hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / kernel / cpu / intel_rdt_pseudo_lock.c
blob815b4e92522ccfffb2864bddb4d67e6efa6e887b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Resource Director Technology (RDT)
5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
7 * Copyright (C) 2018 Intel Corporation
9 * Author: Reinette Chatre <reinette.chatre@intel.com>
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/cacheinfo.h>
15 #include <linux/cpu.h>
16 #include <linux/cpumask.h>
17 #include <linux/debugfs.h>
18 #include <linux/kthread.h>
19 #include <linux/mman.h>
20 #include <linux/perf_event.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/uaccess.h>
25 #include <asm/cacheflush.h>
26 #include <asm/intel-family.h>
27 #include <asm/intel_rdt_sched.h>
28 #include <asm/perf_event.h>
30 #include "../../events/perf_event.h" /* For X86_CONFIG() */
31 #include "intel_rdt.h"
33 #define CREATE_TRACE_POINTS
34 #include "intel_rdt_pseudo_lock_event.h"
37 * MSR_MISC_FEATURE_CONTROL register enables the modification of hardware
38 * prefetcher state. Details about this register can be found in the MSR
39 * tables for specific platforms found in Intel's SDM.
41 #define MSR_MISC_FEATURE_CONTROL 0x000001a4
44 * The bits needed to disable hardware prefetching varies based on the
45 * platform. During initialization we will discover which bits to use.
47 static u64 prefetch_disable_bits;
50 * Major number assigned to and shared by all devices exposing
51 * pseudo-locked regions.
53 static unsigned int pseudo_lock_major;
54 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
55 static struct class *pseudo_lock_class;
57 /**
58 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
60 * Capture the list of platforms that have been validated to support
61 * pseudo-locking. This includes testing to ensure pseudo-locked regions
62 * with low cache miss rates can be created under variety of load conditions
63 * as well as that these pseudo-locked regions can maintain their low cache
64 * miss rates under variety of load conditions for significant lengths of time.
66 * After a platform has been validated to support pseudo-locking its
67 * hardware prefetch disable bits are included here as they are documented
68 * in the SDM.
70 * When adding a platform here also add support for its cache events to
71 * measure_cycles_perf_fn()
73 * Return:
74 * If platform is supported, the bits to disable hardware prefetchers, 0
75 * if platform is not supported.
77 static u64 get_prefetch_disable_bits(void)
79 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
80 boot_cpu_data.x86 != 6)
81 return 0;
83 switch (boot_cpu_data.x86_model) {
84 case INTEL_FAM6_BROADWELL_X:
86 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
87 * as:
88 * 0 L2 Hardware Prefetcher Disable (R/W)
89 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W)
90 * 2 DCU Hardware Prefetcher Disable (R/W)
91 * 3 DCU IP Prefetcher Disable (R/W)
92 * 63:4 Reserved
94 return 0xF;
95 case INTEL_FAM6_ATOM_GOLDMONT:
96 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
98 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
99 * as:
100 * 0 L2 Hardware Prefetcher Disable (R/W)
101 * 1 Reserved
102 * 2 DCU Hardware Prefetcher Disable (R/W)
103 * 63:3 Reserved
105 return 0x5;
108 return 0;
112 * pseudo_lock_minor_get - Obtain available minor number
113 * @minor: Pointer to where new minor number will be stored
115 * A bitmask is used to track available minor numbers. Here the next free
116 * minor number is marked as unavailable and returned.
118 * Return: 0 on success, <0 on failure.
120 static int pseudo_lock_minor_get(unsigned int *minor)
122 unsigned long first_bit;
124 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
126 if (first_bit == MINORBITS)
127 return -ENOSPC;
129 __clear_bit(first_bit, &pseudo_lock_minor_avail);
130 *minor = first_bit;
132 return 0;
136 * pseudo_lock_minor_release - Return minor number to available
137 * @minor: The minor number made available
139 static void pseudo_lock_minor_release(unsigned int minor)
141 __set_bit(minor, &pseudo_lock_minor_avail);
145 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
146 * @minor: The minor number of the device representing pseudo-locked region
148 * When the character device is accessed we need to determine which
149 * pseudo-locked region it belongs to. This is done by matching the minor
150 * number of the device to the pseudo-locked region it belongs.
152 * Minor numbers are assigned at the time a pseudo-locked region is associated
153 * with a cache instance.
155 * Return: On success return pointer to resource group owning the pseudo-locked
156 * region, NULL on failure.
158 static struct rdtgroup *region_find_by_minor(unsigned int minor)
160 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
162 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
163 if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
164 rdtgrp_match = rdtgrp;
165 break;
168 return rdtgrp_match;
172 * pseudo_lock_pm_req - A power management QoS request list entry
173 * @list: Entry within the @pm_reqs list for a pseudo-locked region
174 * @req: PM QoS request
176 struct pseudo_lock_pm_req {
177 struct list_head list;
178 struct dev_pm_qos_request req;
181 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
183 struct pseudo_lock_pm_req *pm_req, *next;
185 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
186 dev_pm_qos_remove_request(&pm_req->req);
187 list_del(&pm_req->list);
188 kfree(pm_req);
193 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
195 * To prevent the cache from being affected by power management entering
196 * C6 has to be avoided. This is accomplished by requesting a latency
197 * requirement lower than lowest C6 exit latency of all supported
198 * platforms as found in the cpuidle state tables in the intel_idle driver.
199 * At this time it is possible to do so with a single latency requirement
200 * for all supported platforms.
202 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
203 * the ACPI latencies need to be considered while keeping in mind that C2
204 * may be set to map to deeper sleep states. In this case the latency
205 * requirement needs to prevent entering C2 also.
207 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
209 struct pseudo_lock_pm_req *pm_req;
210 int cpu;
211 int ret;
213 for_each_cpu(cpu, &plr->d->cpu_mask) {
214 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
215 if (!pm_req) {
216 rdt_last_cmd_puts("fail allocating mem for PM QoS\n");
217 ret = -ENOMEM;
218 goto out_err;
220 ret = dev_pm_qos_add_request(get_cpu_device(cpu),
221 &pm_req->req,
222 DEV_PM_QOS_RESUME_LATENCY,
223 30);
224 if (ret < 0) {
225 rdt_last_cmd_printf("fail to add latency req cpu%d\n",
226 cpu);
227 kfree(pm_req);
228 ret = -1;
229 goto out_err;
231 list_add(&pm_req->list, &plr->pm_reqs);
234 return 0;
236 out_err:
237 pseudo_lock_cstates_relax(plr);
238 return ret;
242 * pseudo_lock_region_clear - Reset pseudo-lock region data
243 * @plr: pseudo-lock region
245 * All content of the pseudo-locked region is reset - any memory allocated
246 * freed.
248 * Return: void
250 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
252 plr->size = 0;
253 plr->line_size = 0;
254 kfree(plr->kmem);
255 plr->kmem = NULL;
256 plr->r = NULL;
257 if (plr->d)
258 plr->d->plr = NULL;
259 plr->d = NULL;
260 plr->cbm = 0;
261 plr->debugfs_dir = NULL;
265 * pseudo_lock_region_init - Initialize pseudo-lock region information
266 * @plr: pseudo-lock region
268 * Called after user provided a schemata to be pseudo-locked. From the
269 * schemata the &struct pseudo_lock_region is on entry already initialized
270 * with the resource, domain, and capacity bitmask. Here the information
271 * required for pseudo-locking is deduced from this data and &struct
272 * pseudo_lock_region initialized further. This information includes:
273 * - size in bytes of the region to be pseudo-locked
274 * - cache line size to know the stride with which data needs to be accessed
275 * to be pseudo-locked
276 * - a cpu associated with the cache instance on which the pseudo-locking
277 * flow can be executed
279 * Return: 0 on success, <0 on failure. Descriptive error will be written
280 * to last_cmd_status buffer.
282 static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
284 struct cpu_cacheinfo *ci;
285 int ret;
286 int i;
288 /* Pick the first cpu we find that is associated with the cache. */
289 plr->cpu = cpumask_first(&plr->d->cpu_mask);
291 if (!cpu_online(plr->cpu)) {
292 rdt_last_cmd_printf("cpu %u associated with cache not online\n",
293 plr->cpu);
294 ret = -ENODEV;
295 goto out_region;
298 ci = get_cpu_cacheinfo(plr->cpu);
300 plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
302 for (i = 0; i < ci->num_leaves; i++) {
303 if (ci->info_list[i].level == plr->r->cache_level) {
304 plr->line_size = ci->info_list[i].coherency_line_size;
305 return 0;
309 ret = -1;
310 rdt_last_cmd_puts("unable to determine cache line size\n");
311 out_region:
312 pseudo_lock_region_clear(plr);
313 return ret;
317 * pseudo_lock_init - Initialize a pseudo-lock region
318 * @rdtgrp: resource group to which new pseudo-locked region will belong
320 * A pseudo-locked region is associated with a resource group. When this
321 * association is created the pseudo-locked region is initialized. The
322 * details of the pseudo-locked region are not known at this time so only
323 * allocation is done and association established.
325 * Return: 0 on success, <0 on failure
327 static int pseudo_lock_init(struct rdtgroup *rdtgrp)
329 struct pseudo_lock_region *plr;
331 plr = kzalloc(sizeof(*plr), GFP_KERNEL);
332 if (!plr)
333 return -ENOMEM;
335 init_waitqueue_head(&plr->lock_thread_wq);
336 INIT_LIST_HEAD(&plr->pm_reqs);
337 rdtgrp->plr = plr;
338 return 0;
342 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
343 * @plr: pseudo-lock region
345 * Initialize the details required to set up the pseudo-locked region and
346 * allocate the contiguous memory that will be pseudo-locked to the cache.
348 * Return: 0 on success, <0 on failure. Descriptive error will be written
349 * to last_cmd_status buffer.
351 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
353 int ret;
355 ret = pseudo_lock_region_init(plr);
356 if (ret < 0)
357 return ret;
360 * We do not yet support contiguous regions larger than
361 * KMALLOC_MAX_SIZE.
363 if (plr->size > KMALLOC_MAX_SIZE) {
364 rdt_last_cmd_puts("requested region exceeds maximum size\n");
365 ret = -E2BIG;
366 goto out_region;
369 plr->kmem = kzalloc(plr->size, GFP_KERNEL);
370 if (!plr->kmem) {
371 rdt_last_cmd_puts("unable to allocate memory\n");
372 ret = -ENOMEM;
373 goto out_region;
376 ret = 0;
377 goto out;
378 out_region:
379 pseudo_lock_region_clear(plr);
380 out:
381 return ret;
385 * pseudo_lock_free - Free a pseudo-locked region
386 * @rdtgrp: resource group to which pseudo-locked region belonged
388 * The pseudo-locked region's resources have already been released, or not
389 * yet created at this point. Now it can be freed and disassociated from the
390 * resource group.
392 * Return: void
394 static void pseudo_lock_free(struct rdtgroup *rdtgrp)
396 pseudo_lock_region_clear(rdtgrp->plr);
397 kfree(rdtgrp->plr);
398 rdtgrp->plr = NULL;
402 * pseudo_lock_fn - Load kernel memory into cache
403 * @_rdtgrp: resource group to which pseudo-lock region belongs
405 * This is the core pseudo-locking flow.
407 * First we ensure that the kernel memory cannot be found in the cache.
408 * Then, while taking care that there will be as little interference as
409 * possible, the memory to be loaded is accessed while core is running
410 * with class of service set to the bitmask of the pseudo-locked region.
411 * After this is complete no future CAT allocations will be allowed to
412 * overlap with this bitmask.
414 * Local register variables are utilized to ensure that the memory region
415 * to be locked is the only memory access made during the critical locking
416 * loop.
418 * Return: 0. Waiter on waitqueue will be woken on completion.
420 static int pseudo_lock_fn(void *_rdtgrp)
422 struct rdtgroup *rdtgrp = _rdtgrp;
423 struct pseudo_lock_region *plr = rdtgrp->plr;
424 u32 rmid_p, closid_p;
425 unsigned long i;
426 #ifdef CONFIG_KASAN
428 * The registers used for local register variables are also used
429 * when KASAN is active. When KASAN is active we use a regular
430 * variable to ensure we always use a valid pointer, but the cost
431 * is that this variable will enter the cache through evicting the
432 * memory we are trying to lock into the cache. Thus expect lower
433 * pseudo-locking success rate when KASAN is active.
435 unsigned int line_size;
436 unsigned int size;
437 void *mem_r;
438 #else
439 register unsigned int line_size asm("esi");
440 register unsigned int size asm("edi");
441 #ifdef CONFIG_X86_64
442 register void *mem_r asm("rbx");
443 #else
444 register void *mem_r asm("ebx");
445 #endif /* CONFIG_X86_64 */
446 #endif /* CONFIG_KASAN */
449 * Make sure none of the allocated memory is cached. If it is we
450 * will get a cache hit in below loop from outside of pseudo-locked
451 * region.
452 * wbinvd (as opposed to clflush/clflushopt) is required to
453 * increase likelihood that allocated cache portion will be filled
454 * with associated memory.
456 native_wbinvd();
459 * Always called with interrupts enabled. By disabling interrupts
460 * ensure that we will not be preempted during this critical section.
462 local_irq_disable();
465 * Call wrmsr and rdmsr as directly as possible to avoid tracing
466 * clobbering local register variables or affecting cache accesses.
468 * Disable the hardware prefetcher so that when the end of the memory
469 * being pseudo-locked is reached the hardware will not read beyond
470 * the buffer and evict pseudo-locked memory read earlier from the
471 * cache.
473 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
474 closid_p = this_cpu_read(pqr_state.cur_closid);
475 rmid_p = this_cpu_read(pqr_state.cur_rmid);
476 mem_r = plr->kmem;
477 size = plr->size;
478 line_size = plr->line_size;
480 * Critical section begin: start by writing the closid associated
481 * with the capacity bitmask of the cache region being
482 * pseudo-locked followed by reading of kernel memory to load it
483 * into the cache.
485 __wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
487 * Cache was flushed earlier. Now access kernel memory to read it
488 * into cache region associated with just activated plr->closid.
489 * Loop over data twice:
490 * - In first loop the cache region is shared with the page walker
491 * as it populates the paging structure caches (including TLB).
492 * - In the second loop the paging structure caches are used and
493 * cache region is populated with the memory being referenced.
495 for (i = 0; i < size; i += PAGE_SIZE) {
497 * Add a barrier to prevent speculative execution of this
498 * loop reading beyond the end of the buffer.
500 rmb();
501 asm volatile("mov (%0,%1,1), %%eax\n\t"
503 : "r" (mem_r), "r" (i)
504 : "%eax", "memory");
506 for (i = 0; i < size; i += line_size) {
508 * Add a barrier to prevent speculative execution of this
509 * loop reading beyond the end of the buffer.
511 rmb();
512 asm volatile("mov (%0,%1,1), %%eax\n\t"
514 : "r" (mem_r), "r" (i)
515 : "%eax", "memory");
518 * Critical section end: restore closid with capacity bitmask that
519 * does not overlap with pseudo-locked region.
521 __wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
523 /* Re-enable the hardware prefetcher(s) */
524 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
525 local_irq_enable();
527 plr->thread_done = 1;
528 wake_up_interruptible(&plr->lock_thread_wq);
529 return 0;
533 * rdtgroup_monitor_in_progress - Test if monitoring in progress
534 * @r: resource group being queried
536 * Return: 1 if monitor groups have been created for this resource
537 * group, 0 otherwise.
539 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
541 return !list_empty(&rdtgrp->mon.crdtgrp_list);
545 * rdtgroup_locksetup_user_restrict - Restrict user access to group
546 * @rdtgrp: resource group needing access restricted
548 * A resource group used for cache pseudo-locking cannot have cpus or tasks
549 * assigned to it. This is communicated to the user by restricting access
550 * to all the files that can be used to make such changes.
552 * Permissions restored with rdtgroup_locksetup_user_restore()
554 * Return: 0 on success, <0 on failure. If a failure occurs during the
555 * restriction of access an attempt will be made to restore permissions but
556 * the state of the mode of these files will be uncertain when a failure
557 * occurs.
559 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
561 int ret;
563 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
564 if (ret)
565 return ret;
567 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
568 if (ret)
569 goto err_tasks;
571 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
572 if (ret)
573 goto err_cpus;
575 if (rdt_mon_capable) {
576 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
577 if (ret)
578 goto err_cpus_list;
581 ret = 0;
582 goto out;
584 err_cpus_list:
585 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
586 err_cpus:
587 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
588 err_tasks:
589 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
590 out:
591 return ret;
595 * rdtgroup_locksetup_user_restore - Restore user access to group
596 * @rdtgrp: resource group needing access restored
598 * Restore all file access previously removed using
599 * rdtgroup_locksetup_user_restrict()
601 * Return: 0 on success, <0 on failure. If a failure occurs during the
602 * restoration of access an attempt will be made to restrict permissions
603 * again but the state of the mode of these files will be uncertain when
604 * a failure occurs.
606 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
608 int ret;
610 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
611 if (ret)
612 return ret;
614 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
615 if (ret)
616 goto err_tasks;
618 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
619 if (ret)
620 goto err_cpus;
622 if (rdt_mon_capable) {
623 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
624 if (ret)
625 goto err_cpus_list;
628 ret = 0;
629 goto out;
631 err_cpus_list:
632 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
633 err_cpus:
634 rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
635 err_tasks:
636 rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
637 out:
638 return ret;
642 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
643 * @rdtgrp: resource group requested to enter locksetup mode
645 * A resource group enters locksetup mode to reflect that it would be used
646 * to represent a pseudo-locked region and is in the process of being set
647 * up to do so. A resource group used for a pseudo-locked region would
648 * lose the closid associated with it so we cannot allow it to have any
649 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
650 * future. Monitoring of a pseudo-locked region is not allowed either.
652 * The above and more restrictions on a pseudo-locked region are checked
653 * for and enforced before the resource group enters the locksetup mode.
655 * Returns: 0 if the resource group successfully entered locksetup mode, <0
656 * on failure. On failure the last_cmd_status buffer is updated with text to
657 * communicate details of failure to the user.
659 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
661 int ret;
664 * The default resource group can neither be removed nor lose the
665 * default closid associated with it.
667 if (rdtgrp == &rdtgroup_default) {
668 rdt_last_cmd_puts("cannot pseudo-lock default group\n");
669 return -EINVAL;
673 * Cache Pseudo-locking not supported when CDP is enabled.
675 * Some things to consider if you would like to enable this
676 * support (using L3 CDP as example):
677 * - When CDP is enabled two separate resources are exposed,
678 * L3DATA and L3CODE, but they are actually on the same cache.
679 * The implication for pseudo-locking is that if a
680 * pseudo-locked region is created on a domain of one
681 * resource (eg. L3CODE), then a pseudo-locked region cannot
682 * be created on that same domain of the other resource
683 * (eg. L3DATA). This is because the creation of a
684 * pseudo-locked region involves a call to wbinvd that will
685 * affect all cache allocations on particular domain.
686 * - Considering the previous, it may be possible to only
687 * expose one of the CDP resources to pseudo-locking and
688 * hide the other. For example, we could consider to only
689 * expose L3DATA and since the L3 cache is unified it is
690 * still possible to place instructions there are execute it.
691 * - If only one region is exposed to pseudo-locking we should
692 * still keep in mind that availability of a portion of cache
693 * for pseudo-locking should take into account both resources.
694 * Similarly, if a pseudo-locked region is created in one
695 * resource, the portion of cache used by it should be made
696 * unavailable to all future allocations from both resources.
698 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
699 rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
700 rdt_last_cmd_puts("CDP enabled\n");
701 return -EINVAL;
705 * Not knowing the bits to disable prefetching implies that this
706 * platform does not support Cache Pseudo-Locking.
708 prefetch_disable_bits = get_prefetch_disable_bits();
709 if (prefetch_disable_bits == 0) {
710 rdt_last_cmd_puts("pseudo-locking not supported\n");
711 return -EINVAL;
714 if (rdtgroup_monitor_in_progress(rdtgrp)) {
715 rdt_last_cmd_puts("monitoring in progress\n");
716 return -EINVAL;
719 if (rdtgroup_tasks_assigned(rdtgrp)) {
720 rdt_last_cmd_puts("tasks assigned to resource group\n");
721 return -EINVAL;
724 if (!cpumask_empty(&rdtgrp->cpu_mask)) {
725 rdt_last_cmd_puts("CPUs assigned to resource group\n");
726 return -EINVAL;
729 if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
730 rdt_last_cmd_puts("unable to modify resctrl permissions\n");
731 return -EIO;
734 ret = pseudo_lock_init(rdtgrp);
735 if (ret) {
736 rdt_last_cmd_puts("unable to init pseudo-lock region\n");
737 goto out_release;
741 * If this system is capable of monitoring a rmid would have been
742 * allocated when the control group was created. This is not needed
743 * anymore when this group would be used for pseudo-locking. This
744 * is safe to call on platforms not capable of monitoring.
746 free_rmid(rdtgrp->mon.rmid);
748 ret = 0;
749 goto out;
751 out_release:
752 rdtgroup_locksetup_user_restore(rdtgrp);
753 out:
754 return ret;
758 * rdtgroup_locksetup_exit - resource group exist locksetup mode
759 * @rdtgrp: resource group
761 * When a resource group exits locksetup mode the earlier restrictions are
762 * lifted.
764 * Return: 0 on success, <0 on failure
766 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
768 int ret;
770 if (rdt_mon_capable) {
771 ret = alloc_rmid();
772 if (ret < 0) {
773 rdt_last_cmd_puts("out of RMIDs\n");
774 return ret;
776 rdtgrp->mon.rmid = ret;
779 ret = rdtgroup_locksetup_user_restore(rdtgrp);
780 if (ret) {
781 free_rmid(rdtgrp->mon.rmid);
782 return ret;
785 pseudo_lock_free(rdtgrp);
786 return 0;
790 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
791 * @d: RDT domain
792 * @cbm: CBM to test
794 * @d represents a cache instance and @cbm a capacity bitmask that is
795 * considered for it. Determine if @cbm overlaps with any existing
796 * pseudo-locked region on @d.
798 * @cbm is unsigned long, even if only 32 bits are used, to make the
799 * bitmap functions work correctly.
801 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
802 * otherwise.
804 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
806 unsigned int cbm_len;
807 unsigned long cbm_b;
809 if (d->plr) {
810 cbm_len = d->plr->r->cache.cbm_len;
811 cbm_b = d->plr->cbm;
812 if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
813 return true;
815 return false;
819 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
820 * @d: RDT domain under test
822 * The setup of a pseudo-locked region affects all cache instances within
823 * the hierarchy of the region. It is thus essential to know if any
824 * pseudo-locked regions exist within a cache hierarchy to prevent any
825 * attempts to create new pseudo-locked regions in the same hierarchy.
827 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
828 * if it is not possible to test due to memory allocation issue,
829 * false otherwise.
831 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
833 cpumask_var_t cpu_with_psl;
834 struct rdt_resource *r;
835 struct rdt_domain *d_i;
836 bool ret = false;
838 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
839 return true;
842 * First determine which cpus have pseudo-locked regions
843 * associated with them.
845 for_each_alloc_enabled_rdt_resource(r) {
846 list_for_each_entry(d_i, &r->domains, list) {
847 if (d_i->plr)
848 cpumask_or(cpu_with_psl, cpu_with_psl,
849 &d_i->cpu_mask);
854 * Next test if new pseudo-locked region would intersect with
855 * existing region.
857 if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
858 ret = true;
860 free_cpumask_var(cpu_with_psl);
861 return ret;
865 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
866 * @_plr: pseudo-lock region to measure
868 * There is no deterministic way to test if a memory region is cached. One
869 * way is to measure how long it takes to read the memory, the speed of
870 * access is a good way to learn how close to the cpu the data was. Even
871 * more, if the prefetcher is disabled and the memory is read at a stride
872 * of half the cache line, then a cache miss will be easy to spot since the
873 * read of the first half would be significantly slower than the read of
874 * the second half.
876 * Return: 0. Waiter on waitqueue will be woken on completion.
878 static int measure_cycles_lat_fn(void *_plr)
880 struct pseudo_lock_region *plr = _plr;
881 unsigned long i;
882 u64 start, end;
883 void *mem_r;
885 local_irq_disable();
887 * Disable hardware prefetchers.
889 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
890 mem_r = READ_ONCE(plr->kmem);
892 * Dummy execute of the time measurement to load the needed
893 * instructions into the L1 instruction cache.
895 start = rdtsc_ordered();
896 for (i = 0; i < plr->size; i += 32) {
897 start = rdtsc_ordered();
898 asm volatile("mov (%0,%1,1), %%eax\n\t"
900 : "r" (mem_r), "r" (i)
901 : "%eax", "memory");
902 end = rdtsc_ordered();
903 trace_pseudo_lock_mem_latency((u32)(end - start));
905 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
906 local_irq_enable();
907 plr->thread_done = 1;
908 wake_up_interruptible(&plr->lock_thread_wq);
909 return 0;
913 * Create a perf_event_attr for the hit and miss perf events that will
914 * be used during the performance measurement. A perf_event maintains
915 * a pointer to its perf_event_attr so a unique attribute structure is
916 * created for each perf_event.
918 * The actual configuration of the event is set right before use in order
919 * to use the X86_CONFIG macro.
921 static struct perf_event_attr perf_miss_attr = {
922 .type = PERF_TYPE_RAW,
923 .size = sizeof(struct perf_event_attr),
924 .pinned = 1,
925 .disabled = 0,
926 .exclude_user = 1,
929 static struct perf_event_attr perf_hit_attr = {
930 .type = PERF_TYPE_RAW,
931 .size = sizeof(struct perf_event_attr),
932 .pinned = 1,
933 .disabled = 0,
934 .exclude_user = 1,
937 struct residency_counts {
938 u64 miss_before, hits_before;
939 u64 miss_after, hits_after;
942 static int measure_residency_fn(struct perf_event_attr *miss_attr,
943 struct perf_event_attr *hit_attr,
944 struct pseudo_lock_region *plr,
945 struct residency_counts *counts)
947 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
948 struct perf_event *miss_event, *hit_event;
949 int hit_pmcnum, miss_pmcnum;
950 unsigned int line_size;
951 unsigned int size;
952 unsigned long i;
953 void *mem_r;
954 u64 tmp;
956 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
957 NULL, NULL, NULL);
958 if (IS_ERR(miss_event))
959 goto out;
961 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
962 NULL, NULL, NULL);
963 if (IS_ERR(hit_event))
964 goto out_miss;
966 local_irq_disable();
968 * Check any possible error state of events used by performing
969 * one local read.
971 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
972 local_irq_enable();
973 goto out_hit;
975 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
976 local_irq_enable();
977 goto out_hit;
981 * Disable hardware prefetchers.
983 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
985 /* Initialize rest of local variables */
987 * Performance event has been validated right before this with
988 * interrupts disabled - it is thus safe to read the counter index.
990 miss_pmcnum = x86_perf_rdpmc_index(miss_event);
991 hit_pmcnum = x86_perf_rdpmc_index(hit_event);
992 line_size = READ_ONCE(plr->line_size);
993 mem_r = READ_ONCE(plr->kmem);
994 size = READ_ONCE(plr->size);
997 * Read counter variables twice - first to load the instructions
998 * used in L1 cache, second to capture accurate value that does not
999 * include cache misses incurred because of instruction loads.
1001 rdpmcl(hit_pmcnum, hits_before);
1002 rdpmcl(miss_pmcnum, miss_before);
1004 * From SDM: Performing back-to-back fast reads are not guaranteed
1005 * to be monotonic.
1006 * Use LFENCE to ensure all previous instructions are retired
1007 * before proceeding.
1009 rmb();
1010 rdpmcl(hit_pmcnum, hits_before);
1011 rdpmcl(miss_pmcnum, miss_before);
1013 * Use LFENCE to ensure all previous instructions are retired
1014 * before proceeding.
1016 rmb();
1017 for (i = 0; i < size; i += line_size) {
1019 * Add a barrier to prevent speculative execution of this
1020 * loop reading beyond the end of the buffer.
1022 rmb();
1023 asm volatile("mov (%0,%1,1), %%eax\n\t"
1025 : "r" (mem_r), "r" (i)
1026 : "%eax", "memory");
1029 * Use LFENCE to ensure all previous instructions are retired
1030 * before proceeding.
1032 rmb();
1033 rdpmcl(hit_pmcnum, hits_after);
1034 rdpmcl(miss_pmcnum, miss_after);
1036 * Use LFENCE to ensure all previous instructions are retired
1037 * before proceeding.
1039 rmb();
1040 /* Re-enable hardware prefetchers */
1041 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
1042 local_irq_enable();
1043 out_hit:
1044 perf_event_release_kernel(hit_event);
1045 out_miss:
1046 perf_event_release_kernel(miss_event);
1047 out:
1049 * All counts will be zero on failure.
1051 counts->miss_before = miss_before;
1052 counts->hits_before = hits_before;
1053 counts->miss_after = miss_after;
1054 counts->hits_after = hits_after;
1055 return 0;
1058 static int measure_l2_residency(void *_plr)
1060 struct pseudo_lock_region *plr = _plr;
1061 struct residency_counts counts = {0};
1064 * Non-architectural event for the Goldmont Microarchitecture
1065 * from Intel x86 Architecture Software Developer Manual (SDM):
1066 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1067 * Umask values:
1068 * L2_HIT 02H
1069 * L2_MISS 10H
1071 switch (boot_cpu_data.x86_model) {
1072 case INTEL_FAM6_ATOM_GOLDMONT:
1073 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1074 perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1075 .umask = 0x10);
1076 perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1077 .umask = 0x2);
1078 break;
1079 default:
1080 goto out;
1083 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1085 * If a failure prevented the measurements from succeeding
1086 * tracepoints will still be written and all counts will be zero.
1088 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1089 counts.miss_after - counts.miss_before);
1090 out:
1091 plr->thread_done = 1;
1092 wake_up_interruptible(&plr->lock_thread_wq);
1093 return 0;
1096 static int measure_l3_residency(void *_plr)
1098 struct pseudo_lock_region *plr = _plr;
1099 struct residency_counts counts = {0};
1102 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1103 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1104 * this platform the following events are used instead:
1105 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1106 * REFERENCE 4FH
1107 * MISS 41H
1110 switch (boot_cpu_data.x86_model) {
1111 case INTEL_FAM6_BROADWELL_X:
1112 /* On BDW the hit event counts references, not hits */
1113 perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1114 .umask = 0x4f);
1115 perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1116 .umask = 0x41);
1117 break;
1118 default:
1119 goto out;
1122 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1124 * If a failure prevented the measurements from succeeding
1125 * tracepoints will still be written and all counts will be zero.
1128 counts.miss_after -= counts.miss_before;
1129 if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1131 * On BDW references and misses are counted, need to adjust.
1132 * Sometimes the "hits" counter is a bit more than the
1133 * references, for example, x references but x + 1 hits.
1134 * To not report invalid hit values in this case we treat
1135 * that as misses equal to references.
1137 /* First compute the number of cache references measured */
1138 counts.hits_after -= counts.hits_before;
1139 /* Next convert references to cache hits */
1140 counts.hits_after -= min(counts.miss_after, counts.hits_after);
1141 } else {
1142 counts.hits_after -= counts.hits_before;
1145 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1146 out:
1147 plr->thread_done = 1;
1148 wake_up_interruptible(&plr->lock_thread_wq);
1149 return 0;
1153 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1155 * The measurement of latency to access a pseudo-locked region should be
1156 * done from a cpu that is associated with that pseudo-locked region.
1157 * Determine which cpu is associated with this region and start a thread on
1158 * that cpu to perform the measurement, wait for that thread to complete.
1160 * Return: 0 on success, <0 on failure
1162 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1164 struct pseudo_lock_region *plr = rdtgrp->plr;
1165 struct task_struct *thread;
1166 unsigned int cpu;
1167 int ret = -1;
1169 cpus_read_lock();
1170 mutex_lock(&rdtgroup_mutex);
1172 if (rdtgrp->flags & RDT_DELETED) {
1173 ret = -ENODEV;
1174 goto out;
1177 if (!plr->d) {
1178 ret = -ENODEV;
1179 goto out;
1182 plr->thread_done = 0;
1183 cpu = cpumask_first(&plr->d->cpu_mask);
1184 if (!cpu_online(cpu)) {
1185 ret = -ENODEV;
1186 goto out;
1189 plr->cpu = cpu;
1191 if (sel == 1)
1192 thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1193 cpu_to_node(cpu),
1194 "pseudo_lock_measure/%u",
1195 cpu);
1196 else if (sel == 2)
1197 thread = kthread_create_on_node(measure_l2_residency, plr,
1198 cpu_to_node(cpu),
1199 "pseudo_lock_measure/%u",
1200 cpu);
1201 else if (sel == 3)
1202 thread = kthread_create_on_node(measure_l3_residency, plr,
1203 cpu_to_node(cpu),
1204 "pseudo_lock_measure/%u",
1205 cpu);
1206 else
1207 goto out;
1209 if (IS_ERR(thread)) {
1210 ret = PTR_ERR(thread);
1211 goto out;
1213 kthread_bind(thread, cpu);
1214 wake_up_process(thread);
1216 ret = wait_event_interruptible(plr->lock_thread_wq,
1217 plr->thread_done == 1);
1218 if (ret < 0)
1219 goto out;
1221 ret = 0;
1223 out:
1224 mutex_unlock(&rdtgroup_mutex);
1225 cpus_read_unlock();
1226 return ret;
1229 static ssize_t pseudo_lock_measure_trigger(struct file *file,
1230 const char __user *user_buf,
1231 size_t count, loff_t *ppos)
1233 struct rdtgroup *rdtgrp = file->private_data;
1234 size_t buf_size;
1235 char buf[32];
1236 int ret;
1237 int sel;
1239 buf_size = min(count, (sizeof(buf) - 1));
1240 if (copy_from_user(buf, user_buf, buf_size))
1241 return -EFAULT;
1243 buf[buf_size] = '\0';
1244 ret = kstrtoint(buf, 10, &sel);
1245 if (ret == 0) {
1246 if (sel != 1 && sel != 2 && sel != 3)
1247 return -EINVAL;
1248 ret = debugfs_file_get(file->f_path.dentry);
1249 if (ret)
1250 return ret;
1251 ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1252 if (ret == 0)
1253 ret = count;
1254 debugfs_file_put(file->f_path.dentry);
1257 return ret;
1260 static const struct file_operations pseudo_measure_fops = {
1261 .write = pseudo_lock_measure_trigger,
1262 .open = simple_open,
1263 .llseek = default_llseek,
1267 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1268 * @rdtgrp: resource group to which pseudo-lock region belongs
1270 * Called when a resource group in the pseudo-locksetup mode receives a
1271 * valid schemata that should be pseudo-locked. Since the resource group is
1272 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1273 * allocated and initialized with the essential information. If a failure
1274 * occurs the resource group remains in the pseudo-locksetup mode with the
1275 * &struct pseudo_lock_region associated with it, but cleared from all
1276 * information and ready for the user to re-attempt pseudo-locking by
1277 * writing the schemata again.
1279 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1280 * on failure. Descriptive error will be written to last_cmd_status buffer.
1282 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1284 struct pseudo_lock_region *plr = rdtgrp->plr;
1285 struct task_struct *thread;
1286 unsigned int new_minor;
1287 struct device *dev;
1288 int ret;
1290 ret = pseudo_lock_region_alloc(plr);
1291 if (ret < 0)
1292 return ret;
1294 ret = pseudo_lock_cstates_constrain(plr);
1295 if (ret < 0) {
1296 ret = -EINVAL;
1297 goto out_region;
1300 plr->thread_done = 0;
1302 thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1303 cpu_to_node(plr->cpu),
1304 "pseudo_lock/%u", plr->cpu);
1305 if (IS_ERR(thread)) {
1306 ret = PTR_ERR(thread);
1307 rdt_last_cmd_printf("locking thread returned error %d\n", ret);
1308 goto out_cstates;
1311 kthread_bind(thread, plr->cpu);
1312 wake_up_process(thread);
1314 ret = wait_event_interruptible(plr->lock_thread_wq,
1315 plr->thread_done == 1);
1316 if (ret < 0) {
1318 * If the thread does not get on the CPU for whatever
1319 * reason and the process which sets up the region is
1320 * interrupted then this will leave the thread in runnable
1321 * state and once it gets on the CPU it will derefence
1322 * the cleared, but not freed, plr struct resulting in an
1323 * empty pseudo-locking loop.
1325 rdt_last_cmd_puts("locking thread interrupted\n");
1326 goto out_cstates;
1329 ret = pseudo_lock_minor_get(&new_minor);
1330 if (ret < 0) {
1331 rdt_last_cmd_puts("unable to obtain a new minor number\n");
1332 goto out_cstates;
1336 * Unlock access but do not release the reference. The
1337 * pseudo-locked region will still be here on return.
1339 * The mutex has to be released temporarily to avoid a potential
1340 * deadlock with the mm->mmap_sem semaphore which is obtained in
1341 * the device_create() and debugfs_create_dir() callpath below
1342 * as well as before the mmap() callback is called.
1344 mutex_unlock(&rdtgroup_mutex);
1346 if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1347 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1348 debugfs_resctrl);
1349 if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1350 debugfs_create_file("pseudo_lock_measure", 0200,
1351 plr->debugfs_dir, rdtgrp,
1352 &pseudo_measure_fops);
1355 dev = device_create(pseudo_lock_class, NULL,
1356 MKDEV(pseudo_lock_major, new_minor),
1357 rdtgrp, "%s", rdtgrp->kn->name);
1359 mutex_lock(&rdtgroup_mutex);
1361 if (IS_ERR(dev)) {
1362 ret = PTR_ERR(dev);
1363 rdt_last_cmd_printf("failed to create character device: %d\n",
1364 ret);
1365 goto out_debugfs;
1368 /* We released the mutex - check if group was removed while we did so */
1369 if (rdtgrp->flags & RDT_DELETED) {
1370 ret = -ENODEV;
1371 goto out_device;
1374 plr->minor = new_minor;
1376 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1377 closid_free(rdtgrp->closid);
1378 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1379 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1381 ret = 0;
1382 goto out;
1384 out_device:
1385 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1386 out_debugfs:
1387 debugfs_remove_recursive(plr->debugfs_dir);
1388 pseudo_lock_minor_release(new_minor);
1389 out_cstates:
1390 pseudo_lock_cstates_relax(plr);
1391 out_region:
1392 pseudo_lock_region_clear(plr);
1393 out:
1394 return ret;
1398 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1399 * @rdtgrp: resource group to which the pseudo-locked region belongs
1401 * The removal of a pseudo-locked region can be initiated when the resource
1402 * group is removed from user space via a "rmdir" from userspace or the
1403 * unmount of the resctrl filesystem. On removal the resource group does
1404 * not go back to pseudo-locksetup mode before it is removed, instead it is
1405 * removed directly. There is thus assymmetry with the creation where the
1406 * &struct pseudo_lock_region is removed here while it was not created in
1407 * rdtgroup_pseudo_lock_create().
1409 * Return: void
1411 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1413 struct pseudo_lock_region *plr = rdtgrp->plr;
1415 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1417 * Default group cannot be a pseudo-locked region so we can
1418 * free closid here.
1420 closid_free(rdtgrp->closid);
1421 goto free;
1424 pseudo_lock_cstates_relax(plr);
1425 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1426 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1427 pseudo_lock_minor_release(plr->minor);
1429 free:
1430 pseudo_lock_free(rdtgrp);
1433 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1435 struct rdtgroup *rdtgrp;
1437 mutex_lock(&rdtgroup_mutex);
1439 rdtgrp = region_find_by_minor(iminor(inode));
1440 if (!rdtgrp) {
1441 mutex_unlock(&rdtgroup_mutex);
1442 return -ENODEV;
1445 filp->private_data = rdtgrp;
1446 atomic_inc(&rdtgrp->waitcount);
1447 /* Perform a non-seekable open - llseek is not supported */
1448 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1450 mutex_unlock(&rdtgroup_mutex);
1452 return 0;
1455 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1457 struct rdtgroup *rdtgrp;
1459 mutex_lock(&rdtgroup_mutex);
1460 rdtgrp = filp->private_data;
1461 WARN_ON(!rdtgrp);
1462 if (!rdtgrp) {
1463 mutex_unlock(&rdtgroup_mutex);
1464 return -ENODEV;
1466 filp->private_data = NULL;
1467 atomic_dec(&rdtgrp->waitcount);
1468 mutex_unlock(&rdtgroup_mutex);
1469 return 0;
1472 static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1474 /* Not supported */
1475 return -EINVAL;
1478 static const struct vm_operations_struct pseudo_mmap_ops = {
1479 .mremap = pseudo_lock_dev_mremap,
1482 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1484 unsigned long vsize = vma->vm_end - vma->vm_start;
1485 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1486 struct pseudo_lock_region *plr;
1487 struct rdtgroup *rdtgrp;
1488 unsigned long physical;
1489 unsigned long psize;
1491 mutex_lock(&rdtgroup_mutex);
1493 rdtgrp = filp->private_data;
1494 WARN_ON(!rdtgrp);
1495 if (!rdtgrp) {
1496 mutex_unlock(&rdtgroup_mutex);
1497 return -ENODEV;
1500 plr = rdtgrp->plr;
1502 if (!plr->d) {
1503 mutex_unlock(&rdtgroup_mutex);
1504 return -ENODEV;
1508 * Task is required to run with affinity to the cpus associated
1509 * with the pseudo-locked region. If this is not the case the task
1510 * may be scheduled elsewhere and invalidate entries in the
1511 * pseudo-locked region.
1513 if (!cpumask_subset(&current->cpus_allowed, &plr->d->cpu_mask)) {
1514 mutex_unlock(&rdtgroup_mutex);
1515 return -EINVAL;
1518 physical = __pa(plr->kmem) >> PAGE_SHIFT;
1519 psize = plr->size - off;
1521 if (off > plr->size) {
1522 mutex_unlock(&rdtgroup_mutex);
1523 return -ENOSPC;
1527 * Ensure changes are carried directly to the memory being mapped,
1528 * do not allow copy-on-write mapping.
1530 if (!(vma->vm_flags & VM_SHARED)) {
1531 mutex_unlock(&rdtgroup_mutex);
1532 return -EINVAL;
1535 if (vsize > psize) {
1536 mutex_unlock(&rdtgroup_mutex);
1537 return -ENOSPC;
1540 memset(plr->kmem + off, 0, vsize);
1542 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1543 vsize, vma->vm_page_prot)) {
1544 mutex_unlock(&rdtgroup_mutex);
1545 return -EAGAIN;
1547 vma->vm_ops = &pseudo_mmap_ops;
1548 mutex_unlock(&rdtgroup_mutex);
1549 return 0;
1552 static const struct file_operations pseudo_lock_dev_fops = {
1553 .owner = THIS_MODULE,
1554 .llseek = no_llseek,
1555 .read = NULL,
1556 .write = NULL,
1557 .open = pseudo_lock_dev_open,
1558 .release = pseudo_lock_dev_release,
1559 .mmap = pseudo_lock_dev_mmap,
1562 static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
1564 struct rdtgroup *rdtgrp;
1566 rdtgrp = dev_get_drvdata(dev);
1567 if (mode)
1568 *mode = 0600;
1569 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1572 int rdt_pseudo_lock_init(void)
1574 int ret;
1576 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1577 if (ret < 0)
1578 return ret;
1580 pseudo_lock_major = ret;
1582 pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1583 if (IS_ERR(pseudo_lock_class)) {
1584 ret = PTR_ERR(pseudo_lock_class);
1585 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1586 return ret;
1589 pseudo_lock_class->devnode = pseudo_lock_devnode;
1590 return 0;
1593 void rdt_pseudo_lock_release(void)
1595 class_destroy(pseudo_lock_class);
1596 pseudo_lock_class = NULL;
1597 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1598 pseudo_lock_major = 0;