hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / m68k / fpsp040 / bindec.S
blobf2e795231046049bd41950bd642178f81065c819
2 |       bindec.sa 3.4 1/3/91
4 |       bindec
6 |       Description:
7 |               Converts an input in extended precision format
8 |               to bcd format.
10 |       Input:
11 |               a0 points to the input extended precision value
12 |               value in memory; d0 contains the k-factor sign-extended
13 |               to 32-bits.  The input may be either normalized,
14 |               unnormalized, or denormalized.
16 |       Output: result in the FP_SCR1 space on the stack.
18 |       Saves and Modifies: D2-D7,A2,FP2
20 |       Algorithm:
22 |       A1.     Set RM and size ext;  Set SIGMA = sign of input.
23 |               The k-factor is saved for use in d7. Clear the
24 |               BINDEC_FLG for separating normalized/denormalized
25 |               input.  If input is unnormalized or denormalized,
26 |               normalize it.
28 |       A2.     Set X = abs(input).
30 |       A3.     Compute ILOG.
31 |               ILOG is the log base 10 of the input value.  It is
32 |               approximated by adding e + 0.f when the original
33 |               value is viewed as 2^^e * 1.f in extended precision.
34 |               This value is stored in d6.
36 |       A4.     Clr INEX bit.
37 |               The operation in A3 above may have set INEX2.
39 |       A5.     Set ICTR = 0;
40 |               ICTR is a flag used in A13.  It must be set before the
41 |               loop entry A6.
43 |       A6.     Calculate LEN.
44 |               LEN is the number of digits to be displayed.  The
45 |               k-factor can dictate either the total number of digits,
46 |               if it is a positive number, or the number of digits
47 |               after the decimal point which are to be included as
48 |               significant.  See the 68882 manual for examples.
49 |               If LEN is computed to be greater than 17, set OPERR in
50 |               USER_FPSR.  LEN is stored in d4.
52 |       A7.     Calculate SCALE.
53 |               SCALE is equal to 10^ISCALE, where ISCALE is the number
54 |               of decimal places needed to insure LEN integer digits
55 |               in the output before conversion to bcd. LAMBDA is the
56 |               sign of ISCALE, used in A9. Fp1 contains
57 |               10^^(abs(ISCALE)) using a rounding mode which is a
58 |               function of the original rounding mode and the signs
59 |               of ISCALE and X.  A table is given in the code.
61 |       A8.     Clr INEX; Force RZ.
62 |               The operation in A3 above may have set INEX2.
63 |               RZ mode is forced for the scaling operation to insure
64 |               only one rounding error.  The grs bits are collected in
65 |               the INEX flag for use in A10.
67 |       A9.     Scale X -> Y.
68 |               The mantissa is scaled to the desired number of
69 |               significant digits.  The excess digits are collected
70 |               in INEX2.
72 |       A10.    Or in INEX.
73 |               If INEX is set, round error occurred.  This is
74 |               compensated for by 'or-ing' in the INEX2 flag to
75 |               the lsb of Y.
77 |       A11.    Restore original FPCR; set size ext.
78 |               Perform FINT operation in the user's rounding mode.
79 |               Keep the size to extended.
81 |       A12.    Calculate YINT = FINT(Y) according to user's rounding
82 |               mode.  The FPSP routine sintd0 is used.  The output
83 |               is in fp0.
85 |       A13.    Check for LEN digits.
86 |               If the int operation results in more than LEN digits,
87 |               or less than LEN -1 digits, adjust ILOG and repeat from
88 |               A6.  This test occurs only on the first pass.  If the
89 |               result is exactly 10^LEN, decrement ILOG and divide
90 |               the mantissa by 10.
92 |       A14.    Convert the mantissa to bcd.
93 |               The binstr routine is used to convert the LEN digit
94 |               mantissa to bcd in memory.  The input to binstr is
95 |               to be a fraction; i.e. (mantissa)/10^LEN and adjusted
96 |               such that the decimal point is to the left of bit 63.
97 |               The bcd digits are stored in the correct position in
98 |               the final string area in memory.
100 |       A15.    Convert the exponent to bcd.
101 |               As in A14 above, the exp is converted to bcd and the
102 |               digits are stored in the final string.
103 |               Test the length of the final exponent string.  If the
104 |               length is 4, set operr.
106 |       A16.    Write sign bits to final string.
108 |       Implementation Notes:
110 |       The registers are used as follows:
112 |               d0: scratch; LEN input to binstr
113 |               d1: scratch
114 |               d2: upper 32-bits of mantissa for binstr
115 |               d3: scratch;lower 32-bits of mantissa for binstr
116 |               d4: LEN
117 |               d5: LAMBDA/ICTR
118 |               d6: ILOG
119 |               d7: k-factor
120 |               a0: ptr for original operand/final result
121 |               a1: scratch pointer
122 |               a2: pointer to FP_X; abs(original value) in ext
123 |               fp0: scratch
124 |               fp1: scratch
125 |               fp2: scratch
126 |               F_SCR1:
127 |               F_SCR2:
128 |               L_SCR1:
129 |               L_SCR2:
131 |               Copyright (C) Motorola, Inc. 1990
132 |                       All Rights Reserved
134 |       For details on the license for this file, please see the
135 |       file, README, in this same directory.
137 |BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package
139 #include "fpsp.h"
141         |section        8
143 | Constants in extended precision
144 LOG2:   .long   0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
145 LOG2UP1:        .long   0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
147 | Constants in single precision
148 FONE:   .long   0x3F800000,0x00000000,0x00000000,0x00000000
149 FTWO:   .long   0x40000000,0x00000000,0x00000000,0x00000000
150 FTEN:   .long   0x41200000,0x00000000,0x00000000,0x00000000
151 F4933:  .long   0x459A2800,0x00000000,0x00000000,0x00000000
153 RBDTBL: .byte   0,0,0,0
154         .byte   3,3,2,2
155         .byte   3,2,2,3
156         .byte   2,3,3,2
158         |xref   binstr
159         |xref   sintdo
160         |xref   ptenrn,ptenrm,ptenrp
162         .global bindec
163         .global sc_mul
164 bindec:
165         moveml  %d2-%d7/%a2,-(%a7)
166         fmovemx %fp0-%fp2,-(%a7)
168 | A1. Set RM and size ext. Set SIGMA = sign input;
169 |     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
170 |     separating  normalized/denormalized input.  If the input
171 |     is a denormalized number, set the BINDEC_FLG memory word
172 |     to signal denorm.  If the input is unnormalized, normalize
173 |     the input and test for denormalized result.
175         fmovel  #rm_mode,%FPCR  |set RM and ext
176         movel   (%a0),L_SCR2(%a6)       |save exponent for sign check
177         movel   %d0,%d7         |move k-factor to d7
178         clrb    BINDEC_FLG(%a6) |clr norm/denorm flag
179         movew   STAG(%a6),%d0   |get stag
180         andiw   #0xe000,%d0     |isolate stag bits
181         beq     A2_str          |if zero, input is norm
183 | Normalize the denorm
185 un_de_norm:
186         movew   (%a0),%d0
187         andiw   #0x7fff,%d0     |strip sign of normalized exp
188         movel   4(%a0),%d1
189         movel   8(%a0),%d2
190 norm_loop:
191         subw    #1,%d0
192         lsll    #1,%d2
193         roxll   #1,%d1
194         tstl    %d1
195         bges    norm_loop
197 | Test if the normalized input is denormalized
199         tstw    %d0
200         bgts    pos_exp         |if greater than zero, it is a norm
201         st      BINDEC_FLG(%a6) |set flag for denorm
202 pos_exp:
203         andiw   #0x7fff,%d0     |strip sign of normalized exp
204         movew   %d0,(%a0)
205         movel   %d1,4(%a0)
206         movel   %d2,8(%a0)
208 | A2. Set X = abs(input).
210 A2_str:
211         movel   (%a0),FP_SCR2(%a6) | move input to work space
212         movel   4(%a0),FP_SCR2+4(%a6) | move input to work space
213         movel   8(%a0),FP_SCR2+8(%a6) | move input to work space
214         andil   #0x7fffffff,FP_SCR2(%a6) |create abs(X)
216 | A3. Compute ILOG.
217 |     ILOG is the log base 10 of the input value.  It is approx-
218 |     imated by adding e + 0.f when the original value is viewed
219 |     as 2^^e * 1.f in extended precision.  This value is stored
220 |     in d6.
222 | Register usage:
223 |       Input/Output
224 |       d0: k-factor/exponent
225 |       d2: x/x
226 |       d3: x/x
227 |       d4: x/x
228 |       d5: x/x
229 |       d6: x/ILOG
230 |       d7: k-factor/Unchanged
231 |       a0: ptr for original operand/final result
232 |       a1: x/x
233 |       a2: x/x
234 |       fp0: x/float(ILOG)
235 |       fp1: x/x
236 |       fp2: x/x
237 |       F_SCR1:x/x
238 |       F_SCR2:Abs(X)/Abs(X) with $3fff exponent
239 |       L_SCR1:x/x
240 |       L_SCR2:first word of X packed/Unchanged
242         tstb    BINDEC_FLG(%a6) |check for denorm
243         beqs    A3_cont         |if clr, continue with norm
244         movel   #-4933,%d6      |force ILOG = -4933
245         bras    A4_str
246 A3_cont:
247         movew   FP_SCR2(%a6),%d0        |move exp to d0
248         movew   #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff
249         fmovex  FP_SCR2(%a6),%fp0       |now fp0 has 1.f
250         subw    #0x3fff,%d0     |strip off bias
251         faddw   %d0,%fp0                |add in exp
252         fsubs   FONE,%fp0       |subtract off 1.0
253         fbge    pos_res         |if pos, branch
254         fmulx   LOG2UP1,%fp0    |if neg, mul by LOG2UP1
255         fmovel  %fp0,%d6                |put ILOG in d6 as a lword
256         bras    A4_str          |go move out ILOG
257 pos_res:
258         fmulx   LOG2,%fp0       |if pos, mul by LOG2
259         fmovel  %fp0,%d6                |put ILOG in d6 as a lword
262 | A4. Clr INEX bit.
263 |     The operation in A3 above may have set INEX2.
265 A4_str:
266         fmovel  #0,%FPSR                |zero all of fpsr - nothing needed
269 | A5. Set ICTR = 0;
270 |     ICTR is a flag used in A13.  It must be set before the
271 |     loop entry A6. The lower word of d5 is used for ICTR.
273         clrw    %d5             |clear ICTR
276 | A6. Calculate LEN.
277 |     LEN is the number of digits to be displayed.  The k-factor
278 |     can dictate either the total number of digits, if it is
279 |     a positive number, or the number of digits after the
280 |     original decimal point which are to be included as
281 |     significant.  See the 68882 manual for examples.
282 |     If LEN is computed to be greater than 17, set OPERR in
283 |     USER_FPSR.  LEN is stored in d4.
285 | Register usage:
286 |       Input/Output
287 |       d0: exponent/Unchanged
288 |       d2: x/x/scratch
289 |       d3: x/x
290 |       d4: exc picture/LEN
291 |       d5: ICTR/Unchanged
292 |       d6: ILOG/Unchanged
293 |       d7: k-factor/Unchanged
294 |       a0: ptr for original operand/final result
295 |       a1: x/x
296 |       a2: x/x
297 |       fp0: float(ILOG)/Unchanged
298 |       fp1: x/x
299 |       fp2: x/x
300 |       F_SCR1:x/x
301 |       F_SCR2:Abs(X) with $3fff exponent/Unchanged
302 |       L_SCR1:x/x
303 |       L_SCR2:first word of X packed/Unchanged
305 A6_str:
306         tstl    %d7             |branch on sign of k
307         bles    k_neg           |if k <= 0, LEN = ILOG + 1 - k
308         movel   %d7,%d4         |if k > 0, LEN = k
309         bras    len_ck          |skip to LEN check
310 k_neg:
311         movel   %d6,%d4         |first load ILOG to d4
312         subl    %d7,%d4         |subtract off k
313         addql   #1,%d4          |add in the 1
314 len_ck:
315         tstl    %d4             |LEN check: branch on sign of LEN
316         bles    LEN_ng          |if neg, set LEN = 1
317         cmpl    #17,%d4         |test if LEN > 17
318         bles    A7_str          |if not, forget it
319         movel   #17,%d4         |set max LEN = 17
320         tstl    %d7             |if negative, never set OPERR
321         bles    A7_str          |if positive, continue
322         orl     #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
323         bras    A7_str          |finished here
324 LEN_ng:
325         moveql  #1,%d4          |min LEN is 1
328 | A7. Calculate SCALE.
329 |     SCALE is equal to 10^ISCALE, where ISCALE is the number
330 |     of decimal places needed to insure LEN integer digits
331 |     in the output before conversion to bcd. LAMBDA is the sign
332 |     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
333 |     the rounding mode as given in the following table (see
334 |     Coonen, p. 7.23 as ref.; however, the SCALE variable is
335 |     of opposite sign in bindec.sa from Coonen).
337 |       Initial                                 USE
338 |       FPCR[6:5]       LAMBDA  SIGN(X)         FPCR[6:5]
339 |       ----------------------------------------------
340 |        RN     00         0       0            00/0    RN
341 |        RN     00         0       1            00/0    RN
342 |        RN     00         1       0            00/0    RN
343 |        RN     00         1       1            00/0    RN
344 |        RZ     01         0       0            11/3    RP
345 |        RZ     01         0       1            11/3    RP
346 |        RZ     01         1       0            10/2    RM
347 |        RZ     01         1       1            10/2    RM
348 |        RM     10         0       0            11/3    RP
349 |        RM     10         0       1            10/2    RM
350 |        RM     10         1       0            10/2    RM
351 |        RM     10         1       1            11/3    RP
352 |        RP     11         0       0            10/2    RM
353 |        RP     11         0       1            11/3    RP
354 |        RP     11         1       0            11/3    RP
355 |        RP     11         1       1            10/2    RM
357 | Register usage:
358 |       Input/Output
359 |       d0: exponent/scratch - final is 0
360 |       d2: x/0 or 24 for A9
361 |       d3: x/scratch - offset ptr into PTENRM array
362 |       d4: LEN/Unchanged
363 |       d5: 0/ICTR:LAMBDA
364 |       d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
365 |       d7: k-factor/Unchanged
366 |       a0: ptr for original operand/final result
367 |       a1: x/ptr to PTENRM array
368 |       a2: x/x
369 |       fp0: float(ILOG)/Unchanged
370 |       fp1: x/10^ISCALE
371 |       fp2: x/x
372 |       F_SCR1:x/x
373 |       F_SCR2:Abs(X) with $3fff exponent/Unchanged
374 |       L_SCR1:x/x
375 |       L_SCR2:first word of X packed/Unchanged
377 A7_str:
378         tstl    %d7             |test sign of k
379         bgts    k_pos           |if pos and > 0, skip this
380         cmpl    %d6,%d7         |test k - ILOG
381         blts    k_pos           |if ILOG >= k, skip this
382         movel   %d7,%d6         |if ((k<0) & (ILOG < k)) ILOG = k
383 k_pos:
384         movel   %d6,%d0         |calc ILOG + 1 - LEN in d0
385         addql   #1,%d0          |add the 1
386         subl    %d4,%d0         |sub off LEN
387         swap    %d5             |use upper word of d5 for LAMBDA
388         clrw    %d5             |set it zero initially
389         clrw    %d2             |set up d2 for very small case
390         tstl    %d0             |test sign of ISCALE
391         bges    iscale          |if pos, skip next inst
392         addqw   #1,%d5          |if neg, set LAMBDA true
393         cmpl    #0xffffecd4,%d0 |test iscale <= -4908
394         bgts    no_inf          |if false, skip rest
395         addil   #24,%d0         |add in 24 to iscale
396         movel   #24,%d2         |put 24 in d2 for A9
397 no_inf:
398         negl    %d0             |and take abs of ISCALE
399 iscale:
400         fmoves  FONE,%fp1       |init fp1 to 1
401         bfextu  USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits
402         lslw    #1,%d1          |put them in bits 2:1
403         addw    %d5,%d1         |add in LAMBDA
404         lslw    #1,%d1          |put them in bits 3:1
405         tstl    L_SCR2(%a6)     |test sign of original x
406         bges    x_pos           |if pos, don't set bit 0
407         addql   #1,%d1          |if neg, set bit 0
408 x_pos:
409         leal    RBDTBL,%a2      |load rbdtbl base
410         moveb   (%a2,%d1),%d3   |load d3 with new rmode
411         lsll    #4,%d3          |put bits in proper position
412         fmovel  %d3,%fpcr               |load bits into fpu
413         lsrl    #4,%d3          |put bits in proper position
414         tstb    %d3             |decode new rmode for pten table
415         bnes    not_rn          |if zero, it is RN
416         leal    PTENRN,%a1      |load a1 with RN table base
417         bras    rmode           |exit decode
418 not_rn:
419         lsrb    #1,%d3          |get lsb in carry
420         bccs    not_rp          |if carry clear, it is RM
421         leal    PTENRP,%a1      |load a1 with RP table base
422         bras    rmode           |exit decode
423 not_rp:
424         leal    PTENRM,%a1      |load a1 with RM table base
425 rmode:
426         clrl    %d3             |clr table index
427 e_loop:
428         lsrl    #1,%d0          |shift next bit into carry
429         bccs    e_next          |if zero, skip the mul
430         fmulx   (%a1,%d3),%fp1  |mul by 10**(d3_bit_no)
431 e_next:
432         addl    #12,%d3         |inc d3 to next pwrten table entry
433         tstl    %d0             |test if ISCALE is zero
434         bnes    e_loop          |if not, loop
437 | A8. Clr INEX; Force RZ.
438 |     The operation in A3 above may have set INEX2.
439 |     RZ mode is forced for the scaling operation to insure
440 |     only one rounding error.  The grs bits are collected in
441 |     the INEX flag for use in A10.
443 | Register usage:
444 |       Input/Output
446         fmovel  #0,%FPSR                |clr INEX
447         fmovel  #rz_mode,%FPCR  |set RZ rounding mode
450 | A9. Scale X -> Y.
451 |     The mantissa is scaled to the desired number of significant
452 |     digits.  The excess digits are collected in INEX2. If mul,
453 |     Check d2 for excess 10 exponential value.  If not zero,
454 |     the iscale value would have caused the pwrten calculation
455 |     to overflow.  Only a negative iscale can cause this, so
456 |     multiply by 10^(d2), which is now only allowed to be 24,
457 |     with a multiply by 10^8 and 10^16, which is exact since
458 |     10^24 is exact.  If the input was denormalized, we must
459 |     create a busy stack frame with the mul command and the
460 |     two operands, and allow the fpu to complete the multiply.
462 | Register usage:
463 |       Input/Output
464 |       d0: FPCR with RZ mode/Unchanged
465 |       d2: 0 or 24/unchanged
466 |       d3: x/x
467 |       d4: LEN/Unchanged
468 |       d5: ICTR:LAMBDA
469 |       d6: ILOG/Unchanged
470 |       d7: k-factor/Unchanged
471 |       a0: ptr for original operand/final result
472 |       a1: ptr to PTENRM array/Unchanged
473 |       a2: x/x
474 |       fp0: float(ILOG)/X adjusted for SCALE (Y)
475 |       fp1: 10^ISCALE/Unchanged
476 |       fp2: x/x
477 |       F_SCR1:x/x
478 |       F_SCR2:Abs(X) with $3fff exponent/Unchanged
479 |       L_SCR1:x/x
480 |       L_SCR2:first word of X packed/Unchanged
482 A9_str:
483         fmovex  (%a0),%fp0      |load X from memory
484         fabsx   %fp0            |use abs(X)
485         tstw    %d5             |LAMBDA is in lower word of d5
486         bne     sc_mul          |if neg (LAMBDA = 1), scale by mul
487         fdivx   %fp1,%fp0               |calculate X / SCALE -> Y to fp0
488         bras    A10_st          |branch to A10
490 sc_mul:
491         tstb    BINDEC_FLG(%a6) |check for denorm
492         beqs    A9_norm         |if norm, continue with mul
493         fmovemx %fp1-%fp1,-(%a7)        |load ETEMP with 10^ISCALE
494         movel   8(%a0),-(%a7)   |load FPTEMP with input arg
495         movel   4(%a0),-(%a7)
496         movel   (%a0),-(%a7)
497         movel   #18,%d3         |load count for busy stack
498 A9_loop:
499         clrl    -(%a7)          |clear lword on stack
500         dbf     %d3,A9_loop
501         moveb   VER_TMP(%a6),(%a7) |write current version number
502         moveb   #BUSY_SIZE-4,1(%a7) |write current busy size
503         moveb   #0x10,0x44(%a7) |set fcefpte[15] bit
504         movew   #0x0023,0x40(%a7)       |load cmdreg1b with mul command
505         moveb   #0xfe,0x8(%a7)  |load all 1s to cu savepc
506         frestore (%a7)+         |restore frame to fpu for completion
507         fmulx   36(%a1),%fp0    |multiply fp0 by 10^8
508         fmulx   48(%a1),%fp0    |multiply fp0 by 10^16
509         bras    A10_st
510 A9_norm:
511         tstw    %d2             |test for small exp case
512         beqs    A9_con          |if zero, continue as normal
513         fmulx   36(%a1),%fp0    |multiply fp0 by 10^8
514         fmulx   48(%a1),%fp0    |multiply fp0 by 10^16
515 A9_con:
516         fmulx   %fp1,%fp0               |calculate X * SCALE -> Y to fp0
519 | A10. Or in INEX.
520 |      If INEX is set, round error occurred.  This is compensated
521 |      for by 'or-ing' in the INEX2 flag to the lsb of Y.
523 | Register usage:
524 |       Input/Output
525 |       d0: FPCR with RZ mode/FPSR with INEX2 isolated
526 |       d2: x/x
527 |       d3: x/x
528 |       d4: LEN/Unchanged
529 |       d5: ICTR:LAMBDA
530 |       d6: ILOG/Unchanged
531 |       d7: k-factor/Unchanged
532 |       a0: ptr for original operand/final result
533 |       a1: ptr to PTENxx array/Unchanged
534 |       a2: x/ptr to FP_SCR2(a6)
535 |       fp0: Y/Y with lsb adjusted
536 |       fp1: 10^ISCALE/Unchanged
537 |       fp2: x/x
539 A10_st:
540         fmovel  %FPSR,%d0               |get FPSR
541         fmovex  %fp0,FP_SCR2(%a6)       |move Y to memory
542         leal    FP_SCR2(%a6),%a2        |load a2 with ptr to FP_SCR2
543         btstl   #9,%d0          |check if INEX2 set
544         beqs    A11_st          |if clear, skip rest
545         oril    #1,8(%a2)       |or in 1 to lsb of mantissa
546         fmovex  FP_SCR2(%a6),%fp0       |write adjusted Y back to fpu
549 | A11. Restore original FPCR; set size ext.
550 |      Perform FINT operation in the user's rounding mode.  Keep
551 |      the size to extended.  The sintdo entry point in the sint
552 |      routine expects the FPCR value to be in USER_FPCR for
553 |      mode and precision.  The original FPCR is saved in L_SCR1.
555 A11_st:
556         movel   USER_FPCR(%a6),L_SCR1(%a6) |save it for later
557         andil   #0x00000030,USER_FPCR(%a6) |set size to ext,
558 |                                       ;block exceptions
561 | A12. Calculate YINT = FINT(Y) according to user's rounding mode.
562 |      The FPSP routine sintd0 is used.  The output is in fp0.
564 | Register usage:
565 |       Input/Output
566 |       d0: FPSR with AINEX cleared/FPCR with size set to ext
567 |       d2: x/x/scratch
568 |       d3: x/x
569 |       d4: LEN/Unchanged
570 |       d5: ICTR:LAMBDA/Unchanged
571 |       d6: ILOG/Unchanged
572 |       d7: k-factor/Unchanged
573 |       a0: ptr for original operand/src ptr for sintdo
574 |       a1: ptr to PTENxx array/Unchanged
575 |       a2: ptr to FP_SCR2(a6)/Unchanged
576 |       a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
577 |       fp0: Y/YINT
578 |       fp1: 10^ISCALE/Unchanged
579 |       fp2: x/x
580 |       F_SCR1:x/x
581 |       F_SCR2:Y adjusted for inex/Y with original exponent
582 |       L_SCR1:x/original USER_FPCR
583 |       L_SCR2:first word of X packed/Unchanged
585 A12_st:
586         moveml  %d0-%d1/%a0-%a1,-(%a7)  |save regs used by sintd0
587         movel   L_SCR1(%a6),-(%a7)
588         movel   L_SCR2(%a6),-(%a7)
589         leal    FP_SCR2(%a6),%a0                |a0 is ptr to F_SCR2(a6)
590         fmovex  %fp0,(%a0)              |move Y to memory at FP_SCR2(a6)
591         tstl    L_SCR2(%a6)             |test sign of original operand
592         bges    do_fint                 |if pos, use Y
593         orl     #0x80000000,(%a0)               |if neg, use -Y
594 do_fint:
595         movel   USER_FPSR(%a6),-(%a7)
596         bsr     sintdo                  |sint routine returns int in fp0
597         moveb   (%a7),USER_FPSR(%a6)
598         addl    #4,%a7
599         movel   (%a7)+,L_SCR2(%a6)
600         movel   (%a7)+,L_SCR1(%a6)
601         moveml  (%a7)+,%d0-%d1/%a0-%a1  |restore regs used by sint
602         movel   L_SCR2(%a6),FP_SCR2(%a6)        |restore original exponent
603         movel   L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR
606 | A13. Check for LEN digits.
607 |      If the int operation results in more than LEN digits,
608 |      or less than LEN -1 digits, adjust ILOG and repeat from
609 |      A6.  This test occurs only on the first pass.  If the
610 |      result is exactly 10^LEN, decrement ILOG and divide
611 |      the mantissa by 10.  The calculation of 10^LEN cannot
612 |      be inexact, since all powers of ten up to 10^27 are exact
613 |      in extended precision, so the use of a previous power-of-ten
614 |      table will introduce no error.
617 | Register usage:
618 |       Input/Output
619 |       d0: FPCR with size set to ext/scratch final = 0
620 |       d2: x/x
621 |       d3: x/scratch final = x
622 |       d4: LEN/LEN adjusted
623 |       d5: ICTR:LAMBDA/LAMBDA:ICTR
624 |       d6: ILOG/ILOG adjusted
625 |       d7: k-factor/Unchanged
626 |       a0: pointer into memory for packed bcd string formation
627 |       a1: ptr to PTENxx array/Unchanged
628 |       a2: ptr to FP_SCR2(a6)/Unchanged
629 |       fp0: int portion of Y/abs(YINT) adjusted
630 |       fp1: 10^ISCALE/Unchanged
631 |       fp2: x/10^LEN
632 |       F_SCR1:x/x
633 |       F_SCR2:Y with original exponent/Unchanged
634 |       L_SCR1:original USER_FPCR/Unchanged
635 |       L_SCR2:first word of X packed/Unchanged
637 A13_st:
638         swap    %d5             |put ICTR in lower word of d5
639         tstw    %d5             |check if ICTR = 0
640         bne     not_zr          |if non-zero, go to second test
642 | Compute 10^(LEN-1)
644         fmoves  FONE,%fp2       |init fp2 to 1.0
645         movel   %d4,%d0         |put LEN in d0
646         subql   #1,%d0          |d0 = LEN -1
647         clrl    %d3             |clr table index
648 l_loop:
649         lsrl    #1,%d0          |shift next bit into carry
650         bccs    l_next          |if zero, skip the mul
651         fmulx   (%a1,%d3),%fp2  |mul by 10**(d3_bit_no)
652 l_next:
653         addl    #12,%d3         |inc d3 to next pwrten table entry
654         tstl    %d0             |test if LEN is zero
655         bnes    l_loop          |if not, loop
657 | 10^LEN-1 is computed for this test and A14.  If the input was
658 | denormalized, check only the case in which YINT > 10^LEN.
660         tstb    BINDEC_FLG(%a6) |check if input was norm
661         beqs    A13_con         |if norm, continue with checking
662         fabsx   %fp0            |take abs of YINT
663         bra     test_2
665 | Compare abs(YINT) to 10^(LEN-1) and 10^LEN
667 A13_con:
668         fabsx   %fp0            |take abs of YINT
669         fcmpx   %fp2,%fp0               |compare abs(YINT) with 10^(LEN-1)
670         fbge    test_2          |if greater, do next test
671         subql   #1,%d6          |subtract 1 from ILOG
672         movew   #1,%d5          |set ICTR
673         fmovel  #rm_mode,%FPCR  |set rmode to RM
674         fmuls   FTEN,%fp2       |compute 10^LEN
675         bra     A6_str          |return to A6 and recompute YINT
676 test_2:
677         fmuls   FTEN,%fp2       |compute 10^LEN
678         fcmpx   %fp2,%fp0               |compare abs(YINT) with 10^LEN
679         fblt    A14_st          |if less, all is ok, go to A14
680         fbgt    fix_ex          |if greater, fix and redo
681         fdivs   FTEN,%fp0       |if equal, divide by 10
682         addql   #1,%d6          | and inc ILOG
683         bras    A14_st          | and continue elsewhere
684 fix_ex:
685         addql   #1,%d6          |increment ILOG by 1
686         movew   #1,%d5          |set ICTR
687         fmovel  #rm_mode,%FPCR  |set rmode to RM
688         bra     A6_str          |return to A6 and recompute YINT
690 | Since ICTR <> 0, we have already been through one adjustment,
691 | and shouldn't have another; this is to check if abs(YINT) = 10^LEN
692 | 10^LEN is again computed using whatever table is in a1 since the
693 | value calculated cannot be inexact.
695 not_zr:
696         fmoves  FONE,%fp2       |init fp2 to 1.0
697         movel   %d4,%d0         |put LEN in d0
698         clrl    %d3             |clr table index
699 z_loop:
700         lsrl    #1,%d0          |shift next bit into carry
701         bccs    z_next          |if zero, skip the mul
702         fmulx   (%a1,%d3),%fp2  |mul by 10**(d3_bit_no)
703 z_next:
704         addl    #12,%d3         |inc d3 to next pwrten table entry
705         tstl    %d0             |test if LEN is zero
706         bnes    z_loop          |if not, loop
707         fabsx   %fp0            |get abs(YINT)
708         fcmpx   %fp2,%fp0               |check if abs(YINT) = 10^LEN
709         fbne    A14_st          |if not, skip this
710         fdivs   FTEN,%fp0       |divide abs(YINT) by 10
711         addql   #1,%d6          |and inc ILOG by 1
712         addql   #1,%d4          | and inc LEN
713         fmuls   FTEN,%fp2       | if LEN++, the get 10^^LEN
716 | A14. Convert the mantissa to bcd.
717 |      The binstr routine is used to convert the LEN digit
718 |      mantissa to bcd in memory.  The input to binstr is
719 |      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
720 |      such that the decimal point is to the left of bit 63.
721 |      The bcd digits are stored in the correct position in
722 |      the final string area in memory.
725 | Register usage:
726 |       Input/Output
727 |       d0: x/LEN call to binstr - final is 0
728 |       d1: x/0
729 |       d2: x/ms 32-bits of mant of abs(YINT)
730 |       d3: x/ls 32-bits of mant of abs(YINT)
731 |       d4: LEN/Unchanged
732 |       d5: ICTR:LAMBDA/LAMBDA:ICTR
733 |       d6: ILOG
734 |       d7: k-factor/Unchanged
735 |       a0: pointer into memory for packed bcd string formation
736 |           /ptr to first mantissa byte in result string
737 |       a1: ptr to PTENxx array/Unchanged
738 |       a2: ptr to FP_SCR2(a6)/Unchanged
739 |       fp0: int portion of Y/abs(YINT) adjusted
740 |       fp1: 10^ISCALE/Unchanged
741 |       fp2: 10^LEN/Unchanged
742 |       F_SCR1:x/Work area for final result
743 |       F_SCR2:Y with original exponent/Unchanged
744 |       L_SCR1:original USER_FPCR/Unchanged
745 |       L_SCR2:first word of X packed/Unchanged
747 A14_st:
748         fmovel  #rz_mode,%FPCR  |force rz for conversion
749         fdivx   %fp2,%fp0               |divide abs(YINT) by 10^LEN
750         leal    FP_SCR1(%a6),%a0
751         fmovex  %fp0,(%a0)      |move abs(YINT)/10^LEN to memory
752         movel   4(%a0),%d2      |move 2nd word of FP_RES to d2
753         movel   8(%a0),%d3      |move 3rd word of FP_RES to d3
754         clrl    4(%a0)          |zero word 2 of FP_RES
755         clrl    8(%a0)          |zero word 3 of FP_RES
756         movel   (%a0),%d0               |move exponent to d0
757         swap    %d0             |put exponent in lower word
758         beqs    no_sft          |if zero, don't shift
759         subil   #0x3ffd,%d0     |sub bias less 2 to make fract
760         tstl    %d0             |check if > 1
761         bgts    no_sft          |if so, don't shift
762         negl    %d0             |make exp positive
763 m_loop:
764         lsrl    #1,%d2          |shift d2:d3 right, add 0s
765         roxrl   #1,%d3          |the number of places
766         dbf     %d0,m_loop      |given in d0
767 no_sft:
768         tstl    %d2             |check for mantissa of zero
769         bnes    no_zr           |if not, go on
770         tstl    %d3             |continue zero check
771         beqs    zer_m           |if zero, go directly to binstr
772 no_zr:
773         clrl    %d1             |put zero in d1 for addx
774         addil   #0x00000080,%d3 |inc at bit 7
775         addxl   %d1,%d2         |continue inc
776         andil   #0xffffff80,%d3 |strip off lsb not used by 882
777 zer_m:
778         movel   %d4,%d0         |put LEN in d0 for binstr call
779         addql   #3,%a0          |a0 points to M16 byte in result
780         bsr     binstr          |call binstr to convert mant
783 | A15. Convert the exponent to bcd.
784 |      As in A14 above, the exp is converted to bcd and the
785 |      digits are stored in the final string.
787 |      Digits are stored in L_SCR1(a6) on return from BINDEC as:
789 |        32               16 15                0
790 |       -----------------------------------------
791 |       |  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
792 |       -----------------------------------------
794 | And are moved into their proper places in FP_SCR1.  If digit e4
795 | is non-zero, OPERR is signaled.  In all cases, all 4 digits are
796 | written as specified in the 881/882 manual for packed decimal.
798 | Register usage:
799 |       Input/Output
800 |       d0: x/LEN call to binstr - final is 0
801 |       d1: x/scratch (0);shift count for final exponent packing
802 |       d2: x/ms 32-bits of exp fraction/scratch
803 |       d3: x/ls 32-bits of exp fraction
804 |       d4: LEN/Unchanged
805 |       d5: ICTR:LAMBDA/LAMBDA:ICTR
806 |       d6: ILOG
807 |       d7: k-factor/Unchanged
808 |       a0: ptr to result string/ptr to L_SCR1(a6)
809 |       a1: ptr to PTENxx array/Unchanged
810 |       a2: ptr to FP_SCR2(a6)/Unchanged
811 |       fp0: abs(YINT) adjusted/float(ILOG)
812 |       fp1: 10^ISCALE/Unchanged
813 |       fp2: 10^LEN/Unchanged
814 |       F_SCR1:Work area for final result/BCD result
815 |       F_SCR2:Y with original exponent/ILOG/10^4
816 |       L_SCR1:original USER_FPCR/Exponent digits on return from binstr
817 |       L_SCR2:first word of X packed/Unchanged
819 A15_st:
820         tstb    BINDEC_FLG(%a6) |check for denorm
821         beqs    not_denorm
822         ftstx   %fp0            |test for zero
823         fbeq    den_zero        |if zero, use k-factor or 4933
824         fmovel  %d6,%fp0                |float ILOG
825         fabsx   %fp0            |get abs of ILOG
826         bras    convrt
827 den_zero:
828         tstl    %d7             |check sign of the k-factor
829         blts    use_ilog        |if negative, use ILOG
830         fmoves  F4933,%fp0      |force exponent to 4933
831         bras    convrt          |do it
832 use_ilog:
833         fmovel  %d6,%fp0                |float ILOG
834         fabsx   %fp0            |get abs of ILOG
835         bras    convrt
836 not_denorm:
837         ftstx   %fp0            |test for zero
838         fbne    not_zero        |if zero, force exponent
839         fmoves  FONE,%fp0       |force exponent to 1
840         bras    convrt          |do it
841 not_zero:
842         fmovel  %d6,%fp0                |float ILOG
843         fabsx   %fp0            |get abs of ILOG
844 convrt:
845         fdivx   24(%a1),%fp0    |compute ILOG/10^4
846         fmovex  %fp0,FP_SCR2(%a6)       |store fp0 in memory
847         movel   4(%a2),%d2      |move word 2 to d2
848         movel   8(%a2),%d3      |move word 3 to d3
849         movew   (%a2),%d0               |move exp to d0
850         beqs    x_loop_fin      |if zero, skip the shift
851         subiw   #0x3ffd,%d0     |subtract off bias
852         negw    %d0             |make exp positive
853 x_loop:
854         lsrl    #1,%d2          |shift d2:d3 right
855         roxrl   #1,%d3          |the number of places
856         dbf     %d0,x_loop      |given in d0
857 x_loop_fin:
858         clrl    %d1             |put zero in d1 for addx
859         addil   #0x00000080,%d3 |inc at bit 6
860         addxl   %d1,%d2         |continue inc
861         andil   #0xffffff80,%d3 |strip off lsb not used by 882
862         movel   #4,%d0          |put 4 in d0 for binstr call
863         leal    L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits
864         bsr     binstr          |call binstr to convert exp
865         movel   L_SCR1(%a6),%d0 |load L_SCR1 lword to d0
866         movel   #12,%d1         |use d1 for shift count
867         lsrl    %d1,%d0         |shift d0 right by 12
868         bfins   %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1
869         lsrl    %d1,%d0         |shift d0 right by 12
870         bfins   %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1
871         tstb    %d0             |check if e4 is zero
872         beqs    A16_st          |if zero, skip rest
873         orl     #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
876 | A16. Write sign bits to final string.
877 |          Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
879 | Register usage:
880 |       Input/Output
881 |       d0: x/scratch - final is x
882 |       d2: x/x
883 |       d3: x/x
884 |       d4: LEN/Unchanged
885 |       d5: ICTR:LAMBDA/LAMBDA:ICTR
886 |       d6: ILOG/ILOG adjusted
887 |       d7: k-factor/Unchanged
888 |       a0: ptr to L_SCR1(a6)/Unchanged
889 |       a1: ptr to PTENxx array/Unchanged
890 |       a2: ptr to FP_SCR2(a6)/Unchanged
891 |       fp0: float(ILOG)/Unchanged
892 |       fp1: 10^ISCALE/Unchanged
893 |       fp2: 10^LEN/Unchanged
894 |       F_SCR1:BCD result with correct signs
895 |       F_SCR2:ILOG/10^4
896 |       L_SCR1:Exponent digits on return from binstr
897 |       L_SCR2:first word of X packed/Unchanged
899 A16_st:
900         clrl    %d0             |clr d0 for collection of signs
901         andib   #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1
902         tstl    L_SCR2(%a6)     |check sign of original mantissa
903         bges    mant_p          |if pos, don't set SM
904         moveql  #2,%d0          |move 2 in to d0 for SM
905 mant_p:
906         tstl    %d6             |check sign of ILOG
907         bges    wr_sgn          |if pos, don't set SE
908         addql   #1,%d0          |set bit 0 in d0 for SE
909 wr_sgn:
910         bfins   %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1
912 | Clean up and restore all registers used.
914         fmovel  #0,%FPSR                |clear possible inex2/ainex bits
915         fmovemx (%a7)+,%fp0-%fp2
916         moveml  (%a7)+,%d2-%d7/%a2
917         rts
919         |end