1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
29 #include <asm/uv/uv.h>
31 unsigned int __read_mostly cpu_khz
; /* TSC clocks / usec, not used here */
32 EXPORT_SYMBOL(cpu_khz
);
34 unsigned int __read_mostly tsc_khz
;
35 EXPORT_SYMBOL(tsc_khz
);
40 * TSC can be unstable due to cpufreq or due to unsynced TSCs
42 static int __read_mostly tsc_unstable
;
44 static DEFINE_STATIC_KEY_FALSE(__use_tsc
);
46 int tsc_clocksource_reliable
;
48 static u32 art_to_tsc_numerator
;
49 static u32 art_to_tsc_denominator
;
50 static u64 art_to_tsc_offset
;
51 struct clocksource
*art_related_clocksource
;
54 struct cyc2ns_data data
[2]; /* 0 + 2*16 = 32 */
55 seqcount_t seq
; /* 32 + 4 = 36 */
57 }; /* fits one cacheline */
59 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns
, cyc2ns
);
61 void __always_inline
cyc2ns_read_begin(struct cyc2ns_data
*data
)
65 preempt_disable_notrace();
68 seq
= this_cpu_read(cyc2ns
.seq
.sequence
);
71 data
->cyc2ns_offset
= this_cpu_read(cyc2ns
.data
[idx
].cyc2ns_offset
);
72 data
->cyc2ns_mul
= this_cpu_read(cyc2ns
.data
[idx
].cyc2ns_mul
);
73 data
->cyc2ns_shift
= this_cpu_read(cyc2ns
.data
[idx
].cyc2ns_shift
);
75 } while (unlikely(seq
!= this_cpu_read(cyc2ns
.seq
.sequence
)));
78 void __always_inline
cyc2ns_read_end(void)
80 preempt_enable_notrace();
84 * Accelerators for sched_clock()
85 * convert from cycles(64bits) => nanoseconds (64bits)
87 * ns = cycles / (freq / ns_per_sec)
88 * ns = cycles * (ns_per_sec / freq)
89 * ns = cycles * (10^9 / (cpu_khz * 10^3))
90 * ns = cycles * (10^6 / cpu_khz)
92 * Then we use scaling math (suggested by george@mvista.com) to get:
93 * ns = cycles * (10^6 * SC / cpu_khz) / SC
94 * ns = cycles * cyc2ns_scale / SC
96 * And since SC is a constant power of two, we can convert the div
97 * into a shift. The larger SC is, the more accurate the conversion, but
98 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
99 * (64-bit result) can be used.
101 * We can use khz divisor instead of mhz to keep a better precision.
102 * (mathieu.desnoyers@polymtl.ca)
104 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
107 static __always_inline
unsigned long long cycles_2_ns(unsigned long long cyc
)
109 struct cyc2ns_data data
;
110 unsigned long long ns
;
112 cyc2ns_read_begin(&data
);
114 ns
= data
.cyc2ns_offset
;
115 ns
+= mul_u64_u32_shr(cyc
, data
.cyc2ns_mul
, data
.cyc2ns_shift
);
122 static void __set_cyc2ns_scale(unsigned long khz
, int cpu
, unsigned long long tsc_now
)
124 unsigned long long ns_now
;
125 struct cyc2ns_data data
;
128 ns_now
= cycles_2_ns(tsc_now
);
131 * Compute a new multiplier as per the above comment and ensure our
132 * time function is continuous; see the comment near struct
135 clocks_calc_mult_shift(&data
.cyc2ns_mul
, &data
.cyc2ns_shift
, khz
,
139 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
140 * not expected to be greater than 31 due to the original published
141 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
142 * value) - refer perf_event_mmap_page documentation in perf_event.h.
144 if (data
.cyc2ns_shift
== 32) {
145 data
.cyc2ns_shift
= 31;
146 data
.cyc2ns_mul
>>= 1;
149 data
.cyc2ns_offset
= ns_now
-
150 mul_u64_u32_shr(tsc_now
, data
.cyc2ns_mul
, data
.cyc2ns_shift
);
152 c2n
= per_cpu_ptr(&cyc2ns
, cpu
);
154 raw_write_seqcount_latch(&c2n
->seq
);
156 raw_write_seqcount_latch(&c2n
->seq
);
160 static void set_cyc2ns_scale(unsigned long khz
, int cpu
, unsigned long long tsc_now
)
164 local_irq_save(flags
);
165 sched_clock_idle_sleep_event();
168 __set_cyc2ns_scale(khz
, cpu
, tsc_now
);
170 sched_clock_idle_wakeup_event();
171 local_irq_restore(flags
);
175 * Initialize cyc2ns for boot cpu
177 static void __init
cyc2ns_init_boot_cpu(void)
179 struct cyc2ns
*c2n
= this_cpu_ptr(&cyc2ns
);
181 seqcount_init(&c2n
->seq
);
182 __set_cyc2ns_scale(tsc_khz
, smp_processor_id(), rdtsc());
186 * Secondary CPUs do not run through tsc_init(), so set up
187 * all the scale factors for all CPUs, assuming the same
188 * speed as the bootup CPU. (cpufreq notifiers will fix this
189 * up if their speed diverges)
191 static void __init
cyc2ns_init_secondary_cpus(void)
193 unsigned int cpu
, this_cpu
= smp_processor_id();
194 struct cyc2ns
*c2n
= this_cpu_ptr(&cyc2ns
);
195 struct cyc2ns_data
*data
= c2n
->data
;
197 for_each_possible_cpu(cpu
) {
198 if (cpu
!= this_cpu
) {
199 seqcount_init(&c2n
->seq
);
200 c2n
= per_cpu_ptr(&cyc2ns
, cpu
);
201 c2n
->data
[0] = data
[0];
202 c2n
->data
[1] = data
[1];
208 * Scheduler clock - returns current time in nanosec units.
210 u64
native_sched_clock(void)
212 if (static_branch_likely(&__use_tsc
)) {
213 u64 tsc_now
= rdtsc();
215 /* return the value in ns */
216 return cycles_2_ns(tsc_now
);
220 * Fall back to jiffies if there's no TSC available:
221 * ( But note that we still use it if the TSC is marked
222 * unstable. We do this because unlike Time Of Day,
223 * the scheduler clock tolerates small errors and it's
224 * very important for it to be as fast as the platform
228 /* No locking but a rare wrong value is not a big deal: */
229 return (jiffies_64
- INITIAL_JIFFIES
) * (1000000000 / HZ
);
233 * Generate a sched_clock if you already have a TSC value.
235 u64
native_sched_clock_from_tsc(u64 tsc
)
237 return cycles_2_ns(tsc
);
240 /* We need to define a real function for sched_clock, to override the
241 weak default version */
242 #ifdef CONFIG_PARAVIRT
243 unsigned long long sched_clock(void)
245 return paravirt_sched_clock();
248 bool using_native_sched_clock(void)
250 return pv_ops
.time
.sched_clock
== native_sched_clock
;
254 sched_clock(void) __attribute__((alias("native_sched_clock")));
256 bool using_native_sched_clock(void) { return true; }
259 int check_tsc_unstable(void)
263 EXPORT_SYMBOL_GPL(check_tsc_unstable
);
265 #ifdef CONFIG_X86_TSC
266 int __init
notsc_setup(char *str
)
268 mark_tsc_unstable("boot parameter notsc");
273 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
276 int __init
notsc_setup(char *str
)
278 setup_clear_cpu_cap(X86_FEATURE_TSC
);
283 __setup("notsc", notsc_setup
);
285 static int no_sched_irq_time
;
287 static int __init
tsc_setup(char *str
)
289 if (!strcmp(str
, "reliable"))
290 tsc_clocksource_reliable
= 1;
291 if (!strncmp(str
, "noirqtime", 9))
292 no_sched_irq_time
= 1;
293 if (!strcmp(str
, "unstable"))
294 mark_tsc_unstable("boot parameter");
298 __setup("tsc=", tsc_setup
);
300 #define MAX_RETRIES 5
301 #define SMI_TRESHOLD 50000
304 * Read TSC and the reference counters. Take care of SMI disturbance
306 static u64
tsc_read_refs(u64
*p
, int hpet
)
311 for (i
= 0; i
< MAX_RETRIES
; i
++) {
314 *p
= hpet_readl(HPET_COUNTER
) & 0xFFFFFFFF;
316 *p
= acpi_pm_read_early();
318 if ((t2
- t1
) < SMI_TRESHOLD
)
325 * Calculate the TSC frequency from HPET reference
327 static unsigned long calc_hpet_ref(u64 deltatsc
, u64 hpet1
, u64 hpet2
)
332 hpet2
+= 0x100000000ULL
;
334 tmp
= ((u64
)hpet2
* hpet_readl(HPET_PERIOD
));
335 do_div(tmp
, 1000000);
336 deltatsc
= div64_u64(deltatsc
, tmp
);
338 return (unsigned long) deltatsc
;
342 * Calculate the TSC frequency from PMTimer reference
344 static unsigned long calc_pmtimer_ref(u64 deltatsc
, u64 pm1
, u64 pm2
)
352 pm2
+= (u64
)ACPI_PM_OVRRUN
;
354 tmp
= pm2
* 1000000000LL;
355 do_div(tmp
, PMTMR_TICKS_PER_SEC
);
356 do_div(deltatsc
, tmp
);
358 return (unsigned long) deltatsc
;
362 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
363 #define CAL_PIT_LOOPS 1000
366 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
367 #define CAL2_PIT_LOOPS 5000
371 * Try to calibrate the TSC against the Programmable
372 * Interrupt Timer and return the frequency of the TSC
375 * Return ULONG_MAX on failure to calibrate.
377 static unsigned long pit_calibrate_tsc(u32 latch
, unsigned long ms
, int loopmin
)
379 u64 tsc
, t1
, t2
, delta
;
380 unsigned long tscmin
, tscmax
;
383 if (!has_legacy_pic()) {
385 * Relies on tsc_early_delay_calibrate() to have given us semi
386 * usable udelay(), wait for the same 50ms we would have with
387 * the PIT loop below.
389 udelay(10 * USEC_PER_MSEC
);
390 udelay(10 * USEC_PER_MSEC
);
391 udelay(10 * USEC_PER_MSEC
);
392 udelay(10 * USEC_PER_MSEC
);
393 udelay(10 * USEC_PER_MSEC
);
397 /* Set the Gate high, disable speaker */
398 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
401 * Setup CTC channel 2* for mode 0, (interrupt on terminal
402 * count mode), binary count. Set the latch register to 50ms
403 * (LSB then MSB) to begin countdown.
406 outb(latch
& 0xff, 0x42);
407 outb(latch
>> 8, 0x42);
409 tsc
= t1
= t2
= get_cycles();
414 while ((inb(0x61) & 0x20) == 0) {
418 if ((unsigned long) delta
< tscmin
)
419 tscmin
= (unsigned int) delta
;
420 if ((unsigned long) delta
> tscmax
)
421 tscmax
= (unsigned int) delta
;
428 * If we were not able to read the PIT more than loopmin
429 * times, then we have been hit by a massive SMI
431 * If the maximum is 10 times larger than the minimum,
432 * then we got hit by an SMI as well.
434 if (pitcnt
< loopmin
|| tscmax
> 10 * tscmin
)
437 /* Calculate the PIT value */
444 * This reads the current MSB of the PIT counter, and
445 * checks if we are running on sufficiently fast and
446 * non-virtualized hardware.
448 * Our expectations are:
450 * - the PIT is running at roughly 1.19MHz
452 * - each IO is going to take about 1us on real hardware,
453 * but we allow it to be much faster (by a factor of 10) or
454 * _slightly_ slower (ie we allow up to a 2us read+counter
455 * update - anything else implies a unacceptably slow CPU
456 * or PIT for the fast calibration to work.
458 * - with 256 PIT ticks to read the value, we have 214us to
459 * see the same MSB (and overhead like doing a single TSC
460 * read per MSB value etc).
462 * - We're doing 2 reads per loop (LSB, MSB), and we expect
463 * them each to take about a microsecond on real hardware.
464 * So we expect a count value of around 100. But we'll be
465 * generous, and accept anything over 50.
467 * - if the PIT is stuck, and we see *many* more reads, we
468 * return early (and the next caller of pit_expect_msb()
469 * then consider it a failure when they don't see the
470 * next expected value).
472 * These expectations mean that we know that we have seen the
473 * transition from one expected value to another with a fairly
474 * high accuracy, and we didn't miss any events. We can thus
475 * use the TSC value at the transitions to calculate a pretty
476 * good value for the TSC frequencty.
478 static inline int pit_verify_msb(unsigned char val
)
482 return inb(0x42) == val
;
485 static inline int pit_expect_msb(unsigned char val
, u64
*tscp
, unsigned long *deltap
)
488 u64 tsc
= 0, prev_tsc
= 0;
490 for (count
= 0; count
< 50000; count
++) {
491 if (!pit_verify_msb(val
))
496 *deltap
= get_cycles() - prev_tsc
;
500 * We require _some_ success, but the quality control
501 * will be based on the error terms on the TSC values.
507 * How many MSB values do we want to see? We aim for
508 * a maximum error rate of 500ppm (in practice the
509 * real error is much smaller), but refuse to spend
510 * more than 50ms on it.
512 #define MAX_QUICK_PIT_MS 50
513 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
515 static unsigned long quick_pit_calibrate(void)
519 unsigned long d1
, d2
;
521 if (!has_legacy_pic())
524 /* Set the Gate high, disable speaker */
525 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
528 * Counter 2, mode 0 (one-shot), binary count
530 * NOTE! Mode 2 decrements by two (and then the
531 * output is flipped each time, giving the same
532 * final output frequency as a decrement-by-one),
533 * so mode 0 is much better when looking at the
538 /* Start at 0xffff */
543 * The PIT starts counting at the next edge, so we
544 * need to delay for a microsecond. The easiest way
545 * to do that is to just read back the 16-bit counter
550 if (pit_expect_msb(0xff, &tsc
, &d1
)) {
551 for (i
= 1; i
<= MAX_QUICK_PIT_ITERATIONS
; i
++) {
552 if (!pit_expect_msb(0xff-i
, &delta
, &d2
))
558 * Extrapolate the error and fail fast if the error will
559 * never be below 500 ppm.
562 d1
+ d2
>= (delta
* MAX_QUICK_PIT_ITERATIONS
) >> 11)
566 * Iterate until the error is less than 500 ppm
568 if (d1
+d2
>= delta
>> 11)
572 * Check the PIT one more time to verify that
573 * all TSC reads were stable wrt the PIT.
575 * This also guarantees serialization of the
576 * last cycle read ('d2') in pit_expect_msb.
578 if (!pit_verify_msb(0xfe - i
))
583 pr_info("Fast TSC calibration failed\n");
588 * Ok, if we get here, then we've seen the
589 * MSB of the PIT decrement 'i' times, and the
590 * error has shrunk to less than 500 ppm.
592 * As a result, we can depend on there not being
593 * any odd delays anywhere, and the TSC reads are
594 * reliable (within the error).
596 * kHz = ticks / time-in-seconds / 1000;
597 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
598 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
600 delta
*= PIT_TICK_RATE
;
601 do_div(delta
, i
*256*1000);
602 pr_info("Fast TSC calibration using PIT\n");
607 * native_calibrate_tsc
608 * Determine TSC frequency via CPUID, else return 0.
610 unsigned long native_calibrate_tsc(void)
612 unsigned int eax_denominator
, ebx_numerator
, ecx_hz
, edx
;
613 unsigned int crystal_khz
;
615 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
618 if (boot_cpu_data
.cpuid_level
< 0x15)
621 eax_denominator
= ebx_numerator
= ecx_hz
= edx
= 0;
623 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
624 cpuid(0x15, &eax_denominator
, &ebx_numerator
, &ecx_hz
, &edx
);
626 if (ebx_numerator
== 0 || eax_denominator
== 0)
629 crystal_khz
= ecx_hz
/ 1000;
631 if (crystal_khz
== 0) {
632 switch (boot_cpu_data
.x86_model
) {
633 case INTEL_FAM6_SKYLAKE_MOBILE
:
634 case INTEL_FAM6_SKYLAKE_DESKTOP
:
635 case INTEL_FAM6_KABYLAKE_MOBILE
:
636 case INTEL_FAM6_KABYLAKE_DESKTOP
:
637 crystal_khz
= 24000; /* 24.0 MHz */
639 case INTEL_FAM6_ATOM_GOLDMONT_X
:
640 crystal_khz
= 25000; /* 25.0 MHz */
642 case INTEL_FAM6_ATOM_GOLDMONT
:
643 crystal_khz
= 19200; /* 19.2 MHz */
648 if (crystal_khz
== 0)
651 * TSC frequency determined by CPUID is a "hardware reported"
652 * frequency and is the most accurate one so far we have. This
653 * is considered a known frequency.
655 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ
);
658 * For Atom SoCs TSC is the only reliable clocksource.
659 * Mark TSC reliable so no watchdog on it.
661 if (boot_cpu_data
.x86_model
== INTEL_FAM6_ATOM_GOLDMONT
)
662 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE
);
664 return crystal_khz
* ebx_numerator
/ eax_denominator
;
667 static unsigned long cpu_khz_from_cpuid(void)
669 unsigned int eax_base_mhz
, ebx_max_mhz
, ecx_bus_mhz
, edx
;
671 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
674 if (boot_cpu_data
.cpuid_level
< 0x16)
677 eax_base_mhz
= ebx_max_mhz
= ecx_bus_mhz
= edx
= 0;
679 cpuid(0x16, &eax_base_mhz
, &ebx_max_mhz
, &ecx_bus_mhz
, &edx
);
681 return eax_base_mhz
* 1000;
685 * calibrate cpu using pit, hpet, and ptimer methods. They are available
686 * later in boot after acpi is initialized.
688 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
690 u64 tsc1
, tsc2
, delta
, ref1
, ref2
;
691 unsigned long tsc_pit_min
= ULONG_MAX
, tsc_ref_min
= ULONG_MAX
;
692 unsigned long flags
, latch
, ms
;
693 int hpet
= is_hpet_enabled(), i
, loopmin
;
696 * Run 5 calibration loops to get the lowest frequency value
697 * (the best estimate). We use two different calibration modes
700 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
701 * load a timeout of 50ms. We read the time right after we
702 * started the timer and wait until the PIT count down reaches
703 * zero. In each wait loop iteration we read the TSC and check
704 * the delta to the previous read. We keep track of the min
705 * and max values of that delta. The delta is mostly defined
706 * by the IO time of the PIT access, so we can detect when a
707 * SMI/SMM disturbance happened between the two reads. If the
708 * maximum time is significantly larger than the minimum time,
709 * then we discard the result and have another try.
711 * 2) Reference counter. If available we use the HPET or the
712 * PMTIMER as a reference to check the sanity of that value.
713 * We use separate TSC readouts and check inside of the
714 * reference read for a SMI/SMM disturbance. We dicard
715 * disturbed values here as well. We do that around the PIT
716 * calibration delay loop as we have to wait for a certain
717 * amount of time anyway.
720 /* Preset PIT loop values */
723 loopmin
= CAL_PIT_LOOPS
;
725 for (i
= 0; i
< 3; i
++) {
726 unsigned long tsc_pit_khz
;
729 * Read the start value and the reference count of
730 * hpet/pmtimer when available. Then do the PIT
731 * calibration, which will take at least 50ms, and
732 * read the end value.
734 local_irq_save(flags
);
735 tsc1
= tsc_read_refs(&ref1
, hpet
);
736 tsc_pit_khz
= pit_calibrate_tsc(latch
, ms
, loopmin
);
737 tsc2
= tsc_read_refs(&ref2
, hpet
);
738 local_irq_restore(flags
);
740 /* Pick the lowest PIT TSC calibration so far */
741 tsc_pit_min
= min(tsc_pit_min
, tsc_pit_khz
);
743 /* hpet or pmtimer available ? */
747 /* Check, whether the sampling was disturbed by an SMI */
748 if (tsc1
== ULLONG_MAX
|| tsc2
== ULLONG_MAX
)
751 tsc2
= (tsc2
- tsc1
) * 1000000LL;
753 tsc2
= calc_hpet_ref(tsc2
, ref1
, ref2
);
755 tsc2
= calc_pmtimer_ref(tsc2
, ref1
, ref2
);
757 tsc_ref_min
= min(tsc_ref_min
, (unsigned long) tsc2
);
759 /* Check the reference deviation */
760 delta
= ((u64
) tsc_pit_min
) * 100;
761 do_div(delta
, tsc_ref_min
);
764 * If both calibration results are inside a 10% window
765 * then we can be sure, that the calibration
766 * succeeded. We break out of the loop right away. We
767 * use the reference value, as it is more precise.
769 if (delta
>= 90 && delta
<= 110) {
770 pr_info("PIT calibration matches %s. %d loops\n",
771 hpet
? "HPET" : "PMTIMER", i
+ 1);
776 * Check whether PIT failed more than once. This
777 * happens in virtualized environments. We need to
778 * give the virtual PC a slightly longer timeframe for
779 * the HPET/PMTIMER to make the result precise.
781 if (i
== 1 && tsc_pit_min
== ULONG_MAX
) {
784 loopmin
= CAL2_PIT_LOOPS
;
789 * Now check the results.
791 if (tsc_pit_min
== ULONG_MAX
) {
792 /* PIT gave no useful value */
793 pr_warn("Unable to calibrate against PIT\n");
795 /* We don't have an alternative source, disable TSC */
796 if (!hpet
&& !ref1
&& !ref2
) {
797 pr_notice("No reference (HPET/PMTIMER) available\n");
801 /* The alternative source failed as well, disable TSC */
802 if (tsc_ref_min
== ULONG_MAX
) {
803 pr_warn("HPET/PMTIMER calibration failed\n");
807 /* Use the alternative source */
808 pr_info("using %s reference calibration\n",
809 hpet
? "HPET" : "PMTIMER");
814 /* We don't have an alternative source, use the PIT calibration value */
815 if (!hpet
&& !ref1
&& !ref2
) {
816 pr_info("Using PIT calibration value\n");
820 /* The alternative source failed, use the PIT calibration value */
821 if (tsc_ref_min
== ULONG_MAX
) {
822 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
827 * The calibration values differ too much. In doubt, we use
828 * the PIT value as we know that there are PMTIMERs around
829 * running at double speed. At least we let the user know:
831 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
832 hpet
? "HPET" : "PMTIMER", tsc_pit_min
, tsc_ref_min
);
833 pr_info("Using PIT calibration value\n");
838 * native_calibrate_cpu_early - can calibrate the cpu early in boot
840 unsigned long native_calibrate_cpu_early(void)
842 unsigned long flags
, fast_calibrate
= cpu_khz_from_cpuid();
845 fast_calibrate
= cpu_khz_from_msr();
846 if (!fast_calibrate
) {
847 local_irq_save(flags
);
848 fast_calibrate
= quick_pit_calibrate();
849 local_irq_restore(flags
);
851 return fast_calibrate
;
856 * native_calibrate_cpu - calibrate the cpu
858 static unsigned long native_calibrate_cpu(void)
860 unsigned long tsc_freq
= native_calibrate_cpu_early();
863 tsc_freq
= pit_hpet_ptimer_calibrate_cpu();
868 void recalibrate_cpu_khz(void)
871 unsigned long cpu_khz_old
= cpu_khz
;
873 if (!boot_cpu_has(X86_FEATURE_TSC
))
876 cpu_khz
= x86_platform
.calibrate_cpu();
877 tsc_khz
= x86_platform
.calibrate_tsc();
880 else if (abs(cpu_khz
- tsc_khz
) * 10 > tsc_khz
)
882 cpu_data(0).loops_per_jiffy
= cpufreq_scale(cpu_data(0).loops_per_jiffy
,
883 cpu_khz_old
, cpu_khz
);
887 EXPORT_SYMBOL(recalibrate_cpu_khz
);
890 static unsigned long long cyc2ns_suspend
;
892 void tsc_save_sched_clock_state(void)
894 if (!sched_clock_stable())
897 cyc2ns_suspend
= sched_clock();
901 * Even on processors with invariant TSC, TSC gets reset in some the
902 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
903 * arbitrary value (still sync'd across cpu's) during resume from such sleep
904 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
905 * that sched_clock() continues from the point where it was left off during
908 void tsc_restore_sched_clock_state(void)
910 unsigned long long offset
;
914 if (!sched_clock_stable())
917 local_irq_save(flags
);
920 * We're coming out of suspend, there's no concurrency yet; don't
921 * bother being nice about the RCU stuff, just write to both
925 this_cpu_write(cyc2ns
.data
[0].cyc2ns_offset
, 0);
926 this_cpu_write(cyc2ns
.data
[1].cyc2ns_offset
, 0);
928 offset
= cyc2ns_suspend
- sched_clock();
930 for_each_possible_cpu(cpu
) {
931 per_cpu(cyc2ns
.data
[0].cyc2ns_offset
, cpu
) = offset
;
932 per_cpu(cyc2ns
.data
[1].cyc2ns_offset
, cpu
) = offset
;
935 local_irq_restore(flags
);
938 #ifdef CONFIG_CPU_FREQ
939 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
942 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
943 * not that important because current Opteron setups do not support
944 * scaling on SMP anyroads.
946 * Should fix up last_tsc too. Currently gettimeofday in the
947 * first tick after the change will be slightly wrong.
950 static unsigned int ref_freq
;
951 static unsigned long loops_per_jiffy_ref
;
952 static unsigned long tsc_khz_ref
;
954 static int time_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
957 struct cpufreq_freqs
*freq
= data
;
960 lpj
= &boot_cpu_data
.loops_per_jiffy
;
962 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
963 lpj
= &cpu_data(freq
->cpu
).loops_per_jiffy
;
967 ref_freq
= freq
->old
;
968 loops_per_jiffy_ref
= *lpj
;
969 tsc_khz_ref
= tsc_khz
;
971 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
972 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new)) {
973 *lpj
= cpufreq_scale(loops_per_jiffy_ref
, ref_freq
, freq
->new);
975 tsc_khz
= cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
976 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
977 mark_tsc_unstable("cpufreq changes");
979 set_cyc2ns_scale(tsc_khz
, freq
->cpu
, rdtsc());
985 static struct notifier_block time_cpufreq_notifier_block
= {
986 .notifier_call
= time_cpufreq_notifier
989 static int __init
cpufreq_register_tsc_scaling(void)
991 if (!boot_cpu_has(X86_FEATURE_TSC
))
993 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
995 cpufreq_register_notifier(&time_cpufreq_notifier_block
,
996 CPUFREQ_TRANSITION_NOTIFIER
);
1000 core_initcall(cpufreq_register_tsc_scaling
);
1002 #endif /* CONFIG_CPU_FREQ */
1004 #define ART_CPUID_LEAF (0x15)
1005 #define ART_MIN_DENOMINATOR (1)
1009 * If ART is present detect the numerator:denominator to convert to TSC
1011 static void __init
detect_art(void)
1013 unsigned int unused
[2];
1015 if (boot_cpu_data
.cpuid_level
< ART_CPUID_LEAF
)
1019 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1020 * and the TSC counter resets must not occur asynchronously.
1022 if (boot_cpu_has(X86_FEATURE_HYPERVISOR
) ||
1023 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC
) ||
1024 !boot_cpu_has(X86_FEATURE_TSC_ADJUST
) ||
1028 cpuid(ART_CPUID_LEAF
, &art_to_tsc_denominator
,
1029 &art_to_tsc_numerator
, unused
, unused
+1);
1031 if (art_to_tsc_denominator
< ART_MIN_DENOMINATOR
)
1034 rdmsrl(MSR_IA32_TSC_ADJUST
, art_to_tsc_offset
);
1036 /* Make this sticky over multiple CPU init calls */
1037 setup_force_cpu_cap(X86_FEATURE_ART
);
1041 /* clocksource code */
1043 static void tsc_resume(struct clocksource
*cs
)
1045 tsc_verify_tsc_adjust(true);
1049 * We used to compare the TSC to the cycle_last value in the clocksource
1050 * structure to avoid a nasty time-warp. This can be observed in a
1051 * very small window right after one CPU updated cycle_last under
1052 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1053 * is smaller than the cycle_last reference value due to a TSC which
1054 * is slighty behind. This delta is nowhere else observable, but in
1055 * that case it results in a forward time jump in the range of hours
1056 * due to the unsigned delta calculation of the time keeping core
1057 * code, which is necessary to support wrapping clocksources like pm
1060 * This sanity check is now done in the core timekeeping code.
1061 * checking the result of read_tsc() - cycle_last for being negative.
1062 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1064 static u64
read_tsc(struct clocksource
*cs
)
1066 return (u64
)rdtsc_ordered();
1069 static void tsc_cs_mark_unstable(struct clocksource
*cs
)
1075 if (using_native_sched_clock())
1076 clear_sched_clock_stable();
1077 disable_sched_clock_irqtime();
1078 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1081 static void tsc_cs_tick_stable(struct clocksource
*cs
)
1086 if (using_native_sched_clock())
1087 sched_clock_tick_stable();
1091 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1093 static struct clocksource clocksource_tsc_early
= {
1094 .name
= "tsc-early",
1097 .mask
= CLOCKSOURCE_MASK(64),
1098 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
1099 CLOCK_SOURCE_MUST_VERIFY
,
1100 .archdata
= { .vclock_mode
= VCLOCK_TSC
},
1101 .resume
= tsc_resume
,
1102 .mark_unstable
= tsc_cs_mark_unstable
,
1103 .tick_stable
= tsc_cs_tick_stable
,
1104 .list
= LIST_HEAD_INIT(clocksource_tsc_early
.list
),
1108 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1109 * this one will immediately take over. We will only register if TSC has
1112 static struct clocksource clocksource_tsc
= {
1116 .mask
= CLOCKSOURCE_MASK(64),
1117 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
1118 CLOCK_SOURCE_VALID_FOR_HRES
|
1119 CLOCK_SOURCE_MUST_VERIFY
,
1120 .archdata
= { .vclock_mode
= VCLOCK_TSC
},
1121 .resume
= tsc_resume
,
1122 .mark_unstable
= tsc_cs_mark_unstable
,
1123 .tick_stable
= tsc_cs_tick_stable
,
1124 .list
= LIST_HEAD_INIT(clocksource_tsc
.list
),
1127 void mark_tsc_unstable(char *reason
)
1133 if (using_native_sched_clock())
1134 clear_sched_clock_stable();
1135 disable_sched_clock_irqtime();
1136 pr_info("Marking TSC unstable due to %s\n", reason
);
1138 clocksource_mark_unstable(&clocksource_tsc_early
);
1139 clocksource_mark_unstable(&clocksource_tsc
);
1142 EXPORT_SYMBOL_GPL(mark_tsc_unstable
);
1144 static void __init
check_system_tsc_reliable(void)
1146 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1147 if (is_geode_lx()) {
1148 /* RTSC counts during suspend */
1149 #define RTSC_SUSP 0x100
1150 unsigned long res_low
, res_high
;
1152 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0
, &res_low
, &res_high
);
1153 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1154 if (res_low
& RTSC_SUSP
)
1155 tsc_clocksource_reliable
= 1;
1158 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE
))
1159 tsc_clocksource_reliable
= 1;
1163 * Make an educated guess if the TSC is trustworthy and synchronized
1166 int unsynchronized_tsc(void)
1168 if (!boot_cpu_has(X86_FEATURE_TSC
) || tsc_unstable
)
1172 if (apic_is_clustered_box())
1176 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
1179 if (tsc_clocksource_reliable
)
1182 * Intel systems are normally all synchronized.
1183 * Exceptions must mark TSC as unstable:
1185 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
) {
1186 /* assume multi socket systems are not synchronized: */
1187 if (num_possible_cpus() > 1)
1195 * Convert ART to TSC given numerator/denominator found in detect_art()
1197 struct system_counterval_t
convert_art_to_tsc(u64 art
)
1201 rem
= do_div(art
, art_to_tsc_denominator
);
1203 res
= art
* art_to_tsc_numerator
;
1204 tmp
= rem
* art_to_tsc_numerator
;
1206 do_div(tmp
, art_to_tsc_denominator
);
1207 res
+= tmp
+ art_to_tsc_offset
;
1209 return (struct system_counterval_t
) {.cs
= art_related_clocksource
,
1212 EXPORT_SYMBOL(convert_art_to_tsc
);
1215 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1216 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1218 * PTM requires all timestamps to be in units of nanoseconds. When user
1219 * software requests a cross-timestamp, this function converts system timestamp
1222 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1223 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1224 * that this flag is set before conversion to TSC is attempted.
1227 * struct system_counterval_t - system counter value with the pointer to the
1228 * corresponding clocksource
1229 * @cycles: System counter value
1230 * @cs: Clocksource corresponding to system counter value. Used
1231 * by timekeeping code to verify comparibility of two cycle
1235 struct system_counterval_t
convert_art_ns_to_tsc(u64 art_ns
)
1239 rem
= do_div(art_ns
, USEC_PER_SEC
);
1241 res
= art_ns
* tsc_khz
;
1242 tmp
= rem
* tsc_khz
;
1244 do_div(tmp
, USEC_PER_SEC
);
1247 return (struct system_counterval_t
) { .cs
= art_related_clocksource
,
1250 EXPORT_SYMBOL(convert_art_ns_to_tsc
);
1253 static void tsc_refine_calibration_work(struct work_struct
*work
);
1254 static DECLARE_DELAYED_WORK(tsc_irqwork
, tsc_refine_calibration_work
);
1256 * tsc_refine_calibration_work - Further refine tsc freq calibration
1259 * This functions uses delayed work over a period of a
1260 * second to further refine the TSC freq value. Since this is
1261 * timer based, instead of loop based, we don't block the boot
1262 * process while this longer calibration is done.
1264 * If there are any calibration anomalies (too many SMIs, etc),
1265 * or the refined calibration is off by 1% of the fast early
1266 * calibration, we throw out the new calibration and use the
1267 * early calibration.
1269 static void tsc_refine_calibration_work(struct work_struct
*work
)
1271 static u64 tsc_start
= -1, ref_start
;
1273 u64 tsc_stop
, ref_stop
, delta
;
1277 /* Don't bother refining TSC on unstable systems */
1282 * Since the work is started early in boot, we may be
1283 * delayed the first time we expire. So set the workqueue
1284 * again once we know timers are working.
1286 if (tsc_start
== -1) {
1288 * Only set hpet once, to avoid mixing hardware
1289 * if the hpet becomes enabled later.
1291 hpet
= is_hpet_enabled();
1292 schedule_delayed_work(&tsc_irqwork
, HZ
);
1293 tsc_start
= tsc_read_refs(&ref_start
, hpet
);
1297 tsc_stop
= tsc_read_refs(&ref_stop
, hpet
);
1299 /* hpet or pmtimer available ? */
1300 if (ref_start
== ref_stop
)
1303 /* Check, whether the sampling was disturbed by an SMI */
1304 if (tsc_start
== ULLONG_MAX
|| tsc_stop
== ULLONG_MAX
)
1307 delta
= tsc_stop
- tsc_start
;
1310 freq
= calc_hpet_ref(delta
, ref_start
, ref_stop
);
1312 freq
= calc_pmtimer_ref(delta
, ref_start
, ref_stop
);
1314 /* Make sure we're within 1% */
1315 if (abs(tsc_khz
- freq
) > tsc_khz
/100)
1319 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1320 (unsigned long)tsc_khz
/ 1000,
1321 (unsigned long)tsc_khz
% 1000);
1323 /* Inform the TSC deadline clockevent devices about the recalibration */
1324 lapic_update_tsc_freq();
1326 /* Update the sched_clock() rate to match the clocksource one */
1327 for_each_possible_cpu(cpu
)
1328 set_cyc2ns_scale(tsc_khz
, cpu
, tsc_stop
);
1334 if (boot_cpu_has(X86_FEATURE_ART
))
1335 art_related_clocksource
= &clocksource_tsc
;
1336 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1338 clocksource_unregister(&clocksource_tsc_early
);
1342 static int __init
init_tsc_clocksource(void)
1344 if (!boot_cpu_has(X86_FEATURE_TSC
) || !tsc_khz
)
1350 if (tsc_clocksource_reliable
)
1351 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_MUST_VERIFY
;
1353 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3
))
1354 clocksource_tsc
.flags
|= CLOCK_SOURCE_SUSPEND_NONSTOP
;
1357 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1358 * the refined calibration and directly register it as a clocksource.
1360 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ
)) {
1361 if (boot_cpu_has(X86_FEATURE_ART
))
1362 art_related_clocksource
= &clocksource_tsc
;
1363 clocksource_register_khz(&clocksource_tsc
, tsc_khz
);
1365 clocksource_unregister(&clocksource_tsc_early
);
1369 schedule_delayed_work(&tsc_irqwork
, 0);
1373 * We use device_initcall here, to ensure we run after the hpet
1374 * is fully initialized, which may occur at fs_initcall time.
1376 device_initcall(init_tsc_clocksource
);
1378 static bool __init
determine_cpu_tsc_frequencies(bool early
)
1380 /* Make sure that cpu and tsc are not already calibrated */
1381 WARN_ON(cpu_khz
|| tsc_khz
);
1384 cpu_khz
= x86_platform
.calibrate_cpu();
1385 tsc_khz
= x86_platform
.calibrate_tsc();
1387 /* We should not be here with non-native cpu calibration */
1388 WARN_ON(x86_platform
.calibrate_cpu
!= native_calibrate_cpu
);
1389 cpu_khz
= pit_hpet_ptimer_calibrate_cpu();
1393 * Trust non-zero tsc_khz as authoritative,
1394 * and use it to sanity check cpu_khz,
1395 * which will be off if system timer is off.
1399 else if (abs(cpu_khz
- tsc_khz
) * 10 > tsc_khz
)
1405 pr_info("Detected %lu.%03lu MHz processor\n",
1406 (unsigned long)cpu_khz
/ KHZ
,
1407 (unsigned long)cpu_khz
% KHZ
);
1409 if (cpu_khz
!= tsc_khz
) {
1410 pr_info("Detected %lu.%03lu MHz TSC",
1411 (unsigned long)tsc_khz
/ KHZ
,
1412 (unsigned long)tsc_khz
% KHZ
);
1417 static unsigned long __init
get_loops_per_jiffy(void)
1419 u64 lpj
= (u64
)tsc_khz
* KHZ
;
1425 static void __init
tsc_enable_sched_clock(void)
1427 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1428 tsc_store_and_check_tsc_adjust(true);
1429 cyc2ns_init_boot_cpu();
1430 static_branch_enable(&__use_tsc
);
1433 void __init
tsc_early_init(void)
1435 if (!boot_cpu_has(X86_FEATURE_TSC
))
1437 /* Don't change UV TSC multi-chassis synchronization */
1438 if (is_early_uv_system())
1440 if (!determine_cpu_tsc_frequencies(true))
1442 loops_per_jiffy
= get_loops_per_jiffy();
1444 tsc_enable_sched_clock();
1447 void __init
tsc_init(void)
1450 * native_calibrate_cpu_early can only calibrate using methods that are
1451 * available early in boot.
1453 if (x86_platform
.calibrate_cpu
== native_calibrate_cpu_early
)
1454 x86_platform
.calibrate_cpu
= native_calibrate_cpu
;
1456 if (!boot_cpu_has(X86_FEATURE_TSC
)) {
1457 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1462 /* We failed to determine frequencies earlier, try again */
1463 if (!determine_cpu_tsc_frequencies(false)) {
1464 mark_tsc_unstable("could not calculate TSC khz");
1465 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER
);
1468 tsc_enable_sched_clock();
1471 cyc2ns_init_secondary_cpus();
1473 if (!no_sched_irq_time
)
1474 enable_sched_clock_irqtime();
1476 lpj_fine
= get_loops_per_jiffy();
1479 check_system_tsc_reliable();
1481 if (unsynchronized_tsc()) {
1482 mark_tsc_unstable("TSCs unsynchronized");
1486 clocksource_register_khz(&clocksource_tsc_early
, tsc_khz
);
1492 * If we have a constant TSC and are using the TSC for the delay loop,
1493 * we can skip clock calibration if another cpu in the same socket has already
1494 * been calibrated. This assumes that CONSTANT_TSC applies to all
1495 * cpus in the socket - this should be a safe assumption.
1497 unsigned long calibrate_delay_is_known(void)
1499 int sibling
, cpu
= smp_processor_id();
1500 int constant_tsc
= cpu_has(&cpu_data(cpu
), X86_FEATURE_CONSTANT_TSC
);
1501 const struct cpumask
*mask
= topology_core_cpumask(cpu
);
1503 if (!constant_tsc
|| !mask
)
1506 sibling
= cpumask_any_but(mask
, cpu
);
1507 if (sibling
< nr_cpu_ids
)
1508 return cpu_data(sibling
).loops_per_jiffy
;