hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / kernel / smpboot.c
blob5369d7fac7978b9216c43c88931ab66e41a6fac6
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2 or
16 * later.
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/export.h>
47 #include <linux/sched.h>
48 #include <linux/sched/topology.h>
49 #include <linux/sched/hotplug.h>
50 #include <linux/sched/task_stack.h>
51 #include <linux/percpu.h>
52 #include <linux/bootmem.h>
53 #include <linux/err.h>
54 #include <linux/nmi.h>
55 #include <linux/tboot.h>
56 #include <linux/stackprotector.h>
57 #include <linux/gfp.h>
58 #include <linux/cpuidle.h>
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/pgtable.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
95 /* Per CPU bogomips and other parameters */
96 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
97 EXPORT_PER_CPU_SYMBOL(cpu_info);
99 /* Logical package management. We might want to allocate that dynamically */
100 unsigned int __max_logical_packages __read_mostly;
101 EXPORT_SYMBOL(__max_logical_packages);
102 static unsigned int logical_packages __read_mostly;
104 /* Maximum number of SMT threads on any online core */
105 int __read_mostly __max_smt_threads = 1;
107 /* Flag to indicate if a complete sched domain rebuild is required */
108 bool x86_topology_update;
110 int arch_update_cpu_topology(void)
112 int retval = x86_topology_update;
114 x86_topology_update = false;
115 return retval;
118 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
120 unsigned long flags;
122 spin_lock_irqsave(&rtc_lock, flags);
123 CMOS_WRITE(0xa, 0xf);
124 spin_unlock_irqrestore(&rtc_lock, flags);
125 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
126 start_eip >> 4;
127 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
128 start_eip & 0xf;
131 static inline void smpboot_restore_warm_reset_vector(void)
133 unsigned long flags;
136 * Paranoid: Set warm reset code and vector here back
137 * to default values.
139 spin_lock_irqsave(&rtc_lock, flags);
140 CMOS_WRITE(0, 0xf);
141 spin_unlock_irqrestore(&rtc_lock, flags);
143 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
147 * Report back to the Boot Processor during boot time or to the caller processor
148 * during CPU online.
150 static void smp_callin(void)
152 int cpuid, phys_id;
155 * If waken up by an INIT in an 82489DX configuration
156 * cpu_callout_mask guarantees we don't get here before
157 * an INIT_deassert IPI reaches our local APIC, so it is
158 * now safe to touch our local APIC.
160 cpuid = smp_processor_id();
163 * (This works even if the APIC is not enabled.)
165 phys_id = read_apic_id();
168 * the boot CPU has finished the init stage and is spinning
169 * on callin_map until we finish. We are free to set up this
170 * CPU, first the APIC. (this is probably redundant on most
171 * boards)
173 apic_ap_setup();
176 * Save our processor parameters. Note: this information
177 * is needed for clock calibration.
179 smp_store_cpu_info(cpuid);
182 * The topology information must be up to date before
183 * calibrate_delay() and notify_cpu_starting().
185 set_cpu_sibling_map(raw_smp_processor_id());
188 * Get our bogomips.
189 * Update loops_per_jiffy in cpu_data. Previous call to
190 * smp_store_cpu_info() stored a value that is close but not as
191 * accurate as the value just calculated.
193 calibrate_delay();
194 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
195 pr_debug("Stack at about %p\n", &cpuid);
197 wmb();
199 notify_cpu_starting(cpuid);
202 * Allow the master to continue.
204 cpumask_set_cpu(cpuid, cpu_callin_mask);
207 static int cpu0_logical_apicid;
208 static int enable_start_cpu0;
210 * Activate a secondary processor.
212 static void notrace start_secondary(void *unused)
215 * Don't put *anything* except direct CPU state initialization
216 * before cpu_init(), SMP booting is too fragile that we want to
217 * limit the things done here to the most necessary things.
219 if (boot_cpu_has(X86_FEATURE_PCID))
220 __write_cr4(__read_cr4() | X86_CR4_PCIDE);
222 #ifdef CONFIG_X86_32
223 /* switch away from the initial page table */
224 load_cr3(swapper_pg_dir);
226 * Initialize the CR4 shadow before doing anything that could
227 * try to read it.
229 cr4_init_shadow();
230 __flush_tlb_all();
231 #endif
232 load_current_idt();
233 cpu_init();
234 x86_cpuinit.early_percpu_clock_init();
235 preempt_disable();
236 smp_callin();
238 enable_start_cpu0 = 0;
240 /* otherwise gcc will move up smp_processor_id before the cpu_init */
241 barrier();
243 * Check TSC synchronization with the boot CPU:
245 check_tsc_sync_target();
247 speculative_store_bypass_ht_init();
250 * Lock vector_lock, set CPU online and bring the vector
251 * allocator online. Online must be set with vector_lock held
252 * to prevent a concurrent irq setup/teardown from seeing a
253 * half valid vector space.
255 lock_vector_lock();
256 set_cpu_online(smp_processor_id(), true);
257 lapic_online();
258 unlock_vector_lock();
259 cpu_set_state_online(smp_processor_id());
260 x86_platform.nmi_init();
262 /* enable local interrupts */
263 local_irq_enable();
265 /* to prevent fake stack check failure in clock setup */
266 boot_init_stack_canary();
268 x86_cpuinit.setup_percpu_clockev();
270 wmb();
271 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
275 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
276 * @cpu: CPU to check
278 bool topology_is_primary_thread(unsigned int cpu)
280 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
284 * topology_smt_supported - Check whether SMT is supported by the CPUs
286 bool topology_smt_supported(void)
288 return smp_num_siblings > 1;
292 * topology_phys_to_logical_pkg - Map a physical package id to a logical
294 * Returns logical package id or -1 if not found
296 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
298 int cpu;
300 for_each_possible_cpu(cpu) {
301 struct cpuinfo_x86 *c = &cpu_data(cpu);
303 if (c->initialized && c->phys_proc_id == phys_pkg)
304 return c->logical_proc_id;
306 return -1;
308 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
311 * topology_update_package_map - Update the physical to logical package map
312 * @pkg: The physical package id as retrieved via CPUID
313 * @cpu: The cpu for which this is updated
315 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
317 int new;
319 /* Already available somewhere? */
320 new = topology_phys_to_logical_pkg(pkg);
321 if (new >= 0)
322 goto found;
324 new = logical_packages++;
325 if (new != pkg) {
326 pr_info("CPU %u Converting physical %u to logical package %u\n",
327 cpu, pkg, new);
329 found:
330 cpu_data(cpu).logical_proc_id = new;
331 return 0;
334 void __init smp_store_boot_cpu_info(void)
336 int id = 0; /* CPU 0 */
337 struct cpuinfo_x86 *c = &cpu_data(id);
339 *c = boot_cpu_data;
340 c->cpu_index = id;
341 topology_update_package_map(c->phys_proc_id, id);
342 c->initialized = true;
346 * The bootstrap kernel entry code has set these up. Save them for
347 * a given CPU
349 void smp_store_cpu_info(int id)
351 struct cpuinfo_x86 *c = &cpu_data(id);
353 /* Copy boot_cpu_data only on the first bringup */
354 if (!c->initialized)
355 *c = boot_cpu_data;
356 c->cpu_index = id;
358 * During boot time, CPU0 has this setup already. Save the info when
359 * bringing up AP or offlined CPU0.
361 identify_secondary_cpu(c);
362 c->initialized = true;
365 static bool
366 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
368 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
370 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
373 static bool
374 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
376 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
378 return !WARN_ONCE(!topology_same_node(c, o),
379 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
380 "[node: %d != %d]. Ignoring dependency.\n",
381 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
384 #define link_mask(mfunc, c1, c2) \
385 do { \
386 cpumask_set_cpu((c1), mfunc(c2)); \
387 cpumask_set_cpu((c2), mfunc(c1)); \
388 } while (0)
390 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
392 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
393 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
395 if (c->phys_proc_id == o->phys_proc_id &&
396 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
397 if (c->cpu_core_id == o->cpu_core_id)
398 return topology_sane(c, o, "smt");
400 if ((c->cu_id != 0xff) &&
401 (o->cu_id != 0xff) &&
402 (c->cu_id == o->cu_id))
403 return topology_sane(c, o, "smt");
406 } else if (c->phys_proc_id == o->phys_proc_id &&
407 c->cpu_core_id == o->cpu_core_id) {
408 return topology_sane(c, o, "smt");
411 return false;
415 * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
417 * These are Intel CPUs that enumerate an LLC that is shared by
418 * multiple NUMA nodes. The LLC on these systems is shared for
419 * off-package data access but private to the NUMA node (half
420 * of the package) for on-package access.
422 * CPUID (the source of the information about the LLC) can only
423 * enumerate the cache as being shared *or* unshared, but not
424 * this particular configuration. The CPU in this case enumerates
425 * the cache to be shared across the entire package (spanning both
426 * NUMA nodes).
429 static const struct x86_cpu_id snc_cpu[] = {
430 { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
434 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
436 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
438 /* Do not match if we do not have a valid APICID for cpu: */
439 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
440 return false;
442 /* Do not match if LLC id does not match: */
443 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
444 return false;
447 * Allow the SNC topology without warning. Return of false
448 * means 'c' does not share the LLC of 'o'. This will be
449 * reflected to userspace.
451 if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
452 return false;
454 return topology_sane(c, o, "llc");
458 * Unlike the other levels, we do not enforce keeping a
459 * multicore group inside a NUMA node. If this happens, we will
460 * discard the MC level of the topology later.
462 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
464 if (c->phys_proc_id == o->phys_proc_id)
465 return true;
466 return false;
469 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
470 static inline int x86_sched_itmt_flags(void)
472 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
475 #ifdef CONFIG_SCHED_MC
476 static int x86_core_flags(void)
478 return cpu_core_flags() | x86_sched_itmt_flags();
480 #endif
481 #ifdef CONFIG_SCHED_SMT
482 static int x86_smt_flags(void)
484 return cpu_smt_flags() | x86_sched_itmt_flags();
486 #endif
487 #endif
489 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
490 #ifdef CONFIG_SCHED_SMT
491 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
492 #endif
493 #ifdef CONFIG_SCHED_MC
494 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
495 #endif
496 { NULL, },
499 static struct sched_domain_topology_level x86_topology[] = {
500 #ifdef CONFIG_SCHED_SMT
501 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
502 #endif
503 #ifdef CONFIG_SCHED_MC
504 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
505 #endif
506 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
507 { NULL, },
511 * Set if a package/die has multiple NUMA nodes inside.
512 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
513 * Sub-NUMA Clustering have this.
515 static bool x86_has_numa_in_package;
517 void set_cpu_sibling_map(int cpu)
519 bool has_smt = smp_num_siblings > 1;
520 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
521 struct cpuinfo_x86 *c = &cpu_data(cpu);
522 struct cpuinfo_x86 *o;
523 int i, threads;
525 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
527 if (!has_mp) {
528 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
529 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
530 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
531 c->booted_cores = 1;
532 return;
535 for_each_cpu(i, cpu_sibling_setup_mask) {
536 o = &cpu_data(i);
538 if ((i == cpu) || (has_smt && match_smt(c, o)))
539 link_mask(topology_sibling_cpumask, cpu, i);
541 if ((i == cpu) || (has_mp && match_llc(c, o)))
542 link_mask(cpu_llc_shared_mask, cpu, i);
547 * This needs a separate iteration over the cpus because we rely on all
548 * topology_sibling_cpumask links to be set-up.
550 for_each_cpu(i, cpu_sibling_setup_mask) {
551 o = &cpu_data(i);
553 if ((i == cpu) || (has_mp && match_die(c, o))) {
554 link_mask(topology_core_cpumask, cpu, i);
557 * Does this new cpu bringup a new core?
559 if (cpumask_weight(
560 topology_sibling_cpumask(cpu)) == 1) {
562 * for each core in package, increment
563 * the booted_cores for this new cpu
565 if (cpumask_first(
566 topology_sibling_cpumask(i)) == i)
567 c->booted_cores++;
569 * increment the core count for all
570 * the other cpus in this package
572 if (i != cpu)
573 cpu_data(i).booted_cores++;
574 } else if (i != cpu && !c->booted_cores)
575 c->booted_cores = cpu_data(i).booted_cores;
577 if (match_die(c, o) && !topology_same_node(c, o))
578 x86_has_numa_in_package = true;
581 threads = cpumask_weight(topology_sibling_cpumask(cpu));
582 if (threads > __max_smt_threads)
583 __max_smt_threads = threads;
586 /* maps the cpu to the sched domain representing multi-core */
587 const struct cpumask *cpu_coregroup_mask(int cpu)
589 return cpu_llc_shared_mask(cpu);
592 static void impress_friends(void)
594 int cpu;
595 unsigned long bogosum = 0;
597 * Allow the user to impress friends.
599 pr_debug("Before bogomips\n");
600 for_each_possible_cpu(cpu)
601 if (cpumask_test_cpu(cpu, cpu_callout_mask))
602 bogosum += cpu_data(cpu).loops_per_jiffy;
603 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
604 num_online_cpus(),
605 bogosum/(500000/HZ),
606 (bogosum/(5000/HZ))%100);
608 pr_debug("Before bogocount - setting activated=1\n");
611 void __inquire_remote_apic(int apicid)
613 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
614 const char * const names[] = { "ID", "VERSION", "SPIV" };
615 int timeout;
616 u32 status;
618 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
620 for (i = 0; i < ARRAY_SIZE(regs); i++) {
621 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
624 * Wait for idle.
626 status = safe_apic_wait_icr_idle();
627 if (status)
628 pr_cont("a previous APIC delivery may have failed\n");
630 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
632 timeout = 0;
633 do {
634 udelay(100);
635 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
636 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
638 switch (status) {
639 case APIC_ICR_RR_VALID:
640 status = apic_read(APIC_RRR);
641 pr_cont("%08x\n", status);
642 break;
643 default:
644 pr_cont("failed\n");
650 * The Multiprocessor Specification 1.4 (1997) example code suggests
651 * that there should be a 10ms delay between the BSP asserting INIT
652 * and de-asserting INIT, when starting a remote processor.
653 * But that slows boot and resume on modern processors, which include
654 * many cores and don't require that delay.
656 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
657 * Modern processor families are quirked to remove the delay entirely.
659 #define UDELAY_10MS_DEFAULT 10000
661 static unsigned int init_udelay = UINT_MAX;
663 static int __init cpu_init_udelay(char *str)
665 get_option(&str, &init_udelay);
667 return 0;
669 early_param("cpu_init_udelay", cpu_init_udelay);
671 static void __init smp_quirk_init_udelay(void)
673 /* if cmdline changed it from default, leave it alone */
674 if (init_udelay != UINT_MAX)
675 return;
677 /* if modern processor, use no delay */
678 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
679 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
680 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
681 init_udelay = 0;
682 return;
684 /* else, use legacy delay */
685 init_udelay = UDELAY_10MS_DEFAULT;
689 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
690 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
691 * won't ... remember to clear down the APIC, etc later.
694 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
696 unsigned long send_status, accept_status = 0;
697 int maxlvt;
699 /* Target chip */
700 /* Boot on the stack */
701 /* Kick the second */
702 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
704 pr_debug("Waiting for send to finish...\n");
705 send_status = safe_apic_wait_icr_idle();
708 * Give the other CPU some time to accept the IPI.
710 udelay(200);
711 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
712 maxlvt = lapic_get_maxlvt();
713 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
714 apic_write(APIC_ESR, 0);
715 accept_status = (apic_read(APIC_ESR) & 0xEF);
717 pr_debug("NMI sent\n");
719 if (send_status)
720 pr_err("APIC never delivered???\n");
721 if (accept_status)
722 pr_err("APIC delivery error (%lx)\n", accept_status);
724 return (send_status | accept_status);
727 static int
728 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
730 unsigned long send_status = 0, accept_status = 0;
731 int maxlvt, num_starts, j;
733 maxlvt = lapic_get_maxlvt();
736 * Be paranoid about clearing APIC errors.
738 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
739 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
740 apic_write(APIC_ESR, 0);
741 apic_read(APIC_ESR);
744 pr_debug("Asserting INIT\n");
747 * Turn INIT on target chip
750 * Send IPI
752 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
753 phys_apicid);
755 pr_debug("Waiting for send to finish...\n");
756 send_status = safe_apic_wait_icr_idle();
758 udelay(init_udelay);
760 pr_debug("Deasserting INIT\n");
762 /* Target chip */
763 /* Send IPI */
764 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
766 pr_debug("Waiting for send to finish...\n");
767 send_status = safe_apic_wait_icr_idle();
769 mb();
772 * Should we send STARTUP IPIs ?
774 * Determine this based on the APIC version.
775 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
777 if (APIC_INTEGRATED(boot_cpu_apic_version))
778 num_starts = 2;
779 else
780 num_starts = 0;
783 * Run STARTUP IPI loop.
785 pr_debug("#startup loops: %d\n", num_starts);
787 for (j = 1; j <= num_starts; j++) {
788 pr_debug("Sending STARTUP #%d\n", j);
789 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
790 apic_write(APIC_ESR, 0);
791 apic_read(APIC_ESR);
792 pr_debug("After apic_write\n");
795 * STARTUP IPI
798 /* Target chip */
799 /* Boot on the stack */
800 /* Kick the second */
801 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
802 phys_apicid);
805 * Give the other CPU some time to accept the IPI.
807 if (init_udelay == 0)
808 udelay(10);
809 else
810 udelay(300);
812 pr_debug("Startup point 1\n");
814 pr_debug("Waiting for send to finish...\n");
815 send_status = safe_apic_wait_icr_idle();
818 * Give the other CPU some time to accept the IPI.
820 if (init_udelay == 0)
821 udelay(10);
822 else
823 udelay(200);
825 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
826 apic_write(APIC_ESR, 0);
827 accept_status = (apic_read(APIC_ESR) & 0xEF);
828 if (send_status || accept_status)
829 break;
831 pr_debug("After Startup\n");
833 if (send_status)
834 pr_err("APIC never delivered???\n");
835 if (accept_status)
836 pr_err("APIC delivery error (%lx)\n", accept_status);
838 return (send_status | accept_status);
841 /* reduce the number of lines printed when booting a large cpu count system */
842 static void announce_cpu(int cpu, int apicid)
844 static int current_node = -1;
845 int node = early_cpu_to_node(cpu);
846 static int width, node_width;
848 if (!width)
849 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
851 if (!node_width)
852 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
854 if (cpu == 1)
855 printk(KERN_INFO "x86: Booting SMP configuration:\n");
857 if (system_state < SYSTEM_RUNNING) {
858 if (node != current_node) {
859 if (current_node > (-1))
860 pr_cont("\n");
861 current_node = node;
863 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
864 node_width - num_digits(node), " ", node);
867 /* Add padding for the BSP */
868 if (cpu == 1)
869 pr_cont("%*s", width + 1, " ");
871 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
873 } else
874 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
875 node, cpu, apicid);
878 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
880 int cpu;
882 cpu = smp_processor_id();
883 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
884 return NMI_HANDLED;
886 return NMI_DONE;
890 * Wake up AP by INIT, INIT, STARTUP sequence.
892 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
893 * boot-strap code which is not a desired behavior for waking up BSP. To
894 * void the boot-strap code, wake up CPU0 by NMI instead.
896 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
897 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
898 * We'll change this code in the future to wake up hard offlined CPU0 if
899 * real platform and request are available.
901 static int
902 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
903 int *cpu0_nmi_registered)
905 int id;
906 int boot_error;
908 preempt_disable();
911 * Wake up AP by INIT, INIT, STARTUP sequence.
913 if (cpu) {
914 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
915 goto out;
919 * Wake up BSP by nmi.
921 * Register a NMI handler to help wake up CPU0.
923 boot_error = register_nmi_handler(NMI_LOCAL,
924 wakeup_cpu0_nmi, 0, "wake_cpu0");
926 if (!boot_error) {
927 enable_start_cpu0 = 1;
928 *cpu0_nmi_registered = 1;
929 if (apic->dest_logical == APIC_DEST_LOGICAL)
930 id = cpu0_logical_apicid;
931 else
932 id = apicid;
933 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
936 out:
937 preempt_enable();
939 return boot_error;
942 void common_cpu_up(unsigned int cpu, struct task_struct *idle)
944 /* Just in case we booted with a single CPU. */
945 alternatives_enable_smp();
947 per_cpu(current_task, cpu) = idle;
949 #ifdef CONFIG_X86_32
950 /* Stack for startup_32 can be just as for start_secondary onwards */
951 irq_ctx_init(cpu);
952 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
953 #else
954 initial_gs = per_cpu_offset(cpu);
955 #endif
959 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
960 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
961 * Returns zero if CPU booted OK, else error code from
962 * ->wakeup_secondary_cpu.
964 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
965 int *cpu0_nmi_registered)
967 volatile u32 *trampoline_status =
968 (volatile u32 *) __va(real_mode_header->trampoline_status);
969 /* start_ip had better be page-aligned! */
970 unsigned long start_ip = real_mode_header->trampoline_start;
972 unsigned long boot_error = 0;
973 unsigned long timeout;
975 idle->thread.sp = (unsigned long)task_pt_regs(idle);
976 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
977 initial_code = (unsigned long)start_secondary;
978 initial_stack = idle->thread.sp;
980 /* Enable the espfix hack for this CPU */
981 init_espfix_ap(cpu);
983 /* So we see what's up */
984 announce_cpu(cpu, apicid);
987 * This grunge runs the startup process for
988 * the targeted processor.
991 if (x86_platform.legacy.warm_reset) {
993 pr_debug("Setting warm reset code and vector.\n");
995 smpboot_setup_warm_reset_vector(start_ip);
997 * Be paranoid about clearing APIC errors.
999 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1000 apic_write(APIC_ESR, 0);
1001 apic_read(APIC_ESR);
1006 * AP might wait on cpu_callout_mask in cpu_init() with
1007 * cpu_initialized_mask set if previous attempt to online
1008 * it timed-out. Clear cpu_initialized_mask so that after
1009 * INIT/SIPI it could start with a clean state.
1011 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1012 smp_mb();
1015 * Wake up a CPU in difference cases:
1016 * - Use the method in the APIC driver if it's defined
1017 * Otherwise,
1018 * - Use an INIT boot APIC message for APs or NMI for BSP.
1020 if (apic->wakeup_secondary_cpu)
1021 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1022 else
1023 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1024 cpu0_nmi_registered);
1026 if (!boot_error) {
1028 * Wait 10s total for first sign of life from AP
1030 boot_error = -1;
1031 timeout = jiffies + 10*HZ;
1032 while (time_before(jiffies, timeout)) {
1033 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1035 * Tell AP to proceed with initialization
1037 cpumask_set_cpu(cpu, cpu_callout_mask);
1038 boot_error = 0;
1039 break;
1041 schedule();
1045 if (!boot_error) {
1047 * Wait till AP completes initial initialization
1049 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1051 * Allow other tasks to run while we wait for the
1052 * AP to come online. This also gives a chance
1053 * for the MTRR work(triggered by the AP coming online)
1054 * to be completed in the stop machine context.
1056 schedule();
1060 /* mark "stuck" area as not stuck */
1061 *trampoline_status = 0;
1063 if (x86_platform.legacy.warm_reset) {
1065 * Cleanup possible dangling ends...
1067 smpboot_restore_warm_reset_vector();
1070 return boot_error;
1073 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1075 int apicid = apic->cpu_present_to_apicid(cpu);
1076 int cpu0_nmi_registered = 0;
1077 unsigned long flags;
1078 int err, ret = 0;
1080 lockdep_assert_irqs_enabled();
1082 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1084 if (apicid == BAD_APICID ||
1085 !physid_isset(apicid, phys_cpu_present_map) ||
1086 !apic->apic_id_valid(apicid)) {
1087 pr_err("%s: bad cpu %d\n", __func__, cpu);
1088 return -EINVAL;
1092 * Already booted CPU?
1094 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1095 pr_debug("do_boot_cpu %d Already started\n", cpu);
1096 return -ENOSYS;
1100 * Save current MTRR state in case it was changed since early boot
1101 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1103 mtrr_save_state();
1105 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1106 err = cpu_check_up_prepare(cpu);
1107 if (err && err != -EBUSY)
1108 return err;
1110 /* the FPU context is blank, nobody can own it */
1111 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1113 common_cpu_up(cpu, tidle);
1115 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1116 if (err) {
1117 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1118 ret = -EIO;
1119 goto unreg_nmi;
1123 * Check TSC synchronization with the AP (keep irqs disabled
1124 * while doing so):
1126 local_irq_save(flags);
1127 check_tsc_sync_source(cpu);
1128 local_irq_restore(flags);
1130 while (!cpu_online(cpu)) {
1131 cpu_relax();
1132 touch_nmi_watchdog();
1135 unreg_nmi:
1137 * Clean up the nmi handler. Do this after the callin and callout sync
1138 * to avoid impact of possible long unregister time.
1140 if (cpu0_nmi_registered)
1141 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1143 return ret;
1147 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1149 void arch_disable_smp_support(void)
1151 disable_ioapic_support();
1155 * Fall back to non SMP mode after errors.
1157 * RED-PEN audit/test this more. I bet there is more state messed up here.
1159 static __init void disable_smp(void)
1161 pr_info("SMP disabled\n");
1163 disable_ioapic_support();
1165 init_cpu_present(cpumask_of(0));
1166 init_cpu_possible(cpumask_of(0));
1168 if (smp_found_config)
1169 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1170 else
1171 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1172 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1173 cpumask_set_cpu(0, topology_core_cpumask(0));
1177 * Various sanity checks.
1179 static void __init smp_sanity_check(void)
1181 preempt_disable();
1183 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1184 if (def_to_bigsmp && nr_cpu_ids > 8) {
1185 unsigned int cpu;
1186 unsigned nr;
1188 pr_warn("More than 8 CPUs detected - skipping them\n"
1189 "Use CONFIG_X86_BIGSMP\n");
1191 nr = 0;
1192 for_each_present_cpu(cpu) {
1193 if (nr >= 8)
1194 set_cpu_present(cpu, false);
1195 nr++;
1198 nr = 0;
1199 for_each_possible_cpu(cpu) {
1200 if (nr >= 8)
1201 set_cpu_possible(cpu, false);
1202 nr++;
1205 nr_cpu_ids = 8;
1207 #endif
1209 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1210 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1211 hard_smp_processor_id());
1213 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1217 * Should not be necessary because the MP table should list the boot
1218 * CPU too, but we do it for the sake of robustness anyway.
1220 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1221 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1222 boot_cpu_physical_apicid);
1223 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1225 preempt_enable();
1228 static void __init smp_cpu_index_default(void)
1230 int i;
1231 struct cpuinfo_x86 *c;
1233 for_each_possible_cpu(i) {
1234 c = &cpu_data(i);
1235 /* mark all to hotplug */
1236 c->cpu_index = nr_cpu_ids;
1240 static void __init smp_get_logical_apicid(void)
1242 if (x2apic_mode)
1243 cpu0_logical_apicid = apic_read(APIC_LDR);
1244 else
1245 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1249 * Prepare for SMP bootup.
1250 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1251 * for common interface support.
1253 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1255 unsigned int i;
1257 smp_cpu_index_default();
1260 * Setup boot CPU information
1262 smp_store_boot_cpu_info(); /* Final full version of the data */
1263 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1264 mb();
1266 for_each_possible_cpu(i) {
1267 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1268 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1269 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1273 * Set 'default' x86 topology, this matches default_topology() in that
1274 * it has NUMA nodes as a topology level. See also
1275 * native_smp_cpus_done().
1277 * Must be done before set_cpus_sibling_map() is ran.
1279 set_sched_topology(x86_topology);
1281 set_cpu_sibling_map(0);
1283 smp_sanity_check();
1285 switch (apic_intr_mode) {
1286 case APIC_PIC:
1287 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1288 disable_smp();
1289 return;
1290 case APIC_SYMMETRIC_IO_NO_ROUTING:
1291 disable_smp();
1292 /* Setup local timer */
1293 x86_init.timers.setup_percpu_clockev();
1294 return;
1295 case APIC_VIRTUAL_WIRE:
1296 case APIC_SYMMETRIC_IO:
1297 break;
1300 /* Setup local timer */
1301 x86_init.timers.setup_percpu_clockev();
1303 smp_get_logical_apicid();
1305 pr_info("CPU0: ");
1306 print_cpu_info(&cpu_data(0));
1308 native_pv_lock_init();
1310 uv_system_init();
1312 set_mtrr_aps_delayed_init();
1314 smp_quirk_init_udelay();
1316 speculative_store_bypass_ht_init();
1319 void arch_enable_nonboot_cpus_begin(void)
1321 set_mtrr_aps_delayed_init();
1324 void arch_enable_nonboot_cpus_end(void)
1326 mtrr_aps_init();
1330 * Early setup to make printk work.
1332 void __init native_smp_prepare_boot_cpu(void)
1334 int me = smp_processor_id();
1335 switch_to_new_gdt(me);
1336 /* already set me in cpu_online_mask in boot_cpu_init() */
1337 cpumask_set_cpu(me, cpu_callout_mask);
1338 cpu_set_state_online(me);
1341 void __init calculate_max_logical_packages(void)
1343 int ncpus;
1346 * Today neither Intel nor AMD support heterogenous systems so
1347 * extrapolate the boot cpu's data to all packages.
1349 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1350 __max_logical_packages = DIV_ROUND_UP(nr_cpu_ids, ncpus);
1351 pr_info("Max logical packages: %u\n", __max_logical_packages);
1354 void __init native_smp_cpus_done(unsigned int max_cpus)
1356 pr_debug("Boot done\n");
1358 calculate_max_logical_packages();
1360 if (x86_has_numa_in_package)
1361 set_sched_topology(x86_numa_in_package_topology);
1363 nmi_selftest();
1364 impress_friends();
1365 mtrr_aps_init();
1368 static int __initdata setup_possible_cpus = -1;
1369 static int __init _setup_possible_cpus(char *str)
1371 get_option(&str, &setup_possible_cpus);
1372 return 0;
1374 early_param("possible_cpus", _setup_possible_cpus);
1378 * cpu_possible_mask should be static, it cannot change as cpu's
1379 * are onlined, or offlined. The reason is per-cpu data-structures
1380 * are allocated by some modules at init time, and dont expect to
1381 * do this dynamically on cpu arrival/departure.
1382 * cpu_present_mask on the other hand can change dynamically.
1383 * In case when cpu_hotplug is not compiled, then we resort to current
1384 * behaviour, which is cpu_possible == cpu_present.
1385 * - Ashok Raj
1387 * Three ways to find out the number of additional hotplug CPUs:
1388 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1389 * - The user can overwrite it with possible_cpus=NUM
1390 * - Otherwise don't reserve additional CPUs.
1391 * We do this because additional CPUs waste a lot of memory.
1392 * -AK
1394 __init void prefill_possible_map(void)
1396 int i, possible;
1398 /* No boot processor was found in mptable or ACPI MADT */
1399 if (!num_processors) {
1400 if (boot_cpu_has(X86_FEATURE_APIC)) {
1401 int apicid = boot_cpu_physical_apicid;
1402 int cpu = hard_smp_processor_id();
1404 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1406 /* Make sure boot cpu is enumerated */
1407 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1408 apic->apic_id_valid(apicid))
1409 generic_processor_info(apicid, boot_cpu_apic_version);
1412 if (!num_processors)
1413 num_processors = 1;
1416 i = setup_max_cpus ?: 1;
1417 if (setup_possible_cpus == -1) {
1418 possible = num_processors;
1419 #ifdef CONFIG_HOTPLUG_CPU
1420 if (setup_max_cpus)
1421 possible += disabled_cpus;
1422 #else
1423 if (possible > i)
1424 possible = i;
1425 #endif
1426 } else
1427 possible = setup_possible_cpus;
1429 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1431 /* nr_cpu_ids could be reduced via nr_cpus= */
1432 if (possible > nr_cpu_ids) {
1433 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1434 possible, nr_cpu_ids);
1435 possible = nr_cpu_ids;
1438 #ifdef CONFIG_HOTPLUG_CPU
1439 if (!setup_max_cpus)
1440 #endif
1441 if (possible > i) {
1442 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1443 possible, setup_max_cpus);
1444 possible = i;
1447 nr_cpu_ids = possible;
1449 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1450 possible, max_t(int, possible - num_processors, 0));
1452 reset_cpu_possible_mask();
1454 for (i = 0; i < possible; i++)
1455 set_cpu_possible(i, true);
1458 #ifdef CONFIG_HOTPLUG_CPU
1460 /* Recompute SMT state for all CPUs on offline */
1461 static void recompute_smt_state(void)
1463 int max_threads, cpu;
1465 max_threads = 0;
1466 for_each_online_cpu (cpu) {
1467 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1469 if (threads > max_threads)
1470 max_threads = threads;
1472 __max_smt_threads = max_threads;
1475 static void remove_siblinginfo(int cpu)
1477 int sibling;
1478 struct cpuinfo_x86 *c = &cpu_data(cpu);
1480 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1481 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1483 * last thread sibling in this cpu core going down
1485 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1486 cpu_data(sibling).booted_cores--;
1489 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1490 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1491 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1492 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1493 cpumask_clear(cpu_llc_shared_mask(cpu));
1494 cpumask_clear(topology_sibling_cpumask(cpu));
1495 cpumask_clear(topology_core_cpumask(cpu));
1496 c->cpu_core_id = 0;
1497 c->booted_cores = 0;
1498 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1499 recompute_smt_state();
1502 static void remove_cpu_from_maps(int cpu)
1504 set_cpu_online(cpu, false);
1505 cpumask_clear_cpu(cpu, cpu_callout_mask);
1506 cpumask_clear_cpu(cpu, cpu_callin_mask);
1507 /* was set by cpu_init() */
1508 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1509 numa_remove_cpu(cpu);
1512 void cpu_disable_common(void)
1514 int cpu = smp_processor_id();
1516 remove_siblinginfo(cpu);
1518 /* It's now safe to remove this processor from the online map */
1519 lock_vector_lock();
1520 remove_cpu_from_maps(cpu);
1521 unlock_vector_lock();
1522 fixup_irqs();
1523 lapic_offline();
1526 int native_cpu_disable(void)
1528 int ret;
1530 ret = lapic_can_unplug_cpu();
1531 if (ret)
1532 return ret;
1534 clear_local_APIC();
1535 cpu_disable_common();
1537 return 0;
1540 int common_cpu_die(unsigned int cpu)
1542 int ret = 0;
1544 /* We don't do anything here: idle task is faking death itself. */
1546 /* They ack this in play_dead() by setting CPU_DEAD */
1547 if (cpu_wait_death(cpu, 5)) {
1548 if (system_state == SYSTEM_RUNNING)
1549 pr_info("CPU %u is now offline\n", cpu);
1550 } else {
1551 pr_err("CPU %u didn't die...\n", cpu);
1552 ret = -1;
1555 return ret;
1558 void native_cpu_die(unsigned int cpu)
1560 common_cpu_die(cpu);
1563 void play_dead_common(void)
1565 idle_task_exit();
1567 /* Ack it */
1568 (void)cpu_report_death();
1571 * With physical CPU hotplug, we should halt the cpu
1573 local_irq_disable();
1576 static bool wakeup_cpu0(void)
1578 if (smp_processor_id() == 0 && enable_start_cpu0)
1579 return true;
1581 return false;
1585 * We need to flush the caches before going to sleep, lest we have
1586 * dirty data in our caches when we come back up.
1588 static inline void mwait_play_dead(void)
1590 unsigned int eax, ebx, ecx, edx;
1591 unsigned int highest_cstate = 0;
1592 unsigned int highest_subcstate = 0;
1593 void *mwait_ptr;
1594 int i;
1596 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1597 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1598 return;
1599 if (!this_cpu_has(X86_FEATURE_MWAIT))
1600 return;
1601 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1602 return;
1603 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1604 return;
1606 eax = CPUID_MWAIT_LEAF;
1607 ecx = 0;
1608 native_cpuid(&eax, &ebx, &ecx, &edx);
1611 * eax will be 0 if EDX enumeration is not valid.
1612 * Initialized below to cstate, sub_cstate value when EDX is valid.
1614 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1615 eax = 0;
1616 } else {
1617 edx >>= MWAIT_SUBSTATE_SIZE;
1618 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1619 if (edx & MWAIT_SUBSTATE_MASK) {
1620 highest_cstate = i;
1621 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1624 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1625 (highest_subcstate - 1);
1629 * This should be a memory location in a cache line which is
1630 * unlikely to be touched by other processors. The actual
1631 * content is immaterial as it is not actually modified in any way.
1633 mwait_ptr = &current_thread_info()->flags;
1635 wbinvd();
1637 while (1) {
1639 * The CLFLUSH is a workaround for erratum AAI65 for
1640 * the Xeon 7400 series. It's not clear it is actually
1641 * needed, but it should be harmless in either case.
1642 * The WBINVD is insufficient due to the spurious-wakeup
1643 * case where we return around the loop.
1645 mb();
1646 clflush(mwait_ptr);
1647 mb();
1648 __monitor(mwait_ptr, 0, 0);
1649 mb();
1650 __mwait(eax, 0);
1652 * If NMI wants to wake up CPU0, start CPU0.
1654 if (wakeup_cpu0())
1655 start_cpu0();
1659 void hlt_play_dead(void)
1661 if (__this_cpu_read(cpu_info.x86) >= 4)
1662 wbinvd();
1664 while (1) {
1665 native_halt();
1667 * If NMI wants to wake up CPU0, start CPU0.
1669 if (wakeup_cpu0())
1670 start_cpu0();
1674 void native_play_dead(void)
1676 play_dead_common();
1677 tboot_shutdown(TB_SHUTDOWN_WFS);
1679 mwait_play_dead(); /* Only returns on failure */
1680 if (cpuidle_play_dead())
1681 hlt_play_dead();
1684 #else /* ... !CONFIG_HOTPLUG_CPU */
1685 int native_cpu_disable(void)
1687 return -ENOSYS;
1690 void native_cpu_die(unsigned int cpu)
1692 /* We said "no" in __cpu_disable */
1693 BUG();
1696 void native_play_dead(void)
1698 BUG();
1701 #endif