2 * Utility functions for x86 operand and address decoding
4 * Copyright (C) Intel Corporation 2017
6 #include <linux/kernel.h>
7 #include <linux/string.h>
8 #include <linux/ratelimit.h>
9 #include <linux/mmu_context.h>
10 #include <asm/desc_defs.h>
14 #include <asm/insn-eval.h>
19 #define pr_fmt(fmt) "insn: " fmt
28 * is_string_insn() - Determine if instruction is a string instruction
29 * @insn: Instruction containing the opcode to inspect
33 * true if the instruction, determined by the opcode, is any of the
34 * string instructions as defined in the Intel Software Development manual.
37 static bool is_string_insn(struct insn
*insn
)
39 insn_get_opcode(insn
);
41 /* All string instructions have a 1-byte opcode. */
42 if (insn
->opcode
.nbytes
!= 1)
45 switch (insn
->opcode
.bytes
[0]) {
46 case 0x6c ... 0x6f: /* INS, OUTS */
47 case 0xa4 ... 0xa7: /* MOVS, CMPS */
48 case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
56 * get_seg_reg_override_idx() - obtain segment register override index
57 * @insn: Valid instruction with segment override prefixes
59 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
63 * A constant identifying the segment register to use, among CS, SS, DS,
64 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
65 * prefixes were found.
67 * -EINVAL in case of error.
69 static int get_seg_reg_override_idx(struct insn
*insn
)
71 int idx
= INAT_SEG_REG_DEFAULT
;
72 int num_overrides
= 0, i
;
74 insn_get_prefixes(insn
);
76 /* Look for any segment override prefixes. */
77 for (i
= 0; i
< insn
->prefixes
.nbytes
; i
++) {
80 attr
= inat_get_opcode_attribute(insn
->prefixes
.bytes
[i
]);
82 case INAT_MAKE_PREFIX(INAT_PFX_CS
):
83 idx
= INAT_SEG_REG_CS
;
86 case INAT_MAKE_PREFIX(INAT_PFX_SS
):
87 idx
= INAT_SEG_REG_SS
;
90 case INAT_MAKE_PREFIX(INAT_PFX_DS
):
91 idx
= INAT_SEG_REG_DS
;
94 case INAT_MAKE_PREFIX(INAT_PFX_ES
):
95 idx
= INAT_SEG_REG_ES
;
98 case INAT_MAKE_PREFIX(INAT_PFX_FS
):
99 idx
= INAT_SEG_REG_FS
;
102 case INAT_MAKE_PREFIX(INAT_PFX_GS
):
103 idx
= INAT_SEG_REG_GS
;
106 /* No default action needed. */
110 /* More than one segment override prefix leads to undefined behavior. */
111 if (num_overrides
> 1)
118 * check_seg_overrides() - check if segment override prefixes are allowed
119 * @insn: Valid instruction with segment override prefixes
120 * @regoff: Operand offset, in pt_regs, for which the check is performed
122 * For a particular register used in register-indirect addressing, determine if
123 * segment override prefixes can be used. Specifically, no overrides are allowed
124 * for rDI if used with a string instruction.
128 * True if segment override prefixes can be used with the register indicated
129 * in @regoff. False if otherwise.
131 static bool check_seg_overrides(struct insn
*insn
, int regoff
)
133 if (regoff
== offsetof(struct pt_regs
, di
) && is_string_insn(insn
))
140 * resolve_default_seg() - resolve default segment register index for an operand
141 * @insn: Instruction with opcode and address size. Must be valid.
142 * @regs: Register values as seen when entering kernel mode
143 * @off: Operand offset, in pt_regs, for which resolution is needed
145 * Resolve the default segment register index associated with the instruction
146 * operand register indicated by @off. Such index is resolved based on defaults
147 * described in the Intel Software Development Manual.
151 * If in protected mode, a constant identifying the segment register to use,
152 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
154 * -EINVAL in case of error.
156 static int resolve_default_seg(struct insn
*insn
, struct pt_regs
*regs
, int off
)
158 if (user_64bit_mode(regs
))
159 return INAT_SEG_REG_IGNORE
;
161 * Resolve the default segment register as described in Section 3.7.4
162 * of the Intel Software Development Manual Vol. 1:
164 * + DS for all references involving r[ABCD]X, and rSI.
165 * + If used in a string instruction, ES for rDI. Otherwise, DS.
166 * + AX, CX and DX are not valid register operands in 16-bit address
167 * encodings but are valid for 32-bit and 64-bit encodings.
168 * + -EDOM is reserved to identify for cases in which no register
169 * is used (i.e., displacement-only addressing). Use DS.
170 * + SS for rSP or rBP.
175 case offsetof(struct pt_regs
, ax
):
176 case offsetof(struct pt_regs
, cx
):
177 case offsetof(struct pt_regs
, dx
):
178 /* Need insn to verify address size. */
179 if (insn
->addr_bytes
== 2)
183 case offsetof(struct pt_regs
, bx
):
184 case offsetof(struct pt_regs
, si
):
185 return INAT_SEG_REG_DS
;
187 case offsetof(struct pt_regs
, di
):
188 if (is_string_insn(insn
))
189 return INAT_SEG_REG_ES
;
190 return INAT_SEG_REG_DS
;
192 case offsetof(struct pt_regs
, bp
):
193 case offsetof(struct pt_regs
, sp
):
194 return INAT_SEG_REG_SS
;
196 case offsetof(struct pt_regs
, ip
):
197 return INAT_SEG_REG_CS
;
205 * resolve_seg_reg() - obtain segment register index
206 * @insn: Instruction with operands
207 * @regs: Register values as seen when entering kernel mode
208 * @regoff: Operand offset, in pt_regs, used to deterimine segment register
210 * Determine the segment register associated with the operands and, if
211 * applicable, prefixes and the instruction pointed by @insn.
213 * The segment register associated to an operand used in register-indirect
214 * addressing depends on:
216 * a) Whether running in long mode (in such a case segments are ignored, except
217 * if FS or GS are used).
219 * b) Whether segment override prefixes can be used. Certain instructions and
220 * registers do not allow override prefixes.
222 * c) Whether segment overrides prefixes are found in the instruction prefixes.
224 * d) If there are not segment override prefixes or they cannot be used, the
225 * default segment register associated with the operand register is used.
227 * The function checks first if segment override prefixes can be used with the
228 * operand indicated by @regoff. If allowed, obtain such overridden segment
229 * register index. Lastly, if not prefixes were found or cannot be used, resolve
230 * the segment register index to use based on the defaults described in the
231 * Intel documentation. In long mode, all segment register indexes will be
232 * ignored, except if overrides were found for FS or GS. All these operations
233 * are done using helper functions.
235 * The operand register, @regoff, is represented as the offset from the base of
238 * As stated, the main use of this function is to determine the segment register
239 * index based on the instruction, its operands and prefixes. Hence, @insn
240 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
241 * @insn at all as in this case CS is used in all cases. This case is checked
242 * before proceeding further.
244 * Please note that this function does not return the value in the segment
245 * register (i.e., the segment selector) but our defined index. The segment
246 * selector needs to be obtained using get_segment_selector() and passing the
247 * segment register index resolved by this function.
251 * An index identifying the segment register to use, among CS, SS, DS,
252 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
254 * -EINVAL in case of error.
256 static int resolve_seg_reg(struct insn
*insn
, struct pt_regs
*regs
, int regoff
)
261 * In the unlikely event of having to resolve the segment register
262 * index for rIP, do it first. Segment override prefixes should not
263 * be used. Hence, it is not necessary to inspect the instruction,
264 * which may be invalid at this point.
266 if (regoff
== offsetof(struct pt_regs
, ip
)) {
267 if (user_64bit_mode(regs
))
268 return INAT_SEG_REG_IGNORE
;
270 return INAT_SEG_REG_CS
;
276 if (!check_seg_overrides(insn
, regoff
))
277 return resolve_default_seg(insn
, regs
, regoff
);
279 idx
= get_seg_reg_override_idx(insn
);
283 if (idx
== INAT_SEG_REG_DEFAULT
)
284 return resolve_default_seg(insn
, regs
, regoff
);
287 * In long mode, segment override prefixes are ignored, except for
288 * overrides for FS and GS.
290 if (user_64bit_mode(regs
)) {
291 if (idx
!= INAT_SEG_REG_FS
&&
292 idx
!= INAT_SEG_REG_GS
)
293 idx
= INAT_SEG_REG_IGNORE
;
300 * get_segment_selector() - obtain segment selector
301 * @regs: Register values as seen when entering kernel mode
302 * @seg_reg_idx: Segment register index to use
304 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
305 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
306 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
307 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
308 * registers. This done for only for completeness as in CONFIG_X86_64 segment
309 * registers are ignored.
313 * Value of the segment selector, including null when running in
318 static short get_segment_selector(struct pt_regs
*regs
, int seg_reg_idx
)
323 switch (seg_reg_idx
) {
324 case INAT_SEG_REG_IGNORE
:
326 case INAT_SEG_REG_CS
:
327 return (unsigned short)(regs
->cs
& 0xffff);
328 case INAT_SEG_REG_SS
:
329 return (unsigned short)(regs
->ss
& 0xffff);
330 case INAT_SEG_REG_DS
:
331 savesegment(ds
, sel
);
333 case INAT_SEG_REG_ES
:
334 savesegment(es
, sel
);
336 case INAT_SEG_REG_FS
:
337 savesegment(fs
, sel
);
339 case INAT_SEG_REG_GS
:
340 savesegment(gs
, sel
);
345 #else /* CONFIG_X86_32 */
346 struct kernel_vm86_regs
*vm86regs
= (struct kernel_vm86_regs
*)regs
;
348 if (v8086_mode(regs
)) {
349 switch (seg_reg_idx
) {
350 case INAT_SEG_REG_CS
:
351 return (unsigned short)(regs
->cs
& 0xffff);
352 case INAT_SEG_REG_SS
:
353 return (unsigned short)(regs
->ss
& 0xffff);
354 case INAT_SEG_REG_DS
:
356 case INAT_SEG_REG_ES
:
358 case INAT_SEG_REG_FS
:
360 case INAT_SEG_REG_GS
:
362 case INAT_SEG_REG_IGNORE
:
369 switch (seg_reg_idx
) {
370 case INAT_SEG_REG_CS
:
371 return (unsigned short)(regs
->cs
& 0xffff);
372 case INAT_SEG_REG_SS
:
373 return (unsigned short)(regs
->ss
& 0xffff);
374 case INAT_SEG_REG_DS
:
375 return (unsigned short)(regs
->ds
& 0xffff);
376 case INAT_SEG_REG_ES
:
377 return (unsigned short)(regs
->es
& 0xffff);
378 case INAT_SEG_REG_FS
:
379 return (unsigned short)(regs
->fs
& 0xffff);
380 case INAT_SEG_REG_GS
:
382 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
383 * The macro below takes care of both cases.
385 return get_user_gs(regs
);
386 case INAT_SEG_REG_IGNORE
:
391 #endif /* CONFIG_X86_64 */
394 static int get_reg_offset(struct insn
*insn
, struct pt_regs
*regs
,
399 static const int regoff
[] = {
400 offsetof(struct pt_regs
, ax
),
401 offsetof(struct pt_regs
, cx
),
402 offsetof(struct pt_regs
, dx
),
403 offsetof(struct pt_regs
, bx
),
404 offsetof(struct pt_regs
, sp
),
405 offsetof(struct pt_regs
, bp
),
406 offsetof(struct pt_regs
, si
),
407 offsetof(struct pt_regs
, di
),
409 offsetof(struct pt_regs
, r8
),
410 offsetof(struct pt_regs
, r9
),
411 offsetof(struct pt_regs
, r10
),
412 offsetof(struct pt_regs
, r11
),
413 offsetof(struct pt_regs
, r12
),
414 offsetof(struct pt_regs
, r13
),
415 offsetof(struct pt_regs
, r14
),
416 offsetof(struct pt_regs
, r15
),
419 int nr_registers
= ARRAY_SIZE(regoff
);
421 * Don't possibly decode a 32-bit instructions as
422 * reading a 64-bit-only register.
424 if (IS_ENABLED(CONFIG_X86_64
) && !insn
->x86_64
)
429 regno
= X86_MODRM_RM(insn
->modrm
.value
);
432 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
433 * follows the ModRM byte.
435 if (!X86_MODRM_MOD(insn
->modrm
.value
) && regno
== 5)
438 if (X86_REX_B(insn
->rex_prefix
.value
))
443 regno
= X86_SIB_INDEX(insn
->sib
.value
);
444 if (X86_REX_X(insn
->rex_prefix
.value
))
448 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
449 * portion of the address computation is null. This is
450 * true only if REX.X is 0. In such a case, the SIB index
451 * is used in the address computation.
453 if (X86_MODRM_MOD(insn
->modrm
.value
) != 3 && regno
== 4)
458 regno
= X86_SIB_BASE(insn
->sib
.value
);
460 * If ModRM.mod is 0 and SIB.base == 5, the base of the
461 * register-indirect addressing is 0. In this case, a
462 * 32-bit displacement follows the SIB byte.
464 if (!X86_MODRM_MOD(insn
->modrm
.value
) && regno
== 5)
467 if (X86_REX_B(insn
->rex_prefix
.value
))
472 pr_err_ratelimited("invalid register type: %d\n", type
);
476 if (regno
>= nr_registers
) {
477 WARN_ONCE(1, "decoded an instruction with an invalid register");
480 return regoff
[regno
];
484 * get_reg_offset_16() - Obtain offset of register indicated by instruction
485 * @insn: Instruction containing ModRM byte
486 * @regs: Register values as seen when entering kernel mode
487 * @offs1: Offset of the first operand register
488 * @offs2: Offset of the second opeand register, if applicable
490 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
491 * in @insn. This function is to be used with 16-bit address encodings. The
492 * @offs1 and @offs2 will be written with the offset of the two registers
493 * indicated by the instruction. In cases where any of the registers is not
494 * referenced by the instruction, the value will be set to -EDOM.
498 * 0 on success, -EINVAL on error.
500 static int get_reg_offset_16(struct insn
*insn
, struct pt_regs
*regs
,
501 int *offs1
, int *offs2
)
504 * 16-bit addressing can use one or two registers. Specifics of
505 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
506 * ModR/M Byte" of the Intel Software Development Manual.
508 static const int regoff1
[] = {
509 offsetof(struct pt_regs
, bx
),
510 offsetof(struct pt_regs
, bx
),
511 offsetof(struct pt_regs
, bp
),
512 offsetof(struct pt_regs
, bp
),
513 offsetof(struct pt_regs
, si
),
514 offsetof(struct pt_regs
, di
),
515 offsetof(struct pt_regs
, bp
),
516 offsetof(struct pt_regs
, bx
),
519 static const int regoff2
[] = {
520 offsetof(struct pt_regs
, si
),
521 offsetof(struct pt_regs
, di
),
522 offsetof(struct pt_regs
, si
),
523 offsetof(struct pt_regs
, di
),
530 if (!offs1
|| !offs2
)
533 /* Operand is a register, use the generic function. */
534 if (X86_MODRM_MOD(insn
->modrm
.value
) == 3) {
535 *offs1
= insn_get_modrm_rm_off(insn
, regs
);
540 *offs1
= regoff1
[X86_MODRM_RM(insn
->modrm
.value
)];
541 *offs2
= regoff2
[X86_MODRM_RM(insn
->modrm
.value
)];
544 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
545 * only addressing. This means that no registers are involved in
546 * computing the effective address. Thus, ensure that the first
547 * register offset is invalild. The second register offset is already
548 * invalid under the aforementioned conditions.
550 if ((X86_MODRM_MOD(insn
->modrm
.value
) == 0) &&
551 (X86_MODRM_RM(insn
->modrm
.value
) == 6))
558 * get_desc() - Obtain pointer to a segment descriptor
559 * @sel: Segment selector
561 * Given a segment selector, obtain a pointer to the segment descriptor.
562 * Both global and local descriptor tables are supported.
566 * Pointer to segment descriptor on success.
570 static struct desc_struct
*get_desc(unsigned short sel
)
572 struct desc_ptr gdt_desc
= {0, 0};
573 unsigned long desc_base
;
575 #ifdef CONFIG_MODIFY_LDT_SYSCALL
576 if ((sel
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
577 struct desc_struct
*desc
= NULL
;
578 struct ldt_struct
*ldt
;
580 /* Bits [15:3] contain the index of the desired entry. */
583 mutex_lock(¤t
->active_mm
->context
.lock
);
584 ldt
= current
->active_mm
->context
.ldt
;
585 if (ldt
&& sel
< ldt
->nr_entries
)
586 desc
= &ldt
->entries
[sel
];
588 mutex_unlock(¤t
->active_mm
->context
.lock
);
593 native_store_gdt(&gdt_desc
);
596 * Segment descriptors have a size of 8 bytes. Thus, the index is
597 * multiplied by 8 to obtain the memory offset of the desired descriptor
598 * from the base of the GDT. As bits [15:3] of the segment selector
599 * contain the index, it can be regarded as multiplied by 8 already.
600 * All that remains is to clear bits [2:0].
602 desc_base
= sel
& ~(SEGMENT_RPL_MASK
| SEGMENT_TI_MASK
);
604 if (desc_base
> gdt_desc
.size
)
607 return (struct desc_struct
*)(gdt_desc
.address
+ desc_base
);
611 * insn_get_seg_base() - Obtain base address of segment descriptor.
612 * @regs: Register values as seen when entering kernel mode
613 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
615 * Obtain the base address of the segment as indicated by the segment descriptor
616 * pointed by the segment selector. The segment selector is obtained from the
617 * input segment register index @seg_reg_idx.
621 * In protected mode, base address of the segment. Zero in long mode,
622 * except when FS or GS are used. In virtual-8086 mode, the segment
623 * selector shifted 4 bits to the right.
625 * -1L in case of error.
627 unsigned long insn_get_seg_base(struct pt_regs
*regs
, int seg_reg_idx
)
629 struct desc_struct
*desc
;
632 sel
= get_segment_selector(regs
, seg_reg_idx
);
636 if (v8086_mode(regs
))
638 * Base is simply the segment selector shifted 4
641 return (unsigned long)(sel
<< 4);
643 if (user_64bit_mode(regs
)) {
645 * Only FS or GS will have a base address, the rest of
646 * the segments' bases are forced to 0.
650 if (seg_reg_idx
== INAT_SEG_REG_FS
)
651 rdmsrl(MSR_FS_BASE
, base
);
652 else if (seg_reg_idx
== INAT_SEG_REG_GS
)
654 * swapgs was called at the kernel entry point. Thus,
655 * MSR_KERNEL_GS_BASE will have the user-space GS base.
657 rdmsrl(MSR_KERNEL_GS_BASE
, base
);
663 /* In protected mode the segment selector cannot be null. */
667 desc
= get_desc(sel
);
671 return get_desc_base(desc
);
675 * get_seg_limit() - Obtain the limit of a segment descriptor
676 * @regs: Register values as seen when entering kernel mode
677 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
679 * Obtain the limit of the segment as indicated by the segment descriptor
680 * pointed by the segment selector. The segment selector is obtained from the
681 * input segment register index @seg_reg_idx.
685 * In protected mode, the limit of the segment descriptor in bytes.
686 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
687 * limit is returned as -1L to imply a limit-less segment.
689 * Zero is returned on error.
691 static unsigned long get_seg_limit(struct pt_regs
*regs
, int seg_reg_idx
)
693 struct desc_struct
*desc
;
697 sel
= get_segment_selector(regs
, seg_reg_idx
);
701 if (user_64bit_mode(regs
) || v8086_mode(regs
))
707 desc
= get_desc(sel
);
712 * If the granularity bit is set, the limit is given in multiples
713 * of 4096. This also means that the 12 least significant bits are
714 * not tested when checking the segment limits. In practice,
715 * this means that the segment ends in (limit << 12) + 0xfff.
717 limit
= get_desc_limit(desc
);
719 limit
= (limit
<< 12) + 0xfff;
725 * insn_get_code_seg_params() - Obtain code segment parameters
726 * @regs: Structure with register values as seen when entering kernel mode
728 * Obtain address and operand sizes of the code segment. It is obtained from the
729 * selector contained in the CS register in regs. In protected mode, the default
730 * address is determined by inspecting the L and D bits of the segment
731 * descriptor. In virtual-8086 mode, the default is always two bytes for both
732 * address and operand sizes.
736 * An int containing ORed-in default parameters on success.
740 int insn_get_code_seg_params(struct pt_regs
*regs
)
742 struct desc_struct
*desc
;
745 if (v8086_mode(regs
))
746 /* Address and operand size are both 16-bit. */
747 return INSN_CODE_SEG_PARAMS(2, 2);
749 sel
= get_segment_selector(regs
, INAT_SEG_REG_CS
);
753 desc
= get_desc(sel
);
758 * The most significant byte of the Type field of the segment descriptor
759 * determines whether a segment contains data or code. If this is a data
760 * segment, return error.
762 if (!(desc
->type
& BIT(3)))
765 switch ((desc
->l
<< 1) | desc
->d
) {
767 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
770 return INSN_CODE_SEG_PARAMS(2, 2);
772 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
775 return INSN_CODE_SEG_PARAMS(4, 4);
777 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
778 * operand size is 32-bit.
780 return INSN_CODE_SEG_PARAMS(4, 8);
781 case 3: /* Invalid setting. CS.L=1, CS.D=1 */
789 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
790 * @insn: Instruction containing the ModRM byte
791 * @regs: Register values as seen when entering kernel mode
795 * The register indicated by the r/m part of the ModRM byte. The
796 * register is obtained as an offset from the base of pt_regs. In specific
797 * cases, the returned value can be -EDOM to indicate that the particular value
798 * of ModRM does not refer to a register and shall be ignored.
800 int insn_get_modrm_rm_off(struct insn
*insn
, struct pt_regs
*regs
)
802 return get_reg_offset(insn
, regs
, REG_TYPE_RM
);
806 * get_seg_base_limit() - obtain base address and limit of a segment
807 * @insn: Instruction. Must be valid.
808 * @regs: Register values as seen when entering kernel mode
809 * @regoff: Operand offset, in pt_regs, used to resolve segment descriptor
810 * @base: Obtained segment base
811 * @limit: Obtained segment limit
813 * Obtain the base address and limit of the segment associated with the operand
814 * @regoff and, if any or allowed, override prefixes in @insn. This function is
815 * different from insn_get_seg_base() as the latter does not resolve the segment
816 * associated with the instruction operand. If a limit is not needed (e.g.,
817 * when running in long mode), @limit can be NULL.
821 * 0 on success. @base and @limit will contain the base address and of the
822 * resolved segment, respectively.
826 static int get_seg_base_limit(struct insn
*insn
, struct pt_regs
*regs
,
827 int regoff
, unsigned long *base
,
828 unsigned long *limit
)
835 seg_reg_idx
= resolve_seg_reg(insn
, regs
, regoff
);
839 *base
= insn_get_seg_base(regs
, seg_reg_idx
);
846 *limit
= get_seg_limit(regs
, seg_reg_idx
);
854 * get_eff_addr_reg() - Obtain effective address from register operand
855 * @insn: Instruction. Must be valid.
856 * @regs: Register values as seen when entering kernel mode
857 * @regoff: Obtained operand offset, in pt_regs, with the effective address
858 * @eff_addr: Obtained effective address
860 * Obtain the effective address stored in the register operand as indicated by
861 * the ModRM byte. This function is to be used only with register addressing
862 * (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The
863 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
864 * such offset can then be used to resolve the segment associated with the
865 * operand. This function can be used with any of the supported address sizes
870 * 0 on success. @eff_addr will have the effective address stored in the
871 * operand indicated by ModRM. @regoff will have such operand as an offset from
872 * the base of pt_regs.
876 static int get_eff_addr_reg(struct insn
*insn
, struct pt_regs
*regs
,
877 int *regoff
, long *eff_addr
)
879 insn_get_modrm(insn
);
881 if (!insn
->modrm
.nbytes
)
884 if (X86_MODRM_MOD(insn
->modrm
.value
) != 3)
887 *regoff
= get_reg_offset(insn
, regs
, REG_TYPE_RM
);
891 /* Ignore bytes that are outside the address size. */
892 if (insn
->addr_bytes
== 2)
893 *eff_addr
= regs_get_register(regs
, *regoff
) & 0xffff;
894 else if (insn
->addr_bytes
== 4)
895 *eff_addr
= regs_get_register(regs
, *regoff
) & 0xffffffff;
896 else /* 64-bit address */
897 *eff_addr
= regs_get_register(regs
, *regoff
);
903 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
904 * @insn: Instruction. Must be valid.
905 * @regs: Register values as seen when entering kernel mode
906 * @regoff: Obtained operand offset, in pt_regs, associated with segment
907 * @eff_addr: Obtained effective address
909 * Obtain the effective address referenced by the ModRM byte of @insn. After
910 * identifying the registers involved in the register-indirect memory reference,
911 * its value is obtained from the operands in @regs. The computed address is
912 * stored @eff_addr. Also, the register operand that indicates the associated
913 * segment is stored in @regoff, this parameter can later be used to determine
918 * 0 on success. @eff_addr will have the referenced effective address. @regoff
919 * will have a register, as an offset from the base of pt_regs, that can be used
920 * to resolve the associated segment.
924 static int get_eff_addr_modrm(struct insn
*insn
, struct pt_regs
*regs
,
925 int *regoff
, long *eff_addr
)
929 if (insn
->addr_bytes
!= 8 && insn
->addr_bytes
!= 4)
932 insn_get_modrm(insn
);
934 if (!insn
->modrm
.nbytes
)
937 if (X86_MODRM_MOD(insn
->modrm
.value
) > 2)
940 *regoff
= get_reg_offset(insn
, regs
, REG_TYPE_RM
);
943 * -EDOM means that we must ignore the address_offset. In such a case,
944 * in 64-bit mode the effective address relative to the rIP of the
945 * following instruction.
947 if (*regoff
== -EDOM
) {
948 if (user_64bit_mode(regs
))
949 tmp
= regs
->ip
+ insn
->length
;
952 } else if (*regoff
< 0) {
955 tmp
= regs_get_register(regs
, *regoff
);
958 if (insn
->addr_bytes
== 4) {
959 int addr32
= (int)(tmp
& 0xffffffff) + insn
->displacement
.value
;
961 *eff_addr
= addr32
& 0xffffffff;
963 *eff_addr
= tmp
+ insn
->displacement
.value
;
970 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
971 * @insn: Instruction. Must be valid.
972 * @regs: Register values as seen when entering kernel mode
973 * @regoff: Obtained operand offset, in pt_regs, associated with segment
974 * @eff_addr: Obtained effective address
976 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
977 * After identifying the registers involved in the register-indirect memory
978 * reference, its value is obtained from the operands in @regs. The computed
979 * address is stored @eff_addr. Also, the register operand that indicates
980 * the associated segment is stored in @regoff, this parameter can later be used
981 * to determine such segment.
985 * 0 on success. @eff_addr will have the referenced effective address. @regoff
986 * will have a register, as an offset from the base of pt_regs, that can be used
987 * to resolve the associated segment.
991 static int get_eff_addr_modrm_16(struct insn
*insn
, struct pt_regs
*regs
,
992 int *regoff
, short *eff_addr
)
994 int addr_offset1
, addr_offset2
, ret
;
995 short addr1
= 0, addr2
= 0, displacement
;
997 if (insn
->addr_bytes
!= 2)
1000 insn_get_modrm(insn
);
1002 if (!insn
->modrm
.nbytes
)
1005 if (X86_MODRM_MOD(insn
->modrm
.value
) > 2)
1008 ret
= get_reg_offset_16(insn
, regs
, &addr_offset1
, &addr_offset2
);
1013 * Don't fail on invalid offset values. They might be invalid because
1014 * they cannot be used for this particular value of ModRM. Instead, use
1015 * them in the computation only if they contain a valid value.
1017 if (addr_offset1
!= -EDOM
)
1018 addr1
= regs_get_register(regs
, addr_offset1
) & 0xffff;
1020 if (addr_offset2
!= -EDOM
)
1021 addr2
= regs_get_register(regs
, addr_offset2
) & 0xffff;
1023 displacement
= insn
->displacement
.value
& 0xffff;
1024 *eff_addr
= addr1
+ addr2
+ displacement
;
1027 * The first operand register could indicate to use of either SS or DS
1028 * registers to obtain the segment selector. The second operand
1029 * register can only indicate the use of DS. Thus, the first operand
1030 * will be used to obtain the segment selector.
1032 *regoff
= addr_offset1
;
1038 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1039 * @insn: Instruction. Must be valid.
1040 * @regs: Register values as seen when entering kernel mode
1041 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1042 * @eff_addr: Obtained effective address
1044 * Obtain the effective address referenced by the SIB byte of @insn. After
1045 * identifying the registers involved in the indexed, register-indirect memory
1046 * reference, its value is obtained from the operands in @regs. The computed
1047 * address is stored @eff_addr. Also, the register operand that indicates the
1048 * associated segment is stored in @regoff, this parameter can later be used to
1049 * determine such segment.
1053 * 0 on success. @eff_addr will have the referenced effective address.
1054 * @base_offset will have a register, as an offset from the base of pt_regs,
1055 * that can be used to resolve the associated segment.
1059 static int get_eff_addr_sib(struct insn
*insn
, struct pt_regs
*regs
,
1060 int *base_offset
, long *eff_addr
)
1065 if (insn
->addr_bytes
!= 8 && insn
->addr_bytes
!= 4)
1068 insn_get_modrm(insn
);
1070 if (!insn
->modrm
.nbytes
)
1073 if (X86_MODRM_MOD(insn
->modrm
.value
) > 2)
1078 if (!insn
->sib
.nbytes
)
1081 *base_offset
= get_reg_offset(insn
, regs
, REG_TYPE_BASE
);
1082 indx_offset
= get_reg_offset(insn
, regs
, REG_TYPE_INDEX
);
1085 * Negative values in the base and index offset means an error when
1086 * decoding the SIB byte. Except -EDOM, which means that the registers
1087 * should not be used in the address computation.
1089 if (*base_offset
== -EDOM
)
1091 else if (*base_offset
< 0)
1094 base
= regs_get_register(regs
, *base_offset
);
1096 if (indx_offset
== -EDOM
)
1098 else if (indx_offset
< 0)
1101 indx
= regs_get_register(regs
, indx_offset
);
1103 if (insn
->addr_bytes
== 4) {
1104 int addr32
, base32
, idx32
;
1106 base32
= base
& 0xffffffff;
1107 idx32
= indx
& 0xffffffff;
1109 addr32
= base32
+ idx32
* (1 << X86_SIB_SCALE(insn
->sib
.value
));
1110 addr32
+= insn
->displacement
.value
;
1112 *eff_addr
= addr32
& 0xffffffff;
1114 *eff_addr
= base
+ indx
* (1 << X86_SIB_SCALE(insn
->sib
.value
));
1115 *eff_addr
+= insn
->displacement
.value
;
1122 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1123 * @insn: Instruction containing ModRM byte and displacement
1124 * @regs: Register values as seen when entering kernel mode
1126 * This function is to be used with 16-bit address encodings. Obtain the memory
1127 * address referred by the instruction's ModRM and displacement bytes. Also, the
1128 * segment used as base is determined by either any segment override prefixes in
1129 * @insn or the default segment of the registers involved in the address
1130 * computation. In protected mode, segment limits are enforced.
1134 * Linear address referenced by the instruction operands on success.
1138 static void __user
*get_addr_ref_16(struct insn
*insn
, struct pt_regs
*regs
)
1140 unsigned long linear_addr
= -1L, seg_base
, seg_limit
;
1145 insn_get_modrm(insn
);
1146 insn_get_displacement(insn
);
1148 if (insn
->addr_bytes
!= 2)
1151 if (X86_MODRM_MOD(insn
->modrm
.value
) == 3) {
1152 ret
= get_eff_addr_reg(insn
, regs
, ®off
, &tmp
);
1158 ret
= get_eff_addr_modrm_16(insn
, regs
, ®off
, &eff_addr
);
1163 ret
= get_seg_base_limit(insn
, regs
, regoff
, &seg_base
, &seg_limit
);
1168 * Before computing the linear address, make sure the effective address
1169 * is within the limits of the segment. In virtual-8086 mode, segment
1170 * limits are not enforced. In such a case, the segment limit is -1L to
1171 * reflect this fact.
1173 if ((unsigned long)(eff_addr
& 0xffff) > seg_limit
)
1176 linear_addr
= (unsigned long)(eff_addr
& 0xffff) + seg_base
;
1178 /* Limit linear address to 20 bits */
1179 if (v8086_mode(regs
))
1180 linear_addr
&= 0xfffff;
1183 return (void __user
*)linear_addr
;
1187 * get_addr_ref_32() - Obtain a 32-bit linear address
1188 * @insn: Instruction with ModRM, SIB bytes and displacement
1189 * @regs: Register values as seen when entering kernel mode
1191 * This function is to be used with 32-bit address encodings to obtain the
1192 * linear memory address referred by the instruction's ModRM, SIB,
1193 * displacement bytes and segment base address, as applicable. If in protected
1194 * mode, segment limits are enforced.
1198 * Linear address referenced by instruction and registers on success.
1202 static void __user
*get_addr_ref_32(struct insn
*insn
, struct pt_regs
*regs
)
1204 unsigned long linear_addr
= -1L, seg_base
, seg_limit
;
1205 int eff_addr
, regoff
;
1209 if (insn
->addr_bytes
!= 4)
1212 if (X86_MODRM_MOD(insn
->modrm
.value
) == 3) {
1213 ret
= get_eff_addr_reg(insn
, regs
, ®off
, &tmp
);
1220 if (insn
->sib
.nbytes
) {
1221 ret
= get_eff_addr_sib(insn
, regs
, ®off
, &tmp
);
1227 ret
= get_eff_addr_modrm(insn
, regs
, ®off
, &tmp
);
1235 ret
= get_seg_base_limit(insn
, regs
, regoff
, &seg_base
, &seg_limit
);
1240 * In protected mode, before computing the linear address, make sure
1241 * the effective address is within the limits of the segment.
1242 * 32-bit addresses can be used in long and virtual-8086 modes if an
1243 * address override prefix is used. In such cases, segment limits are
1244 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1245 * to reflect this situation.
1247 * After computed, the effective address is treated as an unsigned
1250 if (!user_64bit_mode(regs
) && ((unsigned int)eff_addr
> seg_limit
))
1254 * Even though 32-bit address encodings are allowed in virtual-8086
1255 * mode, the address range is still limited to [0x-0xffff].
1257 if (v8086_mode(regs
) && (eff_addr
& ~0xffff))
1261 * Data type long could be 64 bits in size. Ensure that our 32-bit
1262 * effective address is not sign-extended when computing the linear
1265 linear_addr
= (unsigned long)(eff_addr
& 0xffffffff) + seg_base
;
1267 /* Limit linear address to 20 bits */
1268 if (v8086_mode(regs
))
1269 linear_addr
&= 0xfffff;
1272 return (void __user
*)linear_addr
;
1276 * get_addr_ref_64() - Obtain a 64-bit linear address
1277 * @insn: Instruction struct with ModRM and SIB bytes and displacement
1278 * @regs: Structure with register values as seen when entering kernel mode
1280 * This function is to be used with 64-bit address encodings to obtain the
1281 * linear memory address referred by the instruction's ModRM, SIB,
1282 * displacement bytes and segment base address, as applicable.
1286 * Linear address referenced by instruction and registers on success.
1290 #ifndef CONFIG_X86_64
1291 static void __user
*get_addr_ref_64(struct insn
*insn
, struct pt_regs
*regs
)
1293 return (void __user
*)-1L;
1296 static void __user
*get_addr_ref_64(struct insn
*insn
, struct pt_regs
*regs
)
1298 unsigned long linear_addr
= -1L, seg_base
;
1302 if (insn
->addr_bytes
!= 8)
1305 if (X86_MODRM_MOD(insn
->modrm
.value
) == 3) {
1306 ret
= get_eff_addr_reg(insn
, regs
, ®off
, &eff_addr
);
1311 if (insn
->sib
.nbytes
) {
1312 ret
= get_eff_addr_sib(insn
, regs
, ®off
, &eff_addr
);
1316 ret
= get_eff_addr_modrm(insn
, regs
, ®off
, &eff_addr
);
1323 ret
= get_seg_base_limit(insn
, regs
, regoff
, &seg_base
, NULL
);
1327 linear_addr
= (unsigned long)eff_addr
+ seg_base
;
1330 return (void __user
*)linear_addr
;
1332 #endif /* CONFIG_X86_64 */
1335 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1336 * @insn: Instruction structure containing ModRM byte and displacement
1337 * @regs: Structure with register values as seen when entering kernel mode
1339 * Obtain the linear address referred by the instruction's ModRM, SIB and
1340 * displacement bytes, and segment base, as applicable. In protected mode,
1341 * segment limits are enforced.
1345 * Linear address referenced by instruction and registers on success.
1349 void __user
*insn_get_addr_ref(struct insn
*insn
, struct pt_regs
*regs
)
1352 return (void __user
*)-1L;
1354 switch (insn
->addr_bytes
) {
1356 return get_addr_ref_16(insn
, regs
);
1358 return get_addr_ref_32(insn
, regs
);
1360 return get_addr_ref_64(insn
, regs
);
1362 return (void __user
*)-1L;