hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / mm / extable.c
blob6521134057e8f9ef34dbfaf8a0a4e46672a32d3c
1 #include <linux/extable.h>
2 #include <linux/uaccess.h>
3 #include <linux/sched/debug.h>
4 #include <xen/xen.h>
6 #include <asm/fpu/internal.h>
7 #include <asm/traps.h>
8 #include <asm/kdebug.h>
10 typedef bool (*ex_handler_t)(const struct exception_table_entry *,
11 struct pt_regs *, int, unsigned long,
12 unsigned long);
14 static inline unsigned long
15 ex_fixup_addr(const struct exception_table_entry *x)
17 return (unsigned long)&x->fixup + x->fixup;
19 static inline ex_handler_t
20 ex_fixup_handler(const struct exception_table_entry *x)
22 return (ex_handler_t)((unsigned long)&x->handler + x->handler);
25 __visible bool ex_handler_default(const struct exception_table_entry *fixup,
26 struct pt_regs *regs, int trapnr,
27 unsigned long error_code,
28 unsigned long fault_addr)
30 regs->ip = ex_fixup_addr(fixup);
31 return true;
33 EXPORT_SYMBOL(ex_handler_default);
35 __visible bool ex_handler_fault(const struct exception_table_entry *fixup,
36 struct pt_regs *regs, int trapnr,
37 unsigned long error_code,
38 unsigned long fault_addr)
40 regs->ip = ex_fixup_addr(fixup);
41 regs->ax = trapnr;
42 return true;
44 EXPORT_SYMBOL_GPL(ex_handler_fault);
47 * Handler for UD0 exception following a failed test against the
48 * result of a refcount inc/dec/add/sub.
50 __visible bool ex_handler_refcount(const struct exception_table_entry *fixup,
51 struct pt_regs *regs, int trapnr,
52 unsigned long error_code,
53 unsigned long fault_addr)
55 /* First unconditionally saturate the refcount. */
56 *(int *)regs->cx = INT_MIN / 2;
59 * Strictly speaking, this reports the fixup destination, not
60 * the fault location, and not the actually overflowing
61 * instruction, which is the instruction before the "js", but
62 * since that instruction could be a variety of lengths, just
63 * report the location after the overflow, which should be close
64 * enough for finding the overflow, as it's at least back in
65 * the function, having returned from .text.unlikely.
67 regs->ip = ex_fixup_addr(fixup);
70 * This function has been called because either a negative refcount
71 * value was seen by any of the refcount functions, or a zero
72 * refcount value was seen by refcount_dec().
74 * If we crossed from INT_MAX to INT_MIN, OF (Overflow Flag: result
75 * wrapped around) will be set. Additionally, seeing the refcount
76 * reach 0 will set ZF (Zero Flag: result was zero). In each of
77 * these cases we want a report, since it's a boundary condition.
78 * The SF case is not reported since it indicates post-boundary
79 * manipulations below zero or above INT_MAX. And if none of the
80 * flags are set, something has gone very wrong, so report it.
82 if (regs->flags & (X86_EFLAGS_OF | X86_EFLAGS_ZF)) {
83 bool zero = regs->flags & X86_EFLAGS_ZF;
85 refcount_error_report(regs, zero ? "hit zero" : "overflow");
86 } else if ((regs->flags & X86_EFLAGS_SF) == 0) {
87 /* Report if none of OF, ZF, nor SF are set. */
88 refcount_error_report(regs, "unexpected saturation");
91 return true;
93 EXPORT_SYMBOL(ex_handler_refcount);
96 * Handler for when we fail to restore a task's FPU state. We should never get
97 * here because the FPU state of a task using the FPU (task->thread.fpu.state)
98 * should always be valid. However, past bugs have allowed userspace to set
99 * reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
100 * These caused XRSTOR to fail when switching to the task, leaking the FPU
101 * registers of the task previously executing on the CPU. Mitigate this class
102 * of vulnerability by restoring from the initial state (essentially, zeroing
103 * out all the FPU registers) if we can't restore from the task's FPU state.
105 __visible bool ex_handler_fprestore(const struct exception_table_entry *fixup,
106 struct pt_regs *regs, int trapnr,
107 unsigned long error_code,
108 unsigned long fault_addr)
110 regs->ip = ex_fixup_addr(fixup);
112 WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
113 (void *)instruction_pointer(regs));
115 __copy_kernel_to_fpregs(&init_fpstate, -1);
116 return true;
118 EXPORT_SYMBOL_GPL(ex_handler_fprestore);
120 /* Helper to check whether a uaccess fault indicates a kernel bug. */
121 static bool bogus_uaccess(struct pt_regs *regs, int trapnr,
122 unsigned long fault_addr)
124 /* This is the normal case: #PF with a fault address in userspace. */
125 if (trapnr == X86_TRAP_PF && fault_addr < TASK_SIZE_MAX)
126 return false;
129 * This code can be reached for machine checks, but only if the #MC
130 * handler has already decided that it looks like a candidate for fixup.
131 * This e.g. happens when attempting to access userspace memory which
132 * the CPU can't access because of uncorrectable bad memory.
134 if (trapnr == X86_TRAP_MC)
135 return false;
138 * There are two remaining exception types we might encounter here:
139 * - #PF for faulting accesses to kernel addresses
140 * - #GP for faulting accesses to noncanonical addresses
141 * Complain about anything else.
143 if (trapnr != X86_TRAP_PF && trapnr != X86_TRAP_GP) {
144 WARN(1, "unexpected trap %d in uaccess\n", trapnr);
145 return false;
149 * This is a faulting memory access in kernel space, on a kernel
150 * address, in a usercopy function. This can e.g. be caused by improper
151 * use of helpers like __put_user and by improper attempts to access
152 * userspace addresses in KERNEL_DS regions.
153 * The one (semi-)legitimate exception are probe_kernel_{read,write}(),
154 * which can be invoked from places like kgdb, /dev/mem (for reading)
155 * and privileged BPF code (for reading).
156 * The probe_kernel_*() functions set the kernel_uaccess_faults_ok flag
157 * to tell us that faulting on kernel addresses, and even noncanonical
158 * addresses, in a userspace accessor does not necessarily imply a
159 * kernel bug, root might just be doing weird stuff.
161 if (current->kernel_uaccess_faults_ok)
162 return false;
164 /* This is bad. Refuse the fixup so that we go into die(). */
165 if (trapnr == X86_TRAP_PF) {
166 pr_emerg("BUG: pagefault on kernel address 0x%lx in non-whitelisted uaccess\n",
167 fault_addr);
168 } else {
169 pr_emerg("BUG: GPF in non-whitelisted uaccess (non-canonical address?)\n");
171 return true;
174 __visible bool ex_handler_uaccess(const struct exception_table_entry *fixup,
175 struct pt_regs *regs, int trapnr,
176 unsigned long error_code,
177 unsigned long fault_addr)
179 if (bogus_uaccess(regs, trapnr, fault_addr))
180 return false;
181 regs->ip = ex_fixup_addr(fixup);
182 return true;
184 EXPORT_SYMBOL(ex_handler_uaccess);
186 __visible bool ex_handler_ext(const struct exception_table_entry *fixup,
187 struct pt_regs *regs, int trapnr,
188 unsigned long error_code,
189 unsigned long fault_addr)
191 if (bogus_uaccess(regs, trapnr, fault_addr))
192 return false;
193 /* Special hack for uaccess_err */
194 current->thread.uaccess_err = 1;
195 regs->ip = ex_fixup_addr(fixup);
196 return true;
198 EXPORT_SYMBOL(ex_handler_ext);
200 __visible bool ex_handler_rdmsr_unsafe(const struct exception_table_entry *fixup,
201 struct pt_regs *regs, int trapnr,
202 unsigned long error_code,
203 unsigned long fault_addr)
205 if (pr_warn_once("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pF)\n",
206 (unsigned int)regs->cx, regs->ip, (void *)regs->ip))
207 show_stack_regs(regs);
209 /* Pretend that the read succeeded and returned 0. */
210 regs->ip = ex_fixup_addr(fixup);
211 regs->ax = 0;
212 regs->dx = 0;
213 return true;
215 EXPORT_SYMBOL(ex_handler_rdmsr_unsafe);
217 __visible bool ex_handler_wrmsr_unsafe(const struct exception_table_entry *fixup,
218 struct pt_regs *regs, int trapnr,
219 unsigned long error_code,
220 unsigned long fault_addr)
222 if (pr_warn_once("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pF)\n",
223 (unsigned int)regs->cx, (unsigned int)regs->dx,
224 (unsigned int)regs->ax, regs->ip, (void *)regs->ip))
225 show_stack_regs(regs);
227 /* Pretend that the write succeeded. */
228 regs->ip = ex_fixup_addr(fixup);
229 return true;
231 EXPORT_SYMBOL(ex_handler_wrmsr_unsafe);
233 __visible bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
234 struct pt_regs *regs, int trapnr,
235 unsigned long error_code,
236 unsigned long fault_addr)
238 if (static_cpu_has(X86_BUG_NULL_SEG))
239 asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
240 asm volatile ("mov %0, %%fs" : : "rm" (0));
241 return ex_handler_default(fixup, regs, trapnr, error_code, fault_addr);
243 EXPORT_SYMBOL(ex_handler_clear_fs);
245 __visible bool ex_has_fault_handler(unsigned long ip)
247 const struct exception_table_entry *e;
248 ex_handler_t handler;
250 e = search_exception_tables(ip);
251 if (!e)
252 return false;
253 handler = ex_fixup_handler(e);
255 return handler == ex_handler_fault;
258 int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
259 unsigned long fault_addr)
261 const struct exception_table_entry *e;
262 ex_handler_t handler;
264 #ifdef CONFIG_PNPBIOS
265 if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
266 extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
267 extern u32 pnp_bios_is_utter_crap;
268 pnp_bios_is_utter_crap = 1;
269 printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
270 __asm__ volatile(
271 "movl %0, %%esp\n\t"
272 "jmp *%1\n\t"
273 : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
274 panic("do_trap: can't hit this");
276 #endif
278 e = search_exception_tables(regs->ip);
279 if (!e)
280 return 0;
282 handler = ex_fixup_handler(e);
283 return handler(e, regs, trapnr, error_code, fault_addr);
286 extern unsigned int early_recursion_flag;
288 /* Restricted version used during very early boot */
289 void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
291 /* Ignore early NMIs. */
292 if (trapnr == X86_TRAP_NMI)
293 return;
295 if (early_recursion_flag > 2)
296 goto halt_loop;
299 * Old CPUs leave the high bits of CS on the stack
300 * undefined. I'm not sure which CPUs do this, but at least
301 * the 486 DX works this way.
302 * Xen pv domains are not using the default __KERNEL_CS.
304 if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
305 goto fail;
308 * The full exception fixup machinery is available as soon as
309 * the early IDT is loaded. This means that it is the
310 * responsibility of extable users to either function correctly
311 * when handlers are invoked early or to simply avoid causing
312 * exceptions before they're ready to handle them.
314 * This is better than filtering which handlers can be used,
315 * because refusing to call a handler here is guaranteed to
316 * result in a hard-to-debug panic.
318 * Keep in mind that not all vectors actually get here. Early
319 * page faults, for example, are special.
321 if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
322 return;
324 if (fixup_bug(regs, trapnr))
325 return;
327 fail:
328 early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
329 (unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
330 regs->orig_ax, read_cr2());
332 show_regs(regs);
334 halt_loop:
335 while (true)
336 halt();