hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / kernel / tls.c
bloba5b802a1221272402b344d75ccf94bcff4b69b38
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/sched.h>
5 #include <linux/user.h>
6 #include <linux/regset.h>
7 #include <linux/syscalls.h>
9 #include <linux/uaccess.h>
10 #include <asm/desc.h>
11 #include <asm/ldt.h>
12 #include <asm/processor.h>
13 #include <asm/proto.h>
15 #include "tls.h"
18 * sys_alloc_thread_area: get a yet unused TLS descriptor index.
20 static int get_free_idx(void)
22 struct thread_struct *t = &current->thread;
23 int idx;
25 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
26 if (desc_empty(&t->tls_array[idx]))
27 return idx + GDT_ENTRY_TLS_MIN;
28 return -ESRCH;
31 static bool tls_desc_okay(const struct user_desc *info)
34 * For historical reasons (i.e. no one ever documented how any
35 * of the segmentation APIs work), user programs can and do
36 * assume that a struct user_desc that's all zeros except for
37 * entry_number means "no segment at all". This never actually
38 * worked. In fact, up to Linux 3.19, a struct user_desc like
39 * this would create a 16-bit read-write segment with base and
40 * limit both equal to zero.
42 * That was close enough to "no segment at all" until we
43 * hardened this function to disallow 16-bit TLS segments. Fix
44 * it up by interpreting these zeroed segments the way that they
45 * were almost certainly intended to be interpreted.
47 * The correct way to ask for "no segment at all" is to specify
48 * a user_desc that satisfies LDT_empty. To keep everything
49 * working, we accept both.
51 * Note that there's a similar kludge in modify_ldt -- look at
52 * the distinction between modes 1 and 0x11.
54 if (LDT_empty(info) || LDT_zero(info))
55 return true;
58 * espfix is required for 16-bit data segments, but espfix
59 * only works for LDT segments.
61 if (!info->seg_32bit)
62 return false;
64 /* Only allow data segments in the TLS array. */
65 if (info->contents > 1)
66 return false;
69 * Non-present segments with DPL 3 present an interesting attack
70 * surface. The kernel should handle such segments correctly,
71 * but TLS is very difficult to protect in a sandbox, so prevent
72 * such segments from being created.
74 * If userspace needs to remove a TLS entry, it can still delete
75 * it outright.
77 if (info->seg_not_present)
78 return false;
80 return true;
83 static void set_tls_desc(struct task_struct *p, int idx,
84 const struct user_desc *info, int n)
86 struct thread_struct *t = &p->thread;
87 struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN];
88 int cpu;
91 * We must not get preempted while modifying the TLS.
93 cpu = get_cpu();
95 while (n-- > 0) {
96 if (LDT_empty(info) || LDT_zero(info))
97 memset(desc, 0, sizeof(*desc));
98 else
99 fill_ldt(desc, info);
100 ++info;
101 ++desc;
104 if (t == &current->thread)
105 load_TLS(t, cpu);
107 put_cpu();
111 * Set a given TLS descriptor:
113 int do_set_thread_area(struct task_struct *p, int idx,
114 struct user_desc __user *u_info,
115 int can_allocate)
117 struct user_desc info;
118 unsigned short __maybe_unused sel, modified_sel;
120 if (copy_from_user(&info, u_info, sizeof(info)))
121 return -EFAULT;
123 if (!tls_desc_okay(&info))
124 return -EINVAL;
126 if (idx == -1)
127 idx = info.entry_number;
130 * index -1 means the kernel should try to find and
131 * allocate an empty descriptor:
133 if (idx == -1 && can_allocate) {
134 idx = get_free_idx();
135 if (idx < 0)
136 return idx;
137 if (put_user(idx, &u_info->entry_number))
138 return -EFAULT;
141 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
142 return -EINVAL;
144 set_tls_desc(p, idx, &info, 1);
147 * If DS, ES, FS, or GS points to the modified segment, forcibly
148 * refresh it. Only needed on x86_64 because x86_32 reloads them
149 * on return to user mode.
151 modified_sel = (idx << 3) | 3;
153 if (p == current) {
154 #ifdef CONFIG_X86_64
155 savesegment(ds, sel);
156 if (sel == modified_sel)
157 loadsegment(ds, sel);
159 savesegment(es, sel);
160 if (sel == modified_sel)
161 loadsegment(es, sel);
163 savesegment(fs, sel);
164 if (sel == modified_sel)
165 loadsegment(fs, sel);
167 savesegment(gs, sel);
168 if (sel == modified_sel)
169 load_gs_index(sel);
170 #endif
172 #ifdef CONFIG_X86_32_LAZY_GS
173 savesegment(gs, sel);
174 if (sel == modified_sel)
175 loadsegment(gs, sel);
176 #endif
177 } else {
178 #ifdef CONFIG_X86_64
179 if (p->thread.fsindex == modified_sel)
180 p->thread.fsbase = info.base_addr;
182 if (p->thread.gsindex == modified_sel)
183 p->thread.gsbase = info.base_addr;
184 #endif
187 return 0;
190 SYSCALL_DEFINE1(set_thread_area, struct user_desc __user *, u_info)
192 return do_set_thread_area(current, -1, u_info, 1);
197 * Get the current Thread-Local Storage area:
200 static void fill_user_desc(struct user_desc *info, int idx,
201 const struct desc_struct *desc)
204 memset(info, 0, sizeof(*info));
205 info->entry_number = idx;
206 info->base_addr = get_desc_base(desc);
207 info->limit = get_desc_limit(desc);
208 info->seg_32bit = desc->d;
209 info->contents = desc->type >> 2;
210 info->read_exec_only = !(desc->type & 2);
211 info->limit_in_pages = desc->g;
212 info->seg_not_present = !desc->p;
213 info->useable = desc->avl;
214 #ifdef CONFIG_X86_64
215 info->lm = desc->l;
216 #endif
219 int do_get_thread_area(struct task_struct *p, int idx,
220 struct user_desc __user *u_info)
222 struct user_desc info;
224 if (idx == -1 && get_user(idx, &u_info->entry_number))
225 return -EFAULT;
227 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
228 return -EINVAL;
230 fill_user_desc(&info, idx,
231 &p->thread.tls_array[idx - GDT_ENTRY_TLS_MIN]);
233 if (copy_to_user(u_info, &info, sizeof(info)))
234 return -EFAULT;
235 return 0;
238 SYSCALL_DEFINE1(get_thread_area, struct user_desc __user *, u_info)
240 return do_get_thread_area(current, -1, u_info);
243 int regset_tls_active(struct task_struct *target,
244 const struct user_regset *regset)
246 struct thread_struct *t = &target->thread;
247 int n = GDT_ENTRY_TLS_ENTRIES;
248 while (n > 0 && desc_empty(&t->tls_array[n - 1]))
249 --n;
250 return n;
253 int regset_tls_get(struct task_struct *target, const struct user_regset *regset,
254 unsigned int pos, unsigned int count,
255 void *kbuf, void __user *ubuf)
257 const struct desc_struct *tls;
259 if (pos >= GDT_ENTRY_TLS_ENTRIES * sizeof(struct user_desc) ||
260 (pos % sizeof(struct user_desc)) != 0 ||
261 (count % sizeof(struct user_desc)) != 0)
262 return -EINVAL;
264 pos /= sizeof(struct user_desc);
265 count /= sizeof(struct user_desc);
267 tls = &target->thread.tls_array[pos];
269 if (kbuf) {
270 struct user_desc *info = kbuf;
271 while (count-- > 0)
272 fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++,
273 tls++);
274 } else {
275 struct user_desc __user *u_info = ubuf;
276 while (count-- > 0) {
277 struct user_desc info;
278 fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++);
279 if (__copy_to_user(u_info++, &info, sizeof(info)))
280 return -EFAULT;
284 return 0;
287 int regset_tls_set(struct task_struct *target, const struct user_regset *regset,
288 unsigned int pos, unsigned int count,
289 const void *kbuf, const void __user *ubuf)
291 struct user_desc infobuf[GDT_ENTRY_TLS_ENTRIES];
292 const struct user_desc *info;
293 int i;
295 if (pos >= GDT_ENTRY_TLS_ENTRIES * sizeof(struct user_desc) ||
296 (pos % sizeof(struct user_desc)) != 0 ||
297 (count % sizeof(struct user_desc)) != 0)
298 return -EINVAL;
300 if (kbuf)
301 info = kbuf;
302 else if (__copy_from_user(infobuf, ubuf, count))
303 return -EFAULT;
304 else
305 info = infobuf;
307 for (i = 0; i < count / sizeof(struct user_desc); i++)
308 if (!tls_desc_okay(info + i))
309 return -EINVAL;
311 set_tls_desc(target,
312 GDT_ENTRY_TLS_MIN + (pos / sizeof(struct user_desc)),
313 info, count / sizeof(struct user_desc));
315 return 0;