2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <linux/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820/api.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
53 #include <asm/set_memory.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
58 #include "mm_internal.h"
60 #include "ident_map.c"
63 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64 * physical space so we can cache the place of the first one and move
65 * around without checking the pgd every time.
68 /* Bits supported by the hardware: */
69 pteval_t __supported_pte_mask __read_mostly
= ~0;
70 /* Bits allowed in normal kernel mappings: */
71 pteval_t __default_kernel_pte_mask __read_mostly
= ~0;
72 EXPORT_SYMBOL_GPL(__supported_pte_mask
);
73 /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
74 EXPORT_SYMBOL(__default_kernel_pte_mask
);
76 int force_personality32
;
80 * Control non executable heap for 32bit processes.
81 * To control the stack too use noexec=off
83 * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
84 * off PROT_READ implies PROT_EXEC
86 static int __init
nonx32_setup(char *str
)
88 if (!strcmp(str
, "on"))
89 force_personality32
&= ~READ_IMPLIES_EXEC
;
90 else if (!strcmp(str
, "off"))
91 force_personality32
|= READ_IMPLIES_EXEC
;
94 __setup("noexec32=", nonx32_setup
);
96 static void sync_global_pgds_l5(unsigned long start
, unsigned long end
)
100 for (addr
= start
; addr
<= end
; addr
= ALIGN(addr
+ 1, PGDIR_SIZE
)) {
101 const pgd_t
*pgd_ref
= pgd_offset_k(addr
);
104 /* Check for overflow */
108 if (pgd_none(*pgd_ref
))
111 spin_lock(&pgd_lock
);
112 list_for_each_entry(page
, &pgd_list
, lru
) {
114 spinlock_t
*pgt_lock
;
116 pgd
= (pgd_t
*)page_address(page
) + pgd_index(addr
);
117 /* the pgt_lock only for Xen */
118 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
121 if (!pgd_none(*pgd_ref
) && !pgd_none(*pgd
))
122 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
125 set_pgd(pgd
, *pgd_ref
);
127 spin_unlock(pgt_lock
);
129 spin_unlock(&pgd_lock
);
133 static void sync_global_pgds_l4(unsigned long start
, unsigned long end
)
137 for (addr
= start
; addr
<= end
; addr
= ALIGN(addr
+ 1, PGDIR_SIZE
)) {
138 pgd_t
*pgd_ref
= pgd_offset_k(addr
);
139 const p4d_t
*p4d_ref
;
143 * With folded p4d, pgd_none() is always false, we need to
144 * handle synchonization on p4d level.
146 MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref
));
147 p4d_ref
= p4d_offset(pgd_ref
, addr
);
149 if (p4d_none(*p4d_ref
))
152 spin_lock(&pgd_lock
);
153 list_for_each_entry(page
, &pgd_list
, lru
) {
156 spinlock_t
*pgt_lock
;
158 pgd
= (pgd_t
*)page_address(page
) + pgd_index(addr
);
159 p4d
= p4d_offset(pgd
, addr
);
160 /* the pgt_lock only for Xen */
161 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
164 if (!p4d_none(*p4d_ref
) && !p4d_none(*p4d
))
165 BUG_ON(p4d_page_vaddr(*p4d
)
166 != p4d_page_vaddr(*p4d_ref
));
169 set_p4d(p4d
, *p4d_ref
);
171 spin_unlock(pgt_lock
);
173 spin_unlock(&pgd_lock
);
178 * When memory was added make sure all the processes MM have
179 * suitable PGD entries in the local PGD level page.
181 void sync_global_pgds(unsigned long start
, unsigned long end
)
183 if (pgtable_l5_enabled())
184 sync_global_pgds_l5(start
, end
);
186 sync_global_pgds_l4(start
, end
);
190 * NOTE: This function is marked __ref because it calls __init function
191 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
193 static __ref
void *spp_getpage(void)
198 ptr
= (void *) get_zeroed_page(GFP_ATOMIC
);
200 ptr
= alloc_bootmem_pages(PAGE_SIZE
);
202 if (!ptr
|| ((unsigned long)ptr
& ~PAGE_MASK
)) {
203 panic("set_pte_phys: cannot allocate page data %s\n",
204 after_bootmem
? "after bootmem" : "");
207 pr_debug("spp_getpage %p\n", ptr
);
212 static p4d_t
*fill_p4d(pgd_t
*pgd
, unsigned long vaddr
)
214 if (pgd_none(*pgd
)) {
215 p4d_t
*p4d
= (p4d_t
*)spp_getpage();
216 pgd_populate(&init_mm
, pgd
, p4d
);
217 if (p4d
!= p4d_offset(pgd
, 0))
218 printk(KERN_ERR
"PAGETABLE BUG #00! %p <-> %p\n",
219 p4d
, p4d_offset(pgd
, 0));
221 return p4d_offset(pgd
, vaddr
);
224 static pud_t
*fill_pud(p4d_t
*p4d
, unsigned long vaddr
)
226 if (p4d_none(*p4d
)) {
227 pud_t
*pud
= (pud_t
*)spp_getpage();
228 p4d_populate(&init_mm
, p4d
, pud
);
229 if (pud
!= pud_offset(p4d
, 0))
230 printk(KERN_ERR
"PAGETABLE BUG #01! %p <-> %p\n",
231 pud
, pud_offset(p4d
, 0));
233 return pud_offset(p4d
, vaddr
);
236 static pmd_t
*fill_pmd(pud_t
*pud
, unsigned long vaddr
)
238 if (pud_none(*pud
)) {
239 pmd_t
*pmd
= (pmd_t
*) spp_getpage();
240 pud_populate(&init_mm
, pud
, pmd
);
241 if (pmd
!= pmd_offset(pud
, 0))
242 printk(KERN_ERR
"PAGETABLE BUG #02! %p <-> %p\n",
243 pmd
, pmd_offset(pud
, 0));
245 return pmd_offset(pud
, vaddr
);
248 static pte_t
*fill_pte(pmd_t
*pmd
, unsigned long vaddr
)
250 if (pmd_none(*pmd
)) {
251 pte_t
*pte
= (pte_t
*) spp_getpage();
252 pmd_populate_kernel(&init_mm
, pmd
, pte
);
253 if (pte
!= pte_offset_kernel(pmd
, 0))
254 printk(KERN_ERR
"PAGETABLE BUG #03!\n");
256 return pte_offset_kernel(pmd
, vaddr
);
259 static void __set_pte_vaddr(pud_t
*pud
, unsigned long vaddr
, pte_t new_pte
)
261 pmd_t
*pmd
= fill_pmd(pud
, vaddr
);
262 pte_t
*pte
= fill_pte(pmd
, vaddr
);
264 set_pte(pte
, new_pte
);
267 * It's enough to flush this one mapping.
268 * (PGE mappings get flushed as well)
270 __flush_tlb_one_kernel(vaddr
);
273 void set_pte_vaddr_p4d(p4d_t
*p4d_page
, unsigned long vaddr
, pte_t new_pte
)
275 p4d_t
*p4d
= p4d_page
+ p4d_index(vaddr
);
276 pud_t
*pud
= fill_pud(p4d
, vaddr
);
278 __set_pte_vaddr(pud
, vaddr
, new_pte
);
281 void set_pte_vaddr_pud(pud_t
*pud_page
, unsigned long vaddr
, pte_t new_pte
)
283 pud_t
*pud
= pud_page
+ pud_index(vaddr
);
285 __set_pte_vaddr(pud
, vaddr
, new_pte
);
288 void set_pte_vaddr(unsigned long vaddr
, pte_t pteval
)
293 pr_debug("set_pte_vaddr %lx to %lx\n", vaddr
, native_pte_val(pteval
));
295 pgd
= pgd_offset_k(vaddr
);
296 if (pgd_none(*pgd
)) {
298 "PGD FIXMAP MISSING, it should be setup in head.S!\n");
302 p4d_page
= p4d_offset(pgd
, 0);
303 set_pte_vaddr_p4d(p4d_page
, vaddr
, pteval
);
306 pmd_t
* __init
populate_extra_pmd(unsigned long vaddr
)
312 pgd
= pgd_offset_k(vaddr
);
313 p4d
= fill_p4d(pgd
, vaddr
);
314 pud
= fill_pud(p4d
, vaddr
);
315 return fill_pmd(pud
, vaddr
);
318 pte_t
* __init
populate_extra_pte(unsigned long vaddr
)
322 pmd
= populate_extra_pmd(vaddr
);
323 return fill_pte(pmd
, vaddr
);
327 * Create large page table mappings for a range of physical addresses.
329 static void __init
__init_extra_mapping(unsigned long phys
, unsigned long size
,
330 enum page_cache_mode cache
)
338 pgprot_val(prot
) = pgprot_val(PAGE_KERNEL_LARGE
) |
339 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache
)));
340 BUG_ON((phys
& ~PMD_MASK
) || (size
& ~PMD_MASK
));
341 for (; size
; phys
+= PMD_SIZE
, size
-= PMD_SIZE
) {
342 pgd
= pgd_offset_k((unsigned long)__va(phys
));
343 if (pgd_none(*pgd
)) {
344 p4d
= (p4d_t
*) spp_getpage();
345 set_pgd(pgd
, __pgd(__pa(p4d
) | _KERNPG_TABLE
|
348 p4d
= p4d_offset(pgd
, (unsigned long)__va(phys
));
349 if (p4d_none(*p4d
)) {
350 pud
= (pud_t
*) spp_getpage();
351 set_p4d(p4d
, __p4d(__pa(pud
) | _KERNPG_TABLE
|
354 pud
= pud_offset(p4d
, (unsigned long)__va(phys
));
355 if (pud_none(*pud
)) {
356 pmd
= (pmd_t
*) spp_getpage();
357 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
|
360 pmd
= pmd_offset(pud
, phys
);
361 BUG_ON(!pmd_none(*pmd
));
362 set_pmd(pmd
, __pmd(phys
| pgprot_val(prot
)));
366 void __init
init_extra_mapping_wb(unsigned long phys
, unsigned long size
)
368 __init_extra_mapping(phys
, size
, _PAGE_CACHE_MODE_WB
);
371 void __init
init_extra_mapping_uc(unsigned long phys
, unsigned long size
)
373 __init_extra_mapping(phys
, size
, _PAGE_CACHE_MODE_UC
);
377 * The head.S code sets up the kernel high mapping:
379 * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
381 * phys_base holds the negative offset to the kernel, which is added
382 * to the compile time generated pmds. This results in invalid pmds up
383 * to the point where we hit the physaddr 0 mapping.
385 * We limit the mappings to the region from _text to _brk_end. _brk_end
386 * is rounded up to the 2MB boundary. This catches the invalid pmds as
387 * well, as they are located before _text:
389 void __init
cleanup_highmap(void)
391 unsigned long vaddr
= __START_KERNEL_map
;
392 unsigned long vaddr_end
= __START_KERNEL_map
+ KERNEL_IMAGE_SIZE
;
393 unsigned long end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
394 pmd_t
*pmd
= level2_kernel_pgt
;
397 * Native path, max_pfn_mapped is not set yet.
398 * Xen has valid max_pfn_mapped set in
399 * arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
402 vaddr_end
= __START_KERNEL_map
+ (max_pfn_mapped
<< PAGE_SHIFT
);
404 for (; vaddr
+ PMD_SIZE
- 1 < vaddr_end
; pmd
++, vaddr
+= PMD_SIZE
) {
407 if (vaddr
< (unsigned long) _text
|| vaddr
> end
)
408 set_pmd(pmd
, __pmd(0));
413 * Create PTE level page table mapping for physical addresses.
414 * It returns the last physical address mapped.
416 static unsigned long __meminit
417 phys_pte_init(pte_t
*pte_page
, unsigned long paddr
, unsigned long paddr_end
,
420 unsigned long pages
= 0, paddr_next
;
421 unsigned long paddr_last
= paddr_end
;
425 pte
= pte_page
+ pte_index(paddr
);
426 i
= pte_index(paddr
);
428 for (; i
< PTRS_PER_PTE
; i
++, paddr
= paddr_next
, pte
++) {
429 paddr_next
= (paddr
& PAGE_MASK
) + PAGE_SIZE
;
430 if (paddr
>= paddr_end
) {
431 if (!after_bootmem
&&
432 !e820__mapped_any(paddr
& PAGE_MASK
, paddr_next
,
434 !e820__mapped_any(paddr
& PAGE_MASK
, paddr_next
,
435 E820_TYPE_RESERVED_KERN
))
436 set_pte(pte
, __pte(0));
441 * We will re-use the existing mapping.
442 * Xen for example has some special requirements, like mapping
443 * pagetable pages as RO. So assume someone who pre-setup
444 * these mappings are more intelligent.
446 if (!pte_none(*pte
)) {
453 pr_info(" pte=%p addr=%lx pte=%016lx\n", pte
, paddr
,
454 pfn_pte(paddr
>> PAGE_SHIFT
, PAGE_KERNEL
).pte
);
456 set_pte(pte
, pfn_pte(paddr
>> PAGE_SHIFT
, prot
));
457 paddr_last
= (paddr
& PAGE_MASK
) + PAGE_SIZE
;
460 update_page_count(PG_LEVEL_4K
, pages
);
466 * Create PMD level page table mapping for physical addresses. The virtual
467 * and physical address have to be aligned at this level.
468 * It returns the last physical address mapped.
470 static unsigned long __meminit
471 phys_pmd_init(pmd_t
*pmd_page
, unsigned long paddr
, unsigned long paddr_end
,
472 unsigned long page_size_mask
, pgprot_t prot
)
474 unsigned long pages
= 0, paddr_next
;
475 unsigned long paddr_last
= paddr_end
;
477 int i
= pmd_index(paddr
);
479 for (; i
< PTRS_PER_PMD
; i
++, paddr
= paddr_next
) {
480 pmd_t
*pmd
= pmd_page
+ pmd_index(paddr
);
482 pgprot_t new_prot
= prot
;
484 paddr_next
= (paddr
& PMD_MASK
) + PMD_SIZE
;
485 if (paddr
>= paddr_end
) {
486 if (!after_bootmem
&&
487 !e820__mapped_any(paddr
& PMD_MASK
, paddr_next
,
489 !e820__mapped_any(paddr
& PMD_MASK
, paddr_next
,
490 E820_TYPE_RESERVED_KERN
))
491 set_pmd(pmd
, __pmd(0));
495 if (!pmd_none(*pmd
)) {
496 if (!pmd_large(*pmd
)) {
497 spin_lock(&init_mm
.page_table_lock
);
498 pte
= (pte_t
*)pmd_page_vaddr(*pmd
);
499 paddr_last
= phys_pte_init(pte
, paddr
,
501 spin_unlock(&init_mm
.page_table_lock
);
505 * If we are ok with PG_LEVEL_2M mapping, then we will
506 * use the existing mapping,
508 * Otherwise, we will split the large page mapping but
509 * use the same existing protection bits except for
510 * large page, so that we don't violate Intel's TLB
511 * Application note (317080) which says, while changing
512 * the page sizes, new and old translations should
513 * not differ with respect to page frame and
516 if (page_size_mask
& (1 << PG_LEVEL_2M
)) {
519 paddr_last
= paddr_next
;
522 new_prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pmd
));
525 if (page_size_mask
& (1<<PG_LEVEL_2M
)) {
527 spin_lock(&init_mm
.page_table_lock
);
528 set_pte((pte_t
*)pmd
,
529 pfn_pte((paddr
& PMD_MASK
) >> PAGE_SHIFT
,
530 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
531 spin_unlock(&init_mm
.page_table_lock
);
532 paddr_last
= paddr_next
;
536 pte
= alloc_low_page();
537 paddr_last
= phys_pte_init(pte
, paddr
, paddr_end
, new_prot
);
539 spin_lock(&init_mm
.page_table_lock
);
540 pmd_populate_kernel(&init_mm
, pmd
, pte
);
541 spin_unlock(&init_mm
.page_table_lock
);
543 update_page_count(PG_LEVEL_2M
, pages
);
548 * Create PUD level page table mapping for physical addresses. The virtual
549 * and physical address do not have to be aligned at this level. KASLR can
550 * randomize virtual addresses up to this level.
551 * It returns the last physical address mapped.
553 static unsigned long __meminit
554 phys_pud_init(pud_t
*pud_page
, unsigned long paddr
, unsigned long paddr_end
,
555 unsigned long page_size_mask
)
557 unsigned long pages
= 0, paddr_next
;
558 unsigned long paddr_last
= paddr_end
;
559 unsigned long vaddr
= (unsigned long)__va(paddr
);
560 int i
= pud_index(vaddr
);
562 for (; i
< PTRS_PER_PUD
; i
++, paddr
= paddr_next
) {
565 pgprot_t prot
= PAGE_KERNEL
;
567 vaddr
= (unsigned long)__va(paddr
);
568 pud
= pud_page
+ pud_index(vaddr
);
569 paddr_next
= (paddr
& PUD_MASK
) + PUD_SIZE
;
571 if (paddr
>= paddr_end
) {
572 if (!after_bootmem
&&
573 !e820__mapped_any(paddr
& PUD_MASK
, paddr_next
,
575 !e820__mapped_any(paddr
& PUD_MASK
, paddr_next
,
576 E820_TYPE_RESERVED_KERN
))
577 set_pud(pud
, __pud(0));
581 if (!pud_none(*pud
)) {
582 if (!pud_large(*pud
)) {
583 pmd
= pmd_offset(pud
, 0);
584 paddr_last
= phys_pmd_init(pmd
, paddr
,
592 * If we are ok with PG_LEVEL_1G mapping, then we will
593 * use the existing mapping.
595 * Otherwise, we will split the gbpage mapping but use
596 * the same existing protection bits except for large
597 * page, so that we don't violate Intel's TLB
598 * Application note (317080) which says, while changing
599 * the page sizes, new and old translations should
600 * not differ with respect to page frame and
603 if (page_size_mask
& (1 << PG_LEVEL_1G
)) {
606 paddr_last
= paddr_next
;
609 prot
= pte_pgprot(pte_clrhuge(*(pte_t
*)pud
));
612 if (page_size_mask
& (1<<PG_LEVEL_1G
)) {
614 spin_lock(&init_mm
.page_table_lock
);
615 set_pte((pte_t
*)pud
,
616 pfn_pte((paddr
& PUD_MASK
) >> PAGE_SHIFT
,
618 spin_unlock(&init_mm
.page_table_lock
);
619 paddr_last
= paddr_next
;
623 pmd
= alloc_low_page();
624 paddr_last
= phys_pmd_init(pmd
, paddr
, paddr_end
,
625 page_size_mask
, prot
);
627 spin_lock(&init_mm
.page_table_lock
);
628 pud_populate(&init_mm
, pud
, pmd
);
629 spin_unlock(&init_mm
.page_table_lock
);
633 update_page_count(PG_LEVEL_1G
, pages
);
638 static unsigned long __meminit
639 phys_p4d_init(p4d_t
*p4d_page
, unsigned long paddr
, unsigned long paddr_end
,
640 unsigned long page_size_mask
)
642 unsigned long paddr_next
, paddr_last
= paddr_end
;
643 unsigned long vaddr
= (unsigned long)__va(paddr
);
644 int i
= p4d_index(vaddr
);
646 if (!pgtable_l5_enabled())
647 return phys_pud_init((pud_t
*) p4d_page
, paddr
, paddr_end
, page_size_mask
);
649 for (; i
< PTRS_PER_P4D
; i
++, paddr
= paddr_next
) {
653 vaddr
= (unsigned long)__va(paddr
);
654 p4d
= p4d_page
+ p4d_index(vaddr
);
655 paddr_next
= (paddr
& P4D_MASK
) + P4D_SIZE
;
657 if (paddr
>= paddr_end
) {
658 if (!after_bootmem
&&
659 !e820__mapped_any(paddr
& P4D_MASK
, paddr_next
,
661 !e820__mapped_any(paddr
& P4D_MASK
, paddr_next
,
662 E820_TYPE_RESERVED_KERN
))
663 set_p4d(p4d
, __p4d(0));
667 if (!p4d_none(*p4d
)) {
668 pud
= pud_offset(p4d
, 0);
669 paddr_last
= phys_pud_init(pud
, paddr
,
676 pud
= alloc_low_page();
677 paddr_last
= phys_pud_init(pud
, paddr
, paddr_end
,
680 spin_lock(&init_mm
.page_table_lock
);
681 p4d_populate(&init_mm
, p4d
, pud
);
682 spin_unlock(&init_mm
.page_table_lock
);
690 * Create page table mapping for the physical memory for specific physical
691 * addresses. The virtual and physical addresses have to be aligned on PMD level
692 * down. It returns the last physical address mapped.
694 unsigned long __meminit
695 kernel_physical_mapping_init(unsigned long paddr_start
,
696 unsigned long paddr_end
,
697 unsigned long page_size_mask
)
699 bool pgd_changed
= false;
700 unsigned long vaddr
, vaddr_start
, vaddr_end
, vaddr_next
, paddr_last
;
702 paddr_last
= paddr_end
;
703 vaddr
= (unsigned long)__va(paddr_start
);
704 vaddr_end
= (unsigned long)__va(paddr_end
);
707 for (; vaddr
< vaddr_end
; vaddr
= vaddr_next
) {
708 pgd_t
*pgd
= pgd_offset_k(vaddr
);
711 vaddr_next
= (vaddr
& PGDIR_MASK
) + PGDIR_SIZE
;
714 p4d
= (p4d_t
*)pgd_page_vaddr(*pgd
);
715 paddr_last
= phys_p4d_init(p4d
, __pa(vaddr
),
721 p4d
= alloc_low_page();
722 paddr_last
= phys_p4d_init(p4d
, __pa(vaddr
), __pa(vaddr_end
),
725 spin_lock(&init_mm
.page_table_lock
);
726 if (pgtable_l5_enabled())
727 pgd_populate(&init_mm
, pgd
, p4d
);
729 p4d_populate(&init_mm
, p4d_offset(pgd
, vaddr
), (pud_t
*) p4d
);
730 spin_unlock(&init_mm
.page_table_lock
);
735 sync_global_pgds(vaddr_start
, vaddr_end
- 1);
743 void __init
initmem_init(void)
745 memblock_set_node(0, PHYS_ADDR_MAX
, &memblock
.memory
, 0);
749 void __init
paging_init(void)
751 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
755 * clear the default setting with node 0
756 * note: don't use nodes_clear here, that is really clearing when
757 * numa support is not compiled in, and later node_set_state
758 * will not set it back.
760 node_clear_state(0, N_MEMORY
);
761 if (N_MEMORY
!= N_NORMAL_MEMORY
)
762 node_clear_state(0, N_NORMAL_MEMORY
);
768 * Memory hotplug specific functions
770 #ifdef CONFIG_MEMORY_HOTPLUG
772 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
775 static void update_end_of_memory_vars(u64 start
, u64 size
)
777 unsigned long end_pfn
= PFN_UP(start
+ size
);
779 if (end_pfn
> max_pfn
) {
781 max_low_pfn
= end_pfn
;
782 high_memory
= (void *)__va(max_pfn
* PAGE_SIZE
- 1) + 1;
786 int add_pages(int nid
, unsigned long start_pfn
, unsigned long nr_pages
,
787 struct vmem_altmap
*altmap
, bool want_memblock
)
791 ret
= __add_pages(nid
, start_pfn
, nr_pages
, altmap
, want_memblock
);
794 /* update max_pfn, max_low_pfn and high_memory */
795 update_end_of_memory_vars(start_pfn
<< PAGE_SHIFT
,
796 nr_pages
<< PAGE_SHIFT
);
801 int arch_add_memory(int nid
, u64 start
, u64 size
, struct vmem_altmap
*altmap
,
804 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
805 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
807 init_memory_mapping(start
, start
+ size
);
809 return add_pages(nid
, start_pfn
, nr_pages
, altmap
, want_memblock
);
812 #define PAGE_INUSE 0xFD
814 static void __meminit
free_pagetable(struct page
*page
, int order
)
817 unsigned int nr_pages
= 1 << order
;
819 /* bootmem page has reserved flag */
820 if (PageReserved(page
)) {
821 __ClearPageReserved(page
);
823 magic
= (unsigned long)page
->freelist
;
824 if (magic
== SECTION_INFO
|| magic
== MIX_SECTION_INFO
) {
826 put_page_bootmem(page
++);
829 free_reserved_page(page
++);
831 free_pages((unsigned long)page_address(page
), order
);
834 static void __meminit
free_hugepage_table(struct page
*page
,
835 struct vmem_altmap
*altmap
)
838 vmem_altmap_free(altmap
, PMD_SIZE
/ PAGE_SIZE
);
840 free_pagetable(page
, get_order(PMD_SIZE
));
843 static void __meminit
free_pte_table(pte_t
*pte_start
, pmd_t
*pmd
)
848 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
854 /* free a pte talbe */
855 free_pagetable(pmd_page(*pmd
), 0);
856 spin_lock(&init_mm
.page_table_lock
);
858 spin_unlock(&init_mm
.page_table_lock
);
861 static void __meminit
free_pmd_table(pmd_t
*pmd_start
, pud_t
*pud
)
866 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
872 /* free a pmd talbe */
873 free_pagetable(pud_page(*pud
), 0);
874 spin_lock(&init_mm
.page_table_lock
);
876 spin_unlock(&init_mm
.page_table_lock
);
879 static void __meminit
free_pud_table(pud_t
*pud_start
, p4d_t
*p4d
)
884 for (i
= 0; i
< PTRS_PER_PUD
; i
++) {
890 /* free a pud talbe */
891 free_pagetable(p4d_page(*p4d
), 0);
892 spin_lock(&init_mm
.page_table_lock
);
894 spin_unlock(&init_mm
.page_table_lock
);
897 static void __meminit
898 remove_pte_table(pte_t
*pte_start
, unsigned long addr
, unsigned long end
,
901 unsigned long next
, pages
= 0;
904 phys_addr_t phys_addr
;
906 pte
= pte_start
+ pte_index(addr
);
907 for (; addr
< end
; addr
= next
, pte
++) {
908 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
912 if (!pte_present(*pte
))
916 * We mapped [0,1G) memory as identity mapping when
917 * initializing, in arch/x86/kernel/head_64.S. These
918 * pagetables cannot be removed.
920 phys_addr
= pte_val(*pte
) + (addr
& PAGE_MASK
);
921 if (phys_addr
< (phys_addr_t
)0x40000000)
924 if (PAGE_ALIGNED(addr
) && PAGE_ALIGNED(next
)) {
926 * Do not free direct mapping pages since they were
927 * freed when offlining, or simplely not in use.
930 free_pagetable(pte_page(*pte
), 0);
932 spin_lock(&init_mm
.page_table_lock
);
933 pte_clear(&init_mm
, addr
, pte
);
934 spin_unlock(&init_mm
.page_table_lock
);
936 /* For non-direct mapping, pages means nothing. */
940 * If we are here, we are freeing vmemmap pages since
941 * direct mapped memory ranges to be freed are aligned.
943 * If we are not removing the whole page, it means
944 * other page structs in this page are being used and
945 * we canot remove them. So fill the unused page_structs
946 * with 0xFD, and remove the page when it is wholly
949 memset((void *)addr
, PAGE_INUSE
, next
- addr
);
951 page_addr
= page_address(pte_page(*pte
));
952 if (!memchr_inv(page_addr
, PAGE_INUSE
, PAGE_SIZE
)) {
953 free_pagetable(pte_page(*pte
), 0);
955 spin_lock(&init_mm
.page_table_lock
);
956 pte_clear(&init_mm
, addr
, pte
);
957 spin_unlock(&init_mm
.page_table_lock
);
962 /* Call free_pte_table() in remove_pmd_table(). */
965 update_page_count(PG_LEVEL_4K
, -pages
);
968 static void __meminit
969 remove_pmd_table(pmd_t
*pmd_start
, unsigned long addr
, unsigned long end
,
970 bool direct
, struct vmem_altmap
*altmap
)
972 unsigned long next
, pages
= 0;
977 pmd
= pmd_start
+ pmd_index(addr
);
978 for (; addr
< end
; addr
= next
, pmd
++) {
979 next
= pmd_addr_end(addr
, end
);
981 if (!pmd_present(*pmd
))
984 if (pmd_large(*pmd
)) {
985 if (IS_ALIGNED(addr
, PMD_SIZE
) &&
986 IS_ALIGNED(next
, PMD_SIZE
)) {
988 free_hugepage_table(pmd_page(*pmd
),
991 spin_lock(&init_mm
.page_table_lock
);
993 spin_unlock(&init_mm
.page_table_lock
);
996 /* If here, we are freeing vmemmap pages. */
997 memset((void *)addr
, PAGE_INUSE
, next
- addr
);
999 page_addr
= page_address(pmd_page(*pmd
));
1000 if (!memchr_inv(page_addr
, PAGE_INUSE
,
1002 free_hugepage_table(pmd_page(*pmd
),
1005 spin_lock(&init_mm
.page_table_lock
);
1007 spin_unlock(&init_mm
.page_table_lock
);
1014 pte_base
= (pte_t
*)pmd_page_vaddr(*pmd
);
1015 remove_pte_table(pte_base
, addr
, next
, direct
);
1016 free_pte_table(pte_base
, pmd
);
1019 /* Call free_pmd_table() in remove_pud_table(). */
1021 update_page_count(PG_LEVEL_2M
, -pages
);
1024 static void __meminit
1025 remove_pud_table(pud_t
*pud_start
, unsigned long addr
, unsigned long end
,
1026 struct vmem_altmap
*altmap
, bool direct
)
1028 unsigned long next
, pages
= 0;
1033 pud
= pud_start
+ pud_index(addr
);
1034 for (; addr
< end
; addr
= next
, pud
++) {
1035 next
= pud_addr_end(addr
, end
);
1037 if (!pud_present(*pud
))
1040 if (pud_large(*pud
)) {
1041 if (IS_ALIGNED(addr
, PUD_SIZE
) &&
1042 IS_ALIGNED(next
, PUD_SIZE
)) {
1044 free_pagetable(pud_page(*pud
),
1045 get_order(PUD_SIZE
));
1047 spin_lock(&init_mm
.page_table_lock
);
1049 spin_unlock(&init_mm
.page_table_lock
);
1052 /* If here, we are freeing vmemmap pages. */
1053 memset((void *)addr
, PAGE_INUSE
, next
- addr
);
1055 page_addr
= page_address(pud_page(*pud
));
1056 if (!memchr_inv(page_addr
, PAGE_INUSE
,
1058 free_pagetable(pud_page(*pud
),
1059 get_order(PUD_SIZE
));
1061 spin_lock(&init_mm
.page_table_lock
);
1063 spin_unlock(&init_mm
.page_table_lock
);
1070 pmd_base
= pmd_offset(pud
, 0);
1071 remove_pmd_table(pmd_base
, addr
, next
, direct
, altmap
);
1072 free_pmd_table(pmd_base
, pud
);
1076 update_page_count(PG_LEVEL_1G
, -pages
);
1079 static void __meminit
1080 remove_p4d_table(p4d_t
*p4d_start
, unsigned long addr
, unsigned long end
,
1081 struct vmem_altmap
*altmap
, bool direct
)
1083 unsigned long next
, pages
= 0;
1087 p4d
= p4d_start
+ p4d_index(addr
);
1088 for (; addr
< end
; addr
= next
, p4d
++) {
1089 next
= p4d_addr_end(addr
, end
);
1091 if (!p4d_present(*p4d
))
1094 BUILD_BUG_ON(p4d_large(*p4d
));
1096 pud_base
= pud_offset(p4d
, 0);
1097 remove_pud_table(pud_base
, addr
, next
, altmap
, direct
);
1099 * For 4-level page tables we do not want to free PUDs, but in the
1100 * 5-level case we should free them. This code will have to change
1101 * to adapt for boot-time switching between 4 and 5 level page tables.
1103 if (pgtable_l5_enabled())
1104 free_pud_table(pud_base
, p4d
);
1108 update_page_count(PG_LEVEL_512G
, -pages
);
1111 /* start and end are both virtual address. */
1112 static void __meminit
1113 remove_pagetable(unsigned long start
, unsigned long end
, bool direct
,
1114 struct vmem_altmap
*altmap
)
1121 for (addr
= start
; addr
< end
; addr
= next
) {
1122 next
= pgd_addr_end(addr
, end
);
1124 pgd
= pgd_offset_k(addr
);
1125 if (!pgd_present(*pgd
))
1128 p4d
= p4d_offset(pgd
, 0);
1129 remove_p4d_table(p4d
, addr
, next
, altmap
, direct
);
1135 void __ref
vmemmap_free(unsigned long start
, unsigned long end
,
1136 struct vmem_altmap
*altmap
)
1138 remove_pagetable(start
, end
, false, altmap
);
1141 #ifdef CONFIG_MEMORY_HOTREMOVE
1142 static void __meminit
1143 kernel_physical_mapping_remove(unsigned long start
, unsigned long end
)
1145 start
= (unsigned long)__va(start
);
1146 end
= (unsigned long)__va(end
);
1148 remove_pagetable(start
, end
, true, NULL
);
1151 int __ref
arch_remove_memory(u64 start
, u64 size
, struct vmem_altmap
*altmap
)
1153 unsigned long start_pfn
= start
>> PAGE_SHIFT
;
1154 unsigned long nr_pages
= size
>> PAGE_SHIFT
;
1155 struct page
*page
= pfn_to_page(start_pfn
);
1159 /* With altmap the first mapped page is offset from @start */
1161 page
+= vmem_altmap_offset(altmap
);
1162 zone
= page_zone(page
);
1163 ret
= __remove_pages(zone
, start_pfn
, nr_pages
, altmap
);
1165 kernel_physical_mapping_remove(start
, start
+ size
);
1170 #endif /* CONFIG_MEMORY_HOTPLUG */
1172 static struct kcore_list kcore_vsyscall
;
1174 static void __init
register_page_bootmem_info(void)
1179 for_each_online_node(i
)
1180 register_page_bootmem_info_node(NODE_DATA(i
));
1184 void __init
mem_init(void)
1188 /* clear_bss() already clear the empty_zero_page */
1190 /* this will put all memory onto the freelists */
1193 x86_init
.hyper
.init_after_bootmem();
1196 * Must be done after boot memory is put on freelist, because here we
1197 * might set fields in deferred struct pages that have not yet been
1198 * initialized, and free_all_bootmem() initializes all the reserved
1199 * deferred pages for us.
1201 register_page_bootmem_info();
1203 /* Register memory areas for /proc/kcore */
1204 if (get_gate_vma(&init_mm
))
1205 kclist_add(&kcore_vsyscall
, (void *)VSYSCALL_ADDR
, PAGE_SIZE
, KCORE_USER
);
1207 mem_init_print_info(NULL
);
1210 int kernel_set_to_readonly
;
1212 void set_kernel_text_rw(void)
1214 unsigned long start
= PFN_ALIGN(_text
);
1215 unsigned long end
= PFN_ALIGN(__stop___ex_table
);
1217 if (!kernel_set_to_readonly
)
1220 pr_debug("Set kernel text: %lx - %lx for read write\n",
1224 * Make the kernel identity mapping for text RW. Kernel text
1225 * mapping will always be RO. Refer to the comment in
1226 * static_protections() in pageattr.c
1228 set_memory_rw(start
, (end
- start
) >> PAGE_SHIFT
);
1231 void set_kernel_text_ro(void)
1233 unsigned long start
= PFN_ALIGN(_text
);
1234 unsigned long end
= PFN_ALIGN(__stop___ex_table
);
1236 if (!kernel_set_to_readonly
)
1239 pr_debug("Set kernel text: %lx - %lx for read only\n",
1243 * Set the kernel identity mapping for text RO.
1245 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
1248 void mark_rodata_ro(void)
1250 unsigned long start
= PFN_ALIGN(_text
);
1251 unsigned long rodata_start
= PFN_ALIGN(__start_rodata
);
1252 unsigned long end
= (unsigned long) &__end_rodata_hpage_align
;
1253 unsigned long text_end
= PFN_ALIGN(&__stop___ex_table
);
1254 unsigned long rodata_end
= PFN_ALIGN(&__end_rodata
);
1255 unsigned long all_end
;
1257 printk(KERN_INFO
"Write protecting the kernel read-only data: %luk\n",
1258 (end
- start
) >> 10);
1259 set_memory_ro(start
, (end
- start
) >> PAGE_SHIFT
);
1261 kernel_set_to_readonly
= 1;
1264 * The rodata/data/bss/brk section (but not the kernel text!)
1265 * should also be not-executable.
1267 * We align all_end to PMD_SIZE because the existing mapping
1268 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1269 * split the PMD and the reminder between _brk_end and the end
1270 * of the PMD will remain mapped executable.
1272 * Any PMD which was setup after the one which covers _brk_end
1273 * has been zapped already via cleanup_highmem().
1275 all_end
= roundup((unsigned long)_brk_end
, PMD_SIZE
);
1276 set_memory_nx(text_end
, (all_end
- text_end
) >> PAGE_SHIFT
);
1278 #ifdef CONFIG_CPA_DEBUG
1279 printk(KERN_INFO
"Testing CPA: undo %lx-%lx\n", start
, end
);
1280 set_memory_rw(start
, (end
-start
) >> PAGE_SHIFT
);
1282 printk(KERN_INFO
"Testing CPA: again\n");
1283 set_memory_ro(start
, (end
-start
) >> PAGE_SHIFT
);
1286 free_kernel_image_pages((void *)text_end
, (void *)rodata_start
);
1287 free_kernel_image_pages((void *)rodata_end
, (void *)_sdata
);
1292 int kern_addr_valid(unsigned long addr
)
1294 unsigned long above
= ((long)addr
) >> __VIRTUAL_MASK_SHIFT
;
1301 if (above
!= 0 && above
!= -1UL)
1304 pgd
= pgd_offset_k(addr
);
1308 p4d
= p4d_offset(pgd
, addr
);
1312 pud
= pud_offset(p4d
, addr
);
1316 if (pud_large(*pud
))
1317 return pfn_valid(pud_pfn(*pud
));
1319 pmd
= pmd_offset(pud
, addr
);
1323 if (pmd_large(*pmd
))
1324 return pfn_valid(pmd_pfn(*pmd
));
1326 pte
= pte_offset_kernel(pmd
, addr
);
1330 return pfn_valid(pte_pfn(*pte
));
1334 * Block size is the minimum amount of memory which can be hotplugged or
1335 * hotremoved. It must be power of two and must be equal or larger than
1336 * MIN_MEMORY_BLOCK_SIZE.
1338 #define MAX_BLOCK_SIZE (2UL << 30)
1340 /* Amount of ram needed to start using large blocks */
1341 #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1343 /* Adjustable memory block size */
1344 static unsigned long set_memory_block_size
;
1345 int __init
set_memory_block_size_order(unsigned int order
)
1347 unsigned long size
= 1UL << order
;
1349 if (size
> MEM_SIZE_FOR_LARGE_BLOCK
|| size
< MIN_MEMORY_BLOCK_SIZE
)
1352 set_memory_block_size
= size
;
1356 static unsigned long probe_memory_block_size(void)
1358 unsigned long boot_mem_end
= max_pfn
<< PAGE_SHIFT
;
1361 /* If memory block size has been set, then use it */
1362 bz
= set_memory_block_size
;
1366 /* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1367 if (boot_mem_end
< MEM_SIZE_FOR_LARGE_BLOCK
) {
1368 bz
= MIN_MEMORY_BLOCK_SIZE
;
1372 /* Find the largest allowed block size that aligns to memory end */
1373 for (bz
= MAX_BLOCK_SIZE
; bz
> MIN_MEMORY_BLOCK_SIZE
; bz
>>= 1) {
1374 if (IS_ALIGNED(boot_mem_end
, bz
))
1378 pr_info("x86/mm: Memory block size: %ldMB\n", bz
>> 20);
1383 static unsigned long memory_block_size_probed
;
1384 unsigned long memory_block_size_bytes(void)
1386 if (!memory_block_size_probed
)
1387 memory_block_size_probed
= probe_memory_block_size();
1389 return memory_block_size_probed
;
1392 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1394 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1396 static long __meminitdata addr_start
, addr_end
;
1397 static void __meminitdata
*p_start
, *p_end
;
1398 static int __meminitdata node_start
;
1400 static int __meminit
vmemmap_populate_hugepages(unsigned long start
,
1401 unsigned long end
, int node
, struct vmem_altmap
*altmap
)
1410 for (addr
= start
; addr
< end
; addr
= next
) {
1411 next
= pmd_addr_end(addr
, end
);
1413 pgd
= vmemmap_pgd_populate(addr
, node
);
1417 p4d
= vmemmap_p4d_populate(pgd
, addr
, node
);
1421 pud
= vmemmap_pud_populate(p4d
, addr
, node
);
1425 pmd
= pmd_offset(pud
, addr
);
1426 if (pmd_none(*pmd
)) {
1430 p
= altmap_alloc_block_buf(PMD_SIZE
, altmap
);
1432 p
= vmemmap_alloc_block_buf(PMD_SIZE
, node
);
1436 entry
= pfn_pte(__pa(p
) >> PAGE_SHIFT
,
1438 set_pmd(pmd
, __pmd(pte_val(entry
)));
1440 /* check to see if we have contiguous blocks */
1441 if (p_end
!= p
|| node_start
!= node
) {
1443 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1444 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);
1450 addr_end
= addr
+ PMD_SIZE
;
1451 p_end
= p
+ PMD_SIZE
;
1454 return -ENOMEM
; /* no fallback */
1455 } else if (pmd_large(*pmd
)) {
1456 vmemmap_verify((pte_t
*)pmd
, node
, addr
, next
);
1459 if (vmemmap_populate_basepages(addr
, next
, node
))
1465 int __meminit
vmemmap_populate(unsigned long start
, unsigned long end
, int node
,
1466 struct vmem_altmap
*altmap
)
1470 if (boot_cpu_has(X86_FEATURE_PSE
))
1471 err
= vmemmap_populate_hugepages(start
, end
, node
, altmap
);
1473 pr_err_once("%s: no cpu support for altmap allocations\n",
1477 err
= vmemmap_populate_basepages(start
, end
, node
);
1479 sync_global_pgds(start
, end
- 1);
1483 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1484 void register_page_bootmem_memmap(unsigned long section_nr
,
1485 struct page
*start_page
, unsigned long nr_pages
)
1487 unsigned long addr
= (unsigned long)start_page
;
1488 unsigned long end
= (unsigned long)(start_page
+ nr_pages
);
1494 unsigned int nr_pmd_pages
;
1497 for (; addr
< end
; addr
= next
) {
1500 pgd
= pgd_offset_k(addr
);
1501 if (pgd_none(*pgd
)) {
1502 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1505 get_page_bootmem(section_nr
, pgd_page(*pgd
), MIX_SECTION_INFO
);
1507 p4d
= p4d_offset(pgd
, addr
);
1508 if (p4d_none(*p4d
)) {
1509 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1512 get_page_bootmem(section_nr
, p4d_page(*p4d
), MIX_SECTION_INFO
);
1514 pud
= pud_offset(p4d
, addr
);
1515 if (pud_none(*pud
)) {
1516 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1519 get_page_bootmem(section_nr
, pud_page(*pud
), MIX_SECTION_INFO
);
1521 if (!boot_cpu_has(X86_FEATURE_PSE
)) {
1522 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
1523 pmd
= pmd_offset(pud
, addr
);
1526 get_page_bootmem(section_nr
, pmd_page(*pmd
),
1529 pte
= pte_offset_kernel(pmd
, addr
);
1532 get_page_bootmem(section_nr
, pte_page(*pte
),
1535 next
= pmd_addr_end(addr
, end
);
1537 pmd
= pmd_offset(pud
, addr
);
1541 nr_pmd_pages
= 1 << get_order(PMD_SIZE
);
1542 page
= pmd_page(*pmd
);
1543 while (nr_pmd_pages
--)
1544 get_page_bootmem(section_nr
, page
++,
1551 void __meminit
vmemmap_populate_print_last(void)
1554 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1555 addr_start
, addr_end
-1, p_start
, p_end
-1, node_start
);