hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / kernel / tsc.c
blobe9f777bfed404340a36de19898fffd129610fc3c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/timer.h>
9 #include <linux/acpi_pmtmr.h>
10 #include <linux/cpufreq.h>
11 #include <linux/delay.h>
12 #include <linux/clocksource.h>
13 #include <linux/percpu.h>
14 #include <linux/timex.h>
15 #include <linux/static_key.h>
17 #include <asm/hpet.h>
18 #include <asm/timer.h>
19 #include <asm/vgtod.h>
20 #include <asm/time.h>
21 #include <asm/delay.h>
22 #include <asm/hypervisor.h>
23 #include <asm/nmi.h>
24 #include <asm/x86_init.h>
25 #include <asm/geode.h>
26 #include <asm/apic.h>
27 #include <asm/intel-family.h>
28 #include <asm/i8259.h>
29 #include <asm/uv/uv.h>
31 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
32 EXPORT_SYMBOL(cpu_khz);
34 unsigned int __read_mostly tsc_khz;
35 EXPORT_SYMBOL(tsc_khz);
37 #define KHZ 1000
40 * TSC can be unstable due to cpufreq or due to unsynced TSCs
42 static int __read_mostly tsc_unstable;
44 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46 int tsc_clocksource_reliable;
48 static u32 art_to_tsc_numerator;
49 static u32 art_to_tsc_denominator;
50 static u64 art_to_tsc_offset;
51 struct clocksource *art_related_clocksource;
53 struct cyc2ns {
54 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
55 seqcount_t seq; /* 32 + 4 = 36 */
57 }; /* fits one cacheline */
59 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
61 void __always_inline cyc2ns_read_begin(struct cyc2ns_data *data)
63 int seq, idx;
65 preempt_disable_notrace();
67 do {
68 seq = this_cpu_read(cyc2ns.seq.sequence);
69 idx = seq & 1;
71 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
72 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
73 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
75 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
78 void __always_inline cyc2ns_read_end(void)
80 preempt_enable_notrace();
84 * Accelerators for sched_clock()
85 * convert from cycles(64bits) => nanoseconds (64bits)
86 * basic equation:
87 * ns = cycles / (freq / ns_per_sec)
88 * ns = cycles * (ns_per_sec / freq)
89 * ns = cycles * (10^9 / (cpu_khz * 10^3))
90 * ns = cycles * (10^6 / cpu_khz)
92 * Then we use scaling math (suggested by george@mvista.com) to get:
93 * ns = cycles * (10^6 * SC / cpu_khz) / SC
94 * ns = cycles * cyc2ns_scale / SC
96 * And since SC is a constant power of two, we can convert the div
97 * into a shift. The larger SC is, the more accurate the conversion, but
98 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
99 * (64-bit result) can be used.
101 * We can use khz divisor instead of mhz to keep a better precision.
102 * (mathieu.desnoyers@polymtl.ca)
104 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
107 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
109 struct cyc2ns_data data;
110 unsigned long long ns;
112 cyc2ns_read_begin(&data);
114 ns = data.cyc2ns_offset;
115 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
117 cyc2ns_read_end();
119 return ns;
122 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
124 unsigned long long ns_now;
125 struct cyc2ns_data data;
126 struct cyc2ns *c2n;
128 ns_now = cycles_2_ns(tsc_now);
131 * Compute a new multiplier as per the above comment and ensure our
132 * time function is continuous; see the comment near struct
133 * cyc2ns_data.
135 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
136 NSEC_PER_MSEC, 0);
139 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
140 * not expected to be greater than 31 due to the original published
141 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
142 * value) - refer perf_event_mmap_page documentation in perf_event.h.
144 if (data.cyc2ns_shift == 32) {
145 data.cyc2ns_shift = 31;
146 data.cyc2ns_mul >>= 1;
149 data.cyc2ns_offset = ns_now -
150 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
152 c2n = per_cpu_ptr(&cyc2ns, cpu);
154 raw_write_seqcount_latch(&c2n->seq);
155 c2n->data[0] = data;
156 raw_write_seqcount_latch(&c2n->seq);
157 c2n->data[1] = data;
160 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
162 unsigned long flags;
164 local_irq_save(flags);
165 sched_clock_idle_sleep_event();
167 if (khz)
168 __set_cyc2ns_scale(khz, cpu, tsc_now);
170 sched_clock_idle_wakeup_event();
171 local_irq_restore(flags);
175 * Initialize cyc2ns for boot cpu
177 static void __init cyc2ns_init_boot_cpu(void)
179 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
181 seqcount_init(&c2n->seq);
182 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
186 * Secondary CPUs do not run through tsc_init(), so set up
187 * all the scale factors for all CPUs, assuming the same
188 * speed as the bootup CPU. (cpufreq notifiers will fix this
189 * up if their speed diverges)
191 static void __init cyc2ns_init_secondary_cpus(void)
193 unsigned int cpu, this_cpu = smp_processor_id();
194 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
195 struct cyc2ns_data *data = c2n->data;
197 for_each_possible_cpu(cpu) {
198 if (cpu != this_cpu) {
199 seqcount_init(&c2n->seq);
200 c2n = per_cpu_ptr(&cyc2ns, cpu);
201 c2n->data[0] = data[0];
202 c2n->data[1] = data[1];
208 * Scheduler clock - returns current time in nanosec units.
210 u64 native_sched_clock(void)
212 if (static_branch_likely(&__use_tsc)) {
213 u64 tsc_now = rdtsc();
215 /* return the value in ns */
216 return cycles_2_ns(tsc_now);
220 * Fall back to jiffies if there's no TSC available:
221 * ( But note that we still use it if the TSC is marked
222 * unstable. We do this because unlike Time Of Day,
223 * the scheduler clock tolerates small errors and it's
224 * very important for it to be as fast as the platform
225 * can achieve it. )
228 /* No locking but a rare wrong value is not a big deal: */
229 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
233 * Generate a sched_clock if you already have a TSC value.
235 u64 native_sched_clock_from_tsc(u64 tsc)
237 return cycles_2_ns(tsc);
240 /* We need to define a real function for sched_clock, to override the
241 weak default version */
242 #ifdef CONFIG_PARAVIRT
243 unsigned long long sched_clock(void)
245 return paravirt_sched_clock();
248 bool using_native_sched_clock(void)
250 return pv_ops.time.sched_clock == native_sched_clock;
252 #else
253 unsigned long long
254 sched_clock(void) __attribute__((alias("native_sched_clock")));
256 bool using_native_sched_clock(void) { return true; }
257 #endif
259 int check_tsc_unstable(void)
261 return tsc_unstable;
263 EXPORT_SYMBOL_GPL(check_tsc_unstable);
265 #ifdef CONFIG_X86_TSC
266 int __init notsc_setup(char *str)
268 mark_tsc_unstable("boot parameter notsc");
269 return 1;
271 #else
273 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
274 * in cpu/common.c
276 int __init notsc_setup(char *str)
278 setup_clear_cpu_cap(X86_FEATURE_TSC);
279 return 1;
281 #endif
283 __setup("notsc", notsc_setup);
285 static int no_sched_irq_time;
287 static int __init tsc_setup(char *str)
289 if (!strcmp(str, "reliable"))
290 tsc_clocksource_reliable = 1;
291 if (!strncmp(str, "noirqtime", 9))
292 no_sched_irq_time = 1;
293 if (!strcmp(str, "unstable"))
294 mark_tsc_unstable("boot parameter");
295 return 1;
298 __setup("tsc=", tsc_setup);
300 #define MAX_RETRIES 5
301 #define SMI_TRESHOLD 50000
304 * Read TSC and the reference counters. Take care of SMI disturbance
306 static u64 tsc_read_refs(u64 *p, int hpet)
308 u64 t1, t2;
309 int i;
311 for (i = 0; i < MAX_RETRIES; i++) {
312 t1 = get_cycles();
313 if (hpet)
314 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
315 else
316 *p = acpi_pm_read_early();
317 t2 = get_cycles();
318 if ((t2 - t1) < SMI_TRESHOLD)
319 return t2;
321 return ULLONG_MAX;
325 * Calculate the TSC frequency from HPET reference
327 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
329 u64 tmp;
331 if (hpet2 < hpet1)
332 hpet2 += 0x100000000ULL;
333 hpet2 -= hpet1;
334 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
335 do_div(tmp, 1000000);
336 deltatsc = div64_u64(deltatsc, tmp);
338 return (unsigned long) deltatsc;
342 * Calculate the TSC frequency from PMTimer reference
344 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
346 u64 tmp;
348 if (!pm1 && !pm2)
349 return ULONG_MAX;
351 if (pm2 < pm1)
352 pm2 += (u64)ACPI_PM_OVRRUN;
353 pm2 -= pm1;
354 tmp = pm2 * 1000000000LL;
355 do_div(tmp, PMTMR_TICKS_PER_SEC);
356 do_div(deltatsc, tmp);
358 return (unsigned long) deltatsc;
361 #define CAL_MS 10
362 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
363 #define CAL_PIT_LOOPS 1000
365 #define CAL2_MS 50
366 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
367 #define CAL2_PIT_LOOPS 5000
371 * Try to calibrate the TSC against the Programmable
372 * Interrupt Timer and return the frequency of the TSC
373 * in kHz.
375 * Return ULONG_MAX on failure to calibrate.
377 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
379 u64 tsc, t1, t2, delta;
380 unsigned long tscmin, tscmax;
381 int pitcnt;
383 if (!has_legacy_pic()) {
385 * Relies on tsc_early_delay_calibrate() to have given us semi
386 * usable udelay(), wait for the same 50ms we would have with
387 * the PIT loop below.
389 udelay(10 * USEC_PER_MSEC);
390 udelay(10 * USEC_PER_MSEC);
391 udelay(10 * USEC_PER_MSEC);
392 udelay(10 * USEC_PER_MSEC);
393 udelay(10 * USEC_PER_MSEC);
394 return ULONG_MAX;
397 /* Set the Gate high, disable speaker */
398 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
401 * Setup CTC channel 2* for mode 0, (interrupt on terminal
402 * count mode), binary count. Set the latch register to 50ms
403 * (LSB then MSB) to begin countdown.
405 outb(0xb0, 0x43);
406 outb(latch & 0xff, 0x42);
407 outb(latch >> 8, 0x42);
409 tsc = t1 = t2 = get_cycles();
411 pitcnt = 0;
412 tscmax = 0;
413 tscmin = ULONG_MAX;
414 while ((inb(0x61) & 0x20) == 0) {
415 t2 = get_cycles();
416 delta = t2 - tsc;
417 tsc = t2;
418 if ((unsigned long) delta < tscmin)
419 tscmin = (unsigned int) delta;
420 if ((unsigned long) delta > tscmax)
421 tscmax = (unsigned int) delta;
422 pitcnt++;
426 * Sanity checks:
428 * If we were not able to read the PIT more than loopmin
429 * times, then we have been hit by a massive SMI
431 * If the maximum is 10 times larger than the minimum,
432 * then we got hit by an SMI as well.
434 if (pitcnt < loopmin || tscmax > 10 * tscmin)
435 return ULONG_MAX;
437 /* Calculate the PIT value */
438 delta = t2 - t1;
439 do_div(delta, ms);
440 return delta;
444 * This reads the current MSB of the PIT counter, and
445 * checks if we are running on sufficiently fast and
446 * non-virtualized hardware.
448 * Our expectations are:
450 * - the PIT is running at roughly 1.19MHz
452 * - each IO is going to take about 1us on real hardware,
453 * but we allow it to be much faster (by a factor of 10) or
454 * _slightly_ slower (ie we allow up to a 2us read+counter
455 * update - anything else implies a unacceptably slow CPU
456 * or PIT for the fast calibration to work.
458 * - with 256 PIT ticks to read the value, we have 214us to
459 * see the same MSB (and overhead like doing a single TSC
460 * read per MSB value etc).
462 * - We're doing 2 reads per loop (LSB, MSB), and we expect
463 * them each to take about a microsecond on real hardware.
464 * So we expect a count value of around 100. But we'll be
465 * generous, and accept anything over 50.
467 * - if the PIT is stuck, and we see *many* more reads, we
468 * return early (and the next caller of pit_expect_msb()
469 * then consider it a failure when they don't see the
470 * next expected value).
472 * These expectations mean that we know that we have seen the
473 * transition from one expected value to another with a fairly
474 * high accuracy, and we didn't miss any events. We can thus
475 * use the TSC value at the transitions to calculate a pretty
476 * good value for the TSC frequencty.
478 static inline int pit_verify_msb(unsigned char val)
480 /* Ignore LSB */
481 inb(0x42);
482 return inb(0x42) == val;
485 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
487 int count;
488 u64 tsc = 0, prev_tsc = 0;
490 for (count = 0; count < 50000; count++) {
491 if (!pit_verify_msb(val))
492 break;
493 prev_tsc = tsc;
494 tsc = get_cycles();
496 *deltap = get_cycles() - prev_tsc;
497 *tscp = tsc;
500 * We require _some_ success, but the quality control
501 * will be based on the error terms on the TSC values.
503 return count > 5;
507 * How many MSB values do we want to see? We aim for
508 * a maximum error rate of 500ppm (in practice the
509 * real error is much smaller), but refuse to spend
510 * more than 50ms on it.
512 #define MAX_QUICK_PIT_MS 50
513 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
515 static unsigned long quick_pit_calibrate(void)
517 int i;
518 u64 tsc, delta;
519 unsigned long d1, d2;
521 if (!has_legacy_pic())
522 return 0;
524 /* Set the Gate high, disable speaker */
525 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
528 * Counter 2, mode 0 (one-shot), binary count
530 * NOTE! Mode 2 decrements by two (and then the
531 * output is flipped each time, giving the same
532 * final output frequency as a decrement-by-one),
533 * so mode 0 is much better when looking at the
534 * individual counts.
536 outb(0xb0, 0x43);
538 /* Start at 0xffff */
539 outb(0xff, 0x42);
540 outb(0xff, 0x42);
543 * The PIT starts counting at the next edge, so we
544 * need to delay for a microsecond. The easiest way
545 * to do that is to just read back the 16-bit counter
546 * once from the PIT.
548 pit_verify_msb(0);
550 if (pit_expect_msb(0xff, &tsc, &d1)) {
551 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
552 if (!pit_expect_msb(0xff-i, &delta, &d2))
553 break;
555 delta -= tsc;
558 * Extrapolate the error and fail fast if the error will
559 * never be below 500 ppm.
561 if (i == 1 &&
562 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
563 return 0;
566 * Iterate until the error is less than 500 ppm
568 if (d1+d2 >= delta >> 11)
569 continue;
572 * Check the PIT one more time to verify that
573 * all TSC reads were stable wrt the PIT.
575 * This also guarantees serialization of the
576 * last cycle read ('d2') in pit_expect_msb.
578 if (!pit_verify_msb(0xfe - i))
579 break;
580 goto success;
583 pr_info("Fast TSC calibration failed\n");
584 return 0;
586 success:
588 * Ok, if we get here, then we've seen the
589 * MSB of the PIT decrement 'i' times, and the
590 * error has shrunk to less than 500 ppm.
592 * As a result, we can depend on there not being
593 * any odd delays anywhere, and the TSC reads are
594 * reliable (within the error).
596 * kHz = ticks / time-in-seconds / 1000;
597 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
598 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
600 delta *= PIT_TICK_RATE;
601 do_div(delta, i*256*1000);
602 pr_info("Fast TSC calibration using PIT\n");
603 return delta;
607 * native_calibrate_tsc
608 * Determine TSC frequency via CPUID, else return 0.
610 unsigned long native_calibrate_tsc(void)
612 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
613 unsigned int crystal_khz;
615 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
616 return 0;
618 if (boot_cpu_data.cpuid_level < 0x15)
619 return 0;
621 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
623 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
624 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
626 if (ebx_numerator == 0 || eax_denominator == 0)
627 return 0;
629 crystal_khz = ecx_hz / 1000;
631 if (crystal_khz == 0) {
632 switch (boot_cpu_data.x86_model) {
633 case INTEL_FAM6_SKYLAKE_MOBILE:
634 case INTEL_FAM6_SKYLAKE_DESKTOP:
635 case INTEL_FAM6_KABYLAKE_MOBILE:
636 case INTEL_FAM6_KABYLAKE_DESKTOP:
637 crystal_khz = 24000; /* 24.0 MHz */
638 break;
639 case INTEL_FAM6_ATOM_GOLDMONT_X:
640 crystal_khz = 25000; /* 25.0 MHz */
641 break;
642 case INTEL_FAM6_ATOM_GOLDMONT:
643 crystal_khz = 19200; /* 19.2 MHz */
644 break;
648 if (crystal_khz == 0)
649 return 0;
651 * TSC frequency determined by CPUID is a "hardware reported"
652 * frequency and is the most accurate one so far we have. This
653 * is considered a known frequency.
655 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
658 * For Atom SoCs TSC is the only reliable clocksource.
659 * Mark TSC reliable so no watchdog on it.
661 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
662 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
664 return crystal_khz * ebx_numerator / eax_denominator;
667 static unsigned long cpu_khz_from_cpuid(void)
669 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
671 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
672 return 0;
674 if (boot_cpu_data.cpuid_level < 0x16)
675 return 0;
677 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
679 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
681 return eax_base_mhz * 1000;
685 * calibrate cpu using pit, hpet, and ptimer methods. They are available
686 * later in boot after acpi is initialized.
688 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
690 u64 tsc1, tsc2, delta, ref1, ref2;
691 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
692 unsigned long flags, latch, ms;
693 int hpet = is_hpet_enabled(), i, loopmin;
696 * Run 5 calibration loops to get the lowest frequency value
697 * (the best estimate). We use two different calibration modes
698 * here:
700 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
701 * load a timeout of 50ms. We read the time right after we
702 * started the timer and wait until the PIT count down reaches
703 * zero. In each wait loop iteration we read the TSC and check
704 * the delta to the previous read. We keep track of the min
705 * and max values of that delta. The delta is mostly defined
706 * by the IO time of the PIT access, so we can detect when a
707 * SMI/SMM disturbance happened between the two reads. If the
708 * maximum time is significantly larger than the minimum time,
709 * then we discard the result and have another try.
711 * 2) Reference counter. If available we use the HPET or the
712 * PMTIMER as a reference to check the sanity of that value.
713 * We use separate TSC readouts and check inside of the
714 * reference read for a SMI/SMM disturbance. We dicard
715 * disturbed values here as well. We do that around the PIT
716 * calibration delay loop as we have to wait for a certain
717 * amount of time anyway.
720 /* Preset PIT loop values */
721 latch = CAL_LATCH;
722 ms = CAL_MS;
723 loopmin = CAL_PIT_LOOPS;
725 for (i = 0; i < 3; i++) {
726 unsigned long tsc_pit_khz;
729 * Read the start value and the reference count of
730 * hpet/pmtimer when available. Then do the PIT
731 * calibration, which will take at least 50ms, and
732 * read the end value.
734 local_irq_save(flags);
735 tsc1 = tsc_read_refs(&ref1, hpet);
736 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
737 tsc2 = tsc_read_refs(&ref2, hpet);
738 local_irq_restore(flags);
740 /* Pick the lowest PIT TSC calibration so far */
741 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
743 /* hpet or pmtimer available ? */
744 if (ref1 == ref2)
745 continue;
747 /* Check, whether the sampling was disturbed by an SMI */
748 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
749 continue;
751 tsc2 = (tsc2 - tsc1) * 1000000LL;
752 if (hpet)
753 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
754 else
755 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
757 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
759 /* Check the reference deviation */
760 delta = ((u64) tsc_pit_min) * 100;
761 do_div(delta, tsc_ref_min);
764 * If both calibration results are inside a 10% window
765 * then we can be sure, that the calibration
766 * succeeded. We break out of the loop right away. We
767 * use the reference value, as it is more precise.
769 if (delta >= 90 && delta <= 110) {
770 pr_info("PIT calibration matches %s. %d loops\n",
771 hpet ? "HPET" : "PMTIMER", i + 1);
772 return tsc_ref_min;
776 * Check whether PIT failed more than once. This
777 * happens in virtualized environments. We need to
778 * give the virtual PC a slightly longer timeframe for
779 * the HPET/PMTIMER to make the result precise.
781 if (i == 1 && tsc_pit_min == ULONG_MAX) {
782 latch = CAL2_LATCH;
783 ms = CAL2_MS;
784 loopmin = CAL2_PIT_LOOPS;
789 * Now check the results.
791 if (tsc_pit_min == ULONG_MAX) {
792 /* PIT gave no useful value */
793 pr_warn("Unable to calibrate against PIT\n");
795 /* We don't have an alternative source, disable TSC */
796 if (!hpet && !ref1 && !ref2) {
797 pr_notice("No reference (HPET/PMTIMER) available\n");
798 return 0;
801 /* The alternative source failed as well, disable TSC */
802 if (tsc_ref_min == ULONG_MAX) {
803 pr_warn("HPET/PMTIMER calibration failed\n");
804 return 0;
807 /* Use the alternative source */
808 pr_info("using %s reference calibration\n",
809 hpet ? "HPET" : "PMTIMER");
811 return tsc_ref_min;
814 /* We don't have an alternative source, use the PIT calibration value */
815 if (!hpet && !ref1 && !ref2) {
816 pr_info("Using PIT calibration value\n");
817 return tsc_pit_min;
820 /* The alternative source failed, use the PIT calibration value */
821 if (tsc_ref_min == ULONG_MAX) {
822 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
823 return tsc_pit_min;
827 * The calibration values differ too much. In doubt, we use
828 * the PIT value as we know that there are PMTIMERs around
829 * running at double speed. At least we let the user know:
831 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
832 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
833 pr_info("Using PIT calibration value\n");
834 return tsc_pit_min;
838 * native_calibrate_cpu_early - can calibrate the cpu early in boot
840 unsigned long native_calibrate_cpu_early(void)
842 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
844 if (!fast_calibrate)
845 fast_calibrate = cpu_khz_from_msr();
846 if (!fast_calibrate) {
847 local_irq_save(flags);
848 fast_calibrate = quick_pit_calibrate();
849 local_irq_restore(flags);
851 return fast_calibrate;
856 * native_calibrate_cpu - calibrate the cpu
858 static unsigned long native_calibrate_cpu(void)
860 unsigned long tsc_freq = native_calibrate_cpu_early();
862 if (!tsc_freq)
863 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
865 return tsc_freq;
868 void recalibrate_cpu_khz(void)
870 #ifndef CONFIG_SMP
871 unsigned long cpu_khz_old = cpu_khz;
873 if (!boot_cpu_has(X86_FEATURE_TSC))
874 return;
876 cpu_khz = x86_platform.calibrate_cpu();
877 tsc_khz = x86_platform.calibrate_tsc();
878 if (tsc_khz == 0)
879 tsc_khz = cpu_khz;
880 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
881 cpu_khz = tsc_khz;
882 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
883 cpu_khz_old, cpu_khz);
884 #endif
887 EXPORT_SYMBOL(recalibrate_cpu_khz);
890 static unsigned long long cyc2ns_suspend;
892 void tsc_save_sched_clock_state(void)
894 if (!sched_clock_stable())
895 return;
897 cyc2ns_suspend = sched_clock();
901 * Even on processors with invariant TSC, TSC gets reset in some the
902 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
903 * arbitrary value (still sync'd across cpu's) during resume from such sleep
904 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
905 * that sched_clock() continues from the point where it was left off during
906 * suspend.
908 void tsc_restore_sched_clock_state(void)
910 unsigned long long offset;
911 unsigned long flags;
912 int cpu;
914 if (!sched_clock_stable())
915 return;
917 local_irq_save(flags);
920 * We're coming out of suspend, there's no concurrency yet; don't
921 * bother being nice about the RCU stuff, just write to both
922 * data fields.
925 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
926 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
928 offset = cyc2ns_suspend - sched_clock();
930 for_each_possible_cpu(cpu) {
931 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
932 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
935 local_irq_restore(flags);
938 #ifdef CONFIG_CPU_FREQ
939 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
940 * changes.
942 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
943 * not that important because current Opteron setups do not support
944 * scaling on SMP anyroads.
946 * Should fix up last_tsc too. Currently gettimeofday in the
947 * first tick after the change will be slightly wrong.
950 static unsigned int ref_freq;
951 static unsigned long loops_per_jiffy_ref;
952 static unsigned long tsc_khz_ref;
954 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
955 void *data)
957 struct cpufreq_freqs *freq = data;
958 unsigned long *lpj;
960 lpj = &boot_cpu_data.loops_per_jiffy;
961 #ifdef CONFIG_SMP
962 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
963 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
964 #endif
966 if (!ref_freq) {
967 ref_freq = freq->old;
968 loops_per_jiffy_ref = *lpj;
969 tsc_khz_ref = tsc_khz;
971 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
972 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
973 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
975 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
976 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
977 mark_tsc_unstable("cpufreq changes");
979 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
982 return 0;
985 static struct notifier_block time_cpufreq_notifier_block = {
986 .notifier_call = time_cpufreq_notifier
989 static int __init cpufreq_register_tsc_scaling(void)
991 if (!boot_cpu_has(X86_FEATURE_TSC))
992 return 0;
993 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
994 return 0;
995 cpufreq_register_notifier(&time_cpufreq_notifier_block,
996 CPUFREQ_TRANSITION_NOTIFIER);
997 return 0;
1000 core_initcall(cpufreq_register_tsc_scaling);
1002 #endif /* CONFIG_CPU_FREQ */
1004 #define ART_CPUID_LEAF (0x15)
1005 #define ART_MIN_DENOMINATOR (1)
1009 * If ART is present detect the numerator:denominator to convert to TSC
1011 static void __init detect_art(void)
1013 unsigned int unused[2];
1015 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1016 return;
1019 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1020 * and the TSC counter resets must not occur asynchronously.
1022 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1023 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1024 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1025 tsc_async_resets)
1026 return;
1028 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1029 &art_to_tsc_numerator, unused, unused+1);
1031 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1032 return;
1034 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1036 /* Make this sticky over multiple CPU init calls */
1037 setup_force_cpu_cap(X86_FEATURE_ART);
1041 /* clocksource code */
1043 static void tsc_resume(struct clocksource *cs)
1045 tsc_verify_tsc_adjust(true);
1049 * We used to compare the TSC to the cycle_last value in the clocksource
1050 * structure to avoid a nasty time-warp. This can be observed in a
1051 * very small window right after one CPU updated cycle_last under
1052 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1053 * is smaller than the cycle_last reference value due to a TSC which
1054 * is slighty behind. This delta is nowhere else observable, but in
1055 * that case it results in a forward time jump in the range of hours
1056 * due to the unsigned delta calculation of the time keeping core
1057 * code, which is necessary to support wrapping clocksources like pm
1058 * timer.
1060 * This sanity check is now done in the core timekeeping code.
1061 * checking the result of read_tsc() - cycle_last for being negative.
1062 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1064 static u64 read_tsc(struct clocksource *cs)
1066 return (u64)rdtsc_ordered();
1069 static void tsc_cs_mark_unstable(struct clocksource *cs)
1071 if (tsc_unstable)
1072 return;
1074 tsc_unstable = 1;
1075 if (using_native_sched_clock())
1076 clear_sched_clock_stable();
1077 disable_sched_clock_irqtime();
1078 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1081 static void tsc_cs_tick_stable(struct clocksource *cs)
1083 if (tsc_unstable)
1084 return;
1086 if (using_native_sched_clock())
1087 sched_clock_tick_stable();
1091 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1093 static struct clocksource clocksource_tsc_early = {
1094 .name = "tsc-early",
1095 .rating = 299,
1096 .read = read_tsc,
1097 .mask = CLOCKSOURCE_MASK(64),
1098 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1099 CLOCK_SOURCE_MUST_VERIFY,
1100 .archdata = { .vclock_mode = VCLOCK_TSC },
1101 .resume = tsc_resume,
1102 .mark_unstable = tsc_cs_mark_unstable,
1103 .tick_stable = tsc_cs_tick_stable,
1104 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1108 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1109 * this one will immediately take over. We will only register if TSC has
1110 * been found good.
1112 static struct clocksource clocksource_tsc = {
1113 .name = "tsc",
1114 .rating = 300,
1115 .read = read_tsc,
1116 .mask = CLOCKSOURCE_MASK(64),
1117 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1118 CLOCK_SOURCE_VALID_FOR_HRES |
1119 CLOCK_SOURCE_MUST_VERIFY,
1120 .archdata = { .vclock_mode = VCLOCK_TSC },
1121 .resume = tsc_resume,
1122 .mark_unstable = tsc_cs_mark_unstable,
1123 .tick_stable = tsc_cs_tick_stable,
1124 .list = LIST_HEAD_INIT(clocksource_tsc.list),
1127 void mark_tsc_unstable(char *reason)
1129 if (tsc_unstable)
1130 return;
1132 tsc_unstable = 1;
1133 if (using_native_sched_clock())
1134 clear_sched_clock_stable();
1135 disable_sched_clock_irqtime();
1136 pr_info("Marking TSC unstable due to %s\n", reason);
1138 clocksource_mark_unstable(&clocksource_tsc_early);
1139 clocksource_mark_unstable(&clocksource_tsc);
1142 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1144 static void __init check_system_tsc_reliable(void)
1146 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1147 if (is_geode_lx()) {
1148 /* RTSC counts during suspend */
1149 #define RTSC_SUSP 0x100
1150 unsigned long res_low, res_high;
1152 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1153 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1154 if (res_low & RTSC_SUSP)
1155 tsc_clocksource_reliable = 1;
1157 #endif
1158 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1159 tsc_clocksource_reliable = 1;
1163 * Make an educated guess if the TSC is trustworthy and synchronized
1164 * over all CPUs.
1166 int unsynchronized_tsc(void)
1168 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1169 return 1;
1171 #ifdef CONFIG_SMP
1172 if (apic_is_clustered_box())
1173 return 1;
1174 #endif
1176 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1177 return 0;
1179 if (tsc_clocksource_reliable)
1180 return 0;
1182 * Intel systems are normally all synchronized.
1183 * Exceptions must mark TSC as unstable:
1185 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1186 /* assume multi socket systems are not synchronized: */
1187 if (num_possible_cpus() > 1)
1188 return 1;
1191 return 0;
1195 * Convert ART to TSC given numerator/denominator found in detect_art()
1197 struct system_counterval_t convert_art_to_tsc(u64 art)
1199 u64 tmp, res, rem;
1201 rem = do_div(art, art_to_tsc_denominator);
1203 res = art * art_to_tsc_numerator;
1204 tmp = rem * art_to_tsc_numerator;
1206 do_div(tmp, art_to_tsc_denominator);
1207 res += tmp + art_to_tsc_offset;
1209 return (struct system_counterval_t) {.cs = art_related_clocksource,
1210 .cycles = res};
1212 EXPORT_SYMBOL(convert_art_to_tsc);
1215 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1216 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1218 * PTM requires all timestamps to be in units of nanoseconds. When user
1219 * software requests a cross-timestamp, this function converts system timestamp
1220 * to TSC.
1222 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1223 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1224 * that this flag is set before conversion to TSC is attempted.
1226 * Return:
1227 * struct system_counterval_t - system counter value with the pointer to the
1228 * corresponding clocksource
1229 * @cycles: System counter value
1230 * @cs: Clocksource corresponding to system counter value. Used
1231 * by timekeeping code to verify comparibility of two cycle
1232 * values.
1235 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1237 u64 tmp, res, rem;
1239 rem = do_div(art_ns, USEC_PER_SEC);
1241 res = art_ns * tsc_khz;
1242 tmp = rem * tsc_khz;
1244 do_div(tmp, USEC_PER_SEC);
1245 res += tmp;
1247 return (struct system_counterval_t) { .cs = art_related_clocksource,
1248 .cycles = res};
1250 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1253 static void tsc_refine_calibration_work(struct work_struct *work);
1254 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1256 * tsc_refine_calibration_work - Further refine tsc freq calibration
1257 * @work - ignored.
1259 * This functions uses delayed work over a period of a
1260 * second to further refine the TSC freq value. Since this is
1261 * timer based, instead of loop based, we don't block the boot
1262 * process while this longer calibration is done.
1264 * If there are any calibration anomalies (too many SMIs, etc),
1265 * or the refined calibration is off by 1% of the fast early
1266 * calibration, we throw out the new calibration and use the
1267 * early calibration.
1269 static void tsc_refine_calibration_work(struct work_struct *work)
1271 static u64 tsc_start = -1, ref_start;
1272 static int hpet;
1273 u64 tsc_stop, ref_stop, delta;
1274 unsigned long freq;
1275 int cpu;
1277 /* Don't bother refining TSC on unstable systems */
1278 if (tsc_unstable)
1279 goto unreg;
1282 * Since the work is started early in boot, we may be
1283 * delayed the first time we expire. So set the workqueue
1284 * again once we know timers are working.
1286 if (tsc_start == -1) {
1288 * Only set hpet once, to avoid mixing hardware
1289 * if the hpet becomes enabled later.
1291 hpet = is_hpet_enabled();
1292 schedule_delayed_work(&tsc_irqwork, HZ);
1293 tsc_start = tsc_read_refs(&ref_start, hpet);
1294 return;
1297 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1299 /* hpet or pmtimer available ? */
1300 if (ref_start == ref_stop)
1301 goto out;
1303 /* Check, whether the sampling was disturbed by an SMI */
1304 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1305 goto out;
1307 delta = tsc_stop - tsc_start;
1308 delta *= 1000000LL;
1309 if (hpet)
1310 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1311 else
1312 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1314 /* Make sure we're within 1% */
1315 if (abs(tsc_khz - freq) > tsc_khz/100)
1316 goto out;
1318 tsc_khz = freq;
1319 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1320 (unsigned long)tsc_khz / 1000,
1321 (unsigned long)tsc_khz % 1000);
1323 /* Inform the TSC deadline clockevent devices about the recalibration */
1324 lapic_update_tsc_freq();
1326 /* Update the sched_clock() rate to match the clocksource one */
1327 for_each_possible_cpu(cpu)
1328 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1330 out:
1331 if (tsc_unstable)
1332 goto unreg;
1334 if (boot_cpu_has(X86_FEATURE_ART))
1335 art_related_clocksource = &clocksource_tsc;
1336 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1337 unreg:
1338 clocksource_unregister(&clocksource_tsc_early);
1342 static int __init init_tsc_clocksource(void)
1344 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1345 return 0;
1347 if (tsc_unstable)
1348 goto unreg;
1350 if (tsc_clocksource_reliable)
1351 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1353 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1354 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1357 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1358 * the refined calibration and directly register it as a clocksource.
1360 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1361 if (boot_cpu_has(X86_FEATURE_ART))
1362 art_related_clocksource = &clocksource_tsc;
1363 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1364 unreg:
1365 clocksource_unregister(&clocksource_tsc_early);
1366 return 0;
1369 schedule_delayed_work(&tsc_irqwork, 0);
1370 return 0;
1373 * We use device_initcall here, to ensure we run after the hpet
1374 * is fully initialized, which may occur at fs_initcall time.
1376 device_initcall(init_tsc_clocksource);
1378 static bool __init determine_cpu_tsc_frequencies(bool early)
1380 /* Make sure that cpu and tsc are not already calibrated */
1381 WARN_ON(cpu_khz || tsc_khz);
1383 if (early) {
1384 cpu_khz = x86_platform.calibrate_cpu();
1385 tsc_khz = x86_platform.calibrate_tsc();
1386 } else {
1387 /* We should not be here with non-native cpu calibration */
1388 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1389 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1393 * Trust non-zero tsc_khz as authoritative,
1394 * and use it to sanity check cpu_khz,
1395 * which will be off if system timer is off.
1397 if (tsc_khz == 0)
1398 tsc_khz = cpu_khz;
1399 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1400 cpu_khz = tsc_khz;
1402 if (tsc_khz == 0)
1403 return false;
1405 pr_info("Detected %lu.%03lu MHz processor\n",
1406 (unsigned long)cpu_khz / KHZ,
1407 (unsigned long)cpu_khz % KHZ);
1409 if (cpu_khz != tsc_khz) {
1410 pr_info("Detected %lu.%03lu MHz TSC",
1411 (unsigned long)tsc_khz / KHZ,
1412 (unsigned long)tsc_khz % KHZ);
1414 return true;
1417 static unsigned long __init get_loops_per_jiffy(void)
1419 u64 lpj = (u64)tsc_khz * KHZ;
1421 do_div(lpj, HZ);
1422 return lpj;
1425 static void __init tsc_enable_sched_clock(void)
1427 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1428 tsc_store_and_check_tsc_adjust(true);
1429 cyc2ns_init_boot_cpu();
1430 static_branch_enable(&__use_tsc);
1433 void __init tsc_early_init(void)
1435 if (!boot_cpu_has(X86_FEATURE_TSC))
1436 return;
1437 /* Don't change UV TSC multi-chassis synchronization */
1438 if (is_early_uv_system())
1439 return;
1440 if (!determine_cpu_tsc_frequencies(true))
1441 return;
1442 loops_per_jiffy = get_loops_per_jiffy();
1444 tsc_enable_sched_clock();
1447 void __init tsc_init(void)
1450 * native_calibrate_cpu_early can only calibrate using methods that are
1451 * available early in boot.
1453 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1454 x86_platform.calibrate_cpu = native_calibrate_cpu;
1456 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1457 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1458 return;
1461 if (!tsc_khz) {
1462 /* We failed to determine frequencies earlier, try again */
1463 if (!determine_cpu_tsc_frequencies(false)) {
1464 mark_tsc_unstable("could not calculate TSC khz");
1465 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1466 return;
1468 tsc_enable_sched_clock();
1471 cyc2ns_init_secondary_cpus();
1473 if (!no_sched_irq_time)
1474 enable_sched_clock_irqtime();
1476 lpj_fine = get_loops_per_jiffy();
1477 use_tsc_delay();
1479 check_system_tsc_reliable();
1481 if (unsynchronized_tsc()) {
1482 mark_tsc_unstable("TSCs unsynchronized");
1483 return;
1486 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1487 detect_art();
1490 #ifdef CONFIG_SMP
1492 * If we have a constant TSC and are using the TSC for the delay loop,
1493 * we can skip clock calibration if another cpu in the same socket has already
1494 * been calibrated. This assumes that CONSTANT_TSC applies to all
1495 * cpus in the socket - this should be a safe assumption.
1497 unsigned long calibrate_delay_is_known(void)
1499 int sibling, cpu = smp_processor_id();
1500 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1501 const struct cpumask *mask = topology_core_cpumask(cpu);
1503 if (!constant_tsc || !mask)
1504 return 0;
1506 sibling = cpumask_any_but(mask, cpu);
1507 if (sibling < nr_cpu_ids)
1508 return cpu_data(sibling).loops_per_jiffy;
1509 return 0;
1511 #endif