1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
11 #include "../perf_event.h"
13 /* Waste a full page so it can be mapped into the cpu_entry_area */
14 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store
, cpu_debug_store
);
16 /* The size of a BTS record in bytes: */
17 #define BTS_RECORD_SIZE 24
19 #define PEBS_FIXUP_SIZE PAGE_SIZE
22 * pebs_record_32 for p4 and core not supported
24 struct pebs_record_32 {
32 union intel_x86_pebs_dse
{
35 unsigned int ld_dse
:4;
36 unsigned int ld_stlb_miss
:1;
37 unsigned int ld_locked
:1;
38 unsigned int ld_reserved
:26;
41 unsigned int st_l1d_hit
:1;
42 unsigned int st_reserved1
:3;
43 unsigned int st_stlb_miss
:1;
44 unsigned int st_locked
:1;
45 unsigned int st_reserved2
:26;
51 * Map PEBS Load Latency Data Source encodings to generic
52 * memory data source information
54 #define P(a, b) PERF_MEM_S(a, b)
55 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
56 #define LEVEL(x) P(LVLNUM, x)
57 #define REM P(REMOTE, REMOTE)
58 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
60 /* Version for Sandy Bridge and later */
61 static u64 pebs_data_source
[] = {
62 P(OP
, LOAD
) | P(LVL
, MISS
) | LEVEL(L3
) | P(SNOOP
, NA
),/* 0x00:ukn L3 */
63 OP_LH
| P(LVL
, L1
) | LEVEL(L1
) | P(SNOOP
, NONE
), /* 0x01: L1 local */
64 OP_LH
| P(LVL
, LFB
) | LEVEL(LFB
) | P(SNOOP
, NONE
), /* 0x02: LFB hit */
65 OP_LH
| P(LVL
, L2
) | LEVEL(L2
) | P(SNOOP
, NONE
), /* 0x03: L2 hit */
66 OP_LH
| P(LVL
, L3
) | LEVEL(L3
) | P(SNOOP
, NONE
), /* 0x04: L3 hit */
67 OP_LH
| P(LVL
, L3
) | LEVEL(L3
) | P(SNOOP
, MISS
), /* 0x05: L3 hit, snoop miss */
68 OP_LH
| P(LVL
, L3
) | LEVEL(L3
) | P(SNOOP
, HIT
), /* 0x06: L3 hit, snoop hit */
69 OP_LH
| P(LVL
, L3
) | LEVEL(L3
) | P(SNOOP
, HITM
), /* 0x07: L3 hit, snoop hitm */
70 OP_LH
| P(LVL
, REM_CCE1
) | REM
| LEVEL(L3
) | P(SNOOP
, HIT
), /* 0x08: L3 miss snoop hit */
71 OP_LH
| P(LVL
, REM_CCE1
) | REM
| LEVEL(L3
) | P(SNOOP
, HITM
), /* 0x09: L3 miss snoop hitm*/
72 OP_LH
| P(LVL
, LOC_RAM
) | LEVEL(RAM
) | P(SNOOP
, HIT
), /* 0x0a: L3 miss, shared */
73 OP_LH
| P(LVL
, REM_RAM1
) | REM
| LEVEL(L3
) | P(SNOOP
, HIT
), /* 0x0b: L3 miss, shared */
74 OP_LH
| P(LVL
, LOC_RAM
) | LEVEL(RAM
) | SNOOP_NONE_MISS
, /* 0x0c: L3 miss, excl */
75 OP_LH
| P(LVL
, REM_RAM1
) | LEVEL(RAM
) | REM
| SNOOP_NONE_MISS
, /* 0x0d: L3 miss, excl */
76 OP_LH
| P(LVL
, IO
) | LEVEL(NA
) | P(SNOOP
, NONE
), /* 0x0e: I/O */
77 OP_LH
| P(LVL
, UNC
) | LEVEL(NA
) | P(SNOOP
, NONE
), /* 0x0f: uncached */
80 /* Patch up minor differences in the bits */
81 void __init
intel_pmu_pebs_data_source_nhm(void)
83 pebs_data_source
[0x05] = OP_LH
| P(LVL
, L3
) | LEVEL(L3
) | P(SNOOP
, HIT
);
84 pebs_data_source
[0x06] = OP_LH
| P(LVL
, L3
) | LEVEL(L3
) | P(SNOOP
, HITM
);
85 pebs_data_source
[0x07] = OP_LH
| P(LVL
, L3
) | LEVEL(L3
) | P(SNOOP
, HITM
);
88 void __init
intel_pmu_pebs_data_source_skl(bool pmem
)
90 u64 pmem_or_l4
= pmem
? LEVEL(PMEM
) : LEVEL(L4
);
92 pebs_data_source
[0x08] = OP_LH
| pmem_or_l4
| P(SNOOP
, HIT
);
93 pebs_data_source
[0x09] = OP_LH
| pmem_or_l4
| REM
| P(SNOOP
, HIT
);
94 pebs_data_source
[0x0b] = OP_LH
| LEVEL(RAM
) | REM
| P(SNOOP
, NONE
);
95 pebs_data_source
[0x0c] = OP_LH
| LEVEL(ANY_CACHE
) | REM
| P(SNOOPX
, FWD
);
96 pebs_data_source
[0x0d] = OP_LH
| LEVEL(ANY_CACHE
) | REM
| P(SNOOP
, HITM
);
99 static u64
precise_store_data(u64 status
)
101 union intel_x86_pebs_dse dse
;
102 u64 val
= P(OP
, STORE
) | P(SNOOP
, NA
) | P(LVL
, L1
) | P(TLB
, L2
);
108 * 1 = stored missed 2nd level TLB
110 * so it either hit the walker or the OS
111 * otherwise hit 2nd level TLB
113 if (dse
.st_stlb_miss
)
119 * bit 0: hit L1 data cache
120 * if not set, then all we know is that
129 * bit 5: Locked prefix
132 val
|= P(LOCK
, LOCKED
);
137 static u64
precise_datala_hsw(struct perf_event
*event
, u64 status
)
139 union perf_mem_data_src dse
;
141 dse
.val
= PERF_MEM_NA
;
143 if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_ST_HSW
)
144 dse
.mem_op
= PERF_MEM_OP_STORE
;
145 else if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_LD_HSW
)
146 dse
.mem_op
= PERF_MEM_OP_LOAD
;
149 * L1 info only valid for following events:
151 * MEM_UOPS_RETIRED.STLB_MISS_STORES
152 * MEM_UOPS_RETIRED.LOCK_STORES
153 * MEM_UOPS_RETIRED.SPLIT_STORES
154 * MEM_UOPS_RETIRED.ALL_STORES
156 if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_ST_HSW
) {
158 dse
.mem_lvl
= PERF_MEM_LVL_L1
| PERF_MEM_LVL_HIT
;
160 dse
.mem_lvl
= PERF_MEM_LVL_L1
| PERF_MEM_LVL_MISS
;
165 static u64
load_latency_data(u64 status
)
167 union intel_x86_pebs_dse dse
;
173 * use the mapping table for bit 0-3
175 val
= pebs_data_source
[dse
.ld_dse
];
178 * Nehalem models do not support TLB, Lock infos
180 if (x86_pmu
.pebs_no_tlb
) {
181 val
|= P(TLB
, NA
) | P(LOCK
, NA
);
186 * 0 = did not miss 2nd level TLB
187 * 1 = missed 2nd level TLB
189 if (dse
.ld_stlb_miss
)
190 val
|= P(TLB
, MISS
) | P(TLB
, L2
);
192 val
|= P(TLB
, HIT
) | P(TLB
, L1
) | P(TLB
, L2
);
195 * bit 5: locked prefix
198 val
|= P(LOCK
, LOCKED
);
203 struct pebs_record_core
{
207 u64 r8
, r9
, r10
, r11
;
208 u64 r12
, r13
, r14
, r15
;
211 struct pebs_record_nhm
{
215 u64 r8
, r9
, r10
, r11
;
216 u64 r12
, r13
, r14
, r15
;
217 u64 status
, dla
, dse
, lat
;
221 * Same as pebs_record_nhm, with two additional fields.
223 struct pebs_record_hsw
{
227 u64 r8
, r9
, r10
, r11
;
228 u64 r12
, r13
, r14
, r15
;
229 u64 status
, dla
, dse
, lat
;
230 u64 real_ip
, tsx_tuning
;
233 union hsw_tsx_tuning
{
235 u32 cycles_last_block
: 32,
238 instruction_abort
: 1,
239 non_instruction_abort
: 1,
248 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
250 /* Same as HSW, plus TSC */
252 struct pebs_record_skl
{
256 u64 r8
, r9
, r10
, r11
;
257 u64 r12
, r13
, r14
, r15
;
258 u64 status
, dla
, dse
, lat
;
259 u64 real_ip
, tsx_tuning
;
263 void init_debug_store_on_cpu(int cpu
)
265 struct debug_store
*ds
= per_cpu(cpu_hw_events
, cpu
).ds
;
270 wrmsr_on_cpu(cpu
, MSR_IA32_DS_AREA
,
271 (u32
)((u64
)(unsigned long)ds
),
272 (u32
)((u64
)(unsigned long)ds
>> 32));
275 void fini_debug_store_on_cpu(int cpu
)
277 if (!per_cpu(cpu_hw_events
, cpu
).ds
)
280 wrmsr_on_cpu(cpu
, MSR_IA32_DS_AREA
, 0, 0);
283 static DEFINE_PER_CPU(void *, insn_buffer
);
285 static void ds_update_cea(void *cea
, void *addr
, size_t size
, pgprot_t prot
)
287 unsigned long start
= (unsigned long)cea
;
291 pa
= virt_to_phys(addr
);
294 for (; msz
< size
; msz
+= PAGE_SIZE
, pa
+= PAGE_SIZE
, cea
+= PAGE_SIZE
)
295 cea_set_pte(cea
, pa
, prot
);
298 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
299 * all TLB entries for it.
301 flush_tlb_kernel_range(start
, start
+ size
);
305 static void ds_clear_cea(void *cea
, size_t size
)
307 unsigned long start
= (unsigned long)cea
;
311 for (; msz
< size
; msz
+= PAGE_SIZE
, cea
+= PAGE_SIZE
)
312 cea_set_pte(cea
, 0, PAGE_NONE
);
314 flush_tlb_kernel_range(start
, start
+ size
);
318 static void *dsalloc_pages(size_t size
, gfp_t flags
, int cpu
)
320 unsigned int order
= get_order(size
);
321 int node
= cpu_to_node(cpu
);
324 page
= __alloc_pages_node(node
, flags
| __GFP_ZERO
, order
);
325 return page
? page_address(page
) : NULL
;
328 static void dsfree_pages(const void *buffer
, size_t size
)
331 free_pages((unsigned long)buffer
, get_order(size
));
334 static int alloc_pebs_buffer(int cpu
)
336 struct cpu_hw_events
*hwev
= per_cpu_ptr(&cpu_hw_events
, cpu
);
337 struct debug_store
*ds
= hwev
->ds
;
338 size_t bsiz
= x86_pmu
.pebs_buffer_size
;
339 int max
, node
= cpu_to_node(cpu
);
340 void *buffer
, *ibuffer
, *cea
;
345 buffer
= dsalloc_pages(bsiz
, GFP_KERNEL
, cpu
);
346 if (unlikely(!buffer
))
350 * HSW+ already provides us the eventing ip; no need to allocate this
353 if (x86_pmu
.intel_cap
.pebs_format
< 2) {
354 ibuffer
= kzalloc_node(PEBS_FIXUP_SIZE
, GFP_KERNEL
, node
);
356 dsfree_pages(buffer
, bsiz
);
359 per_cpu(insn_buffer
, cpu
) = ibuffer
;
361 hwev
->ds_pebs_vaddr
= buffer
;
362 /* Update the cpu entry area mapping */
363 cea
= &get_cpu_entry_area(cpu
)->cpu_debug_buffers
.pebs_buffer
;
364 ds
->pebs_buffer_base
= (unsigned long) cea
;
365 ds_update_cea(cea
, buffer
, bsiz
, PAGE_KERNEL
);
366 ds
->pebs_index
= ds
->pebs_buffer_base
;
367 max
= x86_pmu
.pebs_record_size
* (bsiz
/ x86_pmu
.pebs_record_size
);
368 ds
->pebs_absolute_maximum
= ds
->pebs_buffer_base
+ max
;
372 static void release_pebs_buffer(int cpu
)
374 struct cpu_hw_events
*hwev
= per_cpu_ptr(&cpu_hw_events
, cpu
);
380 kfree(per_cpu(insn_buffer
, cpu
));
381 per_cpu(insn_buffer
, cpu
) = NULL
;
383 /* Clear the fixmap */
384 cea
= &get_cpu_entry_area(cpu
)->cpu_debug_buffers
.pebs_buffer
;
385 ds_clear_cea(cea
, x86_pmu
.pebs_buffer_size
);
386 dsfree_pages(hwev
->ds_pebs_vaddr
, x86_pmu
.pebs_buffer_size
);
387 hwev
->ds_pebs_vaddr
= NULL
;
390 static int alloc_bts_buffer(int cpu
)
392 struct cpu_hw_events
*hwev
= per_cpu_ptr(&cpu_hw_events
, cpu
);
393 struct debug_store
*ds
= hwev
->ds
;
400 buffer
= dsalloc_pages(BTS_BUFFER_SIZE
, GFP_KERNEL
| __GFP_NOWARN
, cpu
);
401 if (unlikely(!buffer
)) {
402 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__
);
405 hwev
->ds_bts_vaddr
= buffer
;
406 /* Update the fixmap */
407 cea
= &get_cpu_entry_area(cpu
)->cpu_debug_buffers
.bts_buffer
;
408 ds
->bts_buffer_base
= (unsigned long) cea
;
409 ds_update_cea(cea
, buffer
, BTS_BUFFER_SIZE
, PAGE_KERNEL
);
410 ds
->bts_index
= ds
->bts_buffer_base
;
411 max
= BTS_BUFFER_SIZE
/ BTS_RECORD_SIZE
;
412 ds
->bts_absolute_maximum
= ds
->bts_buffer_base
+
413 max
* BTS_RECORD_SIZE
;
414 ds
->bts_interrupt_threshold
= ds
->bts_absolute_maximum
-
415 (max
/ 16) * BTS_RECORD_SIZE
;
419 static void release_bts_buffer(int cpu
)
421 struct cpu_hw_events
*hwev
= per_cpu_ptr(&cpu_hw_events
, cpu
);
427 /* Clear the fixmap */
428 cea
= &get_cpu_entry_area(cpu
)->cpu_debug_buffers
.bts_buffer
;
429 ds_clear_cea(cea
, BTS_BUFFER_SIZE
);
430 dsfree_pages(hwev
->ds_bts_vaddr
, BTS_BUFFER_SIZE
);
431 hwev
->ds_bts_vaddr
= NULL
;
434 static int alloc_ds_buffer(int cpu
)
436 struct debug_store
*ds
= &get_cpu_entry_area(cpu
)->cpu_debug_store
;
438 memset(ds
, 0, sizeof(*ds
));
439 per_cpu(cpu_hw_events
, cpu
).ds
= ds
;
443 static void release_ds_buffer(int cpu
)
445 per_cpu(cpu_hw_events
, cpu
).ds
= NULL
;
448 void release_ds_buffers(void)
452 if (!x86_pmu
.bts
&& !x86_pmu
.pebs
)
455 for_each_possible_cpu(cpu
)
456 release_ds_buffer(cpu
);
458 for_each_possible_cpu(cpu
) {
460 * Again, ignore errors from offline CPUs, they will no longer
461 * observe cpu_hw_events.ds and not program the DS_AREA when
464 fini_debug_store_on_cpu(cpu
);
467 for_each_possible_cpu(cpu
) {
468 release_pebs_buffer(cpu
);
469 release_bts_buffer(cpu
);
473 void reserve_ds_buffers(void)
475 int bts_err
= 0, pebs_err
= 0;
478 x86_pmu
.bts_active
= 0;
479 x86_pmu
.pebs_active
= 0;
481 if (!x86_pmu
.bts
&& !x86_pmu
.pebs
)
490 for_each_possible_cpu(cpu
) {
491 if (alloc_ds_buffer(cpu
)) {
496 if (!bts_err
&& alloc_bts_buffer(cpu
))
499 if (!pebs_err
&& alloc_pebs_buffer(cpu
))
502 if (bts_err
&& pebs_err
)
507 for_each_possible_cpu(cpu
)
508 release_bts_buffer(cpu
);
512 for_each_possible_cpu(cpu
)
513 release_pebs_buffer(cpu
);
516 if (bts_err
&& pebs_err
) {
517 for_each_possible_cpu(cpu
)
518 release_ds_buffer(cpu
);
520 if (x86_pmu
.bts
&& !bts_err
)
521 x86_pmu
.bts_active
= 1;
523 if (x86_pmu
.pebs
&& !pebs_err
)
524 x86_pmu
.pebs_active
= 1;
526 for_each_possible_cpu(cpu
) {
528 * Ignores wrmsr_on_cpu() errors for offline CPUs they
529 * will get this call through intel_pmu_cpu_starting().
531 init_debug_store_on_cpu(cpu
);
540 struct event_constraint bts_constraint
=
541 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS
, 0);
543 void intel_pmu_enable_bts(u64 config
)
545 unsigned long debugctlmsr
;
547 debugctlmsr
= get_debugctlmsr();
549 debugctlmsr
|= DEBUGCTLMSR_TR
;
550 debugctlmsr
|= DEBUGCTLMSR_BTS
;
551 if (config
& ARCH_PERFMON_EVENTSEL_INT
)
552 debugctlmsr
|= DEBUGCTLMSR_BTINT
;
554 if (!(config
& ARCH_PERFMON_EVENTSEL_OS
))
555 debugctlmsr
|= DEBUGCTLMSR_BTS_OFF_OS
;
557 if (!(config
& ARCH_PERFMON_EVENTSEL_USR
))
558 debugctlmsr
|= DEBUGCTLMSR_BTS_OFF_USR
;
560 update_debugctlmsr(debugctlmsr
);
563 void intel_pmu_disable_bts(void)
565 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
566 unsigned long debugctlmsr
;
571 debugctlmsr
= get_debugctlmsr();
574 ~(DEBUGCTLMSR_TR
| DEBUGCTLMSR_BTS
| DEBUGCTLMSR_BTINT
|
575 DEBUGCTLMSR_BTS_OFF_OS
| DEBUGCTLMSR_BTS_OFF_USR
);
577 update_debugctlmsr(debugctlmsr
);
580 int intel_pmu_drain_bts_buffer(void)
582 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
583 struct debug_store
*ds
= cpuc
->ds
;
589 struct perf_event
*event
= cpuc
->events
[INTEL_PMC_IDX_FIXED_BTS
];
590 struct bts_record
*at
, *base
, *top
;
591 struct perf_output_handle handle
;
592 struct perf_event_header header
;
593 struct perf_sample_data data
;
594 unsigned long skip
= 0;
600 if (!x86_pmu
.bts_active
)
603 base
= (struct bts_record
*)(unsigned long)ds
->bts_buffer_base
;
604 top
= (struct bts_record
*)(unsigned long)ds
->bts_index
;
609 memset(®s
, 0, sizeof(regs
));
611 ds
->bts_index
= ds
->bts_buffer_base
;
613 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
616 * BTS leaks kernel addresses in branches across the cpl boundary,
617 * such as traps or system calls, so unless the user is asking for
618 * kernel tracing (and right now it's not possible), we'd need to
619 * filter them out. But first we need to count how many of those we
620 * have in the current batch. This is an extra O(n) pass, however,
621 * it's much faster than the other one especially considering that
622 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
623 * alloc_bts_buffer()).
625 for (at
= base
; at
< top
; at
++) {
627 * Note that right now *this* BTS code only works if
628 * attr::exclude_kernel is set, but let's keep this extra
629 * check here in case that changes.
631 if (event
->attr
.exclude_kernel
&&
632 (kernel_ip(at
->from
) || kernel_ip(at
->to
)))
637 * Prepare a generic sample, i.e. fill in the invariant fields.
638 * We will overwrite the from and to address before we output
642 perf_prepare_sample(&header
, &data
, event
, ®s
);
644 if (perf_output_begin(&handle
, event
, header
.size
*
645 (top
- base
- skip
)))
648 for (at
= base
; at
< top
; at
++) {
649 /* Filter out any records that contain kernel addresses. */
650 if (event
->attr
.exclude_kernel
&&
651 (kernel_ip(at
->from
) || kernel_ip(at
->to
)))
657 perf_output_sample(&handle
, &header
, &data
, event
);
660 perf_output_end(&handle
);
662 /* There's new data available. */
663 event
->hw
.interrupts
++;
664 event
->pending_kill
= POLL_IN
;
670 static inline void intel_pmu_drain_pebs_buffer(void)
674 x86_pmu
.drain_pebs(®s
);
680 struct event_constraint intel_core2_pebs_event_constraints
[] = {
681 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
682 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
683 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
684 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
685 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
686 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
687 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
691 struct event_constraint intel_atom_pebs_event_constraints
[] = {
692 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
693 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
694 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
695 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
696 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01),
697 /* Allow all events as PEBS with no flags */
698 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
702 struct event_constraint intel_slm_pebs_event_constraints
[] = {
703 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
704 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1),
705 /* Allow all events as PEBS with no flags */
706 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
710 struct event_constraint intel_glm_pebs_event_constraints
[] = {
711 /* Allow all events as PEBS with no flags */
712 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
716 struct event_constraint intel_nehalem_pebs_event_constraints
[] = {
717 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
718 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
719 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
720 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
721 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
722 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
723 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
724 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
725 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
726 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
727 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
728 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
729 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
733 struct event_constraint intel_westmere_pebs_event_constraints
[] = {
734 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
735 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
736 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
737 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
738 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
739 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
740 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
741 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
742 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
743 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
744 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
745 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
746 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
750 struct event_constraint intel_snb_pebs_event_constraints
[] = {
751 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
752 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
753 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
754 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
755 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
756 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
757 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
758 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
759 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
760 /* Allow all events as PEBS with no flags */
761 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
765 struct event_constraint intel_ivb_pebs_event_constraints
[] = {
766 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
767 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
768 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
769 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
770 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
771 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
772 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
773 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
774 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
775 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
776 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
777 /* Allow all events as PEBS with no flags */
778 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
782 struct event_constraint intel_hsw_pebs_event_constraints
[] = {
783 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
784 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
785 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
786 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
787 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
788 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
789 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
790 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
791 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
792 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
793 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
794 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
795 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
796 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
797 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
798 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
799 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
800 /* Allow all events as PEBS with no flags */
801 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
805 struct event_constraint intel_bdw_pebs_event_constraints
[] = {
806 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
807 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
808 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
809 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf),
810 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
811 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
812 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
813 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
814 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
815 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
816 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
817 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
818 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
819 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
820 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
821 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
822 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
823 /* Allow all events as PEBS with no flags */
824 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
829 struct event_constraint intel_skl_pebs_event_constraints
[] = {
830 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
831 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
832 INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2),
833 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
834 INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f),
835 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
836 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
837 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
838 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
839 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
840 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
841 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
842 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
843 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
844 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
845 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
846 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
847 /* Allow all events as PEBS with no flags */
848 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
852 struct event_constraint
*intel_pebs_constraints(struct perf_event
*event
)
854 struct event_constraint
*c
;
856 if (!event
->attr
.precise_ip
)
859 if (x86_pmu
.pebs_constraints
) {
860 for_each_event_constraint(c
, x86_pmu
.pebs_constraints
) {
861 if ((event
->hw
.config
& c
->cmask
) == c
->code
) {
862 event
->hw
.flags
|= c
->flags
;
869 * Extended PEBS support
870 * Makes the PEBS code search the normal constraints.
872 if (x86_pmu
.flags
& PMU_FL_PEBS_ALL
)
875 return &emptyconstraint
;
879 * We need the sched_task callback even for per-cpu events when we use
880 * the large interrupt threshold, such that we can provide PID and TID
883 static inline bool pebs_needs_sched_cb(struct cpu_hw_events
*cpuc
)
885 return cpuc
->n_pebs
&& (cpuc
->n_pebs
== cpuc
->n_large_pebs
);
888 void intel_pmu_pebs_sched_task(struct perf_event_context
*ctx
, bool sched_in
)
890 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
892 if (!sched_in
&& pebs_needs_sched_cb(cpuc
))
893 intel_pmu_drain_pebs_buffer();
896 static inline void pebs_update_threshold(struct cpu_hw_events
*cpuc
)
898 struct debug_store
*ds
= cpuc
->ds
;
902 if (x86_pmu
.flags
& PMU_FL_PEBS_ALL
)
903 reserved
= x86_pmu
.max_pebs_events
+ x86_pmu
.num_counters_fixed
;
905 reserved
= x86_pmu
.max_pebs_events
;
907 if (cpuc
->n_pebs
== cpuc
->n_large_pebs
) {
908 threshold
= ds
->pebs_absolute_maximum
-
909 reserved
* x86_pmu
.pebs_record_size
;
911 threshold
= ds
->pebs_buffer_base
+ x86_pmu
.pebs_record_size
;
914 ds
->pebs_interrupt_threshold
= threshold
;
918 pebs_update_state(bool needed_cb
, struct cpu_hw_events
*cpuc
, struct pmu
*pmu
)
921 * Make sure we get updated with the first PEBS
922 * event. It will trigger also during removal, but
923 * that does not hurt:
925 bool update
= cpuc
->n_pebs
== 1;
927 if (needed_cb
!= pebs_needs_sched_cb(cpuc
)) {
929 perf_sched_cb_inc(pmu
);
931 perf_sched_cb_dec(pmu
);
937 pebs_update_threshold(cpuc
);
940 void intel_pmu_pebs_add(struct perf_event
*event
)
942 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
943 struct hw_perf_event
*hwc
= &event
->hw
;
944 bool needed_cb
= pebs_needs_sched_cb(cpuc
);
947 if (hwc
->flags
& PERF_X86_EVENT_LARGE_PEBS
)
948 cpuc
->n_large_pebs
++;
950 pebs_update_state(needed_cb
, cpuc
, event
->ctx
->pmu
);
953 void intel_pmu_pebs_enable(struct perf_event
*event
)
955 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
956 struct hw_perf_event
*hwc
= &event
->hw
;
957 struct debug_store
*ds
= cpuc
->ds
;
959 hwc
->config
&= ~ARCH_PERFMON_EVENTSEL_INT
;
961 cpuc
->pebs_enabled
|= 1ULL << hwc
->idx
;
963 if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_LDLAT
)
964 cpuc
->pebs_enabled
|= 1ULL << (hwc
->idx
+ 32);
965 else if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_ST
)
966 cpuc
->pebs_enabled
|= 1ULL << 63;
969 * Use auto-reload if possible to save a MSR write in the PMI.
970 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
972 if (hwc
->flags
& PERF_X86_EVENT_AUTO_RELOAD
) {
973 unsigned int idx
= hwc
->idx
;
975 if (idx
>= INTEL_PMC_IDX_FIXED
)
976 idx
= MAX_PEBS_EVENTS
+ (idx
- INTEL_PMC_IDX_FIXED
);
977 ds
->pebs_event_reset
[idx
] =
978 (u64
)(-hwc
->sample_period
) & x86_pmu
.cntval_mask
;
980 ds
->pebs_event_reset
[hwc
->idx
] = 0;
984 void intel_pmu_pebs_del(struct perf_event
*event
)
986 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
987 struct hw_perf_event
*hwc
= &event
->hw
;
988 bool needed_cb
= pebs_needs_sched_cb(cpuc
);
991 if (hwc
->flags
& PERF_X86_EVENT_LARGE_PEBS
)
992 cpuc
->n_large_pebs
--;
994 pebs_update_state(needed_cb
, cpuc
, event
->ctx
->pmu
);
997 void intel_pmu_pebs_disable(struct perf_event
*event
)
999 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1000 struct hw_perf_event
*hwc
= &event
->hw
;
1002 if (cpuc
->n_pebs
== cpuc
->n_large_pebs
)
1003 intel_pmu_drain_pebs_buffer();
1005 cpuc
->pebs_enabled
&= ~(1ULL << hwc
->idx
);
1007 if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_LDLAT
)
1008 cpuc
->pebs_enabled
&= ~(1ULL << (hwc
->idx
+ 32));
1009 else if (event
->hw
.flags
& PERF_X86_EVENT_PEBS_ST
)
1010 cpuc
->pebs_enabled
&= ~(1ULL << 63);
1013 wrmsrl(MSR_IA32_PEBS_ENABLE
, cpuc
->pebs_enabled
);
1015 hwc
->config
|= ARCH_PERFMON_EVENTSEL_INT
;
1018 void intel_pmu_pebs_enable_all(void)
1020 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1022 if (cpuc
->pebs_enabled
)
1023 wrmsrl(MSR_IA32_PEBS_ENABLE
, cpuc
->pebs_enabled
);
1026 void intel_pmu_pebs_disable_all(void)
1028 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1030 if (cpuc
->pebs_enabled
)
1031 wrmsrl(MSR_IA32_PEBS_ENABLE
, 0);
1034 static int intel_pmu_pebs_fixup_ip(struct pt_regs
*regs
)
1036 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1037 unsigned long from
= cpuc
->lbr_entries
[0].from
;
1038 unsigned long old_to
, to
= cpuc
->lbr_entries
[0].to
;
1039 unsigned long ip
= regs
->ip
;
1045 * We don't need to fixup if the PEBS assist is fault like
1047 if (!x86_pmu
.intel_cap
.pebs_trap
)
1051 * No LBR entry, no basic block, no rewinding
1053 if (!cpuc
->lbr_stack
.nr
|| !from
|| !to
)
1057 * Basic blocks should never cross user/kernel boundaries
1059 if (kernel_ip(ip
) != kernel_ip(to
))
1063 * unsigned math, either ip is before the start (impossible) or
1064 * the basic block is larger than 1 page (sanity)
1066 if ((ip
- to
) > PEBS_FIXUP_SIZE
)
1070 * We sampled a branch insn, rewind using the LBR stack
1073 set_linear_ip(regs
, from
);
1078 if (!kernel_ip(ip
)) {
1080 u8
*buf
= this_cpu_read(insn_buffer
);
1082 /* 'size' must fit our buffer, see above */
1083 bytes
= copy_from_user_nmi(buf
, (void __user
*)to
, size
);
1097 #ifdef CONFIG_X86_64
1098 is_64bit
= kernel_ip(to
) || !test_thread_flag(TIF_IA32
);
1100 insn_init(&insn
, kaddr
, size
, is_64bit
);
1101 insn_get_length(&insn
);
1103 * Make sure there was not a problem decoding the
1104 * instruction and getting the length. This is
1105 * doubly important because we have an infinite
1106 * loop if insn.length=0.
1112 kaddr
+= insn
.length
;
1113 size
-= insn
.length
;
1117 set_linear_ip(regs
, old_to
);
1122 * Even though we decoded the basic block, the instruction stream
1123 * never matched the given IP, either the TO or the IP got corrupted.
1128 static inline u64
intel_hsw_weight(struct pebs_record_skl
*pebs
)
1130 if (pebs
->tsx_tuning
) {
1131 union hsw_tsx_tuning tsx
= { .value
= pebs
->tsx_tuning
};
1132 return tsx
.cycles_last_block
;
1137 static inline u64
intel_hsw_transaction(struct pebs_record_skl
*pebs
)
1139 u64 txn
= (pebs
->tsx_tuning
& PEBS_HSW_TSX_FLAGS
) >> 32;
1141 /* For RTM XABORTs also log the abort code from AX */
1142 if ((txn
& PERF_TXN_TRANSACTION
) && (pebs
->ax
& 1))
1143 txn
|= ((pebs
->ax
>> 24) & 0xff) << PERF_TXN_ABORT_SHIFT
;
1147 static void setup_pebs_sample_data(struct perf_event
*event
,
1148 struct pt_regs
*iregs
, void *__pebs
,
1149 struct perf_sample_data
*data
,
1150 struct pt_regs
*regs
)
1152 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1153 (PERF_X86_EVENT_PEBS_ST_HSW | \
1154 PERF_X86_EVENT_PEBS_LD_HSW | \
1155 PERF_X86_EVENT_PEBS_NA_HSW)
1157 * We cast to the biggest pebs_record but are careful not to
1158 * unconditionally access the 'extra' entries.
1160 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1161 struct pebs_record_skl
*pebs
= __pebs
;
1164 int fl
= event
->hw
.flags
;
1169 sample_type
= event
->attr
.sample_type
;
1170 dsrc
= sample_type
& PERF_SAMPLE_DATA_SRC
;
1172 fll
= fl
& PERF_X86_EVENT_PEBS_LDLAT
;
1173 fst
= fl
& (PERF_X86_EVENT_PEBS_ST
| PERF_X86_EVENT_PEBS_HSW_PREC
);
1175 perf_sample_data_init(data
, 0, event
->hw
.last_period
);
1177 data
->period
= event
->hw
.last_period
;
1180 * Use latency for weight (only avail with PEBS-LL)
1182 if (fll
&& (sample_type
& PERF_SAMPLE_WEIGHT
))
1183 data
->weight
= pebs
->lat
;
1186 * data.data_src encodes the data source
1189 u64 val
= PERF_MEM_NA
;
1191 val
= load_latency_data(pebs
->dse
);
1192 else if (fst
&& (fl
& PERF_X86_EVENT_PEBS_HSW_PREC
))
1193 val
= precise_datala_hsw(event
, pebs
->dse
);
1195 val
= precise_store_data(pebs
->dse
);
1196 data
->data_src
.val
= val
;
1200 * We must however always use iregs for the unwinder to stay sane; the
1201 * record BP,SP,IP can point into thin air when the record is from a
1202 * previous PMI context or an (I)RET happend between the record and
1205 if (sample_type
& PERF_SAMPLE_CALLCHAIN
)
1206 data
->callchain
= perf_callchain(event
, iregs
);
1209 * We use the interrupt regs as a base because the PEBS record does not
1210 * contain a full regs set, specifically it seems to lack segment
1211 * descriptors, which get used by things like user_mode().
1213 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1218 * Initialize regs_>flags from PEBS,
1219 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1220 * i.e., do not rely on it being zero:
1222 regs
->flags
= pebs
->flags
& ~PERF_EFLAGS_EXACT
;
1224 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
1225 regs
->ax
= pebs
->ax
;
1226 regs
->bx
= pebs
->bx
;
1227 regs
->cx
= pebs
->cx
;
1228 regs
->dx
= pebs
->dx
;
1229 regs
->si
= pebs
->si
;
1230 regs
->di
= pebs
->di
;
1232 regs
->bp
= pebs
->bp
;
1233 regs
->sp
= pebs
->sp
;
1235 #ifndef CONFIG_X86_32
1236 regs
->r8
= pebs
->r8
;
1237 regs
->r9
= pebs
->r9
;
1238 regs
->r10
= pebs
->r10
;
1239 regs
->r11
= pebs
->r11
;
1240 regs
->r12
= pebs
->r12
;
1241 regs
->r13
= pebs
->r13
;
1242 regs
->r14
= pebs
->r14
;
1243 regs
->r15
= pebs
->r15
;
1247 if (event
->attr
.precise_ip
> 1) {
1249 * Haswell and later processors have an 'eventing IP'
1250 * (real IP) which fixes the off-by-1 skid in hardware.
1251 * Use it when precise_ip >= 2 :
1253 if (x86_pmu
.intel_cap
.pebs_format
>= 2) {
1254 set_linear_ip(regs
, pebs
->real_ip
);
1255 regs
->flags
|= PERF_EFLAGS_EXACT
;
1257 /* Otherwise, use PEBS off-by-1 IP: */
1258 set_linear_ip(regs
, pebs
->ip
);
1261 * With precise_ip >= 2, try to fix up the off-by-1 IP
1262 * using the LBR. If successful, the fixup function
1263 * corrects regs->ip and calls set_linear_ip() on regs:
1265 if (intel_pmu_pebs_fixup_ip(regs
))
1266 regs
->flags
|= PERF_EFLAGS_EXACT
;
1270 * When precise_ip == 1, return the PEBS off-by-1 IP,
1271 * no fixup attempted:
1273 set_linear_ip(regs
, pebs
->ip
);
1277 if ((sample_type
& (PERF_SAMPLE_ADDR
| PERF_SAMPLE_PHYS_ADDR
)) &&
1278 x86_pmu
.intel_cap
.pebs_format
>= 1)
1279 data
->addr
= pebs
->dla
;
1281 if (x86_pmu
.intel_cap
.pebs_format
>= 2) {
1282 /* Only set the TSX weight when no memory weight. */
1283 if ((sample_type
& PERF_SAMPLE_WEIGHT
) && !fll
)
1284 data
->weight
= intel_hsw_weight(pebs
);
1286 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1287 data
->txn
= intel_hsw_transaction(pebs
);
1291 * v3 supplies an accurate time stamp, so we use that
1292 * for the time stamp.
1294 * We can only do this for the default trace clock.
1296 if (x86_pmu
.intel_cap
.pebs_format
>= 3 &&
1297 event
->attr
.use_clockid
== 0)
1298 data
->time
= native_sched_clock_from_tsc(pebs
->tsc
);
1300 if (has_branch_stack(event
))
1301 data
->br_stack
= &cpuc
->lbr_stack
;
1304 static inline void *
1305 get_next_pebs_record_by_bit(void *base
, void *top
, int bit
)
1307 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1312 * fmt0 does not have a status bitfield (does not use
1313 * perf_record_nhm format)
1315 if (x86_pmu
.intel_cap
.pebs_format
< 1)
1321 for (at
= base
; at
< top
; at
+= x86_pmu
.pebs_record_size
) {
1322 struct pebs_record_nhm
*p
= at
;
1324 if (test_bit(bit
, (unsigned long *)&p
->status
)) {
1325 /* PEBS v3 has accurate status bits */
1326 if (x86_pmu
.intel_cap
.pebs_format
>= 3)
1329 if (p
->status
== (1 << bit
))
1332 /* clear non-PEBS bit and re-check */
1333 pebs_status
= p
->status
& cpuc
->pebs_enabled
;
1334 pebs_status
&= PEBS_COUNTER_MASK
;
1335 if (pebs_status
== (1 << bit
))
1342 void intel_pmu_auto_reload_read(struct perf_event
*event
)
1344 WARN_ON(!(event
->hw
.flags
& PERF_X86_EVENT_AUTO_RELOAD
));
1346 perf_pmu_disable(event
->pmu
);
1347 intel_pmu_drain_pebs_buffer();
1348 perf_pmu_enable(event
->pmu
);
1352 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1355 intel_pmu_save_and_restart_reload(struct perf_event
*event
, int count
)
1357 struct hw_perf_event
*hwc
= &event
->hw
;
1358 int shift
= 64 - x86_pmu
.cntval_bits
;
1359 u64 period
= hwc
->sample_period
;
1360 u64 prev_raw_count
, new_raw_count
;
1366 * drain_pebs() only happens when the PMU is disabled.
1368 WARN_ON(this_cpu_read(cpu_hw_events
.enabled
));
1370 prev_raw_count
= local64_read(&hwc
->prev_count
);
1371 rdpmcl(hwc
->event_base_rdpmc
, new_raw_count
);
1372 local64_set(&hwc
->prev_count
, new_raw_count
);
1375 * Since the counter increments a negative counter value and
1376 * overflows on the sign switch, giving the interval:
1380 * the difference between two consequtive reads is:
1382 * A) value2 - value1;
1383 * when no overflows have happened in between,
1385 * B) (0 - value1) + (value2 - (-period));
1386 * when one overflow happened in between,
1388 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1389 * when @n overflows happened in between.
1391 * Here A) is the obvious difference, B) is the extension to the
1392 * discrete interval, where the first term is to the top of the
1393 * interval and the second term is from the bottom of the next
1394 * interval and C) the extension to multiple intervals, where the
1395 * middle term is the whole intervals covered.
1397 * An equivalent of C, by reduction, is:
1399 * value2 - value1 + n * period
1401 new = ((s64
)(new_raw_count
<< shift
) >> shift
);
1402 old
= ((s64
)(prev_raw_count
<< shift
) >> shift
);
1403 local64_add(new - old
+ count
* period
, &event
->count
);
1405 perf_event_update_userpage(event
);
1410 static void __intel_pmu_pebs_event(struct perf_event
*event
,
1411 struct pt_regs
*iregs
,
1412 void *base
, void *top
,
1415 struct hw_perf_event
*hwc
= &event
->hw
;
1416 struct perf_sample_data data
;
1417 struct pt_regs regs
;
1418 void *at
= get_next_pebs_record_by_bit(base
, top
, bit
);
1420 if (hwc
->flags
& PERF_X86_EVENT_AUTO_RELOAD
) {
1422 * Now, auto-reload is only enabled in fixed period mode.
1423 * The reload value is always hwc->sample_period.
1424 * May need to change it, if auto-reload is enabled in
1427 intel_pmu_save_and_restart_reload(event
, count
);
1428 } else if (!intel_pmu_save_and_restart(event
))
1432 setup_pebs_sample_data(event
, iregs
, at
, &data
, ®s
);
1433 perf_event_output(event
, &data
, ®s
);
1434 at
+= x86_pmu
.pebs_record_size
;
1435 at
= get_next_pebs_record_by_bit(at
, top
, bit
);
1439 setup_pebs_sample_data(event
, iregs
, at
, &data
, ®s
);
1442 * All but the last records are processed.
1443 * The last one is left to be able to call the overflow handler.
1445 if (perf_event_overflow(event
, &data
, ®s
)) {
1446 x86_pmu_stop(event
, 0);
1452 static void intel_pmu_drain_pebs_core(struct pt_regs
*iregs
)
1454 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1455 struct debug_store
*ds
= cpuc
->ds
;
1456 struct perf_event
*event
= cpuc
->events
[0]; /* PMC0 only */
1457 struct pebs_record_core
*at
, *top
;
1460 if (!x86_pmu
.pebs_active
)
1463 at
= (struct pebs_record_core
*)(unsigned long)ds
->pebs_buffer_base
;
1464 top
= (struct pebs_record_core
*)(unsigned long)ds
->pebs_index
;
1467 * Whatever else happens, drain the thing
1469 ds
->pebs_index
= ds
->pebs_buffer_base
;
1471 if (!test_bit(0, cpuc
->active_mask
))
1474 WARN_ON_ONCE(!event
);
1476 if (!event
->attr
.precise_ip
)
1481 if (event
->hw
.flags
& PERF_X86_EVENT_AUTO_RELOAD
)
1482 intel_pmu_save_and_restart_reload(event
, 0);
1486 __intel_pmu_pebs_event(event
, iregs
, at
, top
, 0, n
);
1489 static void intel_pmu_drain_pebs_nhm(struct pt_regs
*iregs
)
1491 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1492 struct debug_store
*ds
= cpuc
->ds
;
1493 struct perf_event
*event
;
1494 void *base
, *at
, *top
;
1495 short counts
[INTEL_PMC_IDX_FIXED
+ MAX_FIXED_PEBS_EVENTS
] = {};
1496 short error
[INTEL_PMC_IDX_FIXED
+ MAX_FIXED_PEBS_EVENTS
] = {};
1500 if (!x86_pmu
.pebs_active
)
1503 base
= (struct pebs_record_nhm
*)(unsigned long)ds
->pebs_buffer_base
;
1504 top
= (struct pebs_record_nhm
*)(unsigned long)ds
->pebs_index
;
1506 ds
->pebs_index
= ds
->pebs_buffer_base
;
1508 mask
= (1ULL << x86_pmu
.max_pebs_events
) - 1;
1509 size
= x86_pmu
.max_pebs_events
;
1510 if (x86_pmu
.flags
& PMU_FL_PEBS_ALL
) {
1511 mask
|= ((1ULL << x86_pmu
.num_counters_fixed
) - 1) << INTEL_PMC_IDX_FIXED
;
1512 size
= INTEL_PMC_IDX_FIXED
+ x86_pmu
.num_counters_fixed
;
1515 if (unlikely(base
>= top
)) {
1517 * The drain_pebs() could be called twice in a short period
1518 * for auto-reload event in pmu::read(). There are no
1519 * overflows have happened in between.
1520 * It needs to call intel_pmu_save_and_restart_reload() to
1521 * update the event->count for this case.
1523 for_each_set_bit(bit
, (unsigned long *)&cpuc
->pebs_enabled
,
1525 event
= cpuc
->events
[bit
];
1526 if (event
->hw
.flags
& PERF_X86_EVENT_AUTO_RELOAD
)
1527 intel_pmu_save_and_restart_reload(event
, 0);
1532 for (at
= base
; at
< top
; at
+= x86_pmu
.pebs_record_size
) {
1533 struct pebs_record_nhm
*p
= at
;
1536 pebs_status
= p
->status
& cpuc
->pebs_enabled
;
1537 pebs_status
&= mask
;
1539 /* PEBS v3 has more accurate status bits */
1540 if (x86_pmu
.intel_cap
.pebs_format
>= 3) {
1541 for_each_set_bit(bit
, (unsigned long *)&pebs_status
,
1549 * On some CPUs the PEBS status can be zero when PEBS is
1550 * racing with clearing of GLOBAL_STATUS.
1552 * Normally we would drop that record, but in the
1553 * case when there is only a single active PEBS event
1554 * we can assume it's for that event.
1556 if (!pebs_status
&& cpuc
->pebs_enabled
&&
1557 !(cpuc
->pebs_enabled
& (cpuc
->pebs_enabled
-1)))
1558 pebs_status
= cpuc
->pebs_enabled
;
1560 bit
= find_first_bit((unsigned long *)&pebs_status
,
1561 x86_pmu
.max_pebs_events
);
1562 if (bit
>= x86_pmu
.max_pebs_events
)
1566 * The PEBS hardware does not deal well with the situation
1567 * when events happen near to each other and multiple bits
1568 * are set. But it should happen rarely.
1570 * If these events include one PEBS and multiple non-PEBS
1571 * events, it doesn't impact PEBS record. The record will
1572 * be handled normally. (slow path)
1574 * If these events include two or more PEBS events, the
1575 * records for the events can be collapsed into a single
1576 * one, and it's not possible to reconstruct all events
1577 * that caused the PEBS record. It's called collision.
1578 * If collision happened, the record will be dropped.
1580 if (p
->status
!= (1ULL << bit
)) {
1581 for_each_set_bit(i
, (unsigned long *)&pebs_status
,
1582 x86_pmu
.max_pebs_events
)
1590 for (bit
= 0; bit
< size
; bit
++) {
1591 if ((counts
[bit
] == 0) && (error
[bit
] == 0))
1594 event
= cpuc
->events
[bit
];
1595 if (WARN_ON_ONCE(!event
))
1598 if (WARN_ON_ONCE(!event
->attr
.precise_ip
))
1601 /* log dropped samples number */
1603 perf_log_lost_samples(event
, error
[bit
]);
1605 if (perf_event_account_interrupt(event
))
1606 x86_pmu_stop(event
, 0);
1610 __intel_pmu_pebs_event(event
, iregs
, base
,
1611 top
, bit
, counts
[bit
]);
1617 * BTS, PEBS probe and setup
1620 void __init
intel_ds_init(void)
1623 * No support for 32bit formats
1625 if (!boot_cpu_has(X86_FEATURE_DTES64
))
1628 x86_pmu
.bts
= boot_cpu_has(X86_FEATURE_BTS
);
1629 x86_pmu
.pebs
= boot_cpu_has(X86_FEATURE_PEBS
);
1630 x86_pmu
.pebs_buffer_size
= PEBS_BUFFER_SIZE
;
1632 char pebs_type
= x86_pmu
.intel_cap
.pebs_trap
? '+' : '-';
1633 int format
= x86_pmu
.intel_cap
.pebs_format
;
1637 pr_cont("PEBS fmt0%c, ", pebs_type
);
1638 x86_pmu
.pebs_record_size
= sizeof(struct pebs_record_core
);
1640 * Using >PAGE_SIZE buffers makes the WRMSR to
1641 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
1642 * mysteriously hang on Core2.
1644 * As a workaround, we don't do this.
1646 x86_pmu
.pebs_buffer_size
= PAGE_SIZE
;
1647 x86_pmu
.drain_pebs
= intel_pmu_drain_pebs_core
;
1651 pr_cont("PEBS fmt1%c, ", pebs_type
);
1652 x86_pmu
.pebs_record_size
= sizeof(struct pebs_record_nhm
);
1653 x86_pmu
.drain_pebs
= intel_pmu_drain_pebs_nhm
;
1657 pr_cont("PEBS fmt2%c, ", pebs_type
);
1658 x86_pmu
.pebs_record_size
= sizeof(struct pebs_record_hsw
);
1659 x86_pmu
.drain_pebs
= intel_pmu_drain_pebs_nhm
;
1663 pr_cont("PEBS fmt3%c, ", pebs_type
);
1664 x86_pmu
.pebs_record_size
=
1665 sizeof(struct pebs_record_skl
);
1666 x86_pmu
.drain_pebs
= intel_pmu_drain_pebs_nhm
;
1667 x86_pmu
.large_pebs_flags
|= PERF_SAMPLE_TIME
;
1671 pr_cont("no PEBS fmt%d%c, ", format
, pebs_type
);
1677 void perf_restore_debug_store(void)
1679 struct debug_store
*ds
= __this_cpu_read(cpu_hw_events
.ds
);
1681 if (!x86_pmu
.bts
&& !x86_pmu
.pebs
)
1684 wrmsrl(MSR_IA32_DS_AREA
, (unsigned long)ds
);