hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / events / intel / ds.c
blobb7b01d762d32a3a6a30f4e2bd640aeae23dd7a3f
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
11 #include "../perf_event.h"
13 /* Waste a full page so it can be mapped into the cpu_entry_area */
14 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16 /* The size of a BTS record in bytes: */
17 #define BTS_RECORD_SIZE 24
19 #define PEBS_FIXUP_SIZE PAGE_SIZE
22 * pebs_record_32 for p4 and core not supported
24 struct pebs_record_32 {
25 u32 flags, ip;
26 u32 ax, bc, cx, dx;
27 u32 si, di, bp, sp;
32 union intel_x86_pebs_dse {
33 u64 val;
34 struct {
35 unsigned int ld_dse:4;
36 unsigned int ld_stlb_miss:1;
37 unsigned int ld_locked:1;
38 unsigned int ld_reserved:26;
40 struct {
41 unsigned int st_l1d_hit:1;
42 unsigned int st_reserved1:3;
43 unsigned int st_stlb_miss:1;
44 unsigned int st_locked:1;
45 unsigned int st_reserved2:26;
51 * Map PEBS Load Latency Data Source encodings to generic
52 * memory data source information
54 #define P(a, b) PERF_MEM_S(a, b)
55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 #define LEVEL(x) P(LVLNUM, x)
57 #define REM P(REMOTE, REMOTE)
58 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
60 /* Version for Sandy Bridge and later */
61 static u64 pebs_data_source[] = {
62 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
63 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
64 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
65 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
66 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
67 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
68 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
69 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
70 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
71 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
72 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
73 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
74 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
75 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
76 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
77 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
80 /* Patch up minor differences in the bits */
81 void __init intel_pmu_pebs_data_source_nhm(void)
83 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
84 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
85 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
88 void __init intel_pmu_pebs_data_source_skl(bool pmem)
90 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
92 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
93 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
94 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
95 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
96 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
99 static u64 precise_store_data(u64 status)
101 union intel_x86_pebs_dse dse;
102 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
104 dse.val = status;
107 * bit 4: TLB access
108 * 1 = stored missed 2nd level TLB
110 * so it either hit the walker or the OS
111 * otherwise hit 2nd level TLB
113 if (dse.st_stlb_miss)
114 val |= P(TLB, MISS);
115 else
116 val |= P(TLB, HIT);
119 * bit 0: hit L1 data cache
120 * if not set, then all we know is that
121 * it missed L1D
123 if (dse.st_l1d_hit)
124 val |= P(LVL, HIT);
125 else
126 val |= P(LVL, MISS);
129 * bit 5: Locked prefix
131 if (dse.st_locked)
132 val |= P(LOCK, LOCKED);
134 return val;
137 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
139 union perf_mem_data_src dse;
141 dse.val = PERF_MEM_NA;
143 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
144 dse.mem_op = PERF_MEM_OP_STORE;
145 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
146 dse.mem_op = PERF_MEM_OP_LOAD;
149 * L1 info only valid for following events:
151 * MEM_UOPS_RETIRED.STLB_MISS_STORES
152 * MEM_UOPS_RETIRED.LOCK_STORES
153 * MEM_UOPS_RETIRED.SPLIT_STORES
154 * MEM_UOPS_RETIRED.ALL_STORES
156 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
157 if (status & 1)
158 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
159 else
160 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
162 return dse.val;
165 static u64 load_latency_data(u64 status)
167 union intel_x86_pebs_dse dse;
168 u64 val;
170 dse.val = status;
173 * use the mapping table for bit 0-3
175 val = pebs_data_source[dse.ld_dse];
178 * Nehalem models do not support TLB, Lock infos
180 if (x86_pmu.pebs_no_tlb) {
181 val |= P(TLB, NA) | P(LOCK, NA);
182 return val;
185 * bit 4: TLB access
186 * 0 = did not miss 2nd level TLB
187 * 1 = missed 2nd level TLB
189 if (dse.ld_stlb_miss)
190 val |= P(TLB, MISS) | P(TLB, L2);
191 else
192 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
195 * bit 5: locked prefix
197 if (dse.ld_locked)
198 val |= P(LOCK, LOCKED);
200 return val;
203 struct pebs_record_core {
204 u64 flags, ip;
205 u64 ax, bx, cx, dx;
206 u64 si, di, bp, sp;
207 u64 r8, r9, r10, r11;
208 u64 r12, r13, r14, r15;
211 struct pebs_record_nhm {
212 u64 flags, ip;
213 u64 ax, bx, cx, dx;
214 u64 si, di, bp, sp;
215 u64 r8, r9, r10, r11;
216 u64 r12, r13, r14, r15;
217 u64 status, dla, dse, lat;
221 * Same as pebs_record_nhm, with two additional fields.
223 struct pebs_record_hsw {
224 u64 flags, ip;
225 u64 ax, bx, cx, dx;
226 u64 si, di, bp, sp;
227 u64 r8, r9, r10, r11;
228 u64 r12, r13, r14, r15;
229 u64 status, dla, dse, lat;
230 u64 real_ip, tsx_tuning;
233 union hsw_tsx_tuning {
234 struct {
235 u32 cycles_last_block : 32,
236 hle_abort : 1,
237 rtm_abort : 1,
238 instruction_abort : 1,
239 non_instruction_abort : 1,
240 retry : 1,
241 data_conflict : 1,
242 capacity_writes : 1,
243 capacity_reads : 1;
245 u64 value;
248 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
250 /* Same as HSW, plus TSC */
252 struct pebs_record_skl {
253 u64 flags, ip;
254 u64 ax, bx, cx, dx;
255 u64 si, di, bp, sp;
256 u64 r8, r9, r10, r11;
257 u64 r12, r13, r14, r15;
258 u64 status, dla, dse, lat;
259 u64 real_ip, tsx_tuning;
260 u64 tsc;
263 void init_debug_store_on_cpu(int cpu)
265 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
267 if (!ds)
268 return;
270 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
271 (u32)((u64)(unsigned long)ds),
272 (u32)((u64)(unsigned long)ds >> 32));
275 void fini_debug_store_on_cpu(int cpu)
277 if (!per_cpu(cpu_hw_events, cpu).ds)
278 return;
280 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
283 static DEFINE_PER_CPU(void *, insn_buffer);
285 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
287 unsigned long start = (unsigned long)cea;
288 phys_addr_t pa;
289 size_t msz = 0;
291 pa = virt_to_phys(addr);
293 preempt_disable();
294 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
295 cea_set_pte(cea, pa, prot);
298 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
299 * all TLB entries for it.
301 flush_tlb_kernel_range(start, start + size);
302 preempt_enable();
305 static void ds_clear_cea(void *cea, size_t size)
307 unsigned long start = (unsigned long)cea;
308 size_t msz = 0;
310 preempt_disable();
311 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
312 cea_set_pte(cea, 0, PAGE_NONE);
314 flush_tlb_kernel_range(start, start + size);
315 preempt_enable();
318 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
320 unsigned int order = get_order(size);
321 int node = cpu_to_node(cpu);
322 struct page *page;
324 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
325 return page ? page_address(page) : NULL;
328 static void dsfree_pages(const void *buffer, size_t size)
330 if (buffer)
331 free_pages((unsigned long)buffer, get_order(size));
334 static int alloc_pebs_buffer(int cpu)
336 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
337 struct debug_store *ds = hwev->ds;
338 size_t bsiz = x86_pmu.pebs_buffer_size;
339 int max, node = cpu_to_node(cpu);
340 void *buffer, *ibuffer, *cea;
342 if (!x86_pmu.pebs)
343 return 0;
345 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
346 if (unlikely(!buffer))
347 return -ENOMEM;
350 * HSW+ already provides us the eventing ip; no need to allocate this
351 * buffer then.
353 if (x86_pmu.intel_cap.pebs_format < 2) {
354 ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
355 if (!ibuffer) {
356 dsfree_pages(buffer, bsiz);
357 return -ENOMEM;
359 per_cpu(insn_buffer, cpu) = ibuffer;
361 hwev->ds_pebs_vaddr = buffer;
362 /* Update the cpu entry area mapping */
363 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
364 ds->pebs_buffer_base = (unsigned long) cea;
365 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
366 ds->pebs_index = ds->pebs_buffer_base;
367 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
368 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
369 return 0;
372 static void release_pebs_buffer(int cpu)
374 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
375 void *cea;
377 if (!x86_pmu.pebs)
378 return;
380 kfree(per_cpu(insn_buffer, cpu));
381 per_cpu(insn_buffer, cpu) = NULL;
383 /* Clear the fixmap */
384 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
385 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
386 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
387 hwev->ds_pebs_vaddr = NULL;
390 static int alloc_bts_buffer(int cpu)
392 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
393 struct debug_store *ds = hwev->ds;
394 void *buffer, *cea;
395 int max;
397 if (!x86_pmu.bts)
398 return 0;
400 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
401 if (unlikely(!buffer)) {
402 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
403 return -ENOMEM;
405 hwev->ds_bts_vaddr = buffer;
406 /* Update the fixmap */
407 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
408 ds->bts_buffer_base = (unsigned long) cea;
409 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
410 ds->bts_index = ds->bts_buffer_base;
411 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
412 ds->bts_absolute_maximum = ds->bts_buffer_base +
413 max * BTS_RECORD_SIZE;
414 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
415 (max / 16) * BTS_RECORD_SIZE;
416 return 0;
419 static void release_bts_buffer(int cpu)
421 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
422 void *cea;
424 if (!x86_pmu.bts)
425 return;
427 /* Clear the fixmap */
428 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
429 ds_clear_cea(cea, BTS_BUFFER_SIZE);
430 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
431 hwev->ds_bts_vaddr = NULL;
434 static int alloc_ds_buffer(int cpu)
436 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
438 memset(ds, 0, sizeof(*ds));
439 per_cpu(cpu_hw_events, cpu).ds = ds;
440 return 0;
443 static void release_ds_buffer(int cpu)
445 per_cpu(cpu_hw_events, cpu).ds = NULL;
448 void release_ds_buffers(void)
450 int cpu;
452 if (!x86_pmu.bts && !x86_pmu.pebs)
453 return;
455 for_each_possible_cpu(cpu)
456 release_ds_buffer(cpu);
458 for_each_possible_cpu(cpu) {
460 * Again, ignore errors from offline CPUs, they will no longer
461 * observe cpu_hw_events.ds and not program the DS_AREA when
462 * they come up.
464 fini_debug_store_on_cpu(cpu);
467 for_each_possible_cpu(cpu) {
468 release_pebs_buffer(cpu);
469 release_bts_buffer(cpu);
473 void reserve_ds_buffers(void)
475 int bts_err = 0, pebs_err = 0;
476 int cpu;
478 x86_pmu.bts_active = 0;
479 x86_pmu.pebs_active = 0;
481 if (!x86_pmu.bts && !x86_pmu.pebs)
482 return;
484 if (!x86_pmu.bts)
485 bts_err = 1;
487 if (!x86_pmu.pebs)
488 pebs_err = 1;
490 for_each_possible_cpu(cpu) {
491 if (alloc_ds_buffer(cpu)) {
492 bts_err = 1;
493 pebs_err = 1;
496 if (!bts_err && alloc_bts_buffer(cpu))
497 bts_err = 1;
499 if (!pebs_err && alloc_pebs_buffer(cpu))
500 pebs_err = 1;
502 if (bts_err && pebs_err)
503 break;
506 if (bts_err) {
507 for_each_possible_cpu(cpu)
508 release_bts_buffer(cpu);
511 if (pebs_err) {
512 for_each_possible_cpu(cpu)
513 release_pebs_buffer(cpu);
516 if (bts_err && pebs_err) {
517 for_each_possible_cpu(cpu)
518 release_ds_buffer(cpu);
519 } else {
520 if (x86_pmu.bts && !bts_err)
521 x86_pmu.bts_active = 1;
523 if (x86_pmu.pebs && !pebs_err)
524 x86_pmu.pebs_active = 1;
526 for_each_possible_cpu(cpu) {
528 * Ignores wrmsr_on_cpu() errors for offline CPUs they
529 * will get this call through intel_pmu_cpu_starting().
531 init_debug_store_on_cpu(cpu);
537 * BTS
540 struct event_constraint bts_constraint =
541 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
543 void intel_pmu_enable_bts(u64 config)
545 unsigned long debugctlmsr;
547 debugctlmsr = get_debugctlmsr();
549 debugctlmsr |= DEBUGCTLMSR_TR;
550 debugctlmsr |= DEBUGCTLMSR_BTS;
551 if (config & ARCH_PERFMON_EVENTSEL_INT)
552 debugctlmsr |= DEBUGCTLMSR_BTINT;
554 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
555 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
557 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
558 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
560 update_debugctlmsr(debugctlmsr);
563 void intel_pmu_disable_bts(void)
565 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
566 unsigned long debugctlmsr;
568 if (!cpuc->ds)
569 return;
571 debugctlmsr = get_debugctlmsr();
573 debugctlmsr &=
574 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
575 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
577 update_debugctlmsr(debugctlmsr);
580 int intel_pmu_drain_bts_buffer(void)
582 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
583 struct debug_store *ds = cpuc->ds;
584 struct bts_record {
585 u64 from;
586 u64 to;
587 u64 flags;
589 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
590 struct bts_record *at, *base, *top;
591 struct perf_output_handle handle;
592 struct perf_event_header header;
593 struct perf_sample_data data;
594 unsigned long skip = 0;
595 struct pt_regs regs;
597 if (!event)
598 return 0;
600 if (!x86_pmu.bts_active)
601 return 0;
603 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
604 top = (struct bts_record *)(unsigned long)ds->bts_index;
606 if (top <= base)
607 return 0;
609 memset(&regs, 0, sizeof(regs));
611 ds->bts_index = ds->bts_buffer_base;
613 perf_sample_data_init(&data, 0, event->hw.last_period);
616 * BTS leaks kernel addresses in branches across the cpl boundary,
617 * such as traps or system calls, so unless the user is asking for
618 * kernel tracing (and right now it's not possible), we'd need to
619 * filter them out. But first we need to count how many of those we
620 * have in the current batch. This is an extra O(n) pass, however,
621 * it's much faster than the other one especially considering that
622 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
623 * alloc_bts_buffer()).
625 for (at = base; at < top; at++) {
627 * Note that right now *this* BTS code only works if
628 * attr::exclude_kernel is set, but let's keep this extra
629 * check here in case that changes.
631 if (event->attr.exclude_kernel &&
632 (kernel_ip(at->from) || kernel_ip(at->to)))
633 skip++;
637 * Prepare a generic sample, i.e. fill in the invariant fields.
638 * We will overwrite the from and to address before we output
639 * the sample.
641 rcu_read_lock();
642 perf_prepare_sample(&header, &data, event, &regs);
644 if (perf_output_begin(&handle, event, header.size *
645 (top - base - skip)))
646 goto unlock;
648 for (at = base; at < top; at++) {
649 /* Filter out any records that contain kernel addresses. */
650 if (event->attr.exclude_kernel &&
651 (kernel_ip(at->from) || kernel_ip(at->to)))
652 continue;
654 data.ip = at->from;
655 data.addr = at->to;
657 perf_output_sample(&handle, &header, &data, event);
660 perf_output_end(&handle);
662 /* There's new data available. */
663 event->hw.interrupts++;
664 event->pending_kill = POLL_IN;
665 unlock:
666 rcu_read_unlock();
667 return 1;
670 static inline void intel_pmu_drain_pebs_buffer(void)
672 struct pt_regs regs;
674 x86_pmu.drain_pebs(&regs);
678 * PEBS
680 struct event_constraint intel_core2_pebs_event_constraints[] = {
681 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
682 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
683 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
684 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
685 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
686 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
687 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
688 EVENT_CONSTRAINT_END
691 struct event_constraint intel_atom_pebs_event_constraints[] = {
692 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
693 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
694 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
695 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
696 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
697 /* Allow all events as PEBS with no flags */
698 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
699 EVENT_CONSTRAINT_END
702 struct event_constraint intel_slm_pebs_event_constraints[] = {
703 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
704 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
705 /* Allow all events as PEBS with no flags */
706 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
707 EVENT_CONSTRAINT_END
710 struct event_constraint intel_glm_pebs_event_constraints[] = {
711 /* Allow all events as PEBS with no flags */
712 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
713 EVENT_CONSTRAINT_END
716 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
717 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
718 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
719 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
720 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
721 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
722 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
723 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
724 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
725 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
726 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
727 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
728 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
729 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
730 EVENT_CONSTRAINT_END
733 struct event_constraint intel_westmere_pebs_event_constraints[] = {
734 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
735 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
736 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
737 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
738 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
739 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
740 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
741 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
742 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
743 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
744 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
745 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
746 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
747 EVENT_CONSTRAINT_END
750 struct event_constraint intel_snb_pebs_event_constraints[] = {
751 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
752 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
753 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
754 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
755 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
756 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
757 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
758 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
759 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
760 /* Allow all events as PEBS with no flags */
761 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
762 EVENT_CONSTRAINT_END
765 struct event_constraint intel_ivb_pebs_event_constraints[] = {
766 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
767 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
768 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
769 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
770 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
771 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
772 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
773 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
774 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
775 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
776 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
777 /* Allow all events as PEBS with no flags */
778 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
779 EVENT_CONSTRAINT_END
782 struct event_constraint intel_hsw_pebs_event_constraints[] = {
783 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
784 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
785 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
786 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
787 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
788 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
789 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
790 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
791 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
792 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
793 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
794 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
795 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
796 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
797 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
798 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
799 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
800 /* Allow all events as PEBS with no flags */
801 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
802 EVENT_CONSTRAINT_END
805 struct event_constraint intel_bdw_pebs_event_constraints[] = {
806 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
807 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
808 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
809 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
810 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
811 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
812 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
813 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
814 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
815 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
816 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
817 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
818 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
819 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
820 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
821 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
822 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
823 /* Allow all events as PEBS with no flags */
824 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
825 EVENT_CONSTRAINT_END
829 struct event_constraint intel_skl_pebs_event_constraints[] = {
830 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
831 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
832 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
833 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
834 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
835 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
836 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
837 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
838 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
839 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
840 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
841 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
842 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
843 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
844 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
845 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
846 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
847 /* Allow all events as PEBS with no flags */
848 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
849 EVENT_CONSTRAINT_END
852 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
854 struct event_constraint *c;
856 if (!event->attr.precise_ip)
857 return NULL;
859 if (x86_pmu.pebs_constraints) {
860 for_each_event_constraint(c, x86_pmu.pebs_constraints) {
861 if ((event->hw.config & c->cmask) == c->code) {
862 event->hw.flags |= c->flags;
863 return c;
869 * Extended PEBS support
870 * Makes the PEBS code search the normal constraints.
872 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
873 return NULL;
875 return &emptyconstraint;
879 * We need the sched_task callback even for per-cpu events when we use
880 * the large interrupt threshold, such that we can provide PID and TID
881 * to PEBS samples.
883 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
885 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
888 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
890 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
892 if (!sched_in && pebs_needs_sched_cb(cpuc))
893 intel_pmu_drain_pebs_buffer();
896 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
898 struct debug_store *ds = cpuc->ds;
899 u64 threshold;
900 int reserved;
902 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
903 reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed;
904 else
905 reserved = x86_pmu.max_pebs_events;
907 if (cpuc->n_pebs == cpuc->n_large_pebs) {
908 threshold = ds->pebs_absolute_maximum -
909 reserved * x86_pmu.pebs_record_size;
910 } else {
911 threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size;
914 ds->pebs_interrupt_threshold = threshold;
917 static void
918 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu)
921 * Make sure we get updated with the first PEBS
922 * event. It will trigger also during removal, but
923 * that does not hurt:
925 bool update = cpuc->n_pebs == 1;
927 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
928 if (!needed_cb)
929 perf_sched_cb_inc(pmu);
930 else
931 perf_sched_cb_dec(pmu);
933 update = true;
936 if (update)
937 pebs_update_threshold(cpuc);
940 void intel_pmu_pebs_add(struct perf_event *event)
942 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
943 struct hw_perf_event *hwc = &event->hw;
944 bool needed_cb = pebs_needs_sched_cb(cpuc);
946 cpuc->n_pebs++;
947 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
948 cpuc->n_large_pebs++;
950 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
953 void intel_pmu_pebs_enable(struct perf_event *event)
955 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
956 struct hw_perf_event *hwc = &event->hw;
957 struct debug_store *ds = cpuc->ds;
959 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
961 cpuc->pebs_enabled |= 1ULL << hwc->idx;
963 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
964 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
965 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
966 cpuc->pebs_enabled |= 1ULL << 63;
969 * Use auto-reload if possible to save a MSR write in the PMI.
970 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
972 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
973 unsigned int idx = hwc->idx;
975 if (idx >= INTEL_PMC_IDX_FIXED)
976 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
977 ds->pebs_event_reset[idx] =
978 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
979 } else {
980 ds->pebs_event_reset[hwc->idx] = 0;
984 void intel_pmu_pebs_del(struct perf_event *event)
986 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
987 struct hw_perf_event *hwc = &event->hw;
988 bool needed_cb = pebs_needs_sched_cb(cpuc);
990 cpuc->n_pebs--;
991 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
992 cpuc->n_large_pebs--;
994 pebs_update_state(needed_cb, cpuc, event->ctx->pmu);
997 void intel_pmu_pebs_disable(struct perf_event *event)
999 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1000 struct hw_perf_event *hwc = &event->hw;
1002 if (cpuc->n_pebs == cpuc->n_large_pebs)
1003 intel_pmu_drain_pebs_buffer();
1005 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1007 if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
1008 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1009 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1010 cpuc->pebs_enabled &= ~(1ULL << 63);
1012 if (cpuc->enabled)
1013 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1015 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1018 void intel_pmu_pebs_enable_all(void)
1020 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1022 if (cpuc->pebs_enabled)
1023 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1026 void intel_pmu_pebs_disable_all(void)
1028 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1030 if (cpuc->pebs_enabled)
1031 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1034 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1036 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037 unsigned long from = cpuc->lbr_entries[0].from;
1038 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1039 unsigned long ip = regs->ip;
1040 int is_64bit = 0;
1041 void *kaddr;
1042 int size;
1045 * We don't need to fixup if the PEBS assist is fault like
1047 if (!x86_pmu.intel_cap.pebs_trap)
1048 return 1;
1051 * No LBR entry, no basic block, no rewinding
1053 if (!cpuc->lbr_stack.nr || !from || !to)
1054 return 0;
1057 * Basic blocks should never cross user/kernel boundaries
1059 if (kernel_ip(ip) != kernel_ip(to))
1060 return 0;
1063 * unsigned math, either ip is before the start (impossible) or
1064 * the basic block is larger than 1 page (sanity)
1066 if ((ip - to) > PEBS_FIXUP_SIZE)
1067 return 0;
1070 * We sampled a branch insn, rewind using the LBR stack
1072 if (ip == to) {
1073 set_linear_ip(regs, from);
1074 return 1;
1077 size = ip - to;
1078 if (!kernel_ip(ip)) {
1079 int bytes;
1080 u8 *buf = this_cpu_read(insn_buffer);
1082 /* 'size' must fit our buffer, see above */
1083 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1084 if (bytes != 0)
1085 return 0;
1087 kaddr = buf;
1088 } else {
1089 kaddr = (void *)to;
1092 do {
1093 struct insn insn;
1095 old_to = to;
1097 #ifdef CONFIG_X86_64
1098 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
1099 #endif
1100 insn_init(&insn, kaddr, size, is_64bit);
1101 insn_get_length(&insn);
1103 * Make sure there was not a problem decoding the
1104 * instruction and getting the length. This is
1105 * doubly important because we have an infinite
1106 * loop if insn.length=0.
1108 if (!insn.length)
1109 break;
1111 to += insn.length;
1112 kaddr += insn.length;
1113 size -= insn.length;
1114 } while (to < ip);
1116 if (to == ip) {
1117 set_linear_ip(regs, old_to);
1118 return 1;
1122 * Even though we decoded the basic block, the instruction stream
1123 * never matched the given IP, either the TO or the IP got corrupted.
1125 return 0;
1128 static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs)
1130 if (pebs->tsx_tuning) {
1131 union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
1132 return tsx.cycles_last_block;
1134 return 0;
1137 static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs)
1139 u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1141 /* For RTM XABORTs also log the abort code from AX */
1142 if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
1143 txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1144 return txn;
1147 static void setup_pebs_sample_data(struct perf_event *event,
1148 struct pt_regs *iregs, void *__pebs,
1149 struct perf_sample_data *data,
1150 struct pt_regs *regs)
1152 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1153 (PERF_X86_EVENT_PEBS_ST_HSW | \
1154 PERF_X86_EVENT_PEBS_LD_HSW | \
1155 PERF_X86_EVENT_PEBS_NA_HSW)
1157 * We cast to the biggest pebs_record but are careful not to
1158 * unconditionally access the 'extra' entries.
1160 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1161 struct pebs_record_skl *pebs = __pebs;
1162 u64 sample_type;
1163 int fll, fst, dsrc;
1164 int fl = event->hw.flags;
1166 if (pebs == NULL)
1167 return;
1169 sample_type = event->attr.sample_type;
1170 dsrc = sample_type & PERF_SAMPLE_DATA_SRC;
1172 fll = fl & PERF_X86_EVENT_PEBS_LDLAT;
1173 fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1175 perf_sample_data_init(data, 0, event->hw.last_period);
1177 data->period = event->hw.last_period;
1180 * Use latency for weight (only avail with PEBS-LL)
1182 if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
1183 data->weight = pebs->lat;
1186 * data.data_src encodes the data source
1188 if (dsrc) {
1189 u64 val = PERF_MEM_NA;
1190 if (fll)
1191 val = load_latency_data(pebs->dse);
1192 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1193 val = precise_datala_hsw(event, pebs->dse);
1194 else if (fst)
1195 val = precise_store_data(pebs->dse);
1196 data->data_src.val = val;
1200 * We must however always use iregs for the unwinder to stay sane; the
1201 * record BP,SP,IP can point into thin air when the record is from a
1202 * previous PMI context or an (I)RET happend between the record and
1203 * PMI.
1205 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1206 data->callchain = perf_callchain(event, iregs);
1209 * We use the interrupt regs as a base because the PEBS record does not
1210 * contain a full regs set, specifically it seems to lack segment
1211 * descriptors, which get used by things like user_mode().
1213 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1215 *regs = *iregs;
1218 * Initialize regs_>flags from PEBS,
1219 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1220 * i.e., do not rely on it being zero:
1222 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1224 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1225 regs->ax = pebs->ax;
1226 regs->bx = pebs->bx;
1227 regs->cx = pebs->cx;
1228 regs->dx = pebs->dx;
1229 regs->si = pebs->si;
1230 regs->di = pebs->di;
1232 regs->bp = pebs->bp;
1233 regs->sp = pebs->sp;
1235 #ifndef CONFIG_X86_32
1236 regs->r8 = pebs->r8;
1237 regs->r9 = pebs->r9;
1238 regs->r10 = pebs->r10;
1239 regs->r11 = pebs->r11;
1240 regs->r12 = pebs->r12;
1241 regs->r13 = pebs->r13;
1242 regs->r14 = pebs->r14;
1243 regs->r15 = pebs->r15;
1244 #endif
1247 if (event->attr.precise_ip > 1) {
1249 * Haswell and later processors have an 'eventing IP'
1250 * (real IP) which fixes the off-by-1 skid in hardware.
1251 * Use it when precise_ip >= 2 :
1253 if (x86_pmu.intel_cap.pebs_format >= 2) {
1254 set_linear_ip(regs, pebs->real_ip);
1255 regs->flags |= PERF_EFLAGS_EXACT;
1256 } else {
1257 /* Otherwise, use PEBS off-by-1 IP: */
1258 set_linear_ip(regs, pebs->ip);
1261 * With precise_ip >= 2, try to fix up the off-by-1 IP
1262 * using the LBR. If successful, the fixup function
1263 * corrects regs->ip and calls set_linear_ip() on regs:
1265 if (intel_pmu_pebs_fixup_ip(regs))
1266 regs->flags |= PERF_EFLAGS_EXACT;
1268 } else {
1270 * When precise_ip == 1, return the PEBS off-by-1 IP,
1271 * no fixup attempted:
1273 set_linear_ip(regs, pebs->ip);
1277 if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) &&
1278 x86_pmu.intel_cap.pebs_format >= 1)
1279 data->addr = pebs->dla;
1281 if (x86_pmu.intel_cap.pebs_format >= 2) {
1282 /* Only set the TSX weight when no memory weight. */
1283 if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll)
1284 data->weight = intel_hsw_weight(pebs);
1286 if (sample_type & PERF_SAMPLE_TRANSACTION)
1287 data->txn = intel_hsw_transaction(pebs);
1291 * v3 supplies an accurate time stamp, so we use that
1292 * for the time stamp.
1294 * We can only do this for the default trace clock.
1296 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1297 event->attr.use_clockid == 0)
1298 data->time = native_sched_clock_from_tsc(pebs->tsc);
1300 if (has_branch_stack(event))
1301 data->br_stack = &cpuc->lbr_stack;
1304 static inline void *
1305 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1307 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1308 void *at;
1309 u64 pebs_status;
1312 * fmt0 does not have a status bitfield (does not use
1313 * perf_record_nhm format)
1315 if (x86_pmu.intel_cap.pebs_format < 1)
1316 return base;
1318 if (base == NULL)
1319 return NULL;
1321 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1322 struct pebs_record_nhm *p = at;
1324 if (test_bit(bit, (unsigned long *)&p->status)) {
1325 /* PEBS v3 has accurate status bits */
1326 if (x86_pmu.intel_cap.pebs_format >= 3)
1327 return at;
1329 if (p->status == (1 << bit))
1330 return at;
1332 /* clear non-PEBS bit and re-check */
1333 pebs_status = p->status & cpuc->pebs_enabled;
1334 pebs_status &= PEBS_COUNTER_MASK;
1335 if (pebs_status == (1 << bit))
1336 return at;
1339 return NULL;
1342 void intel_pmu_auto_reload_read(struct perf_event *event)
1344 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1346 perf_pmu_disable(event->pmu);
1347 intel_pmu_drain_pebs_buffer();
1348 perf_pmu_enable(event->pmu);
1352 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1354 static int
1355 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1357 struct hw_perf_event *hwc = &event->hw;
1358 int shift = 64 - x86_pmu.cntval_bits;
1359 u64 period = hwc->sample_period;
1360 u64 prev_raw_count, new_raw_count;
1361 s64 new, old;
1363 WARN_ON(!period);
1366 * drain_pebs() only happens when the PMU is disabled.
1368 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1370 prev_raw_count = local64_read(&hwc->prev_count);
1371 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1372 local64_set(&hwc->prev_count, new_raw_count);
1375 * Since the counter increments a negative counter value and
1376 * overflows on the sign switch, giving the interval:
1378 * [-period, 0]
1380 * the difference between two consequtive reads is:
1382 * A) value2 - value1;
1383 * when no overflows have happened in between,
1385 * B) (0 - value1) + (value2 - (-period));
1386 * when one overflow happened in between,
1388 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1389 * when @n overflows happened in between.
1391 * Here A) is the obvious difference, B) is the extension to the
1392 * discrete interval, where the first term is to the top of the
1393 * interval and the second term is from the bottom of the next
1394 * interval and C) the extension to multiple intervals, where the
1395 * middle term is the whole intervals covered.
1397 * An equivalent of C, by reduction, is:
1399 * value2 - value1 + n * period
1401 new = ((s64)(new_raw_count << shift) >> shift);
1402 old = ((s64)(prev_raw_count << shift) >> shift);
1403 local64_add(new - old + count * period, &event->count);
1405 perf_event_update_userpage(event);
1407 return 0;
1410 static void __intel_pmu_pebs_event(struct perf_event *event,
1411 struct pt_regs *iregs,
1412 void *base, void *top,
1413 int bit, int count)
1415 struct hw_perf_event *hwc = &event->hw;
1416 struct perf_sample_data data;
1417 struct pt_regs regs;
1418 void *at = get_next_pebs_record_by_bit(base, top, bit);
1420 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1422 * Now, auto-reload is only enabled in fixed period mode.
1423 * The reload value is always hwc->sample_period.
1424 * May need to change it, if auto-reload is enabled in
1425 * freq mode later.
1427 intel_pmu_save_and_restart_reload(event, count);
1428 } else if (!intel_pmu_save_and_restart(event))
1429 return;
1431 while (count > 1) {
1432 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1433 perf_event_output(event, &data, &regs);
1434 at += x86_pmu.pebs_record_size;
1435 at = get_next_pebs_record_by_bit(at, top, bit);
1436 count--;
1439 setup_pebs_sample_data(event, iregs, at, &data, &regs);
1442 * All but the last records are processed.
1443 * The last one is left to be able to call the overflow handler.
1445 if (perf_event_overflow(event, &data, &regs)) {
1446 x86_pmu_stop(event, 0);
1447 return;
1452 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
1454 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1455 struct debug_store *ds = cpuc->ds;
1456 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1457 struct pebs_record_core *at, *top;
1458 int n;
1460 if (!x86_pmu.pebs_active)
1461 return;
1463 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1464 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1467 * Whatever else happens, drain the thing
1469 ds->pebs_index = ds->pebs_buffer_base;
1471 if (!test_bit(0, cpuc->active_mask))
1472 return;
1474 WARN_ON_ONCE(!event);
1476 if (!event->attr.precise_ip)
1477 return;
1479 n = top - at;
1480 if (n <= 0) {
1481 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1482 intel_pmu_save_and_restart_reload(event, 0);
1483 return;
1486 __intel_pmu_pebs_event(event, iregs, at, top, 0, n);
1489 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
1491 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1492 struct debug_store *ds = cpuc->ds;
1493 struct perf_event *event;
1494 void *base, *at, *top;
1495 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1496 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1497 int bit, i, size;
1498 u64 mask;
1500 if (!x86_pmu.pebs_active)
1501 return;
1503 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1504 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1506 ds->pebs_index = ds->pebs_buffer_base;
1508 mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1509 size = x86_pmu.max_pebs_events;
1510 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1511 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1512 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1515 if (unlikely(base >= top)) {
1517 * The drain_pebs() could be called twice in a short period
1518 * for auto-reload event in pmu::read(). There are no
1519 * overflows have happened in between.
1520 * It needs to call intel_pmu_save_and_restart_reload() to
1521 * update the event->count for this case.
1523 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled,
1524 size) {
1525 event = cpuc->events[bit];
1526 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1527 intel_pmu_save_and_restart_reload(event, 0);
1529 return;
1532 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
1533 struct pebs_record_nhm *p = at;
1534 u64 pebs_status;
1536 pebs_status = p->status & cpuc->pebs_enabled;
1537 pebs_status &= mask;
1539 /* PEBS v3 has more accurate status bits */
1540 if (x86_pmu.intel_cap.pebs_format >= 3) {
1541 for_each_set_bit(bit, (unsigned long *)&pebs_status,
1542 size)
1543 counts[bit]++;
1545 continue;
1549 * On some CPUs the PEBS status can be zero when PEBS is
1550 * racing with clearing of GLOBAL_STATUS.
1552 * Normally we would drop that record, but in the
1553 * case when there is only a single active PEBS event
1554 * we can assume it's for that event.
1556 if (!pebs_status && cpuc->pebs_enabled &&
1557 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
1558 pebs_status = cpuc->pebs_enabled;
1560 bit = find_first_bit((unsigned long *)&pebs_status,
1561 x86_pmu.max_pebs_events);
1562 if (bit >= x86_pmu.max_pebs_events)
1563 continue;
1566 * The PEBS hardware does not deal well with the situation
1567 * when events happen near to each other and multiple bits
1568 * are set. But it should happen rarely.
1570 * If these events include one PEBS and multiple non-PEBS
1571 * events, it doesn't impact PEBS record. The record will
1572 * be handled normally. (slow path)
1574 * If these events include two or more PEBS events, the
1575 * records for the events can be collapsed into a single
1576 * one, and it's not possible to reconstruct all events
1577 * that caused the PEBS record. It's called collision.
1578 * If collision happened, the record will be dropped.
1580 if (p->status != (1ULL << bit)) {
1581 for_each_set_bit(i, (unsigned long *)&pebs_status,
1582 x86_pmu.max_pebs_events)
1583 error[i]++;
1584 continue;
1587 counts[bit]++;
1590 for (bit = 0; bit < size; bit++) {
1591 if ((counts[bit] == 0) && (error[bit] == 0))
1592 continue;
1594 event = cpuc->events[bit];
1595 if (WARN_ON_ONCE(!event))
1596 continue;
1598 if (WARN_ON_ONCE(!event->attr.precise_ip))
1599 continue;
1601 /* log dropped samples number */
1602 if (error[bit]) {
1603 perf_log_lost_samples(event, error[bit]);
1605 if (perf_event_account_interrupt(event))
1606 x86_pmu_stop(event, 0);
1609 if (counts[bit]) {
1610 __intel_pmu_pebs_event(event, iregs, base,
1611 top, bit, counts[bit]);
1617 * BTS, PEBS probe and setup
1620 void __init intel_ds_init(void)
1623 * No support for 32bit formats
1625 if (!boot_cpu_has(X86_FEATURE_DTES64))
1626 return;
1628 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
1629 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
1630 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
1631 if (x86_pmu.pebs) {
1632 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
1633 int format = x86_pmu.intel_cap.pebs_format;
1635 switch (format) {
1636 case 0:
1637 pr_cont("PEBS fmt0%c, ", pebs_type);
1638 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
1640 * Using >PAGE_SIZE buffers makes the WRMSR to
1641 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1642 * mysteriously hang on Core2.
1644 * As a workaround, we don't do this.
1646 x86_pmu.pebs_buffer_size = PAGE_SIZE;
1647 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
1648 break;
1650 case 1:
1651 pr_cont("PEBS fmt1%c, ", pebs_type);
1652 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
1653 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1654 break;
1656 case 2:
1657 pr_cont("PEBS fmt2%c, ", pebs_type);
1658 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
1659 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1660 break;
1662 case 3:
1663 pr_cont("PEBS fmt3%c, ", pebs_type);
1664 x86_pmu.pebs_record_size =
1665 sizeof(struct pebs_record_skl);
1666 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
1667 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
1668 break;
1670 default:
1671 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
1672 x86_pmu.pebs = 0;
1677 void perf_restore_debug_store(void)
1679 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1681 if (!x86_pmu.bts && !x86_pmu.pebs)
1682 return;
1684 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);