2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
69 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
70 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
72 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
74 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
75 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
76 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
77 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
78 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
81 * Undefined/reserved opcodes, conditional jump, Opcode Extension
82 * Groups, and some special opcodes can not boost.
83 * This is non-const and volatile to keep gcc from statically
84 * optimizing it out, as variable_test_bit makes gcc think only
85 * *(unsigned long*) is used.
87 static volatile u32 twobyte_is_boostable
[256 / 32] = {
88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
89 /* ---------------------------------------------- */
90 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
91 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
92 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
93 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
97 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
98 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
102 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
103 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
104 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
105 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
106 /* ----------------------------------------------- */
107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
111 struct kretprobe_blackpoint kretprobe_blacklist
[] = {
112 {"__switch_to", }, /* This function switches only current task, but
113 doesn't switch kernel stack.*/
114 {NULL
, NULL
} /* Terminator */
117 const int kretprobe_blacklist_size
= ARRAY_SIZE(kretprobe_blacklist
);
119 static nokprobe_inline
void
120 __synthesize_relative_insn(void *dest
, void *from
, void *to
, u8 op
)
122 struct __arch_relative_insn
{
127 insn
= (struct __arch_relative_insn
*)dest
;
128 insn
->raddr
= (s32
)((long)(to
) - ((long)(from
) + 5));
132 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
133 void synthesize_reljump(void *dest
, void *from
, void *to
)
135 __synthesize_relative_insn(dest
, from
, to
, RELATIVEJUMP_OPCODE
);
137 NOKPROBE_SYMBOL(synthesize_reljump
);
139 /* Insert a call instruction at address 'from', which calls address 'to'.*/
140 void synthesize_relcall(void *dest
, void *from
, void *to
)
142 __synthesize_relative_insn(dest
, from
, to
, RELATIVECALL_OPCODE
);
144 NOKPROBE_SYMBOL(synthesize_relcall
);
147 * Skip the prefixes of the instruction.
149 static kprobe_opcode_t
*skip_prefixes(kprobe_opcode_t
*insn
)
153 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
154 while (inat_is_legacy_prefix(attr
)) {
156 attr
= inat_get_opcode_attribute((insn_byte_t
)*insn
);
159 if (inat_is_rex_prefix(attr
))
164 NOKPROBE_SYMBOL(skip_prefixes
);
167 * Returns non-zero if INSN is boostable.
168 * RIP relative instructions are adjusted at copying time in 64 bits mode
170 int can_boost(struct insn
*insn
, void *addr
)
172 kprobe_opcode_t opcode
;
174 if (search_exception_tables((unsigned long)addr
))
175 return 0; /* Page fault may occur on this address. */
177 /* 2nd-byte opcode */
178 if (insn
->opcode
.nbytes
== 2)
179 return test_bit(insn
->opcode
.bytes
[1],
180 (unsigned long *)twobyte_is_boostable
);
182 if (insn
->opcode
.nbytes
!= 1)
185 /* Can't boost Address-size override prefix */
186 if (unlikely(inat_is_address_size_prefix(insn
->attr
)))
189 opcode
= insn
->opcode
.bytes
[0];
191 switch (opcode
& 0xf0) {
193 /* can't boost "bound" */
194 return (opcode
!= 0x62);
196 return 0; /* can't boost conditional jump */
198 return opcode
!= 0x9a; /* can't boost call far */
200 /* can't boost software-interruptions */
201 return (0xc1 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
203 /* can boost AA* and XLAT */
204 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
206 /* can boost in/out and absolute jmps */
207 return ((opcode
& 0x04) || opcode
== 0xea);
209 /* clear and set flags are boostable */
210 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
212 /* CS override prefix and call are not boostable */
213 return (opcode
!= 0x2e && opcode
!= 0x9a);
218 __recover_probed_insn(kprobe_opcode_t
*buf
, unsigned long addr
)
223 kp
= get_kprobe((void *)addr
);
224 faddr
= ftrace_location(addr
);
226 * Addresses inside the ftrace location are refused by
227 * arch_check_ftrace_location(). Something went terribly wrong
228 * if such an address is checked here.
230 if (WARN_ON(faddr
&& faddr
!= addr
))
233 * Use the current code if it is not modified by Kprobe
234 * and it cannot be modified by ftrace.
240 * Basically, kp->ainsn.insn has an original instruction.
241 * However, RIP-relative instruction can not do single-stepping
242 * at different place, __copy_instruction() tweaks the displacement of
243 * that instruction. In that case, we can't recover the instruction
244 * from the kp->ainsn.insn.
246 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
247 * of the first byte of the probed instruction, which is overwritten
248 * by int3. And the instruction at kp->addr is not modified by kprobes
249 * except for the first byte, we can recover the original instruction
250 * from it and kp->opcode.
252 * In case of Kprobes using ftrace, we do not have a copy of
253 * the original instruction. In fact, the ftrace location might
254 * be modified at anytime and even could be in an inconsistent state.
255 * Fortunately, we know that the original code is the ideal 5-byte
258 if (probe_kernel_read(buf
, (void *)addr
,
259 MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
)))
263 memcpy(buf
, ideal_nops
[NOP_ATOMIC5
], 5);
266 return (unsigned long)buf
;
270 * Recover the probed instruction at addr for further analysis.
271 * Caller must lock kprobes by kprobe_mutex, or disable preemption
272 * for preventing to release referencing kprobes.
273 * Returns zero if the instruction can not get recovered (or access failed).
275 unsigned long recover_probed_instruction(kprobe_opcode_t
*buf
, unsigned long addr
)
277 unsigned long __addr
;
279 __addr
= __recover_optprobed_insn(buf
, addr
);
283 return __recover_probed_insn(buf
, addr
);
286 /* Check if paddr is at an instruction boundary */
287 static int can_probe(unsigned long paddr
)
289 unsigned long addr
, __addr
, offset
= 0;
291 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
293 if (!kallsyms_lookup_size_offset(paddr
, NULL
, &offset
))
296 /* Decode instructions */
297 addr
= paddr
- offset
;
298 while (addr
< paddr
) {
300 * Check if the instruction has been modified by another
301 * kprobe, in which case we replace the breakpoint by the
302 * original instruction in our buffer.
303 * Also, jump optimization will change the breakpoint to
304 * relative-jump. Since the relative-jump itself is
305 * normally used, we just go through if there is no kprobe.
307 __addr
= recover_probed_instruction(buf
, addr
);
310 kernel_insn_init(&insn
, (void *)__addr
, MAX_INSN_SIZE
);
311 insn_get_length(&insn
);
314 * Another debugging subsystem might insert this breakpoint.
315 * In that case, we can't recover it.
317 if (insn
.opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
322 return (addr
== paddr
);
326 * Returns non-zero if opcode modifies the interrupt flag.
328 static int is_IF_modifier(kprobe_opcode_t
*insn
)
331 insn
= skip_prefixes(insn
);
336 case 0xcf: /* iret/iretd */
337 case 0x9d: /* popf/popfd */
345 * Copy an instruction with recovering modified instruction by kprobes
346 * and adjust the displacement if the instruction uses the %rip-relative
347 * addressing mode. Note that since @real will be the final place of copied
348 * instruction, displacement must be adjust by @real, not @dest.
349 * This returns the length of copied instruction, or 0 if it has an error.
351 int __copy_instruction(u8
*dest
, u8
*src
, u8
*real
, struct insn
*insn
)
353 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
354 unsigned long recovered_insn
=
355 recover_probed_instruction(buf
, (unsigned long)src
);
357 if (!recovered_insn
|| !insn
)
360 /* This can access kernel text if given address is not recovered */
361 if (probe_kernel_read(dest
, (void *)recovered_insn
, MAX_INSN_SIZE
))
364 kernel_insn_init(insn
, dest
, MAX_INSN_SIZE
);
365 insn_get_length(insn
);
367 /* Another subsystem puts a breakpoint, failed to recover */
368 if (insn
->opcode
.bytes
[0] == BREAKPOINT_INSTRUCTION
)
371 /* We should not singlestep on the exception masking instructions */
372 if (insn_masking_exception(insn
))
376 /* Only x86_64 has RIP relative instructions */
377 if (insn_rip_relative(insn
)) {
381 * The copied instruction uses the %rip-relative addressing
382 * mode. Adjust the displacement for the difference between
383 * the original location of this instruction and the location
384 * of the copy that will actually be run. The tricky bit here
385 * is making sure that the sign extension happens correctly in
386 * this calculation, since we need a signed 32-bit result to
387 * be sign-extended to 64 bits when it's added to the %rip
388 * value and yield the same 64-bit result that the sign-
389 * extension of the original signed 32-bit displacement would
392 newdisp
= (u8
*) src
+ (s64
) insn
->displacement
.value
394 if ((s64
) (s32
) newdisp
!= newdisp
) {
395 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp
);
398 disp
= (u8
*) dest
+ insn_offset_displacement(insn
);
399 *(s32
*) disp
= (s32
) newdisp
;
405 /* Prepare reljump right after instruction to boost */
406 static int prepare_boost(kprobe_opcode_t
*buf
, struct kprobe
*p
,
409 int len
= insn
->length
;
411 if (can_boost(insn
, p
->addr
) &&
412 MAX_INSN_SIZE
- len
>= RELATIVEJUMP_SIZE
) {
414 * These instructions can be executed directly if it
415 * jumps back to correct address.
417 synthesize_reljump(buf
+ len
, p
->ainsn
.insn
+ len
,
418 p
->addr
+ insn
->length
);
419 len
+= RELATIVEJUMP_SIZE
;
420 p
->ainsn
.boostable
= true;
422 p
->ainsn
.boostable
= false;
428 /* Make page to RO mode when allocate it */
429 void *alloc_insn_page(void)
433 page
= module_alloc(PAGE_SIZE
);
435 set_memory_ro((unsigned long)page
& PAGE_MASK
, 1);
440 /* Recover page to RW mode before releasing it */
441 void free_insn_page(void *page
)
443 set_memory_nx((unsigned long)page
& PAGE_MASK
, 1);
444 set_memory_rw((unsigned long)page
& PAGE_MASK
, 1);
445 module_memfree(page
);
448 static int arch_copy_kprobe(struct kprobe
*p
)
451 kprobe_opcode_t buf
[MAX_INSN_SIZE
];
454 /* Copy an instruction with recovering if other optprobe modifies it.*/
455 len
= __copy_instruction(buf
, p
->addr
, p
->ainsn
.insn
, &insn
);
460 * __copy_instruction can modify the displacement of the instruction,
461 * but it doesn't affect boostable check.
463 len
= prepare_boost(buf
, p
, &insn
);
465 /* Check whether the instruction modifies Interrupt Flag or not */
466 p
->ainsn
.if_modifier
= is_IF_modifier(buf
);
468 /* Also, displacement change doesn't affect the first byte */
471 /* OK, write back the instruction(s) into ROX insn buffer */
472 text_poke(p
->ainsn
.insn
, buf
, len
);
477 int arch_prepare_kprobe(struct kprobe
*p
)
481 if (alternatives_text_reserved(p
->addr
, p
->addr
))
484 if (!can_probe((unsigned long)p
->addr
))
486 /* insn: must be on special executable page on x86. */
487 p
->ainsn
.insn
= get_insn_slot();
491 ret
= arch_copy_kprobe(p
);
493 free_insn_slot(p
->ainsn
.insn
, 0);
494 p
->ainsn
.insn
= NULL
;
500 void arch_arm_kprobe(struct kprobe
*p
)
502 text_poke(p
->addr
, ((unsigned char []){BREAKPOINT_INSTRUCTION
}), 1);
505 void arch_disarm_kprobe(struct kprobe
*p
)
507 text_poke(p
->addr
, &p
->opcode
, 1);
510 void arch_remove_kprobe(struct kprobe
*p
)
513 free_insn_slot(p
->ainsn
.insn
, p
->ainsn
.boostable
);
514 p
->ainsn
.insn
= NULL
;
518 static nokprobe_inline
void
519 save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
521 kcb
->prev_kprobe
.kp
= kprobe_running();
522 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
523 kcb
->prev_kprobe
.old_flags
= kcb
->kprobe_old_flags
;
524 kcb
->prev_kprobe
.saved_flags
= kcb
->kprobe_saved_flags
;
527 static nokprobe_inline
void
528 restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
530 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
531 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
532 kcb
->kprobe_old_flags
= kcb
->prev_kprobe
.old_flags
;
533 kcb
->kprobe_saved_flags
= kcb
->prev_kprobe
.saved_flags
;
536 static nokprobe_inline
void
537 set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
538 struct kprobe_ctlblk
*kcb
)
540 __this_cpu_write(current_kprobe
, p
);
541 kcb
->kprobe_saved_flags
= kcb
->kprobe_old_flags
542 = (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
543 if (p
->ainsn
.if_modifier
)
544 kcb
->kprobe_saved_flags
&= ~X86_EFLAGS_IF
;
547 static nokprobe_inline
void clear_btf(void)
549 if (test_thread_flag(TIF_BLOCKSTEP
)) {
550 unsigned long debugctl
= get_debugctlmsr();
552 debugctl
&= ~DEBUGCTLMSR_BTF
;
553 update_debugctlmsr(debugctl
);
557 static nokprobe_inline
void restore_btf(void)
559 if (test_thread_flag(TIF_BLOCKSTEP
)) {
560 unsigned long debugctl
= get_debugctlmsr();
562 debugctl
|= DEBUGCTLMSR_BTF
;
563 update_debugctlmsr(debugctl
);
567 void arch_prepare_kretprobe(struct kretprobe_instance
*ri
, struct pt_regs
*regs
)
569 unsigned long *sara
= stack_addr(regs
);
571 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
573 /* Replace the return addr with trampoline addr */
574 *sara
= (unsigned long) &kretprobe_trampoline
;
576 NOKPROBE_SYMBOL(arch_prepare_kretprobe
);
578 static void setup_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
579 struct kprobe_ctlblk
*kcb
, int reenter
)
581 if (setup_detour_execution(p
, regs
, reenter
))
584 #if !defined(CONFIG_PREEMPT)
585 if (p
->ainsn
.boostable
&& !p
->post_handler
) {
586 /* Boost up -- we can execute copied instructions directly */
588 reset_current_kprobe();
590 * Reentering boosted probe doesn't reset current_kprobe,
591 * nor set current_kprobe, because it doesn't use single
594 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
599 save_previous_kprobe(kcb
);
600 set_current_kprobe(p
, regs
, kcb
);
601 kcb
->kprobe_status
= KPROBE_REENTER
;
603 kcb
->kprobe_status
= KPROBE_HIT_SS
;
604 /* Prepare real single stepping */
606 regs
->flags
|= X86_EFLAGS_TF
;
607 regs
->flags
&= ~X86_EFLAGS_IF
;
608 /* single step inline if the instruction is an int3 */
609 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
610 regs
->ip
= (unsigned long)p
->addr
;
612 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
614 NOKPROBE_SYMBOL(setup_singlestep
);
617 * We have reentered the kprobe_handler(), since another probe was hit while
618 * within the handler. We save the original kprobes variables and just single
619 * step on the instruction of the new probe without calling any user handlers.
621 static int reenter_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
622 struct kprobe_ctlblk
*kcb
)
624 switch (kcb
->kprobe_status
) {
625 case KPROBE_HIT_SSDONE
:
626 case KPROBE_HIT_ACTIVE
:
628 kprobes_inc_nmissed_count(p
);
629 setup_singlestep(p
, regs
, kcb
, 1);
632 /* A probe has been hit in the codepath leading up to, or just
633 * after, single-stepping of a probed instruction. This entire
634 * codepath should strictly reside in .kprobes.text section.
635 * Raise a BUG or we'll continue in an endless reentering loop
636 * and eventually a stack overflow.
638 pr_err("Unrecoverable kprobe detected.\n");
642 /* impossible cases */
649 NOKPROBE_SYMBOL(reenter_kprobe
);
652 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
653 * remain disabled throughout this function.
655 int kprobe_int3_handler(struct pt_regs
*regs
)
657 kprobe_opcode_t
*addr
;
659 struct kprobe_ctlblk
*kcb
;
664 addr
= (kprobe_opcode_t
*)(regs
->ip
- sizeof(kprobe_opcode_t
));
666 * We don't want to be preempted for the entire duration of kprobe
667 * processing. Since int3 and debug trap disables irqs and we clear
668 * IF while singlestepping, it must be no preemptible.
671 kcb
= get_kprobe_ctlblk();
672 p
= get_kprobe(addr
);
675 if (kprobe_running()) {
676 if (reenter_kprobe(p
, regs
, kcb
))
679 set_current_kprobe(p
, regs
, kcb
);
680 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
683 * If we have no pre-handler or it returned 0, we
684 * continue with normal processing. If we have a
685 * pre-handler and it returned non-zero, that means
686 * user handler setup registers to exit to another
687 * instruction, we must skip the single stepping.
689 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
))
690 setup_singlestep(p
, regs
, kcb
, 0);
692 reset_current_kprobe();
695 } else if (*addr
!= BREAKPOINT_INSTRUCTION
) {
697 * The breakpoint instruction was removed right
698 * after we hit it. Another cpu has removed
699 * either a probepoint or a debugger breakpoint
700 * at this address. In either case, no further
701 * handling of this interrupt is appropriate.
702 * Back up over the (now missing) int3 and run
703 * the original instruction.
705 regs
->ip
= (unsigned long)addr
;
707 } /* else: not a kprobe fault; let the kernel handle it */
711 NOKPROBE_SYMBOL(kprobe_int3_handler
);
714 * When a retprobed function returns, this code saves registers and
715 * calls trampoline_handler() runs, which calls the kretprobe's handler.
718 ".global kretprobe_trampoline\n"
719 ".type kretprobe_trampoline, @function\n"
720 "kretprobe_trampoline:\n"
722 /* We don't bother saving the ss register */
727 " call trampoline_handler\n"
728 /* Replace saved sp with true return address. */
729 " movq %rax, 152(%rsp)\n"
736 " call trampoline_handler\n"
737 /* Move flags to cs */
738 " movl 56(%esp), %edx\n"
739 " movl %edx, 52(%esp)\n"
740 /* Replace saved flags with true return address. */
741 " movl %eax, 56(%esp)\n"
746 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
748 NOKPROBE_SYMBOL(kretprobe_trampoline
);
749 STACK_FRAME_NON_STANDARD(kretprobe_trampoline
);
752 * Called from kretprobe_trampoline
754 __visible __used
void *trampoline_handler(struct pt_regs
*regs
)
756 struct kretprobe_instance
*ri
= NULL
;
757 struct hlist_head
*head
, empty_rp
;
758 struct hlist_node
*tmp
;
759 unsigned long flags
, orig_ret_address
= 0;
760 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
761 kprobe_opcode_t
*correct_ret_addr
= NULL
;
763 INIT_HLIST_HEAD(&empty_rp
);
764 kretprobe_hash_lock(current
, &head
, &flags
);
765 /* fixup registers */
767 regs
->cs
= __KERNEL_CS
;
769 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
772 regs
->ip
= trampoline_address
;
773 regs
->orig_ax
= ~0UL;
776 * It is possible to have multiple instances associated with a given
777 * task either because multiple functions in the call path have
778 * return probes installed on them, and/or more than one
779 * return probe was registered for a target function.
781 * We can handle this because:
782 * - instances are always pushed into the head of the list
783 * - when multiple return probes are registered for the same
784 * function, the (chronologically) first instance's ret_addr
785 * will be the real return address, and all the rest will
786 * point to kretprobe_trampoline.
788 hlist_for_each_entry(ri
, head
, hlist
) {
789 if (ri
->task
!= current
)
790 /* another task is sharing our hash bucket */
793 orig_ret_address
= (unsigned long)ri
->ret_addr
;
795 if (orig_ret_address
!= trampoline_address
)
797 * This is the real return address. Any other
798 * instances associated with this task are for
799 * other calls deeper on the call stack
804 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
806 correct_ret_addr
= ri
->ret_addr
;
807 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
808 if (ri
->task
!= current
)
809 /* another task is sharing our hash bucket */
812 orig_ret_address
= (unsigned long)ri
->ret_addr
;
813 if (ri
->rp
&& ri
->rp
->handler
) {
814 __this_cpu_write(current_kprobe
, &ri
->rp
->kp
);
815 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
816 ri
->ret_addr
= correct_ret_addr
;
817 ri
->rp
->handler(ri
, regs
);
818 __this_cpu_write(current_kprobe
, NULL
);
821 recycle_rp_inst(ri
, &empty_rp
);
823 if (orig_ret_address
!= trampoline_address
)
825 * This is the real return address. Any other
826 * instances associated with this task are for
827 * other calls deeper on the call stack
832 kretprobe_hash_unlock(current
, &flags
);
834 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
835 hlist_del(&ri
->hlist
);
838 return (void *)orig_ret_address
;
840 NOKPROBE_SYMBOL(trampoline_handler
);
843 * Called after single-stepping. p->addr is the address of the
844 * instruction whose first byte has been replaced by the "int 3"
845 * instruction. To avoid the SMP problems that can occur when we
846 * temporarily put back the original opcode to single-step, we
847 * single-stepped a copy of the instruction. The address of this
848 * copy is p->ainsn.insn.
850 * This function prepares to return from the post-single-step
851 * interrupt. We have to fix up the stack as follows:
853 * 0) Except in the case of absolute or indirect jump or call instructions,
854 * the new ip is relative to the copied instruction. We need to make
855 * it relative to the original instruction.
857 * 1) If the single-stepped instruction was pushfl, then the TF and IF
858 * flags are set in the just-pushed flags, and may need to be cleared.
860 * 2) If the single-stepped instruction was a call, the return address
861 * that is atop the stack is the address following the copied instruction.
862 * We need to make it the address following the original instruction.
864 * If this is the first time we've single-stepped the instruction at
865 * this probepoint, and the instruction is boostable, boost it: add a
866 * jump instruction after the copied instruction, that jumps to the next
867 * instruction after the probepoint.
869 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
,
870 struct kprobe_ctlblk
*kcb
)
872 unsigned long *tos
= stack_addr(regs
);
873 unsigned long copy_ip
= (unsigned long)p
->ainsn
.insn
;
874 unsigned long orig_ip
= (unsigned long)p
->addr
;
875 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
878 insn
= skip_prefixes(insn
);
880 regs
->flags
&= ~X86_EFLAGS_TF
;
882 case 0x9c: /* pushfl */
883 *tos
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_IF
);
884 *tos
|= kcb
->kprobe_old_flags
;
886 case 0xc2: /* iret/ret/lret */
891 case 0xea: /* jmp absolute -- ip is correct */
892 /* ip is already adjusted, no more changes required */
893 p
->ainsn
.boostable
= true;
895 case 0xe8: /* call relative - Fix return addr */
896 *tos
= orig_ip
+ (*tos
- copy_ip
);
899 case 0x9a: /* call absolute -- same as call absolute, indirect */
900 *tos
= orig_ip
+ (*tos
- copy_ip
);
904 if ((insn
[1] & 0x30) == 0x10) {
906 * call absolute, indirect
907 * Fix return addr; ip is correct.
908 * But this is not boostable
910 *tos
= orig_ip
+ (*tos
- copy_ip
);
912 } else if (((insn
[1] & 0x31) == 0x20) ||
913 ((insn
[1] & 0x31) == 0x21)) {
915 * jmp near and far, absolute indirect
916 * ip is correct. And this is boostable
918 p
->ainsn
.boostable
= true;
925 regs
->ip
+= orig_ip
- copy_ip
;
930 NOKPROBE_SYMBOL(resume_execution
);
933 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
934 * remain disabled throughout this function.
936 int kprobe_debug_handler(struct pt_regs
*regs
)
938 struct kprobe
*cur
= kprobe_running();
939 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
944 resume_execution(cur
, regs
, kcb
);
945 regs
->flags
|= kcb
->kprobe_saved_flags
;
947 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
948 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
949 cur
->post_handler(cur
, regs
, 0);
952 /* Restore back the original saved kprobes variables and continue. */
953 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
954 restore_previous_kprobe(kcb
);
957 reset_current_kprobe();
960 * if somebody else is singlestepping across a probe point, flags
961 * will have TF set, in which case, continue the remaining processing
962 * of do_debug, as if this is not a probe hit.
964 if (regs
->flags
& X86_EFLAGS_TF
)
969 NOKPROBE_SYMBOL(kprobe_debug_handler
);
971 int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
973 struct kprobe
*cur
= kprobe_running();
974 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
976 if (unlikely(regs
->ip
== (unsigned long)cur
->ainsn
.insn
)) {
977 /* This must happen on single-stepping */
978 WARN_ON(kcb
->kprobe_status
!= KPROBE_HIT_SS
&&
979 kcb
->kprobe_status
!= KPROBE_REENTER
);
981 * We are here because the instruction being single
982 * stepped caused a page fault. We reset the current
983 * kprobe and the ip points back to the probe address
984 * and allow the page fault handler to continue as a
987 regs
->ip
= (unsigned long)cur
->addr
;
989 * Trap flag (TF) has been set here because this fault
990 * happened where the single stepping will be done.
991 * So clear it by resetting the current kprobe:
993 regs
->flags
&= ~X86_EFLAGS_TF
;
996 * If the TF flag was set before the kprobe hit,
999 regs
->flags
|= kcb
->kprobe_old_flags
;
1001 if (kcb
->kprobe_status
== KPROBE_REENTER
)
1002 restore_previous_kprobe(kcb
);
1004 reset_current_kprobe();
1005 } else if (kcb
->kprobe_status
== KPROBE_HIT_ACTIVE
||
1006 kcb
->kprobe_status
== KPROBE_HIT_SSDONE
) {
1008 * We increment the nmissed count for accounting,
1009 * we can also use npre/npostfault count for accounting
1010 * these specific fault cases.
1012 kprobes_inc_nmissed_count(cur
);
1015 * We come here because instructions in the pre/post
1016 * handler caused the page_fault, this could happen
1017 * if handler tries to access user space by
1018 * copy_from_user(), get_user() etc. Let the
1019 * user-specified handler try to fix it first.
1021 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
1027 NOKPROBE_SYMBOL(kprobe_fault_handler
);
1029 bool arch_within_kprobe_blacklist(unsigned long addr
)
1031 return (addr
>= (unsigned long)__kprobes_text_start
&&
1032 addr
< (unsigned long)__kprobes_text_end
) ||
1033 (addr
>= (unsigned long)__entry_text_start
&&
1034 addr
< (unsigned long)__entry_text_end
);
1037 int __init
arch_init_kprobes(void)
1042 int arch_trampoline_kprobe(struct kprobe
*p
)