hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / kernel / cpu / intel_rdt_rdtgroup.c
blobf27b8115ffa2ab45a873d2eb789cb234b601595b
1 /*
2 * User interface for Resource Alloction in Resource Director Technology(RDT)
4 * Copyright (C) 2016 Intel Corporation
6 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
17 * More information about RDT be found in the Intel (R) x86 Architecture
18 * Software Developer Manual.
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 #include <linux/cacheinfo.h>
24 #include <linux/cpu.h>
25 #include <linux/debugfs.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernfs.h>
29 #include <linux/seq_buf.h>
30 #include <linux/seq_file.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/task.h>
33 #include <linux/slab.h>
34 #include <linux/task_work.h>
36 #include <uapi/linux/magic.h>
38 #include <asm/intel_rdt_sched.h>
39 #include "intel_rdt.h"
41 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
42 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
43 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
44 static struct kernfs_root *rdt_root;
45 struct rdtgroup rdtgroup_default;
46 LIST_HEAD(rdt_all_groups);
48 /* Kernel fs node for "info" directory under root */
49 static struct kernfs_node *kn_info;
51 /* Kernel fs node for "mon_groups" directory under root */
52 static struct kernfs_node *kn_mongrp;
54 /* Kernel fs node for "mon_data" directory under root */
55 static struct kernfs_node *kn_mondata;
57 static struct seq_buf last_cmd_status;
58 static char last_cmd_status_buf[512];
60 struct dentry *debugfs_resctrl;
62 void rdt_last_cmd_clear(void)
64 lockdep_assert_held(&rdtgroup_mutex);
65 seq_buf_clear(&last_cmd_status);
68 void rdt_last_cmd_puts(const char *s)
70 lockdep_assert_held(&rdtgroup_mutex);
71 seq_buf_puts(&last_cmd_status, s);
74 void rdt_last_cmd_printf(const char *fmt, ...)
76 va_list ap;
78 va_start(ap, fmt);
79 lockdep_assert_held(&rdtgroup_mutex);
80 seq_buf_vprintf(&last_cmd_status, fmt, ap);
81 va_end(ap);
85 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
86 * we can keep a bitmap of free CLOSIDs in a single integer.
88 * Using a global CLOSID across all resources has some advantages and
89 * some drawbacks:
90 * + We can simply set "current->closid" to assign a task to a resource
91 * group.
92 * + Context switch code can avoid extra memory references deciding which
93 * CLOSID to load into the PQR_ASSOC MSR
94 * - We give up some options in configuring resource groups across multi-socket
95 * systems.
96 * - Our choices on how to configure each resource become progressively more
97 * limited as the number of resources grows.
99 static int closid_free_map;
100 static int closid_free_map_len;
102 int closids_supported(void)
104 return closid_free_map_len;
107 static void closid_init(void)
109 struct rdt_resource *r;
110 int rdt_min_closid = 32;
112 /* Compute rdt_min_closid across all resources */
113 for_each_alloc_enabled_rdt_resource(r)
114 rdt_min_closid = min(rdt_min_closid, r->num_closid);
116 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
118 /* CLOSID 0 is always reserved for the default group */
119 closid_free_map &= ~1;
120 closid_free_map_len = rdt_min_closid;
123 static int closid_alloc(void)
125 u32 closid = ffs(closid_free_map);
127 if (closid == 0)
128 return -ENOSPC;
129 closid--;
130 closid_free_map &= ~(1 << closid);
132 return closid;
135 void closid_free(int closid)
137 closid_free_map |= 1 << closid;
141 * closid_allocated - test if provided closid is in use
142 * @closid: closid to be tested
144 * Return: true if @closid is currently associated with a resource group,
145 * false if @closid is free
147 static bool closid_allocated(unsigned int closid)
149 return (closid_free_map & (1 << closid)) == 0;
153 * rdtgroup_mode_by_closid - Return mode of resource group with closid
154 * @closid: closid if the resource group
156 * Each resource group is associated with a @closid. Here the mode
157 * of a resource group can be queried by searching for it using its closid.
159 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
161 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
163 struct rdtgroup *rdtgrp;
165 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
166 if (rdtgrp->closid == closid)
167 return rdtgrp->mode;
170 return RDT_NUM_MODES;
173 static const char * const rdt_mode_str[] = {
174 [RDT_MODE_SHAREABLE] = "shareable",
175 [RDT_MODE_EXCLUSIVE] = "exclusive",
176 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
177 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
181 * rdtgroup_mode_str - Return the string representation of mode
182 * @mode: the resource group mode as &enum rdtgroup_mode
184 * Return: string representation of valid mode, "unknown" otherwise
186 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
188 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
189 return "unknown";
191 return rdt_mode_str[mode];
194 /* set uid and gid of rdtgroup dirs and files to that of the creator */
195 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
197 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
198 .ia_uid = current_fsuid(),
199 .ia_gid = current_fsgid(), };
201 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
202 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
203 return 0;
205 return kernfs_setattr(kn, &iattr);
208 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
210 struct kernfs_node *kn;
211 int ret;
213 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
214 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
215 0, rft->kf_ops, rft, NULL, NULL);
216 if (IS_ERR(kn))
217 return PTR_ERR(kn);
219 ret = rdtgroup_kn_set_ugid(kn);
220 if (ret) {
221 kernfs_remove(kn);
222 return ret;
225 return 0;
228 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
230 struct kernfs_open_file *of = m->private;
231 struct rftype *rft = of->kn->priv;
233 if (rft->seq_show)
234 return rft->seq_show(of, m, arg);
235 return 0;
238 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
239 size_t nbytes, loff_t off)
241 struct rftype *rft = of->kn->priv;
243 if (rft->write)
244 return rft->write(of, buf, nbytes, off);
246 return -EINVAL;
249 static struct kernfs_ops rdtgroup_kf_single_ops = {
250 .atomic_write_len = PAGE_SIZE,
251 .write = rdtgroup_file_write,
252 .seq_show = rdtgroup_seqfile_show,
255 static struct kernfs_ops kf_mondata_ops = {
256 .atomic_write_len = PAGE_SIZE,
257 .seq_show = rdtgroup_mondata_show,
260 static bool is_cpu_list(struct kernfs_open_file *of)
262 struct rftype *rft = of->kn->priv;
264 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
267 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
268 struct seq_file *s, void *v)
270 struct rdtgroup *rdtgrp;
271 struct cpumask *mask;
272 int ret = 0;
274 rdtgrp = rdtgroup_kn_lock_live(of->kn);
276 if (rdtgrp) {
277 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
278 if (!rdtgrp->plr->d) {
279 rdt_last_cmd_clear();
280 rdt_last_cmd_puts("Cache domain offline\n");
281 ret = -ENODEV;
282 } else {
283 mask = &rdtgrp->plr->d->cpu_mask;
284 seq_printf(s, is_cpu_list(of) ?
285 "%*pbl\n" : "%*pb\n",
286 cpumask_pr_args(mask));
288 } else {
289 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
290 cpumask_pr_args(&rdtgrp->cpu_mask));
292 } else {
293 ret = -ENOENT;
295 rdtgroup_kn_unlock(of->kn);
297 return ret;
301 * This is safe against intel_rdt_sched_in() called from __switch_to()
302 * because __switch_to() is executed with interrupts disabled. A local call
303 * from update_closid_rmid() is proteced against __switch_to() because
304 * preemption is disabled.
306 static void update_cpu_closid_rmid(void *info)
308 struct rdtgroup *r = info;
310 if (r) {
311 this_cpu_write(pqr_state.default_closid, r->closid);
312 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
316 * We cannot unconditionally write the MSR because the current
317 * executing task might have its own closid selected. Just reuse
318 * the context switch code.
320 intel_rdt_sched_in();
324 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
326 * Per task closids/rmids must have been set up before calling this function.
328 static void
329 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
331 int cpu = get_cpu();
333 if (cpumask_test_cpu(cpu, cpu_mask))
334 update_cpu_closid_rmid(r);
335 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
336 put_cpu();
339 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
340 cpumask_var_t tmpmask)
342 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
343 struct list_head *head;
345 /* Check whether cpus belong to parent ctrl group */
346 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
347 if (cpumask_weight(tmpmask)) {
348 rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
349 return -EINVAL;
352 /* Check whether cpus are dropped from this group */
353 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
354 if (cpumask_weight(tmpmask)) {
355 /* Give any dropped cpus to parent rdtgroup */
356 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
357 update_closid_rmid(tmpmask, prgrp);
361 * If we added cpus, remove them from previous group that owned them
362 * and update per-cpu rmid
364 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
365 if (cpumask_weight(tmpmask)) {
366 head = &prgrp->mon.crdtgrp_list;
367 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
368 if (crgrp == rdtgrp)
369 continue;
370 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
371 tmpmask);
373 update_closid_rmid(tmpmask, rdtgrp);
376 /* Done pushing/pulling - update this group with new mask */
377 cpumask_copy(&rdtgrp->cpu_mask, newmask);
379 return 0;
382 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
384 struct rdtgroup *crgrp;
386 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
387 /* update the child mon group masks as well*/
388 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
389 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
392 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
393 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
395 struct rdtgroup *r, *crgrp;
396 struct list_head *head;
398 /* Check whether cpus are dropped from this group */
399 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
400 if (cpumask_weight(tmpmask)) {
401 /* Can't drop from default group */
402 if (rdtgrp == &rdtgroup_default) {
403 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
404 return -EINVAL;
407 /* Give any dropped cpus to rdtgroup_default */
408 cpumask_or(&rdtgroup_default.cpu_mask,
409 &rdtgroup_default.cpu_mask, tmpmask);
410 update_closid_rmid(tmpmask, &rdtgroup_default);
414 * If we added cpus, remove them from previous group and
415 * the prev group's child groups that owned them
416 * and update per-cpu closid/rmid.
418 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
419 if (cpumask_weight(tmpmask)) {
420 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
421 if (r == rdtgrp)
422 continue;
423 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
424 if (cpumask_weight(tmpmask1))
425 cpumask_rdtgrp_clear(r, tmpmask1);
427 update_closid_rmid(tmpmask, rdtgrp);
430 /* Done pushing/pulling - update this group with new mask */
431 cpumask_copy(&rdtgrp->cpu_mask, newmask);
434 * Clear child mon group masks since there is a new parent mask
435 * now and update the rmid for the cpus the child lost.
437 head = &rdtgrp->mon.crdtgrp_list;
438 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
439 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
440 update_closid_rmid(tmpmask, rdtgrp);
441 cpumask_clear(&crgrp->cpu_mask);
444 return 0;
447 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
448 char *buf, size_t nbytes, loff_t off)
450 cpumask_var_t tmpmask, newmask, tmpmask1;
451 struct rdtgroup *rdtgrp;
452 int ret;
454 if (!buf)
455 return -EINVAL;
457 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
458 return -ENOMEM;
459 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
460 free_cpumask_var(tmpmask);
461 return -ENOMEM;
463 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
464 free_cpumask_var(tmpmask);
465 free_cpumask_var(newmask);
466 return -ENOMEM;
469 rdtgrp = rdtgroup_kn_lock_live(of->kn);
470 rdt_last_cmd_clear();
471 if (!rdtgrp) {
472 ret = -ENOENT;
473 rdt_last_cmd_puts("directory was removed\n");
474 goto unlock;
477 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
478 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
479 ret = -EINVAL;
480 rdt_last_cmd_puts("pseudo-locking in progress\n");
481 goto unlock;
484 if (is_cpu_list(of))
485 ret = cpulist_parse(buf, newmask);
486 else
487 ret = cpumask_parse(buf, newmask);
489 if (ret) {
490 rdt_last_cmd_puts("bad cpu list/mask\n");
491 goto unlock;
494 /* check that user didn't specify any offline cpus */
495 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
496 if (cpumask_weight(tmpmask)) {
497 ret = -EINVAL;
498 rdt_last_cmd_puts("can only assign online cpus\n");
499 goto unlock;
502 if (rdtgrp->type == RDTCTRL_GROUP)
503 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
504 else if (rdtgrp->type == RDTMON_GROUP)
505 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
506 else
507 ret = -EINVAL;
509 unlock:
510 rdtgroup_kn_unlock(of->kn);
511 free_cpumask_var(tmpmask);
512 free_cpumask_var(newmask);
513 free_cpumask_var(tmpmask1);
515 return ret ?: nbytes;
518 struct task_move_callback {
519 struct callback_head work;
520 struct rdtgroup *rdtgrp;
523 static void move_myself(struct callback_head *head)
525 struct task_move_callback *callback;
526 struct rdtgroup *rdtgrp;
528 callback = container_of(head, struct task_move_callback, work);
529 rdtgrp = callback->rdtgrp;
532 * If resource group was deleted before this task work callback
533 * was invoked, then assign the task to root group and free the
534 * resource group.
536 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
537 (rdtgrp->flags & RDT_DELETED)) {
538 current->closid = 0;
539 current->rmid = 0;
540 kfree(rdtgrp);
543 preempt_disable();
544 /* update PQR_ASSOC MSR to make resource group go into effect */
545 intel_rdt_sched_in();
546 preempt_enable();
548 kfree(callback);
551 static int __rdtgroup_move_task(struct task_struct *tsk,
552 struct rdtgroup *rdtgrp)
554 struct task_move_callback *callback;
555 int ret;
557 callback = kzalloc(sizeof(*callback), GFP_KERNEL);
558 if (!callback)
559 return -ENOMEM;
560 callback->work.func = move_myself;
561 callback->rdtgrp = rdtgrp;
564 * Take a refcount, so rdtgrp cannot be freed before the
565 * callback has been invoked.
567 atomic_inc(&rdtgrp->waitcount);
568 ret = task_work_add(tsk, &callback->work, true);
569 if (ret) {
571 * Task is exiting. Drop the refcount and free the callback.
572 * No need to check the refcount as the group cannot be
573 * deleted before the write function unlocks rdtgroup_mutex.
575 atomic_dec(&rdtgrp->waitcount);
576 kfree(callback);
577 rdt_last_cmd_puts("task exited\n");
578 } else {
580 * For ctrl_mon groups move both closid and rmid.
581 * For monitor groups, can move the tasks only from
582 * their parent CTRL group.
584 if (rdtgrp->type == RDTCTRL_GROUP) {
585 tsk->closid = rdtgrp->closid;
586 tsk->rmid = rdtgrp->mon.rmid;
587 } else if (rdtgrp->type == RDTMON_GROUP) {
588 if (rdtgrp->mon.parent->closid == tsk->closid) {
589 tsk->rmid = rdtgrp->mon.rmid;
590 } else {
591 rdt_last_cmd_puts("Can't move task to different control group\n");
592 ret = -EINVAL;
596 return ret;
600 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
601 * @r: Resource group
603 * Return: 1 if tasks have been assigned to @r, 0 otherwise
605 int rdtgroup_tasks_assigned(struct rdtgroup *r)
607 struct task_struct *p, *t;
608 int ret = 0;
610 lockdep_assert_held(&rdtgroup_mutex);
612 rcu_read_lock();
613 for_each_process_thread(p, t) {
614 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
615 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
616 ret = 1;
617 break;
620 rcu_read_unlock();
622 return ret;
625 static int rdtgroup_task_write_permission(struct task_struct *task,
626 struct kernfs_open_file *of)
628 const struct cred *tcred = get_task_cred(task);
629 const struct cred *cred = current_cred();
630 int ret = 0;
633 * Even if we're attaching all tasks in the thread group, we only
634 * need to check permissions on one of them.
636 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
637 !uid_eq(cred->euid, tcred->uid) &&
638 !uid_eq(cred->euid, tcred->suid)) {
639 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
640 ret = -EPERM;
643 put_cred(tcred);
644 return ret;
647 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
648 struct kernfs_open_file *of)
650 struct task_struct *tsk;
651 int ret;
653 rcu_read_lock();
654 if (pid) {
655 tsk = find_task_by_vpid(pid);
656 if (!tsk) {
657 rcu_read_unlock();
658 rdt_last_cmd_printf("No task %d\n", pid);
659 return -ESRCH;
661 } else {
662 tsk = current;
665 get_task_struct(tsk);
666 rcu_read_unlock();
668 ret = rdtgroup_task_write_permission(tsk, of);
669 if (!ret)
670 ret = __rdtgroup_move_task(tsk, rdtgrp);
672 put_task_struct(tsk);
673 return ret;
676 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
677 char *buf, size_t nbytes, loff_t off)
679 struct rdtgroup *rdtgrp;
680 int ret = 0;
681 pid_t pid;
683 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
684 return -EINVAL;
685 rdtgrp = rdtgroup_kn_lock_live(of->kn);
686 if (!rdtgrp) {
687 rdtgroup_kn_unlock(of->kn);
688 return -ENOENT;
690 rdt_last_cmd_clear();
692 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
693 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
694 ret = -EINVAL;
695 rdt_last_cmd_puts("pseudo-locking in progress\n");
696 goto unlock;
699 ret = rdtgroup_move_task(pid, rdtgrp, of);
701 unlock:
702 rdtgroup_kn_unlock(of->kn);
704 return ret ?: nbytes;
707 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
709 struct task_struct *p, *t;
711 rcu_read_lock();
712 for_each_process_thread(p, t) {
713 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
714 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
715 seq_printf(s, "%d\n", t->pid);
717 rcu_read_unlock();
720 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
721 struct seq_file *s, void *v)
723 struct rdtgroup *rdtgrp;
724 int ret = 0;
726 rdtgrp = rdtgroup_kn_lock_live(of->kn);
727 if (rdtgrp)
728 show_rdt_tasks(rdtgrp, s);
729 else
730 ret = -ENOENT;
731 rdtgroup_kn_unlock(of->kn);
733 return ret;
736 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
737 struct seq_file *seq, void *v)
739 int len;
741 mutex_lock(&rdtgroup_mutex);
742 len = seq_buf_used(&last_cmd_status);
743 if (len)
744 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
745 else
746 seq_puts(seq, "ok\n");
747 mutex_unlock(&rdtgroup_mutex);
748 return 0;
751 static int rdt_num_closids_show(struct kernfs_open_file *of,
752 struct seq_file *seq, void *v)
754 struct rdt_resource *r = of->kn->parent->priv;
756 seq_printf(seq, "%d\n", r->num_closid);
757 return 0;
760 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
761 struct seq_file *seq, void *v)
763 struct rdt_resource *r = of->kn->parent->priv;
765 seq_printf(seq, "%x\n", r->default_ctrl);
766 return 0;
769 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
770 struct seq_file *seq, void *v)
772 struct rdt_resource *r = of->kn->parent->priv;
774 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
775 return 0;
778 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
779 struct seq_file *seq, void *v)
781 struct rdt_resource *r = of->kn->parent->priv;
783 seq_printf(seq, "%x\n", r->cache.shareable_bits);
784 return 0;
788 * rdt_bit_usage_show - Display current usage of resources
790 * A domain is a shared resource that can now be allocated differently. Here
791 * we display the current regions of the domain as an annotated bitmask.
792 * For each domain of this resource its allocation bitmask
793 * is annotated as below to indicate the current usage of the corresponding bit:
794 * 0 - currently unused
795 * X - currently available for sharing and used by software and hardware
796 * H - currently used by hardware only but available for software use
797 * S - currently used and shareable by software only
798 * E - currently used exclusively by one resource group
799 * P - currently pseudo-locked by one resource group
801 static int rdt_bit_usage_show(struct kernfs_open_file *of,
802 struct seq_file *seq, void *v)
804 struct rdt_resource *r = of->kn->parent->priv;
805 u32 sw_shareable = 0, hw_shareable = 0;
806 u32 exclusive = 0, pseudo_locked = 0;
807 struct rdt_domain *dom;
808 int i, hwb, swb, excl, psl;
809 enum rdtgrp_mode mode;
810 bool sep = false;
811 u32 *ctrl;
813 mutex_lock(&rdtgroup_mutex);
814 hw_shareable = r->cache.shareable_bits;
815 list_for_each_entry(dom, &r->domains, list) {
816 if (sep)
817 seq_putc(seq, ';');
818 ctrl = dom->ctrl_val;
819 sw_shareable = 0;
820 exclusive = 0;
821 seq_printf(seq, "%d=", dom->id);
822 for (i = 0; i < closids_supported(); i++, ctrl++) {
823 if (!closid_allocated(i))
824 continue;
825 mode = rdtgroup_mode_by_closid(i);
826 switch (mode) {
827 case RDT_MODE_SHAREABLE:
828 sw_shareable |= *ctrl;
829 break;
830 case RDT_MODE_EXCLUSIVE:
831 exclusive |= *ctrl;
832 break;
833 case RDT_MODE_PSEUDO_LOCKSETUP:
835 * RDT_MODE_PSEUDO_LOCKSETUP is possible
836 * here but not included since the CBM
837 * associated with this CLOSID in this mode
838 * is not initialized and no task or cpu can be
839 * assigned this CLOSID.
841 break;
842 case RDT_MODE_PSEUDO_LOCKED:
843 case RDT_NUM_MODES:
844 WARN(1,
845 "invalid mode for closid %d\n", i);
846 break;
849 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
850 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
851 hwb = test_bit(i, (unsigned long *)&hw_shareable);
852 swb = test_bit(i, (unsigned long *)&sw_shareable);
853 excl = test_bit(i, (unsigned long *)&exclusive);
854 psl = test_bit(i, (unsigned long *)&pseudo_locked);
855 if (hwb && swb)
856 seq_putc(seq, 'X');
857 else if (hwb && !swb)
858 seq_putc(seq, 'H');
859 else if (!hwb && swb)
860 seq_putc(seq, 'S');
861 else if (excl)
862 seq_putc(seq, 'E');
863 else if (psl)
864 seq_putc(seq, 'P');
865 else /* Unused bits remain */
866 seq_putc(seq, '0');
868 sep = true;
870 seq_putc(seq, '\n');
871 mutex_unlock(&rdtgroup_mutex);
872 return 0;
875 static int rdt_min_bw_show(struct kernfs_open_file *of,
876 struct seq_file *seq, void *v)
878 struct rdt_resource *r = of->kn->parent->priv;
880 seq_printf(seq, "%u\n", r->membw.min_bw);
881 return 0;
884 static int rdt_num_rmids_show(struct kernfs_open_file *of,
885 struct seq_file *seq, void *v)
887 struct rdt_resource *r = of->kn->parent->priv;
889 seq_printf(seq, "%d\n", r->num_rmid);
891 return 0;
894 static int rdt_mon_features_show(struct kernfs_open_file *of,
895 struct seq_file *seq, void *v)
897 struct rdt_resource *r = of->kn->parent->priv;
898 struct mon_evt *mevt;
900 list_for_each_entry(mevt, &r->evt_list, list)
901 seq_printf(seq, "%s\n", mevt->name);
903 return 0;
906 static int rdt_bw_gran_show(struct kernfs_open_file *of,
907 struct seq_file *seq, void *v)
909 struct rdt_resource *r = of->kn->parent->priv;
911 seq_printf(seq, "%u\n", r->membw.bw_gran);
912 return 0;
915 static int rdt_delay_linear_show(struct kernfs_open_file *of,
916 struct seq_file *seq, void *v)
918 struct rdt_resource *r = of->kn->parent->priv;
920 seq_printf(seq, "%u\n", r->membw.delay_linear);
921 return 0;
924 static int max_threshold_occ_show(struct kernfs_open_file *of,
925 struct seq_file *seq, void *v)
927 struct rdt_resource *r = of->kn->parent->priv;
929 seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);
931 return 0;
934 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
935 char *buf, size_t nbytes, loff_t off)
937 struct rdt_resource *r = of->kn->parent->priv;
938 unsigned int bytes;
939 int ret;
941 ret = kstrtouint(buf, 0, &bytes);
942 if (ret)
943 return ret;
945 if (bytes > (boot_cpu_data.x86_cache_size * 1024))
946 return -EINVAL;
948 intel_cqm_threshold = bytes / r->mon_scale;
950 return nbytes;
954 * rdtgroup_mode_show - Display mode of this resource group
956 static int rdtgroup_mode_show(struct kernfs_open_file *of,
957 struct seq_file *s, void *v)
959 struct rdtgroup *rdtgrp;
961 rdtgrp = rdtgroup_kn_lock_live(of->kn);
962 if (!rdtgrp) {
963 rdtgroup_kn_unlock(of->kn);
964 return -ENOENT;
967 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
969 rdtgroup_kn_unlock(of->kn);
970 return 0;
974 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
975 * @r: RDT resource to which RDT domain @d belongs
976 * @d: Cache instance for which a CDP peer is requested
977 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
978 * Used to return the result.
979 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
980 * Used to return the result.
982 * RDT resources are managed independently and by extension the RDT domains
983 * (RDT resource instances) are managed independently also. The Code and
984 * Data Prioritization (CDP) RDT resources, while managed independently,
985 * could refer to the same underlying hardware. For example,
986 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
988 * When provided with an RDT resource @r and an instance of that RDT
989 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
990 * resource and the exact instance that shares the same hardware.
992 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
993 * If a CDP peer was found, @r_cdp will point to the peer RDT resource
994 * and @d_cdp will point to the peer RDT domain.
996 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
997 struct rdt_resource **r_cdp,
998 struct rdt_domain **d_cdp)
1000 struct rdt_resource *_r_cdp = NULL;
1001 struct rdt_domain *_d_cdp = NULL;
1002 int ret = 0;
1004 switch (r->rid) {
1005 case RDT_RESOURCE_L3DATA:
1006 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1007 break;
1008 case RDT_RESOURCE_L3CODE:
1009 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA];
1010 break;
1011 case RDT_RESOURCE_L2DATA:
1012 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE];
1013 break;
1014 case RDT_RESOURCE_L2CODE:
1015 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA];
1016 break;
1017 default:
1018 ret = -ENOENT;
1019 goto out;
1023 * When a new CPU comes online and CDP is enabled then the new
1024 * RDT domains (if any) associated with both CDP RDT resources
1025 * are added in the same CPU online routine while the
1026 * rdtgroup_mutex is held. It should thus not happen for one
1027 * RDT domain to exist and be associated with its RDT CDP
1028 * resource but there is no RDT domain associated with the
1029 * peer RDT CDP resource. Hence the WARN.
1031 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1032 if (WARN_ON(!_d_cdp)) {
1033 _r_cdp = NULL;
1034 ret = -EINVAL;
1037 out:
1038 *r_cdp = _r_cdp;
1039 *d_cdp = _d_cdp;
1041 return ret;
1045 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1046 * @r: Resource to which domain instance @d belongs.
1047 * @d: The domain instance for which @closid is being tested.
1048 * @cbm: Capacity bitmask being tested.
1049 * @closid: Intended closid for @cbm.
1050 * @exclusive: Only check if overlaps with exclusive resource groups
1052 * Checks if provided @cbm intended to be used for @closid on domain
1053 * @d overlaps with any other closids or other hardware usage associated
1054 * with this domain. If @exclusive is true then only overlaps with
1055 * resource groups in exclusive mode will be considered. If @exclusive
1056 * is false then overlaps with any resource group or hardware entities
1057 * will be considered.
1059 * @cbm is unsigned long, even if only 32 bits are used, to make the
1060 * bitmap functions work correctly.
1062 * Return: false if CBM does not overlap, true if it does.
1064 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1065 unsigned long cbm, int closid, bool exclusive)
1067 enum rdtgrp_mode mode;
1068 unsigned long ctrl_b;
1069 u32 *ctrl;
1070 int i;
1072 /* Check for any overlap with regions used by hardware directly */
1073 if (!exclusive) {
1074 ctrl_b = r->cache.shareable_bits;
1075 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1076 return true;
1079 /* Check for overlap with other resource groups */
1080 ctrl = d->ctrl_val;
1081 for (i = 0; i < closids_supported(); i++, ctrl++) {
1082 ctrl_b = *ctrl;
1083 mode = rdtgroup_mode_by_closid(i);
1084 if (closid_allocated(i) && i != closid &&
1085 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1086 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1087 if (exclusive) {
1088 if (mode == RDT_MODE_EXCLUSIVE)
1089 return true;
1090 continue;
1092 return true;
1097 return false;
1101 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1102 * @r: Resource to which domain instance @d belongs.
1103 * @d: The domain instance for which @closid is being tested.
1104 * @cbm: Capacity bitmask being tested.
1105 * @closid: Intended closid for @cbm.
1106 * @exclusive: Only check if overlaps with exclusive resource groups
1108 * Resources that can be allocated using a CBM can use the CBM to control
1109 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1110 * for overlap. Overlap test is not limited to the specific resource for
1111 * which the CBM is intended though - when dealing with CDP resources that
1112 * share the underlying hardware the overlap check should be performed on
1113 * the CDP resource sharing the hardware also.
1115 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1116 * overlap test.
1118 * Return: true if CBM overlap detected, false if there is no overlap
1120 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1121 unsigned long cbm, int closid, bool exclusive)
1123 struct rdt_resource *r_cdp;
1124 struct rdt_domain *d_cdp;
1126 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1127 return true;
1129 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1130 return false;
1132 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1136 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1138 * An exclusive resource group implies that there should be no sharing of
1139 * its allocated resources. At the time this group is considered to be
1140 * exclusive this test can determine if its current schemata supports this
1141 * setting by testing for overlap with all other resource groups.
1143 * Return: true if resource group can be exclusive, false if there is overlap
1144 * with allocations of other resource groups and thus this resource group
1145 * cannot be exclusive.
1147 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1149 int closid = rdtgrp->closid;
1150 struct rdt_resource *r;
1151 bool has_cache = false;
1152 struct rdt_domain *d;
1154 for_each_alloc_enabled_rdt_resource(r) {
1155 if (r->rid == RDT_RESOURCE_MBA)
1156 continue;
1157 has_cache = true;
1158 list_for_each_entry(d, &r->domains, list) {
1159 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1160 rdtgrp->closid, false)) {
1161 rdt_last_cmd_puts("schemata overlaps\n");
1162 return false;
1167 if (!has_cache) {
1168 rdt_last_cmd_puts("cannot be exclusive without CAT/CDP\n");
1169 return false;
1172 return true;
1176 * rdtgroup_mode_write - Modify the resource group's mode
1179 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1180 char *buf, size_t nbytes, loff_t off)
1182 struct rdtgroup *rdtgrp;
1183 enum rdtgrp_mode mode;
1184 int ret = 0;
1186 /* Valid input requires a trailing newline */
1187 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1188 return -EINVAL;
1189 buf[nbytes - 1] = '\0';
1191 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1192 if (!rdtgrp) {
1193 rdtgroup_kn_unlock(of->kn);
1194 return -ENOENT;
1197 rdt_last_cmd_clear();
1199 mode = rdtgrp->mode;
1201 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1202 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1203 (!strcmp(buf, "pseudo-locksetup") &&
1204 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1205 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1206 goto out;
1208 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1209 rdt_last_cmd_printf("cannot change pseudo-locked group\n");
1210 ret = -EINVAL;
1211 goto out;
1214 if (!strcmp(buf, "shareable")) {
1215 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1216 ret = rdtgroup_locksetup_exit(rdtgrp);
1217 if (ret)
1218 goto out;
1220 rdtgrp->mode = RDT_MODE_SHAREABLE;
1221 } else if (!strcmp(buf, "exclusive")) {
1222 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1223 ret = -EINVAL;
1224 goto out;
1226 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1227 ret = rdtgroup_locksetup_exit(rdtgrp);
1228 if (ret)
1229 goto out;
1231 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1232 } else if (!strcmp(buf, "pseudo-locksetup")) {
1233 ret = rdtgroup_locksetup_enter(rdtgrp);
1234 if (ret)
1235 goto out;
1236 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1237 } else {
1238 rdt_last_cmd_printf("unknown/unsupported mode\n");
1239 ret = -EINVAL;
1242 out:
1243 rdtgroup_kn_unlock(of->kn);
1244 return ret ?: nbytes;
1248 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1249 * @r: RDT resource to which @d belongs.
1250 * @d: RDT domain instance.
1251 * @cbm: bitmask for which the size should be computed.
1253 * The bitmask provided associated with the RDT domain instance @d will be
1254 * translated into how many bytes it represents. The size in bytes is
1255 * computed by first dividing the total cache size by the CBM length to
1256 * determine how many bytes each bit in the bitmask represents. The result
1257 * is multiplied with the number of bits set in the bitmask.
1259 * @cbm is unsigned long, even if only 32 bits are used to make the
1260 * bitmap functions work correctly.
1262 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1263 struct rdt_domain *d, unsigned long cbm)
1265 struct cpu_cacheinfo *ci;
1266 unsigned int size = 0;
1267 int num_b, i;
1269 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1270 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1271 for (i = 0; i < ci->num_leaves; i++) {
1272 if (ci->info_list[i].level == r->cache_level) {
1273 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1274 break;
1278 return size;
1282 * rdtgroup_size_show - Display size in bytes of allocated regions
1284 * The "size" file mirrors the layout of the "schemata" file, printing the
1285 * size in bytes of each region instead of the capacity bitmask.
1288 static int rdtgroup_size_show(struct kernfs_open_file *of,
1289 struct seq_file *s, void *v)
1291 struct rdtgroup *rdtgrp;
1292 struct rdt_resource *r;
1293 struct rdt_domain *d;
1294 unsigned int size;
1295 int ret = 0;
1296 bool sep;
1297 u32 ctrl;
1299 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1300 if (!rdtgrp) {
1301 rdtgroup_kn_unlock(of->kn);
1302 return -ENOENT;
1305 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1306 if (!rdtgrp->plr->d) {
1307 rdt_last_cmd_clear();
1308 rdt_last_cmd_puts("Cache domain offline\n");
1309 ret = -ENODEV;
1310 } else {
1311 seq_printf(s, "%*s:", max_name_width,
1312 rdtgrp->plr->r->name);
1313 size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1314 rdtgrp->plr->d,
1315 rdtgrp->plr->cbm);
1316 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1318 goto out;
1321 for_each_alloc_enabled_rdt_resource(r) {
1322 sep = false;
1323 seq_printf(s, "%*s:", max_name_width, r->name);
1324 list_for_each_entry(d, &r->domains, list) {
1325 if (sep)
1326 seq_putc(s, ';');
1327 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1328 size = 0;
1329 } else {
1330 ctrl = (!is_mba_sc(r) ?
1331 d->ctrl_val[rdtgrp->closid] :
1332 d->mbps_val[rdtgrp->closid]);
1333 if (r->rid == RDT_RESOURCE_MBA)
1334 size = ctrl;
1335 else
1336 size = rdtgroup_cbm_to_size(r, d, ctrl);
1338 seq_printf(s, "%d=%u", d->id, size);
1339 sep = true;
1341 seq_putc(s, '\n');
1344 out:
1345 rdtgroup_kn_unlock(of->kn);
1347 return ret;
1350 /* rdtgroup information files for one cache resource. */
1351 static struct rftype res_common_files[] = {
1353 .name = "last_cmd_status",
1354 .mode = 0444,
1355 .kf_ops = &rdtgroup_kf_single_ops,
1356 .seq_show = rdt_last_cmd_status_show,
1357 .fflags = RF_TOP_INFO,
1360 .name = "num_closids",
1361 .mode = 0444,
1362 .kf_ops = &rdtgroup_kf_single_ops,
1363 .seq_show = rdt_num_closids_show,
1364 .fflags = RF_CTRL_INFO,
1367 .name = "mon_features",
1368 .mode = 0444,
1369 .kf_ops = &rdtgroup_kf_single_ops,
1370 .seq_show = rdt_mon_features_show,
1371 .fflags = RF_MON_INFO,
1374 .name = "num_rmids",
1375 .mode = 0444,
1376 .kf_ops = &rdtgroup_kf_single_ops,
1377 .seq_show = rdt_num_rmids_show,
1378 .fflags = RF_MON_INFO,
1381 .name = "cbm_mask",
1382 .mode = 0444,
1383 .kf_ops = &rdtgroup_kf_single_ops,
1384 .seq_show = rdt_default_ctrl_show,
1385 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1388 .name = "min_cbm_bits",
1389 .mode = 0444,
1390 .kf_ops = &rdtgroup_kf_single_ops,
1391 .seq_show = rdt_min_cbm_bits_show,
1392 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1395 .name = "shareable_bits",
1396 .mode = 0444,
1397 .kf_ops = &rdtgroup_kf_single_ops,
1398 .seq_show = rdt_shareable_bits_show,
1399 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1402 .name = "bit_usage",
1403 .mode = 0444,
1404 .kf_ops = &rdtgroup_kf_single_ops,
1405 .seq_show = rdt_bit_usage_show,
1406 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1409 .name = "min_bandwidth",
1410 .mode = 0444,
1411 .kf_ops = &rdtgroup_kf_single_ops,
1412 .seq_show = rdt_min_bw_show,
1413 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1416 .name = "bandwidth_gran",
1417 .mode = 0444,
1418 .kf_ops = &rdtgroup_kf_single_ops,
1419 .seq_show = rdt_bw_gran_show,
1420 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1423 .name = "delay_linear",
1424 .mode = 0444,
1425 .kf_ops = &rdtgroup_kf_single_ops,
1426 .seq_show = rdt_delay_linear_show,
1427 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1430 .name = "max_threshold_occupancy",
1431 .mode = 0644,
1432 .kf_ops = &rdtgroup_kf_single_ops,
1433 .write = max_threshold_occ_write,
1434 .seq_show = max_threshold_occ_show,
1435 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1438 .name = "cpus",
1439 .mode = 0644,
1440 .kf_ops = &rdtgroup_kf_single_ops,
1441 .write = rdtgroup_cpus_write,
1442 .seq_show = rdtgroup_cpus_show,
1443 .fflags = RFTYPE_BASE,
1446 .name = "cpus_list",
1447 .mode = 0644,
1448 .kf_ops = &rdtgroup_kf_single_ops,
1449 .write = rdtgroup_cpus_write,
1450 .seq_show = rdtgroup_cpus_show,
1451 .flags = RFTYPE_FLAGS_CPUS_LIST,
1452 .fflags = RFTYPE_BASE,
1455 .name = "tasks",
1456 .mode = 0644,
1457 .kf_ops = &rdtgroup_kf_single_ops,
1458 .write = rdtgroup_tasks_write,
1459 .seq_show = rdtgroup_tasks_show,
1460 .fflags = RFTYPE_BASE,
1463 .name = "schemata",
1464 .mode = 0644,
1465 .kf_ops = &rdtgroup_kf_single_ops,
1466 .write = rdtgroup_schemata_write,
1467 .seq_show = rdtgroup_schemata_show,
1468 .fflags = RF_CTRL_BASE,
1471 .name = "mode",
1472 .mode = 0644,
1473 .kf_ops = &rdtgroup_kf_single_ops,
1474 .write = rdtgroup_mode_write,
1475 .seq_show = rdtgroup_mode_show,
1476 .fflags = RF_CTRL_BASE,
1479 .name = "size",
1480 .mode = 0444,
1481 .kf_ops = &rdtgroup_kf_single_ops,
1482 .seq_show = rdtgroup_size_show,
1483 .fflags = RF_CTRL_BASE,
1488 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1490 struct rftype *rfts, *rft;
1491 int ret, len;
1493 rfts = res_common_files;
1494 len = ARRAY_SIZE(res_common_files);
1496 lockdep_assert_held(&rdtgroup_mutex);
1498 for (rft = rfts; rft < rfts + len; rft++) {
1499 if ((fflags & rft->fflags) == rft->fflags) {
1500 ret = rdtgroup_add_file(kn, rft);
1501 if (ret)
1502 goto error;
1506 return 0;
1507 error:
1508 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1509 while (--rft >= rfts) {
1510 if ((fflags & rft->fflags) == rft->fflags)
1511 kernfs_remove_by_name(kn, rft->name);
1513 return ret;
1517 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1518 * @r: The resource group with which the file is associated.
1519 * @name: Name of the file
1521 * The permissions of named resctrl file, directory, or link are modified
1522 * to not allow read, write, or execute by any user.
1524 * WARNING: This function is intended to communicate to the user that the
1525 * resctrl file has been locked down - that it is not relevant to the
1526 * particular state the system finds itself in. It should not be relied
1527 * on to protect from user access because after the file's permissions
1528 * are restricted the user can still change the permissions using chmod
1529 * from the command line.
1531 * Return: 0 on success, <0 on failure.
1533 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1535 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1536 struct kernfs_node *kn;
1537 int ret = 0;
1539 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1540 if (!kn)
1541 return -ENOENT;
1543 switch (kernfs_type(kn)) {
1544 case KERNFS_DIR:
1545 iattr.ia_mode = S_IFDIR;
1546 break;
1547 case KERNFS_FILE:
1548 iattr.ia_mode = S_IFREG;
1549 break;
1550 case KERNFS_LINK:
1551 iattr.ia_mode = S_IFLNK;
1552 break;
1555 ret = kernfs_setattr(kn, &iattr);
1556 kernfs_put(kn);
1557 return ret;
1561 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1562 * @r: The resource group with which the file is associated.
1563 * @name: Name of the file
1564 * @mask: Mask of permissions that should be restored
1566 * Restore the permissions of the named file. If @name is a directory the
1567 * permissions of its parent will be used.
1569 * Return: 0 on success, <0 on failure.
1571 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1572 umode_t mask)
1574 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1575 struct kernfs_node *kn, *parent;
1576 struct rftype *rfts, *rft;
1577 int ret, len;
1579 rfts = res_common_files;
1580 len = ARRAY_SIZE(res_common_files);
1582 for (rft = rfts; rft < rfts + len; rft++) {
1583 if (!strcmp(rft->name, name))
1584 iattr.ia_mode = rft->mode & mask;
1587 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1588 if (!kn)
1589 return -ENOENT;
1591 switch (kernfs_type(kn)) {
1592 case KERNFS_DIR:
1593 parent = kernfs_get_parent(kn);
1594 if (parent) {
1595 iattr.ia_mode |= parent->mode;
1596 kernfs_put(parent);
1598 iattr.ia_mode |= S_IFDIR;
1599 break;
1600 case KERNFS_FILE:
1601 iattr.ia_mode |= S_IFREG;
1602 break;
1603 case KERNFS_LINK:
1604 iattr.ia_mode |= S_IFLNK;
1605 break;
1608 ret = kernfs_setattr(kn, &iattr);
1609 kernfs_put(kn);
1610 return ret;
1613 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1614 unsigned long fflags)
1616 struct kernfs_node *kn_subdir;
1617 int ret;
1619 kn_subdir = kernfs_create_dir(kn_info, name,
1620 kn_info->mode, r);
1621 if (IS_ERR(kn_subdir))
1622 return PTR_ERR(kn_subdir);
1624 kernfs_get(kn_subdir);
1625 ret = rdtgroup_kn_set_ugid(kn_subdir);
1626 if (ret)
1627 return ret;
1629 ret = rdtgroup_add_files(kn_subdir, fflags);
1630 if (!ret)
1631 kernfs_activate(kn_subdir);
1633 return ret;
1636 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1638 struct rdt_resource *r;
1639 unsigned long fflags;
1640 char name[32];
1641 int ret;
1643 /* create the directory */
1644 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1645 if (IS_ERR(kn_info))
1646 return PTR_ERR(kn_info);
1647 kernfs_get(kn_info);
1649 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1650 if (ret)
1651 goto out_destroy;
1653 for_each_alloc_enabled_rdt_resource(r) {
1654 fflags = r->fflags | RF_CTRL_INFO;
1655 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1656 if (ret)
1657 goto out_destroy;
1660 for_each_mon_enabled_rdt_resource(r) {
1661 fflags = r->fflags | RF_MON_INFO;
1662 sprintf(name, "%s_MON", r->name);
1663 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1664 if (ret)
1665 goto out_destroy;
1669 * This extra ref will be put in kernfs_remove() and guarantees
1670 * that @rdtgrp->kn is always accessible.
1672 kernfs_get(kn_info);
1674 ret = rdtgroup_kn_set_ugid(kn_info);
1675 if (ret)
1676 goto out_destroy;
1678 kernfs_activate(kn_info);
1680 return 0;
1682 out_destroy:
1683 kernfs_remove(kn_info);
1684 return ret;
1687 static int
1688 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1689 char *name, struct kernfs_node **dest_kn)
1691 struct kernfs_node *kn;
1692 int ret;
1694 /* create the directory */
1695 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1696 if (IS_ERR(kn))
1697 return PTR_ERR(kn);
1699 if (dest_kn)
1700 *dest_kn = kn;
1703 * This extra ref will be put in kernfs_remove() and guarantees
1704 * that @rdtgrp->kn is always accessible.
1706 kernfs_get(kn);
1708 ret = rdtgroup_kn_set_ugid(kn);
1709 if (ret)
1710 goto out_destroy;
1712 kernfs_activate(kn);
1714 return 0;
1716 out_destroy:
1717 kernfs_remove(kn);
1718 return ret;
1721 static void l3_qos_cfg_update(void *arg)
1723 bool *enable = arg;
1725 wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1728 static void l2_qos_cfg_update(void *arg)
1730 bool *enable = arg;
1732 wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1735 static inline bool is_mba_linear(void)
1737 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1740 static int set_cache_qos_cfg(int level, bool enable)
1742 void (*update)(void *arg);
1743 struct rdt_resource *r_l;
1744 cpumask_var_t cpu_mask;
1745 struct rdt_domain *d;
1746 int cpu;
1748 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1749 return -ENOMEM;
1751 if (level == RDT_RESOURCE_L3)
1752 update = l3_qos_cfg_update;
1753 else if (level == RDT_RESOURCE_L2)
1754 update = l2_qos_cfg_update;
1755 else
1756 return -EINVAL;
1758 r_l = &rdt_resources_all[level];
1759 list_for_each_entry(d, &r_l->domains, list) {
1760 /* Pick one CPU from each domain instance to update MSR */
1761 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1763 cpu = get_cpu();
1764 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1765 if (cpumask_test_cpu(cpu, cpu_mask))
1766 update(&enable);
1767 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1768 smp_call_function_many(cpu_mask, update, &enable, 1);
1769 put_cpu();
1771 free_cpumask_var(cpu_mask);
1773 return 0;
1777 * Enable or disable the MBA software controller
1778 * which helps user specify bandwidth in MBps.
1779 * MBA software controller is supported only if
1780 * MBM is supported and MBA is in linear scale.
1782 static int set_mba_sc(bool mba_sc)
1784 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1785 struct rdt_domain *d;
1787 if (!is_mbm_enabled() || !is_mba_linear() ||
1788 mba_sc == is_mba_sc(r))
1789 return -EINVAL;
1791 r->membw.mba_sc = mba_sc;
1792 list_for_each_entry(d, &r->domains, list)
1793 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1795 return 0;
1798 static int cdp_enable(int level, int data_type, int code_type)
1800 struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1801 struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1802 struct rdt_resource *r_l = &rdt_resources_all[level];
1803 int ret;
1805 if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1806 !r_lcode->alloc_capable)
1807 return -EINVAL;
1809 ret = set_cache_qos_cfg(level, true);
1810 if (!ret) {
1811 r_l->alloc_enabled = false;
1812 r_ldata->alloc_enabled = true;
1813 r_lcode->alloc_enabled = true;
1815 return ret;
1818 static int cdpl3_enable(void)
1820 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1821 RDT_RESOURCE_L3CODE);
1824 static int cdpl2_enable(void)
1826 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1827 RDT_RESOURCE_L2CODE);
1830 static void cdp_disable(int level, int data_type, int code_type)
1832 struct rdt_resource *r = &rdt_resources_all[level];
1834 r->alloc_enabled = r->alloc_capable;
1836 if (rdt_resources_all[data_type].alloc_enabled) {
1837 rdt_resources_all[data_type].alloc_enabled = false;
1838 rdt_resources_all[code_type].alloc_enabled = false;
1839 set_cache_qos_cfg(level, false);
1843 static void cdpl3_disable(void)
1845 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1848 static void cdpl2_disable(void)
1850 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1853 static void cdp_disable_all(void)
1855 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1856 cdpl3_disable();
1857 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1858 cdpl2_disable();
1861 static int parse_rdtgroupfs_options(char *data)
1863 char *token, *o = data;
1864 int ret = 0;
1866 while ((token = strsep(&o, ",")) != NULL) {
1867 if (!*token) {
1868 ret = -EINVAL;
1869 goto out;
1872 if (!strcmp(token, "cdp")) {
1873 ret = cdpl3_enable();
1874 if (ret)
1875 goto out;
1876 } else if (!strcmp(token, "cdpl2")) {
1877 ret = cdpl2_enable();
1878 if (ret)
1879 goto out;
1880 } else if (!strcmp(token, "mba_MBps")) {
1881 ret = set_mba_sc(true);
1882 if (ret)
1883 goto out;
1884 } else {
1885 ret = -EINVAL;
1886 goto out;
1890 return 0;
1892 out:
1893 pr_err("Invalid mount option \"%s\"\n", token);
1895 return ret;
1899 * We don't allow rdtgroup directories to be created anywhere
1900 * except the root directory. Thus when looking for the rdtgroup
1901 * structure for a kernfs node we are either looking at a directory,
1902 * in which case the rdtgroup structure is pointed at by the "priv"
1903 * field, otherwise we have a file, and need only look to the parent
1904 * to find the rdtgroup.
1906 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1908 if (kernfs_type(kn) == KERNFS_DIR) {
1910 * All the resource directories use "kn->priv"
1911 * to point to the "struct rdtgroup" for the
1912 * resource. "info" and its subdirectories don't
1913 * have rdtgroup structures, so return NULL here.
1915 if (kn == kn_info || kn->parent == kn_info)
1916 return NULL;
1917 else
1918 return kn->priv;
1919 } else {
1920 return kn->parent->priv;
1924 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1926 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1928 if (!rdtgrp)
1929 return NULL;
1931 atomic_inc(&rdtgrp->waitcount);
1932 kernfs_break_active_protection(kn);
1934 mutex_lock(&rdtgroup_mutex);
1936 /* Was this group deleted while we waited? */
1937 if (rdtgrp->flags & RDT_DELETED)
1938 return NULL;
1940 return rdtgrp;
1943 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1945 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1947 if (!rdtgrp)
1948 return;
1950 mutex_unlock(&rdtgroup_mutex);
1952 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1953 (rdtgrp->flags & RDT_DELETED)) {
1954 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1955 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1956 rdtgroup_pseudo_lock_remove(rdtgrp);
1957 kernfs_unbreak_active_protection(kn);
1958 kernfs_put(rdtgrp->kn);
1959 kfree(rdtgrp);
1960 } else {
1961 kernfs_unbreak_active_protection(kn);
1965 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1966 struct rdtgroup *prgrp,
1967 struct kernfs_node **mon_data_kn);
1969 static struct dentry *rdt_mount(struct file_system_type *fs_type,
1970 int flags, const char *unused_dev_name,
1971 void *data)
1973 struct rdt_domain *dom;
1974 struct rdt_resource *r;
1975 struct dentry *dentry;
1976 int ret;
1978 cpus_read_lock();
1979 mutex_lock(&rdtgroup_mutex);
1981 * resctrl file system can only be mounted once.
1983 if (static_branch_unlikely(&rdt_enable_key)) {
1984 dentry = ERR_PTR(-EBUSY);
1985 goto out;
1988 ret = parse_rdtgroupfs_options(data);
1989 if (ret) {
1990 dentry = ERR_PTR(ret);
1991 goto out_cdp;
1994 closid_init();
1996 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1997 if (ret) {
1998 dentry = ERR_PTR(ret);
1999 goto out_cdp;
2002 if (rdt_mon_capable) {
2003 ret = mongroup_create_dir(rdtgroup_default.kn,
2004 NULL, "mon_groups",
2005 &kn_mongrp);
2006 if (ret) {
2007 dentry = ERR_PTR(ret);
2008 goto out_info;
2010 kernfs_get(kn_mongrp);
2012 ret = mkdir_mondata_all(rdtgroup_default.kn,
2013 &rdtgroup_default, &kn_mondata);
2014 if (ret) {
2015 dentry = ERR_PTR(ret);
2016 goto out_mongrp;
2018 kernfs_get(kn_mondata);
2019 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2022 ret = rdt_pseudo_lock_init();
2023 if (ret) {
2024 dentry = ERR_PTR(ret);
2025 goto out_mondata;
2028 dentry = kernfs_mount(fs_type, flags, rdt_root,
2029 RDTGROUP_SUPER_MAGIC, NULL);
2030 if (IS_ERR(dentry))
2031 goto out_psl;
2033 if (rdt_alloc_capable)
2034 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2035 if (rdt_mon_capable)
2036 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2038 if (rdt_alloc_capable || rdt_mon_capable)
2039 static_branch_enable_cpuslocked(&rdt_enable_key);
2041 if (is_mbm_enabled()) {
2042 r = &rdt_resources_all[RDT_RESOURCE_L3];
2043 list_for_each_entry(dom, &r->domains, list)
2044 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2047 goto out;
2049 out_psl:
2050 rdt_pseudo_lock_release();
2051 out_mondata:
2052 if (rdt_mon_capable)
2053 kernfs_remove(kn_mondata);
2054 out_mongrp:
2055 if (rdt_mon_capable)
2056 kernfs_remove(kn_mongrp);
2057 out_info:
2058 kernfs_remove(kn_info);
2059 out_cdp:
2060 cdp_disable_all();
2061 out:
2062 rdt_last_cmd_clear();
2063 mutex_unlock(&rdtgroup_mutex);
2064 cpus_read_unlock();
2066 return dentry;
2069 static int reset_all_ctrls(struct rdt_resource *r)
2071 struct msr_param msr_param;
2072 cpumask_var_t cpu_mask;
2073 struct rdt_domain *d;
2074 int i, cpu;
2076 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2077 return -ENOMEM;
2079 msr_param.res = r;
2080 msr_param.low = 0;
2081 msr_param.high = r->num_closid;
2084 * Disable resource control for this resource by setting all
2085 * CBMs in all domains to the maximum mask value. Pick one CPU
2086 * from each domain to update the MSRs below.
2088 list_for_each_entry(d, &r->domains, list) {
2089 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2091 for (i = 0; i < r->num_closid; i++)
2092 d->ctrl_val[i] = r->default_ctrl;
2094 cpu = get_cpu();
2095 /* Update CBM on this cpu if it's in cpu_mask. */
2096 if (cpumask_test_cpu(cpu, cpu_mask))
2097 rdt_ctrl_update(&msr_param);
2098 /* Update CBM on all other cpus in cpu_mask. */
2099 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2100 put_cpu();
2102 free_cpumask_var(cpu_mask);
2104 return 0;
2107 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2109 return (rdt_alloc_capable &&
2110 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2113 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2115 return (rdt_mon_capable &&
2116 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2120 * Move tasks from one to the other group. If @from is NULL, then all tasks
2121 * in the systems are moved unconditionally (used for teardown).
2123 * If @mask is not NULL the cpus on which moved tasks are running are set
2124 * in that mask so the update smp function call is restricted to affected
2125 * cpus.
2127 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2128 struct cpumask *mask)
2130 struct task_struct *p, *t;
2132 read_lock(&tasklist_lock);
2133 for_each_process_thread(p, t) {
2134 if (!from || is_closid_match(t, from) ||
2135 is_rmid_match(t, from)) {
2136 t->closid = to->closid;
2137 t->rmid = to->mon.rmid;
2139 #ifdef CONFIG_SMP
2141 * This is safe on x86 w/o barriers as the ordering
2142 * of writing to task_cpu() and t->on_cpu is
2143 * reverse to the reading here. The detection is
2144 * inaccurate as tasks might move or schedule
2145 * before the smp function call takes place. In
2146 * such a case the function call is pointless, but
2147 * there is no other side effect.
2149 if (mask && t->on_cpu)
2150 cpumask_set_cpu(task_cpu(t), mask);
2151 #endif
2154 read_unlock(&tasklist_lock);
2157 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2159 struct rdtgroup *sentry, *stmp;
2160 struct list_head *head;
2162 head = &rdtgrp->mon.crdtgrp_list;
2163 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2164 free_rmid(sentry->mon.rmid);
2165 list_del(&sentry->mon.crdtgrp_list);
2166 kfree(sentry);
2171 * Forcibly remove all of subdirectories under root.
2173 static void rmdir_all_sub(void)
2175 struct rdtgroup *rdtgrp, *tmp;
2177 /* Move all tasks to the default resource group */
2178 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2180 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2181 /* Free any child rmids */
2182 free_all_child_rdtgrp(rdtgrp);
2184 /* Remove each rdtgroup other than root */
2185 if (rdtgrp == &rdtgroup_default)
2186 continue;
2188 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2189 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2190 rdtgroup_pseudo_lock_remove(rdtgrp);
2193 * Give any CPUs back to the default group. We cannot copy
2194 * cpu_online_mask because a CPU might have executed the
2195 * offline callback already, but is still marked online.
2197 cpumask_or(&rdtgroup_default.cpu_mask,
2198 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2200 free_rmid(rdtgrp->mon.rmid);
2202 kernfs_remove(rdtgrp->kn);
2203 list_del(&rdtgrp->rdtgroup_list);
2204 kfree(rdtgrp);
2206 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2207 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2209 kernfs_remove(kn_info);
2210 kernfs_remove(kn_mongrp);
2211 kernfs_remove(kn_mondata);
2214 static void rdt_kill_sb(struct super_block *sb)
2216 struct rdt_resource *r;
2218 cpus_read_lock();
2219 mutex_lock(&rdtgroup_mutex);
2221 set_mba_sc(false);
2223 /*Put everything back to default values. */
2224 for_each_alloc_enabled_rdt_resource(r)
2225 reset_all_ctrls(r);
2226 cdp_disable_all();
2227 rmdir_all_sub();
2228 rdt_pseudo_lock_release();
2229 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2230 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2231 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2232 static_branch_disable_cpuslocked(&rdt_enable_key);
2233 kernfs_kill_sb(sb);
2234 mutex_unlock(&rdtgroup_mutex);
2235 cpus_read_unlock();
2238 static struct file_system_type rdt_fs_type = {
2239 .name = "resctrl",
2240 .mount = rdt_mount,
2241 .kill_sb = rdt_kill_sb,
2244 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2245 void *priv)
2247 struct kernfs_node *kn;
2248 int ret = 0;
2250 kn = __kernfs_create_file(parent_kn, name, 0444,
2251 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2252 &kf_mondata_ops, priv, NULL, NULL);
2253 if (IS_ERR(kn))
2254 return PTR_ERR(kn);
2256 ret = rdtgroup_kn_set_ugid(kn);
2257 if (ret) {
2258 kernfs_remove(kn);
2259 return ret;
2262 return ret;
2266 * Remove all subdirectories of mon_data of ctrl_mon groups
2267 * and monitor groups with given domain id.
2269 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2271 struct rdtgroup *prgrp, *crgrp;
2272 char name[32];
2274 if (!r->mon_enabled)
2275 return;
2277 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2278 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2279 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2281 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2282 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2286 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2287 struct rdt_domain *d,
2288 struct rdt_resource *r, struct rdtgroup *prgrp)
2290 union mon_data_bits priv;
2291 struct kernfs_node *kn;
2292 struct mon_evt *mevt;
2293 struct rmid_read rr;
2294 char name[32];
2295 int ret;
2297 sprintf(name, "mon_%s_%02d", r->name, d->id);
2298 /* create the directory */
2299 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2300 if (IS_ERR(kn))
2301 return PTR_ERR(kn);
2304 * This extra ref will be put in kernfs_remove() and guarantees
2305 * that kn is always accessible.
2307 kernfs_get(kn);
2308 ret = rdtgroup_kn_set_ugid(kn);
2309 if (ret)
2310 goto out_destroy;
2312 if (WARN_ON(list_empty(&r->evt_list))) {
2313 ret = -EPERM;
2314 goto out_destroy;
2317 priv.u.rid = r->rid;
2318 priv.u.domid = d->id;
2319 list_for_each_entry(mevt, &r->evt_list, list) {
2320 priv.u.evtid = mevt->evtid;
2321 ret = mon_addfile(kn, mevt->name, priv.priv);
2322 if (ret)
2323 goto out_destroy;
2325 if (is_mbm_event(mevt->evtid))
2326 mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2328 kernfs_activate(kn);
2329 return 0;
2331 out_destroy:
2332 kernfs_remove(kn);
2333 return ret;
2337 * Add all subdirectories of mon_data for "ctrl_mon" groups
2338 * and "monitor" groups with given domain id.
2340 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2341 struct rdt_domain *d)
2343 struct kernfs_node *parent_kn;
2344 struct rdtgroup *prgrp, *crgrp;
2345 struct list_head *head;
2347 if (!r->mon_enabled)
2348 return;
2350 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2351 parent_kn = prgrp->mon.mon_data_kn;
2352 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2354 head = &prgrp->mon.crdtgrp_list;
2355 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2356 parent_kn = crgrp->mon.mon_data_kn;
2357 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2362 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2363 struct rdt_resource *r,
2364 struct rdtgroup *prgrp)
2366 struct rdt_domain *dom;
2367 int ret;
2369 list_for_each_entry(dom, &r->domains, list) {
2370 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2371 if (ret)
2372 return ret;
2375 return 0;
2379 * This creates a directory mon_data which contains the monitored data.
2381 * mon_data has one directory for each domain whic are named
2382 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2383 * with L3 domain looks as below:
2384 * ./mon_data:
2385 * mon_L3_00
2386 * mon_L3_01
2387 * mon_L3_02
2388 * ...
2390 * Each domain directory has one file per event:
2391 * ./mon_L3_00/:
2392 * llc_occupancy
2395 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2396 struct rdtgroup *prgrp,
2397 struct kernfs_node **dest_kn)
2399 struct rdt_resource *r;
2400 struct kernfs_node *kn;
2401 int ret;
2404 * Create the mon_data directory first.
2406 ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
2407 if (ret)
2408 return ret;
2410 if (dest_kn)
2411 *dest_kn = kn;
2414 * Create the subdirectories for each domain. Note that all events
2415 * in a domain like L3 are grouped into a resource whose domain is L3
2417 for_each_mon_enabled_rdt_resource(r) {
2418 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2419 if (ret)
2420 goto out_destroy;
2423 return 0;
2425 out_destroy:
2426 kernfs_remove(kn);
2427 return ret;
2431 * cbm_ensure_valid - Enforce validity on provided CBM
2432 * @_val: Candidate CBM
2433 * @r: RDT resource to which the CBM belongs
2435 * The provided CBM represents all cache portions available for use. This
2436 * may be represented by a bitmap that does not consist of contiguous ones
2437 * and thus be an invalid CBM.
2438 * Here the provided CBM is forced to be a valid CBM by only considering
2439 * the first set of contiguous bits as valid and clearing all bits.
2440 * The intention here is to provide a valid default CBM with which a new
2441 * resource group is initialized. The user can follow this with a
2442 * modification to the CBM if the default does not satisfy the
2443 * requirements.
2445 static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
2448 * Convert the u32 _val to an unsigned long required by all the bit
2449 * operations within this function. No more than 32 bits of this
2450 * converted value can be accessed because all bit operations are
2451 * additionally provided with cbm_len that is initialized during
2452 * hardware enumeration using five bits from the EAX register and
2453 * thus never can exceed 32 bits.
2455 unsigned long *val = (unsigned long *)_val;
2456 unsigned int cbm_len = r->cache.cbm_len;
2457 unsigned long first_bit, zero_bit;
2459 if (*val == 0)
2460 return;
2462 first_bit = find_first_bit(val, cbm_len);
2463 zero_bit = find_next_zero_bit(val, cbm_len, first_bit);
2465 /* Clear any remaining bits to ensure contiguous region */
2466 bitmap_clear(val, zero_bit, cbm_len - zero_bit);
2470 * rdtgroup_init_alloc - Initialize the new RDT group's allocations
2472 * A new RDT group is being created on an allocation capable (CAT)
2473 * supporting system. Set this group up to start off with all usable
2474 * allocations. That is, all shareable and unused bits.
2476 * All-zero CBM is invalid. If there are no more shareable bits available
2477 * on any domain then the entire allocation will fail.
2479 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2481 struct rdt_resource *r_cdp = NULL;
2482 struct rdt_domain *d_cdp = NULL;
2483 u32 used_b = 0, unused_b = 0;
2484 u32 closid = rdtgrp->closid;
2485 struct rdt_resource *r;
2486 unsigned long tmp_cbm;
2487 enum rdtgrp_mode mode;
2488 struct rdt_domain *d;
2489 u32 peer_ctl, *ctrl;
2490 int i, ret;
2492 for_each_alloc_enabled_rdt_resource(r) {
2494 * Only initialize default allocations for CBM cache
2495 * resources
2497 if (r->rid == RDT_RESOURCE_MBA)
2498 continue;
2499 list_for_each_entry(d, &r->domains, list) {
2500 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2501 d->have_new_ctrl = false;
2502 d->new_ctrl = r->cache.shareable_bits;
2503 used_b = r->cache.shareable_bits;
2504 ctrl = d->ctrl_val;
2505 for (i = 0; i < closids_supported(); i++, ctrl++) {
2506 if (closid_allocated(i) && i != closid) {
2507 mode = rdtgroup_mode_by_closid(i);
2508 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2509 break;
2511 * If CDP is active include peer
2512 * domain's usage to ensure there
2513 * is no overlap with an exclusive
2514 * group.
2516 if (d_cdp)
2517 peer_ctl = d_cdp->ctrl_val[i];
2518 else
2519 peer_ctl = 0;
2520 used_b |= *ctrl | peer_ctl;
2521 if (mode == RDT_MODE_SHAREABLE)
2522 d->new_ctrl |= *ctrl | peer_ctl;
2525 if (d->plr && d->plr->cbm > 0)
2526 used_b |= d->plr->cbm;
2527 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2528 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2529 d->new_ctrl |= unused_b;
2531 * Force the initial CBM to be valid, user can
2532 * modify the CBM based on system availability.
2534 cbm_ensure_valid(&d->new_ctrl, r);
2536 * Assign the u32 CBM to an unsigned long to ensure
2537 * that bitmap_weight() does not access out-of-bound
2538 * memory.
2540 tmp_cbm = d->new_ctrl;
2541 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) <
2542 r->cache.min_cbm_bits) {
2543 rdt_last_cmd_printf("no space on %s:%d\n",
2544 r->name, d->id);
2545 return -ENOSPC;
2547 d->have_new_ctrl = true;
2551 for_each_alloc_enabled_rdt_resource(r) {
2553 * Only initialize default allocations for CBM cache
2554 * resources
2556 if (r->rid == RDT_RESOURCE_MBA)
2557 continue;
2558 ret = update_domains(r, rdtgrp->closid);
2559 if (ret < 0) {
2560 rdt_last_cmd_puts("failed to initialize allocations\n");
2561 return ret;
2563 rdtgrp->mode = RDT_MODE_SHAREABLE;
2566 return 0;
2569 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2570 struct kernfs_node *prgrp_kn,
2571 const char *name, umode_t mode,
2572 enum rdt_group_type rtype, struct rdtgroup **r)
2574 struct rdtgroup *prdtgrp, *rdtgrp;
2575 struct kernfs_node *kn;
2576 uint files = 0;
2577 int ret;
2579 prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2580 rdt_last_cmd_clear();
2581 if (!prdtgrp) {
2582 ret = -ENODEV;
2583 rdt_last_cmd_puts("directory was removed\n");
2584 goto out_unlock;
2587 if (rtype == RDTMON_GROUP &&
2588 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2589 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2590 ret = -EINVAL;
2591 rdt_last_cmd_puts("pseudo-locking in progress\n");
2592 goto out_unlock;
2595 /* allocate the rdtgroup. */
2596 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2597 if (!rdtgrp) {
2598 ret = -ENOSPC;
2599 rdt_last_cmd_puts("kernel out of memory\n");
2600 goto out_unlock;
2602 *r = rdtgrp;
2603 rdtgrp->mon.parent = prdtgrp;
2604 rdtgrp->type = rtype;
2605 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2607 /* kernfs creates the directory for rdtgrp */
2608 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2609 if (IS_ERR(kn)) {
2610 ret = PTR_ERR(kn);
2611 rdt_last_cmd_puts("kernfs create error\n");
2612 goto out_free_rgrp;
2614 rdtgrp->kn = kn;
2617 * kernfs_remove() will drop the reference count on "kn" which
2618 * will free it. But we still need it to stick around for the
2619 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2620 * here, which will be dropped inside rdtgroup_kn_unlock().
2622 kernfs_get(kn);
2624 ret = rdtgroup_kn_set_ugid(kn);
2625 if (ret) {
2626 rdt_last_cmd_puts("kernfs perm error\n");
2627 goto out_destroy;
2630 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2631 ret = rdtgroup_add_files(kn, files);
2632 if (ret) {
2633 rdt_last_cmd_puts("kernfs fill error\n");
2634 goto out_destroy;
2637 if (rdt_mon_capable) {
2638 ret = alloc_rmid();
2639 if (ret < 0) {
2640 rdt_last_cmd_puts("out of RMIDs\n");
2641 goto out_destroy;
2643 rdtgrp->mon.rmid = ret;
2645 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2646 if (ret) {
2647 rdt_last_cmd_puts("kernfs subdir error\n");
2648 goto out_idfree;
2651 kernfs_activate(kn);
2654 * The caller unlocks the prgrp_kn upon success.
2656 return 0;
2658 out_idfree:
2659 free_rmid(rdtgrp->mon.rmid);
2660 out_destroy:
2661 kernfs_remove(rdtgrp->kn);
2662 out_free_rgrp:
2663 kfree(rdtgrp);
2664 out_unlock:
2665 rdtgroup_kn_unlock(prgrp_kn);
2666 return ret;
2669 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2671 kernfs_remove(rgrp->kn);
2672 free_rmid(rgrp->mon.rmid);
2673 kfree(rgrp);
2677 * Create a monitor group under "mon_groups" directory of a control
2678 * and monitor group(ctrl_mon). This is a resource group
2679 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2681 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2682 struct kernfs_node *prgrp_kn,
2683 const char *name,
2684 umode_t mode)
2686 struct rdtgroup *rdtgrp, *prgrp;
2687 int ret;
2689 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2690 &rdtgrp);
2691 if (ret)
2692 return ret;
2694 prgrp = rdtgrp->mon.parent;
2695 rdtgrp->closid = prgrp->closid;
2698 * Add the rdtgrp to the list of rdtgrps the parent
2699 * ctrl_mon group has to track.
2701 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2703 rdtgroup_kn_unlock(prgrp_kn);
2704 return ret;
2708 * These are rdtgroups created under the root directory. Can be used
2709 * to allocate and monitor resources.
2711 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2712 struct kernfs_node *prgrp_kn,
2713 const char *name, umode_t mode)
2715 struct rdtgroup *rdtgrp;
2716 struct kernfs_node *kn;
2717 u32 closid;
2718 int ret;
2720 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2721 &rdtgrp);
2722 if (ret)
2723 return ret;
2725 kn = rdtgrp->kn;
2726 ret = closid_alloc();
2727 if (ret < 0) {
2728 rdt_last_cmd_puts("out of CLOSIDs\n");
2729 goto out_common_fail;
2731 closid = ret;
2732 ret = 0;
2734 rdtgrp->closid = closid;
2735 ret = rdtgroup_init_alloc(rdtgrp);
2736 if (ret < 0)
2737 goto out_id_free;
2739 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2741 if (rdt_mon_capable) {
2743 * Create an empty mon_groups directory to hold the subset
2744 * of tasks and cpus to monitor.
2746 ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2747 if (ret) {
2748 rdt_last_cmd_puts("kernfs subdir error\n");
2749 goto out_del_list;
2753 goto out_unlock;
2755 out_del_list:
2756 list_del(&rdtgrp->rdtgroup_list);
2757 out_id_free:
2758 closid_free(closid);
2759 out_common_fail:
2760 mkdir_rdt_prepare_clean(rdtgrp);
2761 out_unlock:
2762 rdtgroup_kn_unlock(prgrp_kn);
2763 return ret;
2767 * We allow creating mon groups only with in a directory called "mon_groups"
2768 * which is present in every ctrl_mon group. Check if this is a valid
2769 * "mon_groups" directory.
2771 * 1. The directory should be named "mon_groups".
2772 * 2. The mon group itself should "not" be named "mon_groups".
2773 * This makes sure "mon_groups" directory always has a ctrl_mon group
2774 * as parent.
2776 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2778 return (!strcmp(kn->name, "mon_groups") &&
2779 strcmp(name, "mon_groups"));
2782 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2783 umode_t mode)
2785 /* Do not accept '\n' to avoid unparsable situation. */
2786 if (strchr(name, '\n'))
2787 return -EINVAL;
2790 * If the parent directory is the root directory and RDT
2791 * allocation is supported, add a control and monitoring
2792 * subdirectory
2794 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2795 return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2798 * If RDT monitoring is supported and the parent directory is a valid
2799 * "mon_groups" directory, add a monitoring subdirectory.
2801 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2802 return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2804 return -EPERM;
2807 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2808 cpumask_var_t tmpmask)
2810 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2811 int cpu;
2813 /* Give any tasks back to the parent group */
2814 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2816 /* Update per cpu rmid of the moved CPUs first */
2817 for_each_cpu(cpu, &rdtgrp->cpu_mask)
2818 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2820 * Update the MSR on moved CPUs and CPUs which have moved
2821 * task running on them.
2823 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2824 update_closid_rmid(tmpmask, NULL);
2826 rdtgrp->flags = RDT_DELETED;
2827 free_rmid(rdtgrp->mon.rmid);
2830 * Remove the rdtgrp from the parent ctrl_mon group's list
2832 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2833 list_del(&rdtgrp->mon.crdtgrp_list);
2836 * one extra hold on this, will drop when we kfree(rdtgrp)
2837 * in rdtgroup_kn_unlock()
2839 kernfs_get(kn);
2840 kernfs_remove(rdtgrp->kn);
2842 return 0;
2845 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2846 struct rdtgroup *rdtgrp)
2848 rdtgrp->flags = RDT_DELETED;
2849 list_del(&rdtgrp->rdtgroup_list);
2852 * one extra hold on this, will drop when we kfree(rdtgrp)
2853 * in rdtgroup_kn_unlock()
2855 kernfs_get(kn);
2856 kernfs_remove(rdtgrp->kn);
2857 return 0;
2860 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2861 cpumask_var_t tmpmask)
2863 int cpu;
2865 /* Give any tasks back to the default group */
2866 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2868 /* Give any CPUs back to the default group */
2869 cpumask_or(&rdtgroup_default.cpu_mask,
2870 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2872 /* Update per cpu closid and rmid of the moved CPUs first */
2873 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2874 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2875 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2879 * Update the MSR on moved CPUs and CPUs which have moved
2880 * task running on them.
2882 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2883 update_closid_rmid(tmpmask, NULL);
2885 closid_free(rdtgrp->closid);
2886 free_rmid(rdtgrp->mon.rmid);
2889 * Free all the child monitor group rmids.
2891 free_all_child_rdtgrp(rdtgrp);
2893 rdtgroup_ctrl_remove(kn, rdtgrp);
2895 return 0;
2898 static int rdtgroup_rmdir(struct kernfs_node *kn)
2900 struct kernfs_node *parent_kn = kn->parent;
2901 struct rdtgroup *rdtgrp;
2902 cpumask_var_t tmpmask;
2903 int ret = 0;
2905 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2906 return -ENOMEM;
2908 rdtgrp = rdtgroup_kn_lock_live(kn);
2909 if (!rdtgrp) {
2910 ret = -EPERM;
2911 goto out;
2915 * If the rdtgroup is a ctrl_mon group and parent directory
2916 * is the root directory, remove the ctrl_mon group.
2918 * If the rdtgroup is a mon group and parent directory
2919 * is a valid "mon_groups" directory, remove the mon group.
2921 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
2922 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2923 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2924 ret = rdtgroup_ctrl_remove(kn, rdtgrp);
2925 } else {
2926 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2928 } else if (rdtgrp->type == RDTMON_GROUP &&
2929 is_mon_groups(parent_kn, kn->name)) {
2930 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
2931 } else {
2932 ret = -EPERM;
2935 out:
2936 rdtgroup_kn_unlock(kn);
2937 free_cpumask_var(tmpmask);
2938 return ret;
2941 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
2943 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2944 seq_puts(seq, ",cdp");
2946 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
2947 seq_puts(seq, ",cdpl2");
2949 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
2950 seq_puts(seq, ",mba_MBps");
2952 return 0;
2955 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
2956 .mkdir = rdtgroup_mkdir,
2957 .rmdir = rdtgroup_rmdir,
2958 .show_options = rdtgroup_show_options,
2961 static int __init rdtgroup_setup_root(void)
2963 int ret;
2965 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
2966 KERNFS_ROOT_CREATE_DEACTIVATED |
2967 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
2968 &rdtgroup_default);
2969 if (IS_ERR(rdt_root))
2970 return PTR_ERR(rdt_root);
2972 mutex_lock(&rdtgroup_mutex);
2974 rdtgroup_default.closid = 0;
2975 rdtgroup_default.mon.rmid = 0;
2976 rdtgroup_default.type = RDTCTRL_GROUP;
2977 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
2979 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
2981 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
2982 if (ret) {
2983 kernfs_destroy_root(rdt_root);
2984 goto out;
2987 rdtgroup_default.kn = rdt_root->kn;
2988 kernfs_activate(rdtgroup_default.kn);
2990 out:
2991 mutex_unlock(&rdtgroup_mutex);
2993 return ret;
2997 * rdtgroup_init - rdtgroup initialization
2999 * Setup resctrl file system including set up root, create mount point,
3000 * register rdtgroup filesystem, and initialize files under root directory.
3002 * Return: 0 on success or -errno
3004 int __init rdtgroup_init(void)
3006 int ret = 0;
3008 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3009 sizeof(last_cmd_status_buf));
3011 ret = rdtgroup_setup_root();
3012 if (ret)
3013 return ret;
3015 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3016 if (ret)
3017 goto cleanup_root;
3019 ret = register_filesystem(&rdt_fs_type);
3020 if (ret)
3021 goto cleanup_mountpoint;
3024 * Adding the resctrl debugfs directory here may not be ideal since
3025 * it would let the resctrl debugfs directory appear on the debugfs
3026 * filesystem before the resctrl filesystem is mounted.
3027 * It may also be ok since that would enable debugging of RDT before
3028 * resctrl is mounted.
3029 * The reason why the debugfs directory is created here and not in
3030 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3031 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3032 * (the lockdep class of inode->i_rwsem). Other filesystem
3033 * interactions (eg. SyS_getdents) have the lock ordering:
3034 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3035 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3036 * is taken, thus creating dependency:
3037 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3038 * issues considering the other two lock dependencies.
3039 * By creating the debugfs directory here we avoid a dependency
3040 * that may cause deadlock (even though file operations cannot
3041 * occur until the filesystem is mounted, but I do not know how to
3042 * tell lockdep that).
3044 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3046 return 0;
3048 cleanup_mountpoint:
3049 sysfs_remove_mount_point(fs_kobj, "resctrl");
3050 cleanup_root:
3051 kernfs_destroy_root(rdt_root);
3053 return ret;
3056 void __exit rdtgroup_exit(void)
3058 debugfs_remove_recursive(debugfs_resctrl);
3059 unregister_filesystem(&rdt_fs_type);
3060 sysfs_remove_mount_point(fs_kobj, "resctrl");
3061 kernfs_destroy_root(rdt_root);