CONFIG_THP_SWAP
1273 int split_swap_cluster(swp_entry_t entry)
1275 struct swap_info_struct *si;
1276 struct swap_cluster_info *ci;
1277 unsigned long offset = swp_offset(entry);
1279 si = _swap_info_get(entry);
1280 if (!si)
1281 return -EBUSY;
1282 ci = lock_cluster(si, offset);
1283 cluster_clear_huge(ci);
1284 unlock_cluster(ci);
1285 return 0;
1287 #endif
1289 static int swp_entry_cmp(const void *ent1, const void *ent2)
1291 const swp_entry_t *e1 = ent1, *e2 = ent2;
1293 return (int)swp_type(*e1) - (int)swp_type(*e2);
1296 void swapcache_free_entries(swp_entry_t *entries, int n)
1298 struct swap_info_struct *p, *prev;
1299 int i;
1301 if (n <= 0)
1302 return;
1304 prev = NULL;
1305 p = NULL;
1308 * Sort swap entries by swap device, so each lock is only taken once.
1309 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1310 * so low that it isn't necessary to optimize further.
1312 if (nr_swapfiles > 1)
1313 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1314 for (i = 0; i < n; ++i) {
1315 p = swap_info_get_cont(entries[i], prev);
1316 if (p)
1317 swap_entry_free(p, entries[i]);
1318 prev = p;
1320 if (p)
1321 spin_unlock(&p->lock);
1325 * How many references to page are currently swapped out?
1326 * This does not give an exact answer when swap count is continued,
1327 * but does include the high COUNT_CONTINUED flag to allow for that.
1329 int page_swapcount(struct page *page)
1331 int count = 0;
1332 struct swap_info_struct *p;
1333 struct swap_cluster_info *ci;
1334 swp_entry_t entry;
1335 unsigned long offset;
1337 entry.val = page_private(page);
1338 p = _swap_info_get(entry);
1339 if (p) {
1340 offset = swp_offset(entry);
1341 ci = lock_cluster_or_swap_info(p, offset);
1342 count = swap_count(p->swap_map[offset]);
1343 unlock_cluster_or_swap_info(p, ci);
1345 return count;
1348 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1350 pgoff_t offset = swp_offset(entry);
1352 return swap_count(si->swap_map[offset]);
1355 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1357 int count = 0;
1358 pgoff_t offset = swp_offset(entry);
1359 struct swap_cluster_info *ci;
1361 ci = lock_cluster_or_swap_info(si, offset);
1362 count = swap_count(si->swap_map[offset]);
1363 unlock_cluster_or_swap_info(si, ci);
1364 return count;
1368 * How many references to @entry are currently swapped out?
1369 * This does not give an exact answer when swap count is continued,
1370 * but does include the high COUNT_CONTINUED flag to allow for that.
1372 int __swp_swapcount(swp_entry_t entry)
1374 int count = 0;
1375 struct swap_info_struct *si;
1377 si = __swap_info_get(entry);
1378 if (si)
1379 count = swap_swapcount(si, entry);
1380 return count;
1384 * How many references to @entry are currently swapped out?
1385 * This considers COUNT_CONTINUED so it returns exact answer.
1387 int swp_swapcount(swp_entry_t entry)
1389 int count, tmp_count, n;
1390 struct swap_info_struct *p;
1391 struct swap_cluster_info *ci;
1392 struct page *page;
1393 pgoff_t offset;
1394 unsigned char *map;
1396 p = _swap_info_get(entry);
1397 if (!p)
1398 return 0;
1400 offset = swp_offset(entry);
1402 ci = lock_cluster_or_swap_info(p, offset);
1404 count = swap_count(p->swap_map[offset]);
1405 if (!(count & COUNT_CONTINUED))
1406 goto out;
1408 count &= ~COUNT_CONTINUED;
1409 n = SWAP_MAP_MAX + 1;
1411 page = vmalloc_to_page(p->swap_map + offset);
1412 offset &= ~PAGE_MASK;
1413 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1415 do {
1416 page = list_next_entry(page, lru);
1417 map = kmap_atomic(page);
1418 tmp_count = map[offset];
1419 kunmap_atomic(map);
1421 count += (tmp_count & ~COUNT_CONTINUED) * n;
1422 n *= (SWAP_CONT_MAX + 1);
1423 } while (tmp_count & COUNT_CONTINUED);
1424 out:
1425 unlock_cluster_or_swap_info(p, ci);
1426 return count;
1429 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1430 swp_entry_t entry)
1432 struct swap_cluster_info *ci;
1433 unsigned char *map = si->swap_map;
1434 unsigned long roffset = swp_offset(entry);
1435 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1436 int i;
1437 bool ret = false;
1439 ci = lock_cluster_or_swap_info(si, offset);
1440 if (!ci || !cluster_is_huge(ci)) {
1441 if (swap_count(map[roffset]))
1442 ret = true;
1443 goto unlock_out;
1445 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1446 if (swap_count(map[offset + i])) {
1447 ret = true;
1448 break;
1451 unlock_out:
1452 unlock_cluster_or_swap_info(si, ci);
1453 return ret;
1456 static bool page_swapped(struct page *page)
1458 swp_entry_t entry;
1459 struct swap_info_struct *si;
1461 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1462 return page_swapcount(page) != 0;
1464 page = compound_head(page);
1465 entry.val = page_private(page);
1466 si = _swap_info_get(entry);
1467 if (si)
1468 return swap_page_trans_huge_swapped(si, entry);
1469 return false;
1472 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1473 int *total_swapcount)
1475 int i, map_swapcount, _total_mapcount, _total_swapcount;
1476 unsigned long offset = 0;
1477 struct swap_info_struct *si;
1478 struct swap_cluster_info *ci = NULL;
1479 unsigned char *map = NULL;
1480 int mapcount, swapcount = 0;
1482 /* hugetlbfs shouldn't call it */
1483 VM_BUG_ON_PAGE(PageHuge(page), page);
1485 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1486 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1487 if (PageSwapCache(page))
1488 swapcount = page_swapcount(page);
1489 if (total_swapcount)
1490 *total_swapcount = swapcount;
1491 return mapcount + swapcount;
1494 page = compound_head(page);
1496 _total_mapcount = _total_swapcount = map_swapcount = 0;
1497 if (PageSwapCache(page)) {
1498 swp_entry_t entry;
1500 entry.val = page_private(page);
1501 si = _swap_info_get(entry);
1502 if (si) {
1503 map = si->swap_map;
1504 offset = swp_offset(entry);
1507 if (map)
1508 ci = lock_cluster(si, offset);
1509 for (i = 0; i < HPAGE_PMD_NR; i++) {
1510 mapcount = atomic_read(&page[i]._mapcount) + 1;
1511 _total_mapcount += mapcount;
1512 if (map) {
1513 swapcount = swap_count(map[offset + i]);
1514 _total_swapcount += swapcount;
1516 map_swapcount = max(map_swapcount, mapcount + swapcount);
1518 unlock_cluster(ci);
1519 if (PageDoubleMap(page)) {
1520 map_swapcount -= 1;
1521 _total_mapcount -= HPAGE_PMD_NR;
1523 mapcount = compound_mapcount(page);
1524 map_swapcount += mapcount;
1525 _total_mapcount += mapcount;
1526 if (total_mapcount)
1527 *total_mapcount = _total_mapcount;
1528 if (total_swapcount)
1529 *total_swapcount = _total_swapcount;
1531 return map_swapcount;
1535 * We can write to an anon page without COW if there are no other references
1536 * to it. And as a side-effect, free up its swap: because the old content
1537 * on disk will never be read, and seeking back there to write new content
1538 * later would only waste time away from clustering.
1540 * NOTE: total_map_swapcount should not be relied upon by the caller if
1541 * reuse_swap_page() returns false, but it may be always overwritten
1542 * (see the other implementation for CONFIG_SWAP=n).
1544 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1546 int count, total_mapcount, total_swapcount;
1548 VM_BUG_ON_PAGE(!PageLocked(page), page);
1549 if (unlikely(PageKsm(page)))
1550 return false;
1551 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1552 &total_swapcount);
1553 if (total_map_swapcount)
1554 *total_map_swapcount = total_mapcount + total_swapcount;
1555 if (count == 1 && PageSwapCache(page) &&
1556 (likely(!PageTransCompound(page)) ||
1557 /* The remaining swap count will be freed soon */
1558 total_swapcount == page_swapcount(page))) {
1559 if (!PageWriteback(page)) {
1560 page = compound_head(page);
1561 delete_from_swap_cache(page);
1562 SetPageDirty(page);
1563 } else {
1564 swp_entry_t entry;
1565 struct swap_info_struct *p;
1567 entry.val = page_private(page);
1568 p = swap_info_get(entry);
1569 if (p->flags & SWP_STABLE_WRITES) {
1570 spin_unlock(&p->lock);
1571 return false;
1573 spin_unlock(&p->lock);
1577 return count <= 1;
1581 * If swap is getting full, or if there are no more mappings of this page,
1582 * then try_to_free_swap is called to free its swap space.
1584 int try_to_free_swap(struct page *page)
1586 VM_BUG_ON_PAGE(!PageLocked(page), page);
1588 if (!PageSwapCache(page))
1589 return 0;
1590 if (PageWriteback(page))
1591 return 0;
1592 if (page_swapped(page))
1593 return 0;
1596 * Once hibernation has begun to create its image of memory,
1597 * there's a danger that one of the calls to try_to_free_swap()
1598 * - most probably a call from __try_to_reclaim_swap() while
1599 * hibernation is allocating its own swap pages for the image,
1600 * but conceivably even a call from memory reclaim - will free
1601 * the swap from a page which has already been recorded in the
1602 * image as a clean swapcache page, and then reuse its swap for
1603 * another page of the image. On waking from hibernation, the
1604 * original page might be freed under memory pressure, then
1605 * later read back in from swap, now with the wrong data.
1607 * Hibernation suspends storage while it is writing the image
1608 * to disk so check that here.
1610 if (pm_suspended_storage())
1611 return 0;
1613 page = compound_head(page);
1614 delete_from_swap_cache(page);
1615 SetPageDirty(page);
1616 return 1;
1620 * Free the swap entry like above, but also try to
1621 * free the page cache entry if it is the last user.
1623 int free_swap_and_cache(swp_entry_t entry)
1625 struct swap_info_struct *p;
1626 unsigned char count;
1628 if (non_swap_entry(entry))
1629 return 1;
1631 p = _swap_info_get(entry);
1632 if (p) {
1633 count = __swap_entry_free(p, entry, 1);
1634 if (count == SWAP_HAS_CACHE &&
1635 !swap_page_trans_huge_swapped(p, entry))
1636 __try_to_reclaim_swap(p, swp_offset(entry),
1637 TTRS_UNMAPPED | TTRS_FULL);
1639 return p != NULL;
1642 #ifdef CONFIG_HIBERNATION
1644 * Find the swap type that corresponds to given device (if any).
1646 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1647 * from 0, in which the swap header is expected to be located.
1649 * This is needed for the suspend to disk (aka swsusp).
1651 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1653 struct block_device *bdev = NULL;
1654 int type;
1656 if (device)
1657 bdev = bdget(device);
1659 spin_lock(&swap_lock);
1660 for (type = 0; type < nr_swapfiles; type++) {
1661 struct swap_info_struct *sis = swap_info[type];
1663 if (!(sis->flags & SWP_WRITEOK))
1664 continue;
1666 if (!bdev) {
1667 if (bdev_p)
1668 *bdev_p = bdgrab(sis->bdev);
1670 spin_unlock(&swap_lock);
1671 return type;
1673 if (bdev == sis->bdev) {
1674 struct swap_extent *se = &sis->first_swap_extent;
1676 if (se->start_block == offset) {
1677 if (bdev_p)
1678 *bdev_p = bdgrab(sis->bdev);
1680 spin_unlock(&swap_lock);
1681 bdput(bdev);
1682 return type;
1686 spin_unlock(&swap_lock);
1687 if (bdev)
1688 bdput(bdev);
1690 return -ENODEV;
1694 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1695 * corresponding to given index in swap_info (swap type).
1697 sector_t swapdev_block(int type, pgoff_t offset)
1699 struct block_device *bdev;
1701 if ((unsigned int)type >= nr_swapfiles)
1702 return 0;
1703 if (!(swap_info[type]->flags & SWP_WRITEOK))
1704 return 0;
1705 return map_swap_entry(swp_entry(type, offset), &bdev);
1709 * Return either the total number of swap pages of given type, or the number
1710 * of free pages of that type (depending on @free)
1712 * This is needed for software suspend
1714 unsigned int count_swap_pages(int type, int free)
1716 unsigned int n = 0;
1718 spin_lock(&swap_lock);
1719 if ((unsigned int)type < nr_swapfiles) {
1720 struct swap_info_struct *sis = swap_info[type];
1722 spin_lock(&sis->lock);
1723 if (sis->flags & SWP_WRITEOK) {
1724 n = sis->pages;
1725 if (free)
1726 n -= sis->inuse_pages;
1728 spin_unlock(&sis->lock);
1730 spin_unlock(&swap_lock);
1731 return n;
1733 #endif /* CONFIG_HIBERNATION */
1735 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1737 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1741 * No need to decide whether this PTE shares the swap entry with others,
1742 * just let do_wp_page work it out if a write is requested later - to
1743 * force COW, vm_page_prot omits write permission from any private vma.
1745 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1746 unsigned long addr, swp_entry_t entry, struct page *page)
1748 struct page *swapcache;
1749 struct mem_cgroup *memcg;
1750 spinlock_t *ptl;
1751 pte_t *pte;
1752 int ret = 1;
1754 swapcache = page;
1755 page = ksm_might_need_to_copy(page, vma, addr);
1756 if (unlikely(!page))
1757 return -ENOMEM;
1759 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1760 &memcg, false)) {
1761 ret = -ENOMEM;
1762 goto out_nolock;
1765 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1766 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1767 mem_cgroup_cancel_charge(page, memcg, false);
1768 ret = 0;
1769 goto out;
1772 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1773 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1774 get_page(page);
1775 set_pte_at(vma->vm_mm, addr, pte,
1776 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1777 if (page == swapcache) {
1778 page_add_anon_rmap(page, vma, addr, false);
1779 mem_cgroup_commit_charge(page, memcg, true, false);
1780 } else { /* ksm created a completely new copy */
1781 page_add_new_anon_rmap(page, vma, addr, false);
1782 mem_cgroup_commit_charge(page, memcg, false, false);
1783 lru_cache_add_active_or_unevictable(page, vma);
1785 swap_free(entry);
1787 * Move the page to the active list so it is not
1788 * immediately swapped out again after swapon.
1790 activate_page(page);
1791 out:
1792 pte_unmap_unlock(pte, ptl);
1793 out_nolock:
1794 if (page != swapcache) {
1795 unlock_page(page);
1796 put_page(page);
1798 return ret;
1801 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1802 unsigned long addr, unsigned long end,
1803 swp_entry_t entry, struct page *page)
1805 pte_t swp_pte = swp_entry_to_pte(entry);
1806 pte_t *pte;
1807 int ret = 0;
1810 * We don't actually need pte lock while scanning for swp_pte: since
1811 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1812 * page table while we're scanning; though it could get zapped, and on
1813 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1814 * of unmatched parts which look like swp_pte, so unuse_pte must
1815 * recheck under pte lock. Scanning without pte lock lets it be
1816 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1818 pte = pte_offset_map(pmd, addr);
1819 do {
1821 * swapoff spends a _lot_ of time in this loop!
1822 * Test inline before going to call unuse_pte.
1824 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1825 pte_unmap(pte);
1826 ret = unuse_pte(vma, pmd, addr, entry, page);
1827 if (ret)
1828 goto out;
1829 pte = pte_offset_map(pmd, addr);
1831 } while (pte++, addr += PAGE_SIZE, addr != end);
1832 pte_unmap(pte - 1);
1833 out:
1834 return ret;
1837 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1838 unsigned long addr, unsigned long end,
1839 swp_entry_t entry, struct page *page)
1841 pmd_t *pmd;
1842 unsigned long next;
1843 int ret;
1845 pmd = pmd_offset(pud, addr);
1846 do {
1847 cond_resched();
1848 next = pmd_addr_end(addr, end);
1849 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1850 continue;
1851 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1852 if (ret)
1853 return ret;
1854 } while (pmd++, addr = next, addr != end);
1855 return 0;
1858 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1859 unsigned long addr, unsigned long end,
1860 swp_entry_t entry, struct page *page)
1862 pud_t *pud;
1863 unsigned long next;
1864 int ret;
1866 pud = pud_offset(p4d, addr);
1867 do {
1868 next = pud_addr_end(addr, end);
1869 if (pud_none_or_clear_bad(pud))
1870 continue;
1871 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1872 if (ret)
1873 return ret;
1874 } while (pud++, addr = next, addr != end);
1875 return 0;
1878 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1879 unsigned long addr, unsigned long end,
1880 swp_entry_t entry, struct page *page)
1882 p4d_t *p4d;
1883 unsigned long next;
1884 int ret;
1886 p4d = p4d_offset(pgd, addr);
1887 do {
1888 next = p4d_addr_end(addr, end);
1889 if (p4d_none_or_clear_bad(p4d))
1890 continue;
1891 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1892 if (ret)
1893 return ret;
1894 } while (p4d++, addr = next, addr != end);
1895 return 0;
1898 static int unuse_vma(struct vm_area_struct *vma,
1899 swp_entry_t entry, struct page *page)
1901 pgd_t *pgd;
1902 unsigned long addr, end, next;
1903 int ret;
1905 if (page_anon_vma(page)) {
1906 addr = page_address_in_vma(page, vma);
1907 if (addr == -EFAULT)
1908 return 0;
1909 else
1910 end = addr + PAGE_SIZE;
1911 } else {
1912 addr = vma->vm_start;
1913 end = vma->vm_end;
1916 pgd = pgd_offset(vma->vm_mm, addr);
1917 do {
1918 next = pgd_addr_end(addr, end);
1919 if (pgd_none_or_clear_bad(pgd))
1920 continue;
1921 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1922 if (ret)
1923 return ret;
1924 } while (pgd++, addr = next, addr != end);
1925 return 0;
1928 static int unuse_mm(struct mm_struct *mm,
1929 swp_entry_t entry, struct page *page)
1931 struct vm_area_struct *vma;
1932 int ret = 0;
1934 if (!down_read_trylock(&mm->mmap_sem)) {
1936 * Activate page so shrink_inactive_list is unlikely to unmap
1937 * its ptes while lock is dropped, so swapoff can make progress.
1939 activate_page(page);
1940 unlock_page(page);
1941 down_read(&mm->mmap_sem);
1942 lock_page(page);
1944 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1945 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1946 break;
1947 cond_resched();
1949 up_read(&mm->mmap_sem);
1950 return (ret < 0)? ret: 0;
1954 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1955 * from current position to next entry still in use.
1956 * Recycle to start on reaching the end, returning 0 when empty.
1958 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1959 unsigned int prev, bool frontswap)
1961 unsigned int max = si->max;
1962 unsigned int i = prev;
1963 unsigned char count;
1966 * No need for swap_lock here: we're just looking
1967 * for whether an entry is in use, not modifying it; false
1968 * hits are okay, and sys_swapoff() has already prevented new
1969 * allocations from this area (while holding swap_lock).
1971 for (;;) {
1972 if (++i >= max) {
1973 if (!prev) {
1974 i = 0;
1975 break;
1978 * No entries in use at top of swap_map,
1979 * loop back to start and recheck there.
1981 max = prev + 1;
1982 prev = 0;
1983 i = 1;
1985 count = READ_ONCE(si->swap_map[i]);
1986 if (count && swap_count(count) != SWAP_MAP_BAD)
1987 if (!frontswap || frontswap_test(si, i))
1988 break;
1989 if ((i % LATENCY_LIMIT) == 0)
1990 cond_resched();
1992 return i;
1996 * We completely avoid races by reading each swap page in advance,
1997 * and then search for the process using it. All the necessary
1998 * page table adjustments can then be made atomically.
2000 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2001 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2003 int try_to_unuse(unsigned int type, bool frontswap,
2004 unsigned long pages_to_unuse)
2006 struct swap_info_struct *si = swap_info[type];
2007 struct mm_struct *start_mm;
2008 volatile unsigned char *swap_map; /* swap_map is accessed without
2009 * locking. Mark it as volatile
2010 * to prevent compiler doing
2011 * something odd.
2013 unsigned char swcount;
2014 struct page *page;
2015 swp_entry_t entry;
2016 unsigned int i = 0;
2017 int retval = 0;
2020 * When searching mms for an entry, a good strategy is to
2021 * start at the first mm we freed the previous entry from
2022 * (though actually we don't notice whether we or coincidence
2023 * freed the entry). Initialize this start_mm with a hold.
2025 * A simpler strategy would be to start at the last mm we
2026 * freed the previous entry from; but that would take less
2027 * advantage of mmlist ordering, which clusters forked mms
2028 * together, child after parent. If we race with dup_mmap(), we
2029 * prefer to resolve parent before child, lest we miss entries
2030 * duplicated after we scanned child: using last mm would invert
2031 * that.
2033 start_mm = &init_mm;
2034 mmget(&init_mm);
2037 * Keep on scanning until all entries have gone. Usually,
2038 * one pass through swap_map is enough, but not necessarily:
2039 * there are races when an instance of an entry might be missed.
2041 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2042 if (signal_pending(current)) {
2043 retval = -EINTR;
2044 break;
2048 * Get a page for the entry, using the existing swap
2049 * cache page if there is one. Otherwise, get a clean
2050 * page and read the swap into it.
2052 swap_map = &si->swap_map[i];
2053 entry = swp_entry(type, i);
2054 page = read_swap_cache_async(entry,
2055 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2056 if (!page) {
2058 * Either swap_duplicate() failed because entry
2059 * has been freed independently, and will not be
2060 * reused since sys_swapoff() already disabled
2061 * allocation from here, or alloc_page() failed.
2063 swcount = *swap_map;
2065 * We don't hold lock here, so the swap entry could be
2066 * SWAP_MAP_BAD (when the cluster is discarding).
2067 * Instead of fail out, We can just skip the swap
2068 * entry because swapoff will wait for discarding
2069 * finish anyway.
2071 if (!swcount || swcount == SWAP_MAP_BAD)
2072 continue;
2073 retval = -ENOMEM;
2074 break;
2078 * Don't hold on to start_mm if it looks like exiting.
2080 if (atomic_read(&start_mm->mm_users) == 1) {
2081 mmput(start_mm);
2082 start_mm = &init_mm;
2083 mmget(&init_mm);
2087 * Wait for and lock page. When do_swap_page races with
2088 * try_to_unuse, do_swap_page can handle the fault much
2089 * faster than try_to_unuse can locate the entry. This
2090 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2091 * defer to do_swap_page in such a case - in some tests,
2092 * do_swap_page and try_to_unuse repeatedly compete.
2094 wait_on_page_locked(page);
2095 wait_on_page_writeback(page);
2096 lock_page(page);
2097 wait_on_page_writeback(page);
2100 * Remove all references to entry.
2102 swcount = *swap_map;
2103 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2104 retval = shmem_unuse(entry, page);
2105 /* page has already been unlocked and released */
2106 if (retval < 0)
2107 break;
2108 continue;
2110 if (swap_count(swcount) && start_mm != &init_mm)
2111 retval = unuse_mm(start_mm, entry, page);
2113 if (swap_count(*swap_map)) {
2114 int set_start_mm = (*swap_map >= swcount);
2115 struct list_head *p = &start_mm->mmlist;
2116 struct mm_struct *new_start_mm = start_mm;
2117 struct mm_struct *prev_mm = start_mm;
2118 struct mm_struct *mm;
2120 mmget(new_start_mm);
2121 mmget(prev_mm);
2122 spin_lock(&mmlist_lock);
2123 while (swap_count(*swap_map) && !retval &&
2124 (p = p->next) != &start_mm->mmlist) {
2125 mm = list_entry(p, struct mm_struct, mmlist);
2126 if (!mmget_not_zero(mm))
2127 continue;
2128 spin_unlock(&mmlist_lock);
2129 mmput(prev_mm);
2130 prev_mm = mm;
2132 cond_resched();
2134 swcount = *swap_map;
2135 if (!swap_count(swcount)) /* any usage ? */
2137 else if (mm == &init_mm)
2138 set_start_mm = 1;
2139 else
2140 retval = unuse_mm(mm, entry, page);
2142 if (set_start_mm && *swap_map < swcount) {
2143 mmput(new_start_mm);
2144 mmget(mm);
2145 new_start_mm = mm;
2146 set_start_mm = 0;
2148 spin_lock(&mmlist_lock);
2150 spin_unlock(&mmlist_lock);
2151 mmput(prev_mm);
2152 mmput(start_mm);
2153 start_mm = new_start_mm;
2155 if (retval) {
2156 unlock_page(page);
2157 put_page(page);
2158 break;
2162 * If a reference remains (rare), we would like to leave
2163 * the page in the swap cache; but try_to_unmap could
2164 * then re-duplicate the entry once we drop page lock,
2165 * so we might loop indefinitely; also, that page could
2166 * not be swapped out to other storage meanwhile. So:
2167 * delete from cache even if there's another reference,
2168 * after ensuring that the data has been saved to disk -
2169 * since if the reference remains (rarer), it will be
2170 * read from disk into another page. Splitting into two
2171 * pages would be incorrect if swap supported "shared
2172 * private" pages, but they are handled by tmpfs files.
2174 * Given how unuse_vma() targets one particular offset
2175 * in an anon_vma, once the anon_vma has been determined,
2176 * this splitting happens to be just what is needed to
2177 * handle where KSM pages have been swapped out: re-reading
2178 * is unnecessarily slow, but we can fix that later on.
2180 if (swap_count(*swap_map) &&
2181 PageDirty(page) && PageSwapCache(page)) {
2182 struct writeback_control wbc = {
2183 .sync_mode = WB_SYNC_NONE,
2186 swap_writepage(compound_head(page), &wbc);
2187 lock_page(page);
2188 wait_on_page_writeback(page);
2192 * It is conceivable that a racing task removed this page from
2193 * swap cache just before we acquired the page lock at the top,
2194 * or while we dropped it in unuse_mm(). The page might even
2195 * be back in swap cache on another swap area: that we must not
2196 * delete, since it may not have been written out to swap yet.
2198 if (PageSwapCache(page) &&
2199 likely(page_private(page) == entry.val) &&
2200 !page_swapped(page))
2201 delete_from_swap_cache(compound_head(page));
2204 * So we could skip searching mms once swap count went
2205 * to 1, we did not mark any present ptes as dirty: must
2206 * mark page dirty so shrink_page_list will preserve it.
2208 SetPageDirty(page);
2209 unlock_page(page);
2210 put_page(page);
2213 * Make sure that we aren't completely killing
2214 * interactive performance.
2216 cond_resched();
2217 if (frontswap && pages_to_unuse > 0) {
2218 if (!--pages_to_unuse)
2219 break;
2223 mmput(start_mm);
2224 return retval;
2228 * After a successful try_to_unuse, if no swap is now in use, we know
2229 * we can empty the mmlist. swap_lock must be held on entry and exit.
2230 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2231 * added to the mmlist just after page_duplicate - before would be racy.
2233 static void drain_mmlist(void)
2235 struct list_head *p, *next;
2236 unsigned int type;
2238 for (type = 0; type < nr_swapfiles; type++)
2239 if (swap_info[type]->inuse_pages)
2240 return;
2241 spin_lock(&mmlist_lock);
2242 list_for_each_safe(p, next, &init_mm.mmlist)
2243 list_del_init(p);
2244 spin_unlock(&mmlist_lock);
2248 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2249 * corresponds to page offset for the specified swap entry.
2250 * Note that the type of this function is sector_t, but it returns page offset
2251 * into the bdev, not sector offset.
2253 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2255 struct swap_info_struct *sis;
2256 struct swap_extent *start_se;
2257 struct swap_extent *se;
2258 pgoff_t offset;
2260 sis = swap_info[swp_type(entry)];
2261 *bdev = sis->bdev;
2263 offset = swp_offset(entry);
2264 start_se = sis->curr_swap_extent;
2265 se = start_se;
2267 for ( ; ; ) {
2268 if (se->start_page <= offset &&
2269 offset < (se->start_page + se->nr_pages)) {
2270 return se->start_block + (offset - se->start_page);
2272 se = list_next_entry(se, list);
2273 sis->curr_swap_extent = se;
2274 BUG_ON(se == start_se); /* It *must* be present */
2279 * Returns the page offset into bdev for the specified page's swap entry.
2281 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2283 swp_entry_t entry;
2284 entry.val = page_private(page);
2285 return map_swap_entry(entry, bdev);
2289 * Free all of a swapdev's extent information
2291 static void destroy_swap_extents(struct swap_info_struct *sis)
2293 while (!list_empty(&sis->first_swap_extent.list)) {
2294 struct swap_extent *se;
2296 se = list_first_entry(&sis->first_swap_extent.list,
2297 struct swap_extent, list);
2298 list_del(&se->list);
2299 kfree(se);
2302 if (sis->flags & SWP_ACTIVATED) {
2303 struct file *swap_file = sis->swap_file;
2304 struct address_space *mapping = swap_file->f_mapping;
2306 sis->flags &= ~SWP_ACTIVATED;
2307 if (mapping->a_ops->swap_deactivate)
2308 mapping->a_ops->swap_deactivate(swap_file);
2313 * Add a block range (and the corresponding page range) into this swapdev's
2314 * extent list. The extent list is kept sorted in page order.
2316 * This function rather assumes that it is called in ascending page order.
2319 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2320 unsigned long nr_pages, sector_t start_block)
2322 struct swap_extent *se;
2323 struct swap_extent *new_se;
2324 struct list_head *lh;
2326 if (start_page == 0) {
2327 se = &sis->first_swap_extent;
2328 sis->curr_swap_extent = se;
2329 se->start_page = 0;
2330 se->nr_pages = nr_pages;
2331 se->start_block = start_block;
2332 return 1;
2333 } else {
2334 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2335 se = list_entry(lh, struct swap_extent, list);
2336 BUG_ON(se->start_page + se->nr_pages != start_page);
2337 if (se->start_block + se->nr_pages == start_block) {
2338 /* Merge it */
2339 se->nr_pages += nr_pages;
2340 return 0;
2345 * No merge. Insert a new extent, preserving ordering.
2347 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2348 if (new_se == NULL)
2349 return -ENOMEM;
2350 new_se->start_page = start_page;
2351 new_se->nr_pages = nr_pages;
2352 new_se->start_block = start_block;
2354 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2355 return 1;
2357 EXPORT_SYMBOL_GPL(add_swap_extent);
2360 * A `swap extent' is a simple thing which maps a contiguous range of pages
2361 * onto a contiguous range of disk blocks. An ordered list of swap extents
2362 * is built at swapon time and is then used at swap_writepage/swap_readpage
2363 * time for locating where on disk a page belongs.
2365 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2366 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2367 * swap files identically.
2369 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2370 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2371 * swapfiles are handled *identically* after swapon time.
2373 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2374 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2375 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2376 * requirements, they are simply tossed out - we will never use those blocks
2377 * for swapping.
2379 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2380 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2381 * which will scribble on the fs.
2383 * The amount of disk space which a single swap extent represents varies.
2384 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2385 * extents in the list. To avoid much list walking, we cache the previous
2386 * search location in `curr_swap_extent', and start new searches from there.
2387 * This is extremely effective. The average number of iterations in
2388 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2390 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2392 struct file *swap_file = sis->swap_file;
2393 struct address_space *mapping = swap_file->f_mapping;
2394 struct inode *inode = mapping->host;
2395 int ret;
2397 if (S_ISBLK(inode->i_mode)) {
2398 ret = add_swap_extent(sis, 0, sis->max, 0);
2399 *span = sis->pages;
2400 return ret;
2403 if (mapping->a_ops->swap_activate) {
2404 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2405 if (ret >= 0)
2406 sis->flags |= SWP_ACTIVATED;
2407 if (!ret) {
2408 sis->flags |= SWP_FS;
2409 ret = add_swap_extent(sis, 0, sis->max, 0);
2410 *span = sis->pages;
2412 return ret;
2415 return generic_swapfile_activate(sis, swap_file, span);
2418 static int swap_node(struct swap_info_struct *p)
2420 struct block_device *bdev;
2422 if (p->bdev)
2423 bdev = p->bdev;
2424 else
2425 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2427 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2430 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2431 unsigned char *swap_map,
2432 struct swap_cluster_info *cluster_info)
2434 int i;
2436 if (prio >= 0)
2437 p->prio = prio;
2438 else
2439 p->prio = --least_priority;
2441 * the plist prio is negated because plist ordering is
2442 * low-to-high, while swap ordering is high-to-low
2444 p->list.prio = -p->prio;
2445 for_each_node(i) {
2446 if (p->prio >= 0)
2447 p->avail_lists[i].prio = -p->prio;
2448 else {
2449 if (swap_node(p) == i)
2450 p->avail_lists[i].prio = 1;
2451 else
2452 p->avail_lists[i].prio = -p->prio;
2455 p->swap_map = swap_map;
2456 p->cluster_info = cluster_info;
2457 p->flags |= SWP_WRITEOK;
2458 atomic_long_add(p->pages, &nr_swap_pages);
2459 total_swap_pages += p->pages;
2461 assert_spin_locked(&swap_lock);
2463 * both lists are plists, and thus priority ordered.
2464 * swap_active_head needs to be priority ordered for swapoff(),
2465 * which on removal of any swap_info_struct with an auto-assigned
2466 * (i.e. negative) priority increments the auto-assigned priority
2467 * of any lower-priority swap_info_structs.
2468 * swap_avail_head needs to be priority ordered for get_swap_page(),
2469 * which allocates swap pages from the highest available priority
2470 * swap_info_struct.
2472 plist_add(&p->list, &swap_active_head);
2473 add_to_avail_list(p);
2476 static void enable_swap_info(struct swap_info_struct *p, int prio,
2477 unsigned char *swap_map,
2478 struct swap_cluster_info *cluster_info,
2479 unsigned long *frontswap_map)
2481 frontswap_init(p->type, frontswap_map);
2482 spin_lock(&swap_lock);
2483 spin_lock(&p->lock);
2484 _enable_swap_info(p, prio, swap_map, cluster_info);
2485 spin_unlock(&p->lock);
2486 spin_unlock(&swap_lock);
2489 static void reinsert_swap_info(struct swap_info_struct *p)
2491 spin_lock(&swap_lock);
2492 spin_lock(&p->lock);
2493 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2494 spin_unlock(&p->lock);
2495 spin_unlock(&swap_lock);
2498 bool has_usable_swap(void)
2500 bool ret = true;
2502 spin_lock(&swap_lock);
2503 if (plist_head_empty(&swap_active_head))
2504 ret = false;
2505 spin_unlock(&swap_lock);
2506 return ret;
2509 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2511 struct swap_info_struct *p = NULL;
2512 unsigned char *swap_map;
2513 struct swap_cluster_info *cluster_info;
2514 unsigned long *frontswap_map;
2515 struct file *swap_file, *victim;
2516 struct address_space *mapping;
2517 struct inode *inode;
2518 struct filename *pathname;
2519 int err, found = 0;
2520 unsigned int old_block_size;
2522 if (!capable(CAP_SYS_ADMIN))
2523 return -EPERM;
2525 BUG_ON(!current->mm);
2527 pathname = getname(specialfile);
2528 if (IS_ERR(pathname))
2529 return PTR_ERR(pathname);
2531 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2532 err = PTR_ERR(victim);
2533 if (IS_ERR(victim))
2534 goto out;
2536 mapping = victim->f_mapping;
2537 spin_lock(&swap_lock);
2538 plist_for_each_entry(p, &swap_active_head, list) {
2539 if (p->flags & SWP_WRITEOK) {
2540 if (p->swap_file->f_mapping == mapping) {
2541 found = 1;
2542 break;
2546 if (!found) {
2547 err = -EINVAL;
2548 spin_unlock(&swap_lock);
2549 goto out_dput;
2551 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2552 vm_unacct_memory(p->pages);
2553 else {
2554 err = -ENOMEM;
2555 spin_unlock(&swap_lock);
2556 goto out_dput;
2558 del_from_avail_list(p);
2559 spin_lock(&p->lock);
2560 if (p->prio < 0) {
2561 struct swap_info_struct *si = p;
2562 int nid;
2564 plist_for_each_entry_continue(si, &swap_active_head, list) {
2565 si->prio++;
2566 si->list.prio--;
2567 for_each_node(nid) {
2568 if (si->avail_lists[nid].prio != 1)
2569 si->avail_lists[nid].prio--;
2572 least_priority++;
2574 plist_del(&p->list, &swap_active_head);
2575 atomic_long_sub(p->pages, &nr_swap_pages);
2576 total_swap_pages -= p->pages;
2577 p->flags &= ~SWP_WRITEOK;
2578 spin_unlock(&p->lock);
2579 spin_unlock(&swap_lock);
2581 disable_swap_slots_cache_lock();
2583 set_current_oom_origin();
2584 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2585 clear_current_oom_origin();
2587 if (err) {
2588 /* re-insert swap space back into swap_list */
2589 reinsert_swap_info(p);
2590 reenable_swap_slots_cache_unlock();
2591 goto out_dput;
2594 reenable_swap_slots_cache_unlock();
2596 flush_work(&p->discard_work);
2598 destroy_swap_extents(p);
2599 if (p->flags & SWP_CONTINUED)
2600 free_swap_count_continuations(p);
2602 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2603 atomic_dec(&nr_rotate_swap);
2605 mutex_lock(&swapon_mutex);
2606 spin_lock(&swap_lock);
2607 spin_lock(&p->lock);
2608 drain_mmlist();
2610 /* wait for anyone still in scan_swap_map */
2611 p->highest_bit = 0; /* cuts scans short */
2612 while (p->flags >= SWP_SCANNING) {
2613 spin_unlock(&p->lock);
2614 spin_unlock(&swap_lock);
2615 schedule_timeout_uninterruptible(1);
2616 spin_lock(&swap_lock);
2617 spin_lock(&p->lock);
2620 swap_file = p->swap_file;
2621 old_block_size = p->old_block_size;
2622 p->swap_file = NULL;
2623 p->max = 0;
2624 swap_map = p->swap_map;
2625 p->swap_map = NULL;
2626 cluster_info = p->cluster_info;
2627 p->cluster_info = NULL;
2628 frontswap_map = frontswap_map_get(p);
2629 spin_unlock(&p->lock);
2630 spin_unlock(&swap_lock);
2631 frontswap_invalidate_area(p->type);
2632 frontswap_map_set(p, NULL);
2633 mutex_unlock(&swapon_mutex);
2634 free_percpu(p->percpu_cluster);
2635 p->percpu_cluster = NULL;
2636 vfree(swap_map);
2637 kvfree(cluster_info);
2638 kvfree(frontswap_map);
2639 /* Destroy swap account information */
2640 swap_cgroup_swapoff(p->type);
2641 exit_swap_address_space(p->type);
2643 inode = mapping->host;
2644 if (S_ISBLK(inode->i_mode)) {
2645 struct block_device *bdev = I_BDEV(inode);
2646 set_blocksize(bdev, old_block_size);
2647 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2648 } else {
2649 inode_lock(inode);
2650 inode->i_flags &= ~S_SWAPFILE;
2651 inode_unlock(inode);
2653 filp_close(swap_file, NULL);
2656 * Clear the SWP_USED flag after all resources are freed so that swapon
2657 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2658 * not hold p->lock after we cleared its SWP_WRITEOK.
2660 spin_lock(&swap_lock);
2661 p->flags = 0;
2662 spin_unlock(&swap_lock);
2664 err = 0;
2665 atomic_inc(&proc_poll_event);
2666 wake_up_interruptible(&proc_poll_wait);
2668 out_dput:
2669 filp_close(victim, NULL);
2670 out:
2671 putname(pathname);
2672 return err;
2675 #ifdef CONFIG_PROC_FS
2676 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2678 struct seq_file *seq = file->private_data;
2680 poll_wait(file, &proc_poll_wait, wait);
2682 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2683 seq->poll_event = atomic_read(&proc_poll_event);
2684 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2687 return EPOLLIN | EPOLLRDNORM;
2690 /* iterator */
2691 static void *swap_start(struct seq_file *swap, loff_t *pos)
2693 struct swap_info_struct *si;
2694 int type;
2695 loff_t l = *pos;
2697 mutex_lock(&swapon_mutex);
2699 if (!l)
2700 return SEQ_START_TOKEN;
2702 for (type = 0; type < nr_swapfiles; type++) {
2703 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2704 si = swap_info[type];
2705 if (!(si->flags & SWP_USED) || !si->swap_map)
2706 continue;
2707 if (!--l)
2708 return si;
2711 return NULL;
2714 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2716 struct swap_info_struct *si = v;
2717 int type;
2719 if (v == SEQ_START_TOKEN)
2720 type = 0;
2721 else
2722 type = si->type + 1;
2724 for (; type < nr_swapfiles; type++) {
2725 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2726 si = swap_info[type];
2727 if (!(si->flags & SWP_USED) || !si->swap_map)
2728 continue;
2729 ++*pos;
2730 return si;
2733 return NULL;
2736 static void swap_stop(struct seq_file *swap, void *v)
2738 mutex_unlock(&swapon_mutex);
2741 static int swap_show(struct seq_file *swap, void *v)
2743 struct swap_info_struct *si = v;
2744 struct file *file;
2745 int len;
2747 if (si == SEQ_START_TOKEN) {
2748 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2749 return 0;
2752 file = si->swap_file;
2753 len = seq_file_path(swap, file, " \t\n\\");
2754 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2755 len < 40 ? 40 - len : 1, " ",
2756 S_ISBLK(file_inode(file)->i_mode) ?
2757 "partition" : "file\t",
2758 si->pages << (PAGE_SHIFT - 10),
2759 si->inuse_pages << (PAGE_SHIFT - 10),
2760 si->prio);
2761 return 0;
2764 static const struct seq_operations swaps_op = {
2765 .start = swap_start,
2766 .next = swap_next,
2767 .stop = swap_stop,
2768 .show = swap_show
2771 static int swaps_open(struct inode *inode, struct file *file)
2773 struct seq_file *seq;
2774 int ret;
2776 ret = seq_open(file, &swaps_op);
2777 if (ret)
2778 return ret;
2780 seq = file->private_data;
2781 seq->poll_event = atomic_read(&proc_poll_event);
2782 return 0;
2785 static const struct file_operations proc_swaps_operations = {
2786 .open = swaps_open,
2787 .read = seq_read,
2788 .llseek = seq_lseek,
2789 .release = seq_release,
2790 .poll = swaps_poll,
2793 static int __init procswaps_init(void)
2795 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2796 return 0;
2798 __initcall(procswaps_init);
2799 #endif /* CONFIG_PROC_FS */
2801 #ifdef MAX_SWAPFILES_CHECK
2802 static int __init max_swapfiles_check(void)
2804 MAX_SWAPFILES_CHECK();
2805 return 0;
2807 late_initcall(max_swapfiles_check);
2808 #endif
2810 static struct swap_info_struct *alloc_swap_info(void)
2812 struct swap_info_struct *p;
2813 unsigned int type;
2814 int i;
2816 p = kvzalloc(sizeof(*p), GFP_KERNEL);
2817 if (!p)
2818 return ERR_PTR(-ENOMEM);
2820 spin_lock(&swap_lock);
2821 for (type = 0; type < nr_swapfiles; type++) {
2822 if (!(swap_info[type]->flags & SWP_USED))
2823 break;
2825 if (type >= MAX_SWAPFILES) {
2826 spin_unlock(&swap_lock);
2827 kvfree(p);
2828 return ERR_PTR(-EPERM);
2830 if (type >= nr_swapfiles) {
2831 p->type = type;
2832 swap_info[type] = p;
2834 * Write swap_info[type] before nr_swapfiles, in case a
2835 * racing procfs swap_start() or swap_next() is reading them.
2836 * (We never shrink nr_swapfiles, we never free this entry.)
2838 smp_wmb();
2839 nr_swapfiles++;
2840 } else {
2841 kvfree(p);
2842 p = swap_info[type];
2844 * Do not memset this entry: a racing procfs swap_next()
2845 * would be relying on p->type to remain valid.
2848 INIT_LIST_HEAD(&p->first_swap_extent.list);
2849 plist_node_init(&p->list, 0);
2850 for_each_node(i)
2851 plist_node_init(&p->avail_lists[i], 0);
2852 p->flags = SWP_USED;
2853 spin_unlock(&swap_lock);
2854 spin_lock_init(&p->lock);
2855 spin_lock_init(&p->cont_lock);
2857 return p;
2860 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2862 int error;
2864 if (S_ISBLK(inode->i_mode)) {
2865 p->bdev = bdgrab(I_BDEV(inode));
2866 error = blkdev_get(p->bdev,
2867 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2868 if (error < 0) {
2869 p->bdev = NULL;
2870 return error;
2872 p->old_block_size = block_size(p->bdev);
2873 error = set_blocksize(p->bdev, PAGE_SIZE);
2874 if (error < 0)
2875 return error;
2876 p->flags |= SWP_BLKDEV;
2877 } else if (S_ISREG(inode->i_mode)) {
2878 p->bdev = inode->i_sb->s_bdev;
2879 inode_lock(inode);
2880 if (IS_SWAPFILE(inode))
2881 return -EBUSY;
2882 } else
2883 return -EINVAL;
2885 return 0;
2890 * Find out how many pages are allowed for a single swap device. There
2891 * are two limiting factors:
2892 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2893 * 2) the number of bits in the swap pte, as defined by the different
2894 * architectures.
2896 * In order to find the largest possible bit mask, a swap entry with
2897 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2898 * decoded to a swp_entry_t again, and finally the swap offset is
2899 * extracted.
2901 * This will mask all the bits from the initial ~0UL mask that can't
2902 * be encoded in either the swp_entry_t or the architecture definition
2903 * of a swap pte.
2905 unsigned long generic_max_swapfile_size(void)
2907 return swp_offset(pte_to_swp_entry(
2908 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2911 /* Can be overridden by an architecture for additional checks. */
2912 __weak unsigned long max_swapfile_size(void)
2914 return generic_max_swapfile_size();
2917 static unsigned long read_swap_header(struct swap_info_struct *p,
2918 union swap_header *swap_header,
2919 struct inode *inode)
2921 int i;
2922 unsigned long maxpages;
2923 unsigned long swapfilepages;
2924 unsigned long last_page;
2926 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2927 pr_err("Unable to find swap-space signature\n");
2928 return 0;
2931 /* swap partition endianess hack... */
2932 if (swab32(swap_header->info.version) == 1) {
2933 swab32s(&swap_header->info.version);
2934 swab32s(&swap_header->info.last_page);
2935 swab32s(&swap_header->info.nr_badpages);
2936 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2937 return 0;
2938 for (i = 0; i < swap_header->info.nr_badpages; i++)
2939 swab32s(&swap_header->info.badpages[i]);
2941 /* Check the swap header's sub-version */
2942 if (swap_header->info.version != 1) {
2943 pr_warn("Unable to handle swap header version %d\n",
2944 swap_header->info.version);
2945 return 0;
2948 p->lowest_bit = 1;
2949 p->cluster_next = 1;
2950 p->cluster_nr = 0;
2952 maxpages = max_swapfile_size();
2953 last_page = swap_header->info.last_page;
2954 if (!last_page) {
2955 pr_warn("Empty swap-file\n");
2956 return 0;
2958 if (last_page > maxpages) {
2959 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2960 maxpages << (PAGE_SHIFT - 10),
2961 last_page << (PAGE_SHIFT - 10));
2963 if (maxpages > last_page) {
2964 maxpages = last_page + 1;
2965 /* p->max is an unsigned int: don't overflow it */
2966 if ((unsigned int)maxpages == 0)
2967 maxpages = UINT_MAX;
2969 p->highest_bit = maxpages - 1;
2971 if (!maxpages)
2972 return 0;
2973 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2974 if (swapfilepages && maxpages > swapfilepages) {
2975 pr_warn("Swap area shorter than signature indicates\n");
2976 return 0;
2978 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2979 return 0;
2980 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2981 return 0;
2983 return maxpages;
2986 #define SWAP_CLUSTER_INFO_COLS \
2987 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2988 #define SWAP_CLUSTER_SPACE_COLS \
2989 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2990 #define SWAP_CLUSTER_COLS \
2991 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2993 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2994 union swap_header *swap_header,
2995 unsigned char *swap_map,
2996 struct swap_cluster_info *cluster_info,
2997 unsigned long maxpages,
2998 sector_t *span)
3000 unsigned int j, k;
3001 unsigned int nr_good_pages;
3002 int nr_extents;
3003 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3004 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3005 unsigned long i, idx;
3007 nr_good_pages = maxpages - 1; /* omit header page */
3009 cluster_list_init(&p->free_clusters);
3010 cluster_list_init(&p->discard_clusters);
3012 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3013 unsigned int page_nr = swap_header->info.badpages[i];
3014 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3015 return -EINVAL;
3016 if (page_nr < maxpages) {
3017 swap_map[page_nr] = SWAP_MAP_BAD;
3018 nr_good_pages--;
3020 * Haven't marked the cluster free yet, no list
3021 * operation involved
3023 inc_cluster_info_page(p, cluster_info, page_nr);
3027 /* Haven't marked the cluster free yet, no list operation involved */
3028 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3029 inc_cluster_info_page(p, cluster_info, i);
3031 if (nr_good_pages) {
3032 swap_map[0] = SWAP_MAP_BAD;
3034 * Not mark the cluster free yet, no list
3035 * operation involved
3037 inc_cluster_info_page(p, cluster_info, 0);
3038 p->max = maxpages;
3039 p->pages = nr_good_pages;
3040 nr_extents = setup_swap_extents(p, span);
3041 if (nr_extents < 0)
3042 return nr_extents;
3043 nr_good_pages = p->pages;
3045 if (!nr_good_pages) {
3046 pr_warn("Empty swap-file\n");
3047 return -EINVAL;
3050 if (!cluster_info)
3051 return nr_extents;
3055 * Reduce false cache line sharing between cluster_info and
3056 * sharing same address space.
3058 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3059 j = (k + col) % SWAP_CLUSTER_COLS;
3060 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3061 idx = i * SWAP_CLUSTER_COLS + j;
3062 if (idx >= nr_clusters)
3063 continue;
3064 if (cluster_count(&cluster_info[idx]))
3065 continue;
3066 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3067 cluster_list_add_tail(&p->free_clusters, cluster_info,
3068 idx);
3071 return nr_extents;
3075 * Helper to sys_swapon determining if a given swap
3076 * backing device queue supports DISCARD operations.
3078 static bool swap_discardable(struct swap_info_struct *si)
3080 struct request_queue *q = bdev_get_queue(si->bdev);
3082 if (!q || !blk_queue_discard(q))
3083 return false;
3085 return true;
3088 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3090 struct swap_info_struct *p;
3091 struct filename *name;
3092 struct file *swap_file = NULL;
3093 struct address_space *mapping;
3094 int prio;
3095 int error;
3096 union swap_header *swap_header;
3097 int nr_extents;
3098 sector_t span;
3099 unsigned long maxpages;
3100 unsigned char *swap_map = NULL;
3101 struct swap_cluster_info *cluster_info = NULL;
3102 unsigned long *frontswap_map = NULL;
3103 struct page *page = NULL;
3104 struct inode *inode = NULL;
3105 bool inced_nr_rotate_swap = false;
3107 if (swap_flags & ~SWAP_FLAGS_VALID)
3108 return -EINVAL;
3110 if (!capable(CAP_SYS_ADMIN))
3111 return -EPERM;
3113 if (!swap_avail_heads)
3114 return -ENOMEM;
3116 p = alloc_swap_info();
3117 if (IS_ERR(p))
3118 return PTR_ERR(p);
3120 INIT_WORK(&p->discard_work, swap_discard_work);
3122 name = getname(specialfile);
3123 if (IS_ERR(name)) {
3124 error = PTR_ERR(name);
3125 name = NULL;
3126 goto bad_swap;
3128 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3129 if (IS_ERR(swap_file)) {
3130 error = PTR_ERR(swap_file);
3131 swap_file = NULL;
3132 goto bad_swap;
3135 p->swap_file = swap_file;
3136 mapping = swap_file->f_mapping;
3137 inode = mapping->host;
3139 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3140 error = claim_swapfile(p, inode);
3141 if (unlikely(error))
3142 goto bad_swap;
3145 * Read the swap header.
3147 if (!mapping->a_ops->readpage) {
3148 error = -EINVAL;
3149 goto bad_swap;
3151 page = read_mapping_page(mapping, 0, swap_file);
3152 if (IS_ERR(page)) {
3153 error = PTR_ERR(page);
3154 goto bad_swap;
3156 swap_header = kmap(page);
3158 maxpages = read_swap_header(p, swap_header, inode);
3159 if (unlikely(!maxpages)) {
3160 error = -EINVAL;
3161 goto bad_swap;
3164 /* OK, set up the swap map and apply the bad block list */
3165 swap_map = vzalloc(maxpages);
3166 if (!swap_map) {
3167 error = -ENOMEM;
3168 goto bad_swap;
3171 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3172 p->flags |= SWP_STABLE_WRITES;
3174 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3175 p->flags |= SWP_SYNCHRONOUS_IO;
3177 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3178 int cpu;
3179 unsigned long ci, nr_cluster;
3181 p->flags |= SWP_SOLIDSTATE;
3183 * select a random position to start with to help wear leveling
3184 * SSD
3186 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3187 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3189 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3190 GFP_KERNEL);
3191 if (!cluster_info) {
3192 error = -ENOMEM;
3193 goto bad_swap;
3196 for (ci = 0; ci < nr_cluster; ci++)
3197 spin_lock_init(&((cluster_info + ci)->lock));
3199 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3200 if (!p->percpu_cluster) {
3201 error = -ENOMEM;
3202 goto bad_swap;
3204 for_each_possible_cpu(cpu) {
3205 struct percpu_cluster *cluster;
3206 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3207 cluster_set_null(&cluster->index);
3209 } else {
3210 atomic_inc(&nr_rotate_swap);
3211 inced_nr_rotate_swap = true;
3214 error = swap_cgroup_swapon(p->type, maxpages);
3215 if (error)
3216 goto bad_swap;
3218 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3219 cluster_info, maxpages, &span);
3220 if (unlikely(nr_extents < 0)) {
3221 error = nr_extents;
3222 goto bad_swap;
3224 /* frontswap enabled? set up bit-per-page map for frontswap */
3225 if (IS_ENABLED(CONFIG_FRONTSWAP))
3226 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3227 sizeof(long),
3228 GFP_KERNEL);
3230 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3232 * When discard is enabled for swap with no particular
3233 * policy flagged, we set all swap discard flags here in
3234 * order to sustain backward compatibility with older
3235 * swapon(8) releases.
3237 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3238 SWP_PAGE_DISCARD);
3241 * By flagging sys_swapon, a sysadmin can tell us to
3242 * either do single-time area discards only, or to just
3243 * perform discards for released swap page-clusters.
3244 * Now it's time to adjust the p->flags accordingly.
3246 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3247 p->flags &= ~SWP_PAGE_DISCARD;
3248 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3249 p->flags &= ~SWP_AREA_DISCARD;
3251 /* issue a swapon-time discard if it's still required */
3252 if (p->flags & SWP_AREA_DISCARD) {
3253 int err = discard_swap(p);
3254 if (unlikely(err))
3255 pr_err("swapon: discard_swap(%p): %d\n",
3256 p, err);
3260 error = init_swap_address_space(p->type, maxpages);
3261 if (error)
3262 goto bad_swap;
3264 mutex_lock(&swapon_mutex);
3265 prio = -1;
3266 if (swap_flags & SWAP_FLAG_PREFER)
3267 prio =
3268 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3269 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3271 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3272 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3273 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3274 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3275 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3276 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3277 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3278 (frontswap_map) ? "FS" : "");
3280 mutex_unlock(&swapon_mutex);
3281 atomic_inc(&proc_poll_event);
3282 wake_up_interruptible(&proc_poll_wait);
3284 if (S_ISREG(inode->i_mode))
3285 inode->i_flags |= S_SWAPFILE;
3286 error = 0;
3287 goto out;
3288 bad_swap:
3289 free_percpu(p->percpu_cluster);
3290 p->percpu_cluster = NULL;
3291 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3292 set_blocksize(p->bdev, p->old_block_size);
3293 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3295 destroy_swap_extents(p);
3296 swap_cgroup_swapoff(p->type);
3297 spin_lock(&swap_lock);
3298 p->swap_file = NULL;
3299 p->flags = 0;
3300 spin_unlock(&swap_lock);
3301 vfree(swap_map);
3302 kvfree(cluster_info);
3303 kvfree(frontswap_map);
3304 if (inced_nr_rotate_swap)
3305 atomic_dec(&nr_rotate_swap);
3306 if (swap_file) {
3307 if (inode && S_ISREG(inode->i_mode)) {
3308 inode_unlock(inode);
3309 inode = NULL;
3311 filp_close(swap_file, NULL);
3313 out:
3314 if (page && !IS_ERR(page)) {
3315 kunmap(page);
3316 put_page(page);
3318 if (name)
3319 putname(name);
3320 if (inode && S_ISREG(inode->i_mode))
3321 inode_unlock(inode);
3322 if (!error)
3323 enable_swap_slots_cache();
3324 return error;
3327 void si_swapinfo(struct sysinfo *val)
3329 unsigned int type;
3330 unsigned long nr_to_be_unused = 0;
3332 spin_lock(&swap_lock);
3333 for (type = 0; type < nr_swapfiles; type++) {
3334 struct swap_info_struct *si = swap_info[type];
3336 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3337 nr_to_be_unused += si->inuse_pages;
3339 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3340 val->totalswap = total_swap_pages + nr_to_be_unused;
3341 spin_unlock(&swap_lock);
3345 * Verify that a swap entry is valid and increment its swap map count.
3347 * Returns error code in following case.
3348 * - success -> 0
3349 * - swp_entry is invalid -> EINVAL
3350 * - swp_entry is migration entry -> EINVAL
3351 * - swap-cache reference is requested but there is already one. -> EEXIST
3352 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3353 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3355 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3357 struct swap_info_struct *p;
3358 struct swap_cluster_info *ci;
3359 unsigned long offset, type;
3360 unsigned char count;
3361 unsigned char has_cache;
3362 int err = -EINVAL;
3364 if (non_swap_entry(entry))
3365 goto out;
3367 type = swp_type(entry);
3368 if (type >= nr_swapfiles)
3369 goto bad_file;
3370 p = swap_info[type];
3371 offset = swp_offset(entry);
3372 if (unlikely(offset >= p->max))
3373 goto out;
3375 ci = lock_cluster_or_swap_info(p, offset);
3377 count = p->swap_map[offset];
3380 * swapin_readahead() doesn't check if a swap entry is valid, so the
3381 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3383 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3384 err = -ENOENT;
3385 goto unlock_out;
3388 has_cache = count & SWAP_HAS_CACHE;
3389 count &= ~SWAP_HAS_CACHE;
3390 err = 0;
3392 if (usage == SWAP_HAS_CACHE) {
3394 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3395 if (!has_cache && count)
3396 has_cache = SWAP_HAS_CACHE;
3397 else if (has_cache) /* someone else added cache */
3398 err = -EEXIST;
3399 else /* no users remaining */
3400 err = -ENOENT;
3402 } else if (count || has_cache) {
3404 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3405 count += usage;
3406 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3407 err = -EINVAL;
3408 else if (swap_count_continued(p, offset, count))
3409 count = COUNT_CONTINUED;
3410 else
3411 err = -ENOMEM;
3412 } else
3413 err = -ENOENT; /* unused swap entry */
3415 p->swap_map[offset] = count | has_cache;
3417 unlock_out:
3418 unlock_cluster_or_swap_info(p, ci);
3419 out:
3420 return err;
3422 bad_file:
3423 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3424 goto out;
3428 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3429 * (in which case its reference count is never incremented).
3431 void swap_shmem_alloc(swp_entry_t entry)
3433 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3437 * Increase reference count of swap entry by 1.
3438 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3439 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3440 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3441 * might occur if a page table entry has got corrupted.
3443 int swap_duplicate(swp_entry_t entry)
3445 int err = 0;
3447 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3448 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3449 return err;
3453 * @entry: swap entry for which we allocate swap cache.
3455 * Called when allocating swap cache for existing swap entry,
3456 * This can return error codes. Returns 0 at success.
3457 * -EBUSY means there is a swap cache.
3458 * Note: return code is different from swap_duplicate().
3460 int swapcache_prepare(swp_entry_t entry)
3462 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3465 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3467 return swap_info[swp_type(entry)];
3470 struct swap_info_struct *page_swap_info(struct page *page)
3472 swp_entry_t entry = { .val = page_private(page) };
3473 return swp_swap_info(entry);
3477 * out-of-line __page_file_ methods to avoid include hell.
3479 struct address_space *__page_file_mapping(struct page *page)
3481 return page_swap_info(page)->swap_file->f_mapping;
3483 EXPORT_SYMBOL_GPL(__page_file_mapping);
3485 pgoff_t __page_file_index(struct page *page)
3487 swp_entry_t swap = { .val = page_private(page) };
3488 return swp_offset(swap);
3490 EXPORT_SYMBOL_GPL(__page_file_index);
3493 * add_swap_count_continuation - called when a swap count is duplicated
3494 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3495 * page of the original vmalloc'ed swap_map, to hold the continuation count
3496 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3497 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3499 * These continuation pages are seldom referenced: the common paths all work
3500 * on the original swap_map, only referring to a continuation page when the
3501 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3503 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3504 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3505 * can be called after dropping locks.
3507 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3509 struct swap_info_struct *si;
3510 struct swap_cluster_info *ci;
3511 struct page *head;
3512 struct page *page;
3513 struct page *list_page;
3514 pgoff_t offset;
3515 unsigned char count;
3518 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3519 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3521 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3523 si = swap_info_get(entry);
3524 if (!si) {
3526 * An acceptable race has occurred since the failing
3527 * __swap_duplicate(): the swap entry has been freed,
3528 * perhaps even the whole swap_map cleared for swapoff.
3530 goto outer;
3533 offset = swp_offset(entry);
3535 ci = lock_cluster(si, offset);
3537 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3539 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3541 * The higher the swap count, the more likely it is that tasks
3542 * will race to add swap count continuation: we need to avoid
3543 * over-provisioning.
3545 goto out;
3548 if (!page) {
3549 unlock_cluster(ci);
3550 spin_unlock(&si->lock);
3551 return -ENOMEM;
3555 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3556 * no architecture is using highmem pages for kernel page tables: so it
3557 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3559 head = vmalloc_to_page(si->swap_map + offset);
3560 offset &= ~PAGE_MASK;
3562 spin_lock(&si->cont_lock);
3564 * Page allocation does not initialize the page's lru field,
3565 * but it does always reset its private field.
3567 if (!page_private(head)) {
3568 BUG_ON(count & COUNT_CONTINUED);
3569 INIT_LIST_HEAD(&head->lru);
3570 set_page_private(head, SWP_CONTINUED);
3571 si->flags |= SWP_CONTINUED;
3574 list_for_each_entry(list_page, &head->lru, lru) {
3575 unsigned char *map;
3578 * If the previous map said no continuation, but we've found
3579 * a continuation page, free our allocation and use this one.
3581 if (!(count & COUNT_CONTINUED))
3582 goto out_unlock_cont;
3584 map = kmap_atomic(list_page) + offset;
3585 count = *map;
3586 kunmap_atomic(map);
3589 * If this continuation count now has some space in it,
3590 * free our allocation and use this one.
3592 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3593 goto out_unlock_cont;
3596 list_add_tail(&page->lru, &head->lru);
3597 page = NULL; /* now it's attached, don't free it */
3598 out_unlock_cont:
3599 spin_unlock(&si->cont_lock);
3600 out:
3601 unlock_cluster(ci);
3602 spin_unlock(&si->lock);
3603 outer:
3604 if (page)
3605 __free_page(page);
3606 return 0;
3610 * swap_count_continued - when the original swap_map count is incremented
3611 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3612 * into, carry if so, or else fail until a new continuation page is allocated;
3613 * when the original swap_map count is decremented from 0 with continuation,
3614 * borrow from the continuation and report whether it still holds more.
3615 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3616 * lock.
3618 static bool swap_count_continued(struct swap_info_struct *si,
3619 pgoff_t offset, unsigned char count)
3621 struct page *head;
3622 struct page *page;
3623 unsigned char *map;
3624 bool ret;
3626 head = vmalloc_to_page(si->swap_map + offset);
3627 if (page_private(head) != SWP_CONTINUED) {
3628 BUG_ON(count & COUNT_CONTINUED);
3629 return false; /* need to add count continuation */
3632 spin_lock(&si->cont_lock);
3633 offset &= ~PAGE_MASK;
3634 page = list_entry(head->lru.next, struct page, lru);
3635 map = kmap_atomic(page) + offset;
3637 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3638 goto init_map; /* jump over SWAP_CONT_MAX checks */
3640 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3642 * Think of how you add 1 to 999
3644 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3645 kunmap_atomic(map);
3646 page = list_entry(page->lru.next, struct page, lru);
3647 BUG_ON(page == head);
3648 map = kmap_atomic(page) + offset;
3650 if (*map == SWAP_CONT_MAX) {
3651 kunmap_atomic(map);
3652 page = list_entry(page->lru.next, struct page, lru);
3653 if (page == head) {
3654 ret = false; /* add count continuation */
3655 goto out;
3657 map = kmap_atomic(page) + offset;
3658 init_map: *map = 0; /* we didn't zero the page */
3660 *map += 1;
3661 kunmap_atomic(map);
3662 page = list_entry(page->lru.prev, struct page, lru);
3663 while (page != head) {
3664 map = kmap_atomic(page) + offset;
3665 *map = COUNT_CONTINUED;
3666 kunmap_atomic(map);
3667 page = list_entry(page->lru.prev, struct page, lru);
3669 ret = true; /* incremented */
3671 } else { /* decrementing */
3673 * Think of how you subtract 1 from 1000
3675 BUG_ON(count != COUNT_CONTINUED);
3676 while (*map == COUNT_CONTINUED) {
3677 kunmap_atomic(map);
3678 page = list_entry(page->lru.next, struct page, lru);
3679 BUG_ON(page == head);
3680 map = kmap_atomic(page) + offset;
3682 BUG_ON(*map == 0);
3683 *map -= 1;
3684 if (*map == 0)
3685 count = 0;
3686 kunmap_atomic(map);
3687 page = list_entry(page->lru.prev, struct page, lru);
3688 while (page != head) {
3689 map = kmap_atomic(page) + offset;
3690 *map = SWAP_CONT_MAX | count;
3691 count = COUNT_CONTINUED;
3692 kunmap_atomic(map);
3693 page = list_entry(page->lru.prev, struct page, lru);
3695 ret = count == COUNT_CONTINUED;
3697 out:
3698 spin_unlock(&si->cont_lock);
3699 return ret;
3703 * free_swap_count_continuations - swapoff free all the continuation pages
3704 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3706 static void free_swap_count_continuations(struct swap_info_struct *si)
3708 pgoff_t offset;
3710 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3711 struct page *head;
3712 head = vmalloc_to_page(si->swap_map + offset);
3713 if (page_private(head)) {
3714 struct page *page, *next;
3716 list_for_each_entry_safe(page, next, &head->lru, lru) {
3717 list_del(&page->lru);
3718 __free_page(page);
3724 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3725 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3726 gfp_t gfp_mask)
3728 struct swap_info_struct *si, *next;
3729 if (!(gfp_mask & __GFP_IO) || !memcg)
3730 return;
3732 if (!blk_cgroup_congested())
3733 return;
3736 * We've already scheduled a throttle, avoid taking the global swap
3737 * lock.
3739 if (current->throttle_queue)
3740 return;
3742 spin_lock(&swap_avail_lock);
3743 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3744 avail_lists[node]) {
3745 if (si->bdev) {
3746 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3747 true);
3748 break;
3751 spin_unlock(&swap_avail_lock);
3753 #endif
3755 static int __init swapfile_init(void)
3757 int nid;
3759 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3760 GFP_KERNEL);
3761 if (!swap_avail_heads) {
3762 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3763 return -ENOMEM;
3766 for_each_node(nid)
3767 plist_head_init(&swap_avail_heads[nid]);
3769 return 0;
3771 subsys_initcall(swapfile_init);