2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 #include <asm/irq_regs.h>
15 #include <linux/hardirq.h>
16 #include <linux/pkeys.h>
18 #define CREATE_TRACE_POINTS
19 #include <asm/trace/fpu.h>
22 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
23 * depending on the FPU hardware format:
25 union fpregs_state init_fpstate __read_mostly
;
28 * Track whether the kernel is using the FPU state
33 * - by IRQ context code to potentially use the FPU
36 * - to debug kernel_fpu_begin()/end() correctness
38 static DEFINE_PER_CPU(bool, in_kernel_fpu
);
41 * Track which context is using the FPU on the CPU:
43 DEFINE_PER_CPU(struct fpu
*, fpu_fpregs_owner_ctx
);
45 static void kernel_fpu_disable(void)
47 WARN_ON_FPU(this_cpu_read(in_kernel_fpu
));
48 this_cpu_write(in_kernel_fpu
, true);
51 static void kernel_fpu_enable(void)
53 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu
));
54 this_cpu_write(in_kernel_fpu
, false);
57 static bool kernel_fpu_disabled(void)
59 return this_cpu_read(in_kernel_fpu
);
62 static bool interrupted_kernel_fpu_idle(void)
64 return !kernel_fpu_disabled();
68 * Were we in user mode (or vm86 mode) when we were
71 * Doing kernel_fpu_begin/end() is ok if we are running
72 * in an interrupt context from user mode - we'll just
73 * save the FPU state as required.
75 static bool interrupted_user_mode(void)
77 struct pt_regs
*regs
= get_irq_regs();
78 return regs
&& user_mode(regs
);
82 * Can we use the FPU in kernel mode with the
83 * whole "kernel_fpu_begin/end()" sequence?
85 * It's always ok in process context (ie "not interrupt")
86 * but it is sometimes ok even from an irq.
88 bool irq_fpu_usable(void)
90 return !in_interrupt() ||
91 interrupted_user_mode() ||
92 interrupted_kernel_fpu_idle();
94 EXPORT_SYMBOL(irq_fpu_usable
);
96 void __kernel_fpu_begin(void)
98 struct fpu
*fpu
= ¤t
->thread
.fpu
;
100 WARN_ON_FPU(!irq_fpu_usable());
102 kernel_fpu_disable();
104 if (fpu
->initialized
) {
106 * Ignore return value -- we don't care if reg state
109 copy_fpregs_to_fpstate(fpu
);
111 __cpu_invalidate_fpregs_state();
114 EXPORT_SYMBOL(__kernel_fpu_begin
);
116 void __kernel_fpu_end(void)
118 struct fpu
*fpu
= ¤t
->thread
.fpu
;
120 if (fpu
->initialized
)
121 copy_kernel_to_fpregs(&fpu
->state
);
125 EXPORT_SYMBOL(__kernel_fpu_end
);
127 void kernel_fpu_begin(void)
130 __kernel_fpu_begin();
132 EXPORT_SYMBOL_GPL(kernel_fpu_begin
);
134 void kernel_fpu_end(void)
139 EXPORT_SYMBOL_GPL(kernel_fpu_end
);
142 * Save the FPU state (mark it for reload if necessary):
144 * This only ever gets called for the current task.
146 void fpu__save(struct fpu
*fpu
)
148 WARN_ON_FPU(fpu
!= ¤t
->thread
.fpu
);
151 trace_x86_fpu_before_save(fpu
);
152 if (fpu
->initialized
) {
153 if (!copy_fpregs_to_fpstate(fpu
)) {
154 copy_kernel_to_fpregs(&fpu
->state
);
157 trace_x86_fpu_after_save(fpu
);
160 EXPORT_SYMBOL_GPL(fpu__save
);
163 * Legacy x87 fpstate state init:
165 static inline void fpstate_init_fstate(struct fregs_state
*fp
)
167 fp
->cwd
= 0xffff037fu
;
168 fp
->swd
= 0xffff0000u
;
169 fp
->twd
= 0xffffffffu
;
170 fp
->fos
= 0xffff0000u
;
173 void fpstate_init(union fpregs_state
*state
)
175 if (!static_cpu_has(X86_FEATURE_FPU
)) {
176 fpstate_init_soft(&state
->soft
);
180 memset(state
, 0, fpu_kernel_xstate_size
);
182 if (static_cpu_has(X86_FEATURE_XSAVES
))
183 fpstate_init_xstate(&state
->xsave
);
184 if (static_cpu_has(X86_FEATURE_FXSR
))
185 fpstate_init_fxstate(&state
->fxsave
);
187 fpstate_init_fstate(&state
->fsave
);
189 EXPORT_SYMBOL_GPL(fpstate_init
);
191 int fpu__copy(struct fpu
*dst_fpu
, struct fpu
*src_fpu
)
193 dst_fpu
->last_cpu
= -1;
195 if (!src_fpu
->initialized
|| !static_cpu_has(X86_FEATURE_FPU
))
198 WARN_ON_FPU(src_fpu
!= ¤t
->thread
.fpu
);
201 * Don't let 'init optimized' areas of the XSAVE area
202 * leak into the child task:
204 memset(&dst_fpu
->state
.xsave
, 0, fpu_kernel_xstate_size
);
207 * Save current FPU registers directly into the child
208 * FPU context, without any memory-to-memory copying.
210 * ( The function 'fails' in the FNSAVE case, which destroys
211 * register contents so we have to copy them back. )
213 if (!copy_fpregs_to_fpstate(dst_fpu
)) {
214 memcpy(&src_fpu
->state
, &dst_fpu
->state
, fpu_kernel_xstate_size
);
215 copy_kernel_to_fpregs(&src_fpu
->state
);
218 trace_x86_fpu_copy_src(src_fpu
);
219 trace_x86_fpu_copy_dst(dst_fpu
);
225 * Activate the current task's in-memory FPU context,
226 * if it has not been used before:
228 void fpu__initialize(struct fpu
*fpu
)
230 WARN_ON_FPU(fpu
!= ¤t
->thread
.fpu
);
232 if (!fpu
->initialized
) {
233 fpstate_init(&fpu
->state
);
234 trace_x86_fpu_init_state(fpu
);
236 trace_x86_fpu_activate_state(fpu
);
237 /* Safe to do for the current task: */
238 fpu
->initialized
= 1;
241 EXPORT_SYMBOL_GPL(fpu__initialize
);
244 * This function must be called before we read a task's fpstate.
246 * There's two cases where this gets called:
248 * - for the current task (when coredumping), in which case we have
249 * to save the latest FPU registers into the fpstate,
251 * - or it's called for stopped tasks (ptrace), in which case the
252 * registers were already saved by the context-switch code when
253 * the task scheduled out - we only have to initialize the registers
254 * if they've never been initialized.
256 * If the task has used the FPU before then save it.
258 void fpu__prepare_read(struct fpu
*fpu
)
260 if (fpu
== ¤t
->thread
.fpu
) {
263 if (!fpu
->initialized
) {
264 fpstate_init(&fpu
->state
);
265 trace_x86_fpu_init_state(fpu
);
267 trace_x86_fpu_activate_state(fpu
);
268 /* Safe to do for current and for stopped child tasks: */
269 fpu
->initialized
= 1;
275 * This function must be called before we write a task's fpstate.
277 * If the task has used the FPU before then invalidate any cached FPU registers.
278 * If the task has not used the FPU before then initialize its fpstate.
280 * After this function call, after registers in the fpstate are
281 * modified and the child task has woken up, the child task will
282 * restore the modified FPU state from the modified context. If we
283 * didn't clear its cached status here then the cached in-registers
284 * state pending on its former CPU could be restored, corrupting
287 void fpu__prepare_write(struct fpu
*fpu
)
290 * Only stopped child tasks can be used to modify the FPU
291 * state in the fpstate buffer:
293 WARN_ON_FPU(fpu
== ¤t
->thread
.fpu
);
295 if (fpu
->initialized
) {
296 /* Invalidate any cached state: */
297 __fpu_invalidate_fpregs_state(fpu
);
299 fpstate_init(&fpu
->state
);
300 trace_x86_fpu_init_state(fpu
);
302 trace_x86_fpu_activate_state(fpu
);
303 /* Safe to do for stopped child tasks: */
304 fpu
->initialized
= 1;
309 * 'fpu__restore()' is called to copy FPU registers from
310 * the FPU fpstate to the live hw registers and to activate
311 * access to the hardware registers, so that FPU instructions
312 * can be used afterwards.
314 * Must be called with kernel preemption disabled (for example
315 * with local interrupts disabled, as it is in the case of
316 * do_device_not_available()).
318 void fpu__restore(struct fpu
*fpu
)
320 fpu__initialize(fpu
);
322 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
323 kernel_fpu_disable();
324 trace_x86_fpu_before_restore(fpu
);
325 fpregs_activate(fpu
);
326 copy_kernel_to_fpregs(&fpu
->state
);
327 trace_x86_fpu_after_restore(fpu
);
330 EXPORT_SYMBOL_GPL(fpu__restore
);
333 * Drops current FPU state: deactivates the fpregs and
334 * the fpstate. NOTE: it still leaves previous contents
335 * in the fpregs in the eager-FPU case.
337 * This function can be used in cases where we know that
338 * a state-restore is coming: either an explicit one,
341 void fpu__drop(struct fpu
*fpu
)
345 if (fpu
== ¤t
->thread
.fpu
) {
346 if (fpu
->initialized
) {
347 /* Ignore delayed exceptions from user space */
348 asm volatile("1: fwait\n"
350 _ASM_EXTABLE(1b
, 2b
));
351 fpregs_deactivate(fpu
);
355 fpu
->initialized
= 0;
357 trace_x86_fpu_dropped(fpu
);
363 * Clear FPU registers by setting them up from
366 static inline void copy_init_fpstate_to_fpregs(void)
369 copy_kernel_to_xregs(&init_fpstate
.xsave
, -1);
370 else if (static_cpu_has(X86_FEATURE_FXSR
))
371 copy_kernel_to_fxregs(&init_fpstate
.fxsave
);
373 copy_kernel_to_fregs(&init_fpstate
.fsave
);
375 if (boot_cpu_has(X86_FEATURE_OSPKE
))
376 copy_init_pkru_to_fpregs();
380 * Clear the FPU state back to init state.
382 * Called by sys_execve(), by the signal handler code and by various
385 void fpu__clear(struct fpu
*fpu
)
387 WARN_ON_FPU(fpu
!= ¤t
->thread
.fpu
); /* Almost certainly an anomaly */
392 * Make sure fpstate is cleared and initialized.
394 if (static_cpu_has(X86_FEATURE_FPU
)) {
396 fpu__initialize(fpu
);
398 copy_init_fpstate_to_fpregs();
404 * x87 math exception handling:
407 int fpu__exception_code(struct fpu
*fpu
, int trap_nr
)
411 if (trap_nr
== X86_TRAP_MF
) {
412 unsigned short cwd
, swd
;
414 * (~cwd & swd) will mask out exceptions that are not set to unmasked
415 * status. 0x3f is the exception bits in these regs, 0x200 is the
416 * C1 reg you need in case of a stack fault, 0x040 is the stack
417 * fault bit. We should only be taking one exception at a time,
418 * so if this combination doesn't produce any single exception,
419 * then we have a bad program that isn't synchronizing its FPU usage
420 * and it will suffer the consequences since we won't be able to
421 * fully reproduce the context of the exception.
423 if (boot_cpu_has(X86_FEATURE_FXSR
)) {
424 cwd
= fpu
->state
.fxsave
.cwd
;
425 swd
= fpu
->state
.fxsave
.swd
;
427 cwd
= (unsigned short)fpu
->state
.fsave
.cwd
;
428 swd
= (unsigned short)fpu
->state
.fsave
.swd
;
434 * The SIMD FPU exceptions are handled a little differently, as there
435 * is only a single status/control register. Thus, to determine which
436 * unmasked exception was caught we must mask the exception mask bits
437 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
439 unsigned short mxcsr
= MXCSR_DEFAULT
;
441 if (boot_cpu_has(X86_FEATURE_XMM
))
442 mxcsr
= fpu
->state
.fxsave
.mxcsr
;
444 err
= ~(mxcsr
>> 7) & mxcsr
;
447 if (err
& 0x001) { /* Invalid op */
449 * swd & 0x240 == 0x040: Stack Underflow
450 * swd & 0x240 == 0x240: Stack Overflow
451 * User must clear the SF bit (0x40) if set
454 } else if (err
& 0x004) { /* Divide by Zero */
456 } else if (err
& 0x008) { /* Overflow */
458 } else if (err
& 0x012) { /* Denormal, Underflow */
460 } else if (err
& 0x020) { /* Precision */
465 * If we're using IRQ 13, or supposedly even some trap
466 * X86_TRAP_MF implementations, it's possible
467 * we get a spurious trap, which is not an error.