hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / kernel / cpu / intel_rdt_monitor.c
blobb0f3aed76b750763d2c92b7c8a911bb678cbe103
1 /*
2 * Resource Director Technology(RDT)
3 * - Monitoring code
5 * Copyright (C) 2017 Intel Corporation
7 * Author:
8 * Vikas Shivappa <vikas.shivappa@intel.com>
10 * This replaces the cqm.c based on perf but we reuse a lot of
11 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms and conditions of the GNU General Public License,
15 * version 2, as published by the Free Software Foundation.
17 * This program is distributed in the hope it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
22 * More information about RDT be found in the Intel (R) x86 Architecture
23 * Software Developer Manual June 2016, volume 3, section 17.17.
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <asm/cpu_device_id.h>
29 #include "intel_rdt.h"
31 #define MSR_IA32_QM_CTR 0x0c8e
32 #define MSR_IA32_QM_EVTSEL 0x0c8d
34 struct rmid_entry {
35 u32 rmid;
36 int busy;
37 struct list_head list;
40 /**
41 * @rmid_free_lru A least recently used list of free RMIDs
42 * These RMIDs are guaranteed to have an occupancy less than the
43 * threshold occupancy
45 static LIST_HEAD(rmid_free_lru);
47 /**
48 * @rmid_limbo_count count of currently unused but (potentially)
49 * dirty RMIDs.
50 * This counts RMIDs that no one is currently using but that
51 * may have a occupancy value > intel_cqm_threshold. User can change
52 * the threshold occupancy value.
54 static unsigned int rmid_limbo_count;
56 /**
57 * @rmid_entry - The entry in the limbo and free lists.
59 static struct rmid_entry *rmid_ptrs;
62 * Global boolean for rdt_monitor which is true if any
63 * resource monitoring is enabled.
65 bool rdt_mon_capable;
68 * Global to indicate which monitoring events are enabled.
70 unsigned int rdt_mon_features;
73 * This is the threshold cache occupancy at which we will consider an
74 * RMID available for re-allocation.
76 unsigned int intel_cqm_threshold;
78 static inline struct rmid_entry *__rmid_entry(u32 rmid)
80 struct rmid_entry *entry;
82 entry = &rmid_ptrs[rmid];
83 WARN_ON(entry->rmid != rmid);
85 return entry;
88 static u64 __rmid_read(u32 rmid, u32 eventid)
90 u64 val;
93 * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
94 * with a valid event code for supported resource type and the bits
95 * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
96 * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
97 * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
98 * are error bits.
100 wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
101 rdmsrl(MSR_IA32_QM_CTR, val);
103 return val;
106 static bool rmid_dirty(struct rmid_entry *entry)
108 u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
110 return val >= intel_cqm_threshold;
114 * Check the RMIDs that are marked as busy for this domain. If the
115 * reported LLC occupancy is below the threshold clear the busy bit and
116 * decrement the count. If the busy count gets to zero on an RMID, we
117 * free the RMID
119 void __check_limbo(struct rdt_domain *d, bool force_free)
121 struct rmid_entry *entry;
122 struct rdt_resource *r;
123 u32 crmid = 1, nrmid;
125 r = &rdt_resources_all[RDT_RESOURCE_L3];
128 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
129 * are marked as busy for occupancy < threshold. If the occupancy
130 * is less than the threshold decrement the busy counter of the
131 * RMID and move it to the free list when the counter reaches 0.
133 for (;;) {
134 nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
135 if (nrmid >= r->num_rmid)
136 break;
138 entry = __rmid_entry(nrmid);
139 if (force_free || !rmid_dirty(entry)) {
140 clear_bit(entry->rmid, d->rmid_busy_llc);
141 if (!--entry->busy) {
142 rmid_limbo_count--;
143 list_add_tail(&entry->list, &rmid_free_lru);
146 crmid = nrmid + 1;
150 bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
152 return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
156 * As of now the RMIDs allocation is global.
157 * However we keep track of which packages the RMIDs
158 * are used to optimize the limbo list management.
160 int alloc_rmid(void)
162 struct rmid_entry *entry;
164 lockdep_assert_held(&rdtgroup_mutex);
166 if (list_empty(&rmid_free_lru))
167 return rmid_limbo_count ? -EBUSY : -ENOSPC;
169 entry = list_first_entry(&rmid_free_lru,
170 struct rmid_entry, list);
171 list_del(&entry->list);
173 return entry->rmid;
176 static void add_rmid_to_limbo(struct rmid_entry *entry)
178 struct rdt_resource *r;
179 struct rdt_domain *d;
180 int cpu;
181 u64 val;
183 r = &rdt_resources_all[RDT_RESOURCE_L3];
185 entry->busy = 0;
186 cpu = get_cpu();
187 list_for_each_entry(d, &r->domains, list) {
188 if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
189 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
190 if (val <= intel_cqm_threshold)
191 continue;
195 * For the first limbo RMID in the domain,
196 * setup up the limbo worker.
198 if (!has_busy_rmid(r, d))
199 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
200 set_bit(entry->rmid, d->rmid_busy_llc);
201 entry->busy++;
203 put_cpu();
205 if (entry->busy)
206 rmid_limbo_count++;
207 else
208 list_add_tail(&entry->list, &rmid_free_lru);
211 void free_rmid(u32 rmid)
213 struct rmid_entry *entry;
215 if (!rmid)
216 return;
218 lockdep_assert_held(&rdtgroup_mutex);
220 entry = __rmid_entry(rmid);
222 if (is_llc_occupancy_enabled())
223 add_rmid_to_limbo(entry);
224 else
225 list_add_tail(&entry->list, &rmid_free_lru);
228 static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr)
230 u64 shift = 64 - MBM_CNTR_WIDTH, chunks;
232 chunks = (cur_msr << shift) - (prev_msr << shift);
233 return chunks >>= shift;
236 static int __mon_event_count(u32 rmid, struct rmid_read *rr)
238 struct mbm_state *m;
239 u64 chunks, tval;
241 tval = __rmid_read(rmid, rr->evtid);
242 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
243 rr->val = tval;
244 return -EINVAL;
246 switch (rr->evtid) {
247 case QOS_L3_OCCUP_EVENT_ID:
248 rr->val += tval;
249 return 0;
250 case QOS_L3_MBM_TOTAL_EVENT_ID:
251 m = &rr->d->mbm_total[rmid];
252 break;
253 case QOS_L3_MBM_LOCAL_EVENT_ID:
254 m = &rr->d->mbm_local[rmid];
255 break;
256 default:
258 * Code would never reach here because
259 * an invalid event id would fail the __rmid_read.
261 return -EINVAL;
264 if (rr->first) {
265 memset(m, 0, sizeof(struct mbm_state));
266 m->prev_bw_msr = m->prev_msr = tval;
267 return 0;
270 chunks = mbm_overflow_count(m->prev_msr, tval);
271 m->chunks += chunks;
272 m->prev_msr = tval;
274 rr->val += m->chunks;
275 return 0;
279 * Supporting function to calculate the memory bandwidth
280 * and delta bandwidth in MBps.
282 static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
284 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
285 struct mbm_state *m = &rr->d->mbm_local[rmid];
286 u64 tval, cur_bw, chunks;
288 tval = __rmid_read(rmid, rr->evtid);
289 if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
290 return;
292 chunks = mbm_overflow_count(m->prev_bw_msr, tval);
293 m->chunks_bw += chunks;
294 m->chunks = m->chunks_bw;
295 cur_bw = (chunks * r->mon_scale) >> 20;
297 if (m->delta_comp)
298 m->delta_bw = abs(cur_bw - m->prev_bw);
299 m->delta_comp = false;
300 m->prev_bw = cur_bw;
301 m->prev_bw_msr = tval;
305 * This is called via IPI to read the CQM/MBM counters
306 * on a domain.
308 void mon_event_count(void *info)
310 struct rdtgroup *rdtgrp, *entry;
311 struct rmid_read *rr = info;
312 struct list_head *head;
314 rdtgrp = rr->rgrp;
316 if (__mon_event_count(rdtgrp->mon.rmid, rr))
317 return;
320 * For Ctrl groups read data from child monitor groups.
322 head = &rdtgrp->mon.crdtgrp_list;
324 if (rdtgrp->type == RDTCTRL_GROUP) {
325 list_for_each_entry(entry, head, mon.crdtgrp_list) {
326 if (__mon_event_count(entry->mon.rmid, rr))
327 return;
333 * Feedback loop for MBA software controller (mba_sc)
335 * mba_sc is a feedback loop where we periodically read MBM counters and
336 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
337 * that:
339 * current bandwdith(cur_bw) < user specified bandwidth(user_bw)
341 * This uses the MBM counters to measure the bandwidth and MBA throttle
342 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
343 * fact that resctrl rdtgroups have both monitoring and control.
345 * The frequency of the checks is 1s and we just tag along the MBM overflow
346 * timer. Having 1s interval makes the calculation of bandwidth simpler.
348 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
349 * be a need to increase the bandwidth to avoid uncecessarily restricting
350 * the L2 <-> L3 traffic.
352 * Since MBA controls the L2 external bandwidth where as MBM measures the
353 * L3 external bandwidth the following sequence could lead to such a
354 * situation.
356 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
357 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
358 * after some time rdtgroup has mostly L2 <-> L3 traffic.
360 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
361 * throttle MSRs already have low percentage values. To avoid
362 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
364 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
366 u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
367 struct mbm_state *pmbm_data, *cmbm_data;
368 u32 cur_bw, delta_bw, user_bw;
369 struct rdt_resource *r_mba;
370 struct rdt_domain *dom_mba;
371 struct list_head *head;
372 struct rdtgroup *entry;
374 r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
375 closid = rgrp->closid;
376 rmid = rgrp->mon.rmid;
377 pmbm_data = &dom_mbm->mbm_local[rmid];
379 dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
380 if (!dom_mba) {
381 pr_warn_once("Failure to get domain for MBA update\n");
382 return;
385 cur_bw = pmbm_data->prev_bw;
386 user_bw = dom_mba->mbps_val[closid];
387 delta_bw = pmbm_data->delta_bw;
388 cur_msr_val = dom_mba->ctrl_val[closid];
391 * For Ctrl groups read data from child monitor groups.
393 head = &rgrp->mon.crdtgrp_list;
394 list_for_each_entry(entry, head, mon.crdtgrp_list) {
395 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
396 cur_bw += cmbm_data->prev_bw;
397 delta_bw += cmbm_data->delta_bw;
401 * Scale up/down the bandwidth linearly for the ctrl group. The
402 * bandwidth step is the bandwidth granularity specified by the
403 * hardware.
405 * The delta_bw is used when increasing the bandwidth so that we
406 * dont alternately increase and decrease the control values
407 * continuously.
409 * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
410 * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
411 * switching between 90 and 110 continuously if we only check
412 * cur_bw < user_bw.
414 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
415 new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
416 } else if (cur_msr_val < MAX_MBA_BW &&
417 (user_bw > (cur_bw + delta_bw))) {
418 new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
419 } else {
420 return;
423 cur_msr = r_mba->msr_base + closid;
424 wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
425 dom_mba->ctrl_val[closid] = new_msr_val;
428 * Delta values are updated dynamically package wise for each
429 * rdtgrp everytime the throttle MSR changes value.
431 * This is because (1)the increase in bandwidth is not perfectly
432 * linear and only "approximately" linear even when the hardware
433 * says it is linear.(2)Also since MBA is a core specific
434 * mechanism, the delta values vary based on number of cores used
435 * by the rdtgrp.
437 pmbm_data->delta_comp = true;
438 list_for_each_entry(entry, head, mon.crdtgrp_list) {
439 cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
440 cmbm_data->delta_comp = true;
444 static void mbm_update(struct rdt_domain *d, int rmid)
446 struct rmid_read rr;
448 rr.first = false;
449 rr.d = d;
452 * This is protected from concurrent reads from user
453 * as both the user and we hold the global mutex.
455 if (is_mbm_total_enabled()) {
456 rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
457 __mon_event_count(rmid, &rr);
459 if (is_mbm_local_enabled()) {
460 rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
463 * Call the MBA software controller only for the
464 * control groups and when user has enabled
465 * the software controller explicitly.
467 if (!is_mba_sc(NULL))
468 __mon_event_count(rmid, &rr);
469 else
470 mbm_bw_count(rmid, &rr);
475 * Handler to scan the limbo list and move the RMIDs
476 * to free list whose occupancy < threshold_occupancy.
478 void cqm_handle_limbo(struct work_struct *work)
480 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
481 int cpu = smp_processor_id();
482 struct rdt_resource *r;
483 struct rdt_domain *d;
485 mutex_lock(&rdtgroup_mutex);
487 r = &rdt_resources_all[RDT_RESOURCE_L3];
488 d = get_domain_from_cpu(cpu, r);
490 if (!d) {
491 pr_warn_once("Failure to get domain for limbo worker\n");
492 goto out_unlock;
495 __check_limbo(d, false);
497 if (has_busy_rmid(r, d))
498 schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
500 out_unlock:
501 mutex_unlock(&rdtgroup_mutex);
504 void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
506 unsigned long delay = msecs_to_jiffies(delay_ms);
507 struct rdt_resource *r;
508 int cpu;
510 r = &rdt_resources_all[RDT_RESOURCE_L3];
512 cpu = cpumask_any(&dom->cpu_mask);
513 dom->cqm_work_cpu = cpu;
515 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
518 void mbm_handle_overflow(struct work_struct *work)
520 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
521 struct rdtgroup *prgrp, *crgrp;
522 int cpu = smp_processor_id();
523 struct list_head *head;
524 struct rdt_domain *d;
526 mutex_lock(&rdtgroup_mutex);
528 if (!static_branch_likely(&rdt_enable_key))
529 goto out_unlock;
531 d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
532 if (!d)
533 goto out_unlock;
535 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
536 mbm_update(d, prgrp->mon.rmid);
538 head = &prgrp->mon.crdtgrp_list;
539 list_for_each_entry(crgrp, head, mon.crdtgrp_list)
540 mbm_update(d, crgrp->mon.rmid);
542 if (is_mba_sc(NULL))
543 update_mba_bw(prgrp, d);
546 schedule_delayed_work_on(cpu, &d->mbm_over, delay);
548 out_unlock:
549 mutex_unlock(&rdtgroup_mutex);
552 void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
554 unsigned long delay = msecs_to_jiffies(delay_ms);
555 int cpu;
557 if (!static_branch_likely(&rdt_enable_key))
558 return;
559 cpu = cpumask_any(&dom->cpu_mask);
560 dom->mbm_work_cpu = cpu;
561 schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
564 static int dom_data_init(struct rdt_resource *r)
566 struct rmid_entry *entry = NULL;
567 int i, nr_rmids;
569 nr_rmids = r->num_rmid;
570 rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
571 if (!rmid_ptrs)
572 return -ENOMEM;
574 for (i = 0; i < nr_rmids; i++) {
575 entry = &rmid_ptrs[i];
576 INIT_LIST_HEAD(&entry->list);
578 entry->rmid = i;
579 list_add_tail(&entry->list, &rmid_free_lru);
583 * RMID 0 is special and is always allocated. It's used for all
584 * tasks that are not monitored.
586 entry = __rmid_entry(0);
587 list_del(&entry->list);
589 return 0;
592 static struct mon_evt llc_occupancy_event = {
593 .name = "llc_occupancy",
594 .evtid = QOS_L3_OCCUP_EVENT_ID,
597 static struct mon_evt mbm_total_event = {
598 .name = "mbm_total_bytes",
599 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
602 static struct mon_evt mbm_local_event = {
603 .name = "mbm_local_bytes",
604 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
608 * Initialize the event list for the resource.
610 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
611 * because as per the SDM the total and local memory bandwidth
612 * are enumerated as part of L3 monitoring.
614 static void l3_mon_evt_init(struct rdt_resource *r)
616 INIT_LIST_HEAD(&r->evt_list);
618 if (is_llc_occupancy_enabled())
619 list_add_tail(&llc_occupancy_event.list, &r->evt_list);
620 if (is_mbm_total_enabled())
621 list_add_tail(&mbm_total_event.list, &r->evt_list);
622 if (is_mbm_local_enabled())
623 list_add_tail(&mbm_local_event.list, &r->evt_list);
626 int rdt_get_mon_l3_config(struct rdt_resource *r)
628 int ret;
630 r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
631 r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
634 * A reasonable upper limit on the max threshold is the number
635 * of lines tagged per RMID if all RMIDs have the same number of
636 * lines tagged in the LLC.
638 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
640 intel_cqm_threshold = boot_cpu_data.x86_cache_size * 1024 / r->num_rmid;
642 /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
643 intel_cqm_threshold /= r->mon_scale;
645 ret = dom_data_init(r);
646 if (ret)
647 return ret;
649 l3_mon_evt_init(r);
651 r->mon_capable = true;
652 r->mon_enabled = true;
654 return 0;