1 // SPDX-License-Identifier: GPL-2.0
3 * Routines to identify caches on Intel CPU.
6 * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
7 * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
8 * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD.
11 #include <linux/slab.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/cpu.h>
14 #include <linux/sched.h>
15 #include <linux/capability.h>
16 #include <linux/sysfs.h>
17 #include <linux/pci.h>
19 #include <asm/cpufeature.h>
20 #include <asm/amd_nb.h>
32 unsigned char descriptor
;
37 #define MB(x) ((x) * 1024)
39 /* All the cache descriptor types we care about (no TLB or
40 trace cache entries) */
42 static const struct _cache_table cache_table
[] =
44 { 0x06, LVL_1_INST
, 8 }, /* 4-way set assoc, 32 byte line size */
45 { 0x08, LVL_1_INST
, 16 }, /* 4-way set assoc, 32 byte line size */
46 { 0x09, LVL_1_INST
, 32 }, /* 4-way set assoc, 64 byte line size */
47 { 0x0a, LVL_1_DATA
, 8 }, /* 2 way set assoc, 32 byte line size */
48 { 0x0c, LVL_1_DATA
, 16 }, /* 4-way set assoc, 32 byte line size */
49 { 0x0d, LVL_1_DATA
, 16 }, /* 4-way set assoc, 64 byte line size */
50 { 0x0e, LVL_1_DATA
, 24 }, /* 6-way set assoc, 64 byte line size */
51 { 0x21, LVL_2
, 256 }, /* 8-way set assoc, 64 byte line size */
52 { 0x22, LVL_3
, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
53 { 0x23, LVL_3
, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
54 { 0x25, LVL_3
, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */
55 { 0x29, LVL_3
, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */
56 { 0x2c, LVL_1_DATA
, 32 }, /* 8-way set assoc, 64 byte line size */
57 { 0x30, LVL_1_INST
, 32 }, /* 8-way set assoc, 64 byte line size */
58 { 0x39, LVL_2
, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
59 { 0x3a, LVL_2
, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */
60 { 0x3b, LVL_2
, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
61 { 0x3c, LVL_2
, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
62 { 0x3d, LVL_2
, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */
63 { 0x3e, LVL_2
, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
64 { 0x3f, LVL_2
, 256 }, /* 2-way set assoc, 64 byte line size */
65 { 0x41, LVL_2
, 128 }, /* 4-way set assoc, 32 byte line size */
66 { 0x42, LVL_2
, 256 }, /* 4-way set assoc, 32 byte line size */
67 { 0x43, LVL_2
, 512 }, /* 4-way set assoc, 32 byte line size */
68 { 0x44, LVL_2
, MB(1) }, /* 4-way set assoc, 32 byte line size */
69 { 0x45, LVL_2
, MB(2) }, /* 4-way set assoc, 32 byte line size */
70 { 0x46, LVL_3
, MB(4) }, /* 4-way set assoc, 64 byte line size */
71 { 0x47, LVL_3
, MB(8) }, /* 8-way set assoc, 64 byte line size */
72 { 0x48, LVL_2
, MB(3) }, /* 12-way set assoc, 64 byte line size */
73 { 0x49, LVL_3
, MB(4) }, /* 16-way set assoc, 64 byte line size */
74 { 0x4a, LVL_3
, MB(6) }, /* 12-way set assoc, 64 byte line size */
75 { 0x4b, LVL_3
, MB(8) }, /* 16-way set assoc, 64 byte line size */
76 { 0x4c, LVL_3
, MB(12) }, /* 12-way set assoc, 64 byte line size */
77 { 0x4d, LVL_3
, MB(16) }, /* 16-way set assoc, 64 byte line size */
78 { 0x4e, LVL_2
, MB(6) }, /* 24-way set assoc, 64 byte line size */
79 { 0x60, LVL_1_DATA
, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
80 { 0x66, LVL_1_DATA
, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
81 { 0x67, LVL_1_DATA
, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
82 { 0x68, LVL_1_DATA
, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
83 { 0x70, LVL_TRACE
, 12 }, /* 8-way set assoc */
84 { 0x71, LVL_TRACE
, 16 }, /* 8-way set assoc */
85 { 0x72, LVL_TRACE
, 32 }, /* 8-way set assoc */
86 { 0x73, LVL_TRACE
, 64 }, /* 8-way set assoc */
87 { 0x78, LVL_2
, MB(1) }, /* 4-way set assoc, 64 byte line size */
88 { 0x79, LVL_2
, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
89 { 0x7a, LVL_2
, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
90 { 0x7b, LVL_2
, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
91 { 0x7c, LVL_2
, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */
92 { 0x7d, LVL_2
, MB(2) }, /* 8-way set assoc, 64 byte line size */
93 { 0x7f, LVL_2
, 512 }, /* 2-way set assoc, 64 byte line size */
94 { 0x80, LVL_2
, 512 }, /* 8-way set assoc, 64 byte line size */
95 { 0x82, LVL_2
, 256 }, /* 8-way set assoc, 32 byte line size */
96 { 0x83, LVL_2
, 512 }, /* 8-way set assoc, 32 byte line size */
97 { 0x84, LVL_2
, MB(1) }, /* 8-way set assoc, 32 byte line size */
98 { 0x85, LVL_2
, MB(2) }, /* 8-way set assoc, 32 byte line size */
99 { 0x86, LVL_2
, 512 }, /* 4-way set assoc, 64 byte line size */
100 { 0x87, LVL_2
, MB(1) }, /* 8-way set assoc, 64 byte line size */
101 { 0xd0, LVL_3
, 512 }, /* 4-way set assoc, 64 byte line size */
102 { 0xd1, LVL_3
, MB(1) }, /* 4-way set assoc, 64 byte line size */
103 { 0xd2, LVL_3
, MB(2) }, /* 4-way set assoc, 64 byte line size */
104 { 0xd6, LVL_3
, MB(1) }, /* 8-way set assoc, 64 byte line size */
105 { 0xd7, LVL_3
, MB(2) }, /* 8-way set assoc, 64 byte line size */
106 { 0xd8, LVL_3
, MB(4) }, /* 12-way set assoc, 64 byte line size */
107 { 0xdc, LVL_3
, MB(2) }, /* 12-way set assoc, 64 byte line size */
108 { 0xdd, LVL_3
, MB(4) }, /* 12-way set assoc, 64 byte line size */
109 { 0xde, LVL_3
, MB(8) }, /* 12-way set assoc, 64 byte line size */
110 { 0xe2, LVL_3
, MB(2) }, /* 16-way set assoc, 64 byte line size */
111 { 0xe3, LVL_3
, MB(4) }, /* 16-way set assoc, 64 byte line size */
112 { 0xe4, LVL_3
, MB(8) }, /* 16-way set assoc, 64 byte line size */
113 { 0xea, LVL_3
, MB(12) }, /* 24-way set assoc, 64 byte line size */
114 { 0xeb, LVL_3
, MB(18) }, /* 24-way set assoc, 64 byte line size */
115 { 0xec, LVL_3
, MB(24) }, /* 24-way set assoc, 64 byte line size */
127 union _cpuid4_leaf_eax
{
129 enum _cache_type type
:5;
130 unsigned int level
:3;
131 unsigned int is_self_initializing
:1;
132 unsigned int is_fully_associative
:1;
133 unsigned int reserved
:4;
134 unsigned int num_threads_sharing
:12;
135 unsigned int num_cores_on_die
:6;
140 union _cpuid4_leaf_ebx
{
142 unsigned int coherency_line_size
:12;
143 unsigned int physical_line_partition
:10;
144 unsigned int ways_of_associativity
:10;
149 union _cpuid4_leaf_ecx
{
151 unsigned int number_of_sets
:32;
156 struct _cpuid4_info_regs
{
157 union _cpuid4_leaf_eax eax
;
158 union _cpuid4_leaf_ebx ebx
;
159 union _cpuid4_leaf_ecx ecx
;
162 struct amd_northbridge
*nb
;
165 static unsigned short num_cache_leaves
;
167 /* AMD doesn't have CPUID4. Emulate it here to report the same
168 information to the user. This makes some assumptions about the machine:
169 L2 not shared, no SMT etc. that is currently true on AMD CPUs.
171 In theory the TLBs could be reported as fake type (they are in "dummy").
175 unsigned line_size
:8;
176 unsigned lines_per_tag
:8;
178 unsigned size_in_kb
:8;
185 unsigned line_size
:8;
186 unsigned lines_per_tag
:4;
188 unsigned size_in_kb
:16;
195 unsigned line_size
:8;
196 unsigned lines_per_tag
:4;
199 unsigned size_encoded
:14;
204 static const unsigned short assocs
[] = {
215 [0xf] = 0xffff /* fully associative - no way to show this currently */
218 static const unsigned char levels
[] = { 1, 1, 2, 3 };
219 static const unsigned char types
[] = { 1, 2, 3, 3 };
221 static const enum cache_type cache_type_map
[] = {
222 [CTYPE_NULL
] = CACHE_TYPE_NOCACHE
,
223 [CTYPE_DATA
] = CACHE_TYPE_DATA
,
224 [CTYPE_INST
] = CACHE_TYPE_INST
,
225 [CTYPE_UNIFIED
] = CACHE_TYPE_UNIFIED
,
229 amd_cpuid4(int leaf
, union _cpuid4_leaf_eax
*eax
,
230 union _cpuid4_leaf_ebx
*ebx
,
231 union _cpuid4_leaf_ecx
*ecx
)
234 unsigned line_size
, lines_per_tag
, assoc
, size_in_kb
;
235 union l1_cache l1i
, l1d
;
238 union l1_cache
*l1
= &l1d
;
244 cpuid(0x80000005, &dummy
, &dummy
, &l1d
.val
, &l1i
.val
);
245 cpuid(0x80000006, &dummy
, &dummy
, &l2
.val
, &l3
.val
);
253 assoc
= assocs
[l1
->assoc
];
254 line_size
= l1
->line_size
;
255 lines_per_tag
= l1
->lines_per_tag
;
256 size_in_kb
= l1
->size_in_kb
;
261 assoc
= assocs
[l2
.assoc
];
262 line_size
= l2
.line_size
;
263 lines_per_tag
= l2
.lines_per_tag
;
264 /* cpu_data has errata corrections for K7 applied */
265 size_in_kb
= __this_cpu_read(cpu_info
.x86_cache_size
);
270 assoc
= assocs
[l3
.assoc
];
271 line_size
= l3
.line_size
;
272 lines_per_tag
= l3
.lines_per_tag
;
273 size_in_kb
= l3
.size_encoded
* 512;
274 if (boot_cpu_has(X86_FEATURE_AMD_DCM
)) {
275 size_in_kb
= size_in_kb
>> 1;
283 eax
->split
.is_self_initializing
= 1;
284 eax
->split
.type
= types
[leaf
];
285 eax
->split
.level
= levels
[leaf
];
286 eax
->split
.num_threads_sharing
= 0;
287 eax
->split
.num_cores_on_die
= __this_cpu_read(cpu_info
.x86_max_cores
) - 1;
291 eax
->split
.is_fully_associative
= 1;
292 ebx
->split
.coherency_line_size
= line_size
- 1;
293 ebx
->split
.ways_of_associativity
= assoc
- 1;
294 ebx
->split
.physical_line_partition
= lines_per_tag
- 1;
295 ecx
->split
.number_of_sets
= (size_in_kb
* 1024) / line_size
/
296 (ebx
->split
.ways_of_associativity
+ 1) - 1;
299 #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS)
302 * L3 cache descriptors
304 static void amd_calc_l3_indices(struct amd_northbridge
*nb
)
306 struct amd_l3_cache
*l3
= &nb
->l3_cache
;
307 unsigned int sc0
, sc1
, sc2
, sc3
;
310 pci_read_config_dword(nb
->misc
, 0x1C4, &val
);
312 /* calculate subcache sizes */
313 l3
->subcaches
[0] = sc0
= !(val
& BIT(0));
314 l3
->subcaches
[1] = sc1
= !(val
& BIT(4));
316 if (boot_cpu_data
.x86
== 0x15) {
317 l3
->subcaches
[0] = sc0
+= !(val
& BIT(1));
318 l3
->subcaches
[1] = sc1
+= !(val
& BIT(5));
321 l3
->subcaches
[2] = sc2
= !(val
& BIT(8)) + !(val
& BIT(9));
322 l3
->subcaches
[3] = sc3
= !(val
& BIT(12)) + !(val
& BIT(13));
324 l3
->indices
= (max(max3(sc0
, sc1
, sc2
), sc3
) << 10) - 1;
328 * check whether a slot used for disabling an L3 index is occupied.
329 * @l3: L3 cache descriptor
330 * @slot: slot number (0..1)
332 * @returns: the disabled index if used or negative value if slot free.
334 static int amd_get_l3_disable_slot(struct amd_northbridge
*nb
, unsigned slot
)
336 unsigned int reg
= 0;
338 pci_read_config_dword(nb
->misc
, 0x1BC + slot
* 4, ®
);
340 /* check whether this slot is activated already */
341 if (reg
& (3UL << 30))
347 static ssize_t
show_cache_disable(struct cacheinfo
*this_leaf
, char *buf
,
351 struct amd_northbridge
*nb
= this_leaf
->priv
;
353 index
= amd_get_l3_disable_slot(nb
, slot
);
355 return sprintf(buf
, "%d\n", index
);
357 return sprintf(buf
, "FREE\n");
360 #define SHOW_CACHE_DISABLE(slot) \
362 cache_disable_##slot##_show(struct device *dev, \
363 struct device_attribute *attr, char *buf) \
365 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
366 return show_cache_disable(this_leaf, buf, slot); \
368 SHOW_CACHE_DISABLE(0)
369 SHOW_CACHE_DISABLE(1)
371 static void amd_l3_disable_index(struct amd_northbridge
*nb
, int cpu
,
372 unsigned slot
, unsigned long idx
)
379 * disable index in all 4 subcaches
381 for (i
= 0; i
< 4; i
++) {
382 u32 reg
= idx
| (i
<< 20);
384 if (!nb
->l3_cache
.subcaches
[i
])
387 pci_write_config_dword(nb
->misc
, 0x1BC + slot
* 4, reg
);
390 * We need to WBINVD on a core on the node containing the L3
391 * cache which indices we disable therefore a simple wbinvd()
397 pci_write_config_dword(nb
->misc
, 0x1BC + slot
* 4, reg
);
402 * disable a L3 cache index by using a disable-slot
404 * @l3: L3 cache descriptor
405 * @cpu: A CPU on the node containing the L3 cache
406 * @slot: slot number (0..1)
407 * @index: index to disable
409 * @return: 0 on success, error status on failure
411 static int amd_set_l3_disable_slot(struct amd_northbridge
*nb
, int cpu
,
412 unsigned slot
, unsigned long index
)
416 /* check if @slot is already used or the index is already disabled */
417 ret
= amd_get_l3_disable_slot(nb
, slot
);
421 if (index
> nb
->l3_cache
.indices
)
424 /* check whether the other slot has disabled the same index already */
425 if (index
== amd_get_l3_disable_slot(nb
, !slot
))
428 amd_l3_disable_index(nb
, cpu
, slot
, index
);
433 static ssize_t
store_cache_disable(struct cacheinfo
*this_leaf
,
434 const char *buf
, size_t count
,
437 unsigned long val
= 0;
439 struct amd_northbridge
*nb
= this_leaf
->priv
;
441 if (!capable(CAP_SYS_ADMIN
))
444 cpu
= cpumask_first(&this_leaf
->shared_cpu_map
);
446 if (kstrtoul(buf
, 10, &val
) < 0)
449 err
= amd_set_l3_disable_slot(nb
, cpu
, slot
, val
);
452 pr_warn("L3 slot %d in use/index already disabled!\n",
459 #define STORE_CACHE_DISABLE(slot) \
461 cache_disable_##slot##_store(struct device *dev, \
462 struct device_attribute *attr, \
463 const char *buf, size_t count) \
465 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \
466 return store_cache_disable(this_leaf, buf, count, slot); \
468 STORE_CACHE_DISABLE(0)
469 STORE_CACHE_DISABLE(1)
471 static ssize_t
subcaches_show(struct device
*dev
,
472 struct device_attribute
*attr
, char *buf
)
474 struct cacheinfo
*this_leaf
= dev_get_drvdata(dev
);
475 int cpu
= cpumask_first(&this_leaf
->shared_cpu_map
);
477 return sprintf(buf
, "%x\n", amd_get_subcaches(cpu
));
480 static ssize_t
subcaches_store(struct device
*dev
,
481 struct device_attribute
*attr
,
482 const char *buf
, size_t count
)
484 struct cacheinfo
*this_leaf
= dev_get_drvdata(dev
);
485 int cpu
= cpumask_first(&this_leaf
->shared_cpu_map
);
488 if (!capable(CAP_SYS_ADMIN
))
491 if (kstrtoul(buf
, 16, &val
) < 0)
494 if (amd_set_subcaches(cpu
, val
))
500 static DEVICE_ATTR_RW(cache_disable_0
);
501 static DEVICE_ATTR_RW(cache_disable_1
);
502 static DEVICE_ATTR_RW(subcaches
);
505 cache_private_attrs_is_visible(struct kobject
*kobj
,
506 struct attribute
*attr
, int unused
)
508 struct device
*dev
= kobj_to_dev(kobj
);
509 struct cacheinfo
*this_leaf
= dev_get_drvdata(dev
);
510 umode_t mode
= attr
->mode
;
512 if (!this_leaf
->priv
)
515 if ((attr
== &dev_attr_subcaches
.attr
) &&
516 amd_nb_has_feature(AMD_NB_L3_PARTITIONING
))
519 if ((attr
== &dev_attr_cache_disable_0
.attr
||
520 attr
== &dev_attr_cache_disable_1
.attr
) &&
521 amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE
))
527 static struct attribute_group cache_private_group
= {
528 .is_visible
= cache_private_attrs_is_visible
,
531 static void init_amd_l3_attrs(void)
534 static struct attribute
**amd_l3_attrs
;
536 if (amd_l3_attrs
) /* already initialized */
539 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE
))
541 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING
))
544 amd_l3_attrs
= kcalloc(n
, sizeof(*amd_l3_attrs
), GFP_KERNEL
);
549 if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE
)) {
550 amd_l3_attrs
[n
++] = &dev_attr_cache_disable_0
.attr
;
551 amd_l3_attrs
[n
++] = &dev_attr_cache_disable_1
.attr
;
553 if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING
))
554 amd_l3_attrs
[n
++] = &dev_attr_subcaches
.attr
;
556 cache_private_group
.attrs
= amd_l3_attrs
;
559 const struct attribute_group
*
560 cache_get_priv_group(struct cacheinfo
*this_leaf
)
562 struct amd_northbridge
*nb
= this_leaf
->priv
;
564 if (this_leaf
->level
< 3 || !nb
)
567 if (nb
&& nb
->l3_cache
.indices
)
570 return &cache_private_group
;
573 static void amd_init_l3_cache(struct _cpuid4_info_regs
*this_leaf
, int index
)
577 /* only for L3, and not in virtualized environments */
581 node
= amd_get_nb_id(smp_processor_id());
582 this_leaf
->nb
= node_to_amd_nb(node
);
583 if (this_leaf
->nb
&& !this_leaf
->nb
->l3_cache
.indices
)
584 amd_calc_l3_indices(this_leaf
->nb
);
587 #define amd_init_l3_cache(x, y)
588 #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */
591 cpuid4_cache_lookup_regs(int index
, struct _cpuid4_info_regs
*this_leaf
)
593 union _cpuid4_leaf_eax eax
;
594 union _cpuid4_leaf_ebx ebx
;
595 union _cpuid4_leaf_ecx ecx
;
598 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
) {
599 if (boot_cpu_has(X86_FEATURE_TOPOEXT
))
600 cpuid_count(0x8000001d, index
, &eax
.full
,
601 &ebx
.full
, &ecx
.full
, &edx
);
603 amd_cpuid4(index
, &eax
, &ebx
, &ecx
);
604 amd_init_l3_cache(this_leaf
, index
);
605 } else if (boot_cpu_data
.x86_vendor
== X86_VENDOR_HYGON
) {
606 cpuid_count(0x8000001d, index
, &eax
.full
,
607 &ebx
.full
, &ecx
.full
, &edx
);
608 amd_init_l3_cache(this_leaf
, index
);
610 cpuid_count(4, index
, &eax
.full
, &ebx
.full
, &ecx
.full
, &edx
);
613 if (eax
.split
.type
== CTYPE_NULL
)
614 return -EIO
; /* better error ? */
616 this_leaf
->eax
= eax
;
617 this_leaf
->ebx
= ebx
;
618 this_leaf
->ecx
= ecx
;
619 this_leaf
->size
= (ecx
.split
.number_of_sets
+ 1) *
620 (ebx
.split
.coherency_line_size
+ 1) *
621 (ebx
.split
.physical_line_partition
+ 1) *
622 (ebx
.split
.ways_of_associativity
+ 1);
626 static int find_num_cache_leaves(struct cpuinfo_x86
*c
)
628 unsigned int eax
, ebx
, ecx
, edx
, op
;
629 union _cpuid4_leaf_eax cache_eax
;
632 if (c
->x86_vendor
== X86_VENDOR_AMD
||
633 c
->x86_vendor
== X86_VENDOR_HYGON
)
640 /* Do cpuid(op) loop to find out num_cache_leaves */
641 cpuid_count(op
, i
, &eax
, &ebx
, &ecx
, &edx
);
642 cache_eax
.full
= eax
;
643 } while (cache_eax
.split
.type
!= CTYPE_NULL
);
647 void cacheinfo_amd_init_llc_id(struct cpuinfo_x86
*c
, int cpu
, u8 node_id
)
650 * We may have multiple LLCs if L3 caches exist, so check if we
651 * have an L3 cache by looking at the L3 cache CPUID leaf.
653 if (!cpuid_edx(0x80000006))
657 /* LLC is at the node level. */
658 per_cpu(cpu_llc_id
, cpu
) = node_id
;
659 } else if (c
->x86
== 0x17 &&
660 c
->x86_model
>= 0 && c
->x86_model
<= 0x1F) {
662 * LLC is at the core complex level.
663 * Core complex ID is ApicId[3] for these processors.
665 per_cpu(cpu_llc_id
, cpu
) = c
->apicid
>> 3;
668 * LLC ID is calculated from the number of threads sharing the
671 u32 eax
, ebx
, ecx
, edx
, num_sharing_cache
= 0;
672 u32 llc_index
= find_num_cache_leaves(c
) - 1;
674 cpuid_count(0x8000001d, llc_index
, &eax
, &ebx
, &ecx
, &edx
);
676 num_sharing_cache
= ((eax
>> 14) & 0xfff) + 1;
678 if (num_sharing_cache
) {
679 int bits
= get_count_order(num_sharing_cache
);
681 per_cpu(cpu_llc_id
, cpu
) = c
->apicid
>> bits
;
686 void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86
*c
, int cpu
, u8 node_id
)
689 * We may have multiple LLCs if L3 caches exist, so check if we
690 * have an L3 cache by looking at the L3 cache CPUID leaf.
692 if (!cpuid_edx(0x80000006))
696 * LLC is at the core complex level.
697 * Core complex ID is ApicId[3] for these processors.
699 per_cpu(cpu_llc_id
, cpu
) = c
->apicid
>> 3;
702 void init_amd_cacheinfo(struct cpuinfo_x86
*c
)
705 if (boot_cpu_has(X86_FEATURE_TOPOEXT
)) {
706 num_cache_leaves
= find_num_cache_leaves(c
);
707 } else if (c
->extended_cpuid_level
>= 0x80000006) {
708 if (cpuid_edx(0x80000006) & 0xf000)
709 num_cache_leaves
= 4;
711 num_cache_leaves
= 3;
715 void init_hygon_cacheinfo(struct cpuinfo_x86
*c
)
717 num_cache_leaves
= find_num_cache_leaves(c
);
720 void init_intel_cacheinfo(struct cpuinfo_x86
*c
)
723 unsigned int trace
= 0, l1i
= 0, l1d
= 0, l2
= 0, l3
= 0;
724 unsigned int new_l1d
= 0, new_l1i
= 0; /* Cache sizes from cpuid(4) */
725 unsigned int new_l2
= 0, new_l3
= 0, i
; /* Cache sizes from cpuid(4) */
726 unsigned int l2_id
= 0, l3_id
= 0, num_threads_sharing
, index_msb
;
728 unsigned int cpu
= c
->cpu_index
;
731 if (c
->cpuid_level
> 3) {
732 static int is_initialized
;
734 if (is_initialized
== 0) {
735 /* Init num_cache_leaves from boot CPU */
736 num_cache_leaves
= find_num_cache_leaves(c
);
741 * Whenever possible use cpuid(4), deterministic cache
742 * parameters cpuid leaf to find the cache details
744 for (i
= 0; i
< num_cache_leaves
; i
++) {
745 struct _cpuid4_info_regs this_leaf
= {};
748 retval
= cpuid4_cache_lookup_regs(i
, &this_leaf
);
752 switch (this_leaf
.eax
.split
.level
) {
754 if (this_leaf
.eax
.split
.type
== CTYPE_DATA
)
755 new_l1d
= this_leaf
.size
/1024;
756 else if (this_leaf
.eax
.split
.type
== CTYPE_INST
)
757 new_l1i
= this_leaf
.size
/1024;
760 new_l2
= this_leaf
.size
/1024;
761 num_threads_sharing
= 1 + this_leaf
.eax
.split
.num_threads_sharing
;
762 index_msb
= get_count_order(num_threads_sharing
);
763 l2_id
= c
->apicid
& ~((1 << index_msb
) - 1);
766 new_l3
= this_leaf
.size
/1024;
767 num_threads_sharing
= 1 + this_leaf
.eax
.split
.num_threads_sharing
;
768 index_msb
= get_count_order(num_threads_sharing
);
769 l3_id
= c
->apicid
& ~((1 << index_msb
) - 1);
777 * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
780 if ((num_cache_leaves
== 0 || c
->x86
== 15) && c
->cpuid_level
> 1) {
781 /* supports eax=2 call */
783 unsigned int regs
[4];
784 unsigned char *dp
= (unsigned char *)regs
;
787 if (num_cache_leaves
!= 0 && c
->x86
== 15)
790 /* Number of times to iterate */
791 n
= cpuid_eax(2) & 0xFF;
793 for (i
= 0 ; i
< n
; i
++) {
794 cpuid(2, ®s
[0], ®s
[1], ®s
[2], ®s
[3]);
796 /* If bit 31 is set, this is an unknown format */
797 for (j
= 0 ; j
< 3 ; j
++)
798 if (regs
[j
] & (1 << 31))
801 /* Byte 0 is level count, not a descriptor */
802 for (j
= 1 ; j
< 16 ; j
++) {
803 unsigned char des
= dp
[j
];
806 /* look up this descriptor in the table */
807 while (cache_table
[k
].descriptor
!= 0) {
808 if (cache_table
[k
].descriptor
== des
) {
809 if (only_trace
&& cache_table
[k
].cache_type
!= LVL_TRACE
)
811 switch (cache_table
[k
].cache_type
) {
813 l1i
+= cache_table
[k
].size
;
816 l1d
+= cache_table
[k
].size
;
819 l2
+= cache_table
[k
].size
;
822 l3
+= cache_table
[k
].size
;
825 trace
+= cache_table
[k
].size
;
847 per_cpu(cpu_llc_id
, cpu
) = l2_id
;
854 per_cpu(cpu_llc_id
, cpu
) = l3_id
;
860 * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in
861 * turns means that the only possibility is SMT (as indicated in
862 * cpuid1). Since cpuid2 doesn't specify shared caches, and we know
863 * that SMT shares all caches, we can unconditionally set cpu_llc_id to
866 if (per_cpu(cpu_llc_id
, cpu
) == BAD_APICID
)
867 per_cpu(cpu_llc_id
, cpu
) = c
->phys_proc_id
;
870 c
->x86_cache_size
= l3
? l3
: (l2
? l2
: (l1i
+l1d
));
873 cpu_detect_cache_sizes(c
);
876 static int __cache_amd_cpumap_setup(unsigned int cpu
, int index
,
877 struct _cpuid4_info_regs
*base
)
879 struct cpu_cacheinfo
*this_cpu_ci
= get_cpu_cacheinfo(cpu
);
880 struct cacheinfo
*this_leaf
;
884 * For L3, always use the pre-calculated cpu_llc_shared_mask
885 * to derive shared_cpu_map.
888 for_each_cpu(i
, cpu_llc_shared_mask(cpu
)) {
889 this_cpu_ci
= get_cpu_cacheinfo(i
);
890 if (!this_cpu_ci
->info_list
)
892 this_leaf
= this_cpu_ci
->info_list
+ index
;
893 for_each_cpu(sibling
, cpu_llc_shared_mask(cpu
)) {
894 if (!cpu_online(sibling
))
896 cpumask_set_cpu(sibling
,
897 &this_leaf
->shared_cpu_map
);
900 } else if (boot_cpu_has(X86_FEATURE_TOPOEXT
)) {
901 unsigned int apicid
, nshared
, first
, last
;
903 nshared
= base
->eax
.split
.num_threads_sharing
+ 1;
904 apicid
= cpu_data(cpu
).apicid
;
905 first
= apicid
- (apicid
% nshared
);
906 last
= first
+ nshared
- 1;
908 for_each_online_cpu(i
) {
909 this_cpu_ci
= get_cpu_cacheinfo(i
);
910 if (!this_cpu_ci
->info_list
)
913 apicid
= cpu_data(i
).apicid
;
914 if ((apicid
< first
) || (apicid
> last
))
917 this_leaf
= this_cpu_ci
->info_list
+ index
;
919 for_each_online_cpu(sibling
) {
920 apicid
= cpu_data(sibling
).apicid
;
921 if ((apicid
< first
) || (apicid
> last
))
923 cpumask_set_cpu(sibling
,
924 &this_leaf
->shared_cpu_map
);
933 static void __cache_cpumap_setup(unsigned int cpu
, int index
,
934 struct _cpuid4_info_regs
*base
)
936 struct cpu_cacheinfo
*this_cpu_ci
= get_cpu_cacheinfo(cpu
);
937 struct cacheinfo
*this_leaf
, *sibling_leaf
;
938 unsigned long num_threads_sharing
;
940 struct cpuinfo_x86
*c
= &cpu_data(cpu
);
942 if (c
->x86_vendor
== X86_VENDOR_AMD
||
943 c
->x86_vendor
== X86_VENDOR_HYGON
) {
944 if (__cache_amd_cpumap_setup(cpu
, index
, base
))
948 this_leaf
= this_cpu_ci
->info_list
+ index
;
949 num_threads_sharing
= 1 + base
->eax
.split
.num_threads_sharing
;
951 cpumask_set_cpu(cpu
, &this_leaf
->shared_cpu_map
);
952 if (num_threads_sharing
== 1)
955 index_msb
= get_count_order(num_threads_sharing
);
957 for_each_online_cpu(i
)
958 if (cpu_data(i
).apicid
>> index_msb
== c
->apicid
>> index_msb
) {
959 struct cpu_cacheinfo
*sib_cpu_ci
= get_cpu_cacheinfo(i
);
961 if (i
== cpu
|| !sib_cpu_ci
->info_list
)
962 continue;/* skip if itself or no cacheinfo */
963 sibling_leaf
= sib_cpu_ci
->info_list
+ index
;
964 cpumask_set_cpu(i
, &this_leaf
->shared_cpu_map
);
965 cpumask_set_cpu(cpu
, &sibling_leaf
->shared_cpu_map
);
969 static void ci_leaf_init(struct cacheinfo
*this_leaf
,
970 struct _cpuid4_info_regs
*base
)
972 this_leaf
->id
= base
->id
;
973 this_leaf
->attributes
= CACHE_ID
;
974 this_leaf
->level
= base
->eax
.split
.level
;
975 this_leaf
->type
= cache_type_map
[base
->eax
.split
.type
];
976 this_leaf
->coherency_line_size
=
977 base
->ebx
.split
.coherency_line_size
+ 1;
978 this_leaf
->ways_of_associativity
=
979 base
->ebx
.split
.ways_of_associativity
+ 1;
980 this_leaf
->size
= base
->size
;
981 this_leaf
->number_of_sets
= base
->ecx
.split
.number_of_sets
+ 1;
982 this_leaf
->physical_line_partition
=
983 base
->ebx
.split
.physical_line_partition
+ 1;
984 this_leaf
->priv
= base
->nb
;
987 static int __init_cache_level(unsigned int cpu
)
989 struct cpu_cacheinfo
*this_cpu_ci
= get_cpu_cacheinfo(cpu
);
991 if (!num_cache_leaves
)
995 this_cpu_ci
->num_levels
= 3;
996 this_cpu_ci
->num_leaves
= num_cache_leaves
;
1001 * The max shared threads number comes from CPUID.4:EAX[25-14] with input
1002 * ECX as cache index. Then right shift apicid by the number's order to get
1003 * cache id for this cache node.
1005 static void get_cache_id(int cpu
, struct _cpuid4_info_regs
*id4_regs
)
1007 struct cpuinfo_x86
*c
= &cpu_data(cpu
);
1008 unsigned long num_threads_sharing
;
1011 num_threads_sharing
= 1 + id4_regs
->eax
.split
.num_threads_sharing
;
1012 index_msb
= get_count_order(num_threads_sharing
);
1013 id4_regs
->id
= c
->apicid
>> index_msb
;
1016 static int __populate_cache_leaves(unsigned int cpu
)
1018 unsigned int idx
, ret
;
1019 struct cpu_cacheinfo
*this_cpu_ci
= get_cpu_cacheinfo(cpu
);
1020 struct cacheinfo
*this_leaf
= this_cpu_ci
->info_list
;
1021 struct _cpuid4_info_regs id4_regs
= {};
1023 for (idx
= 0; idx
< this_cpu_ci
->num_leaves
; idx
++) {
1024 ret
= cpuid4_cache_lookup_regs(idx
, &id4_regs
);
1027 get_cache_id(cpu
, &id4_regs
);
1028 ci_leaf_init(this_leaf
++, &id4_regs
);
1029 __cache_cpumap_setup(cpu
, idx
, &id4_regs
);
1031 this_cpu_ci
->cpu_map_populated
= true;
1036 DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level
)
1037 DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves
)