hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / mm / kasan_init_64.c
blobe3e77527f8dff8e44bd560d4f62a11ee8cf90c26
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
8 #include <linux/bootmem.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/memblock.h>
12 #include <linux/mm.h>
13 #include <linux/sched.h>
14 #include <linux/sched/task.h>
15 #include <linux/vmalloc.h>
17 #include <asm/e820/types.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/pgtable.h>
22 #include <asm/cpu_entry_area.h>
24 extern struct range pfn_mapped[E820_MAX_ENTRIES];
26 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
28 static __init void *early_alloc(size_t size, int nid, bool panic)
30 if (panic)
31 return memblock_virt_alloc_try_nid(size, size,
32 __pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
33 else
34 return memblock_virt_alloc_try_nid_nopanic(size, size,
35 __pa(MAX_DMA_ADDRESS), BOOTMEM_ALLOC_ACCESSIBLE, nid);
38 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
39 unsigned long end, int nid)
41 pte_t *pte;
43 if (pmd_none(*pmd)) {
44 void *p;
46 if (boot_cpu_has(X86_FEATURE_PSE) &&
47 ((end - addr) == PMD_SIZE) &&
48 IS_ALIGNED(addr, PMD_SIZE)) {
49 p = early_alloc(PMD_SIZE, nid, false);
50 if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
51 return;
52 else if (p)
53 memblock_free(__pa(p), PMD_SIZE);
56 p = early_alloc(PAGE_SIZE, nid, true);
57 pmd_populate_kernel(&init_mm, pmd, p);
60 pte = pte_offset_kernel(pmd, addr);
61 do {
62 pte_t entry;
63 void *p;
65 if (!pte_none(*pte))
66 continue;
68 p = early_alloc(PAGE_SIZE, nid, true);
69 entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
70 set_pte_at(&init_mm, addr, pte, entry);
71 } while (pte++, addr += PAGE_SIZE, addr != end);
74 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
75 unsigned long end, int nid)
77 pmd_t *pmd;
78 unsigned long next;
80 if (pud_none(*pud)) {
81 void *p;
83 if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
84 ((end - addr) == PUD_SIZE) &&
85 IS_ALIGNED(addr, PUD_SIZE)) {
86 p = early_alloc(PUD_SIZE, nid, false);
87 if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
88 return;
89 else if (p)
90 memblock_free(__pa(p), PUD_SIZE);
93 p = early_alloc(PAGE_SIZE, nid, true);
94 pud_populate(&init_mm, pud, p);
97 pmd = pmd_offset(pud, addr);
98 do {
99 next = pmd_addr_end(addr, end);
100 if (!pmd_large(*pmd))
101 kasan_populate_pmd(pmd, addr, next, nid);
102 } while (pmd++, addr = next, addr != end);
105 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
106 unsigned long end, int nid)
108 pud_t *pud;
109 unsigned long next;
111 if (p4d_none(*p4d)) {
112 void *p = early_alloc(PAGE_SIZE, nid, true);
114 p4d_populate(&init_mm, p4d, p);
117 pud = pud_offset(p4d, addr);
118 do {
119 next = pud_addr_end(addr, end);
120 if (!pud_large(*pud))
121 kasan_populate_pud(pud, addr, next, nid);
122 } while (pud++, addr = next, addr != end);
125 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
126 unsigned long end, int nid)
128 void *p;
129 p4d_t *p4d;
130 unsigned long next;
132 if (pgd_none(*pgd)) {
133 p = early_alloc(PAGE_SIZE, nid, true);
134 pgd_populate(&init_mm, pgd, p);
137 p4d = p4d_offset(pgd, addr);
138 do {
139 next = p4d_addr_end(addr, end);
140 kasan_populate_p4d(p4d, addr, next, nid);
141 } while (p4d++, addr = next, addr != end);
144 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
145 int nid)
147 pgd_t *pgd;
148 unsigned long next;
150 addr = addr & PAGE_MASK;
151 end = round_up(end, PAGE_SIZE);
152 pgd = pgd_offset_k(addr);
153 do {
154 next = pgd_addr_end(addr, end);
155 kasan_populate_pgd(pgd, addr, next, nid);
156 } while (pgd++, addr = next, addr != end);
159 static void __init map_range(struct range *range)
161 unsigned long start;
162 unsigned long end;
164 start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
165 end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
167 kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
170 static void __init clear_pgds(unsigned long start,
171 unsigned long end)
173 pgd_t *pgd;
174 /* See comment in kasan_init() */
175 unsigned long pgd_end = end & PGDIR_MASK;
177 for (; start < pgd_end; start += PGDIR_SIZE) {
178 pgd = pgd_offset_k(start);
180 * With folded p4d, pgd_clear() is nop, use p4d_clear()
181 * instead.
183 if (pgtable_l5_enabled())
184 pgd_clear(pgd);
185 else
186 p4d_clear(p4d_offset(pgd, start));
189 pgd = pgd_offset_k(start);
190 for (; start < end; start += P4D_SIZE)
191 p4d_clear(p4d_offset(pgd, start));
194 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
196 unsigned long p4d;
198 if (!pgtable_l5_enabled())
199 return (p4d_t *)pgd;
201 p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
202 p4d += __START_KERNEL_map - phys_base;
203 return (p4d_t *)p4d + p4d_index(addr);
206 static void __init kasan_early_p4d_populate(pgd_t *pgd,
207 unsigned long addr,
208 unsigned long end)
210 pgd_t pgd_entry;
211 p4d_t *p4d, p4d_entry;
212 unsigned long next;
214 if (pgd_none(*pgd)) {
215 pgd_entry = __pgd(_KERNPG_TABLE | __pa_nodebug(kasan_zero_p4d));
216 set_pgd(pgd, pgd_entry);
219 p4d = early_p4d_offset(pgd, addr);
220 do {
221 next = p4d_addr_end(addr, end);
223 if (!p4d_none(*p4d))
224 continue;
226 p4d_entry = __p4d(_KERNPG_TABLE | __pa_nodebug(kasan_zero_pud));
227 set_p4d(p4d, p4d_entry);
228 } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
231 static void __init kasan_map_early_shadow(pgd_t *pgd)
233 /* See comment in kasan_init() */
234 unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
235 unsigned long end = KASAN_SHADOW_END;
236 unsigned long next;
238 pgd += pgd_index(addr);
239 do {
240 next = pgd_addr_end(addr, end);
241 kasan_early_p4d_populate(pgd, addr, next);
242 } while (pgd++, addr = next, addr != end);
245 #ifdef CONFIG_KASAN_INLINE
246 static int kasan_die_handler(struct notifier_block *self,
247 unsigned long val,
248 void *data)
250 if (val == DIE_GPF) {
251 pr_emerg("CONFIG_KASAN_INLINE enabled\n");
252 pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
254 return NOTIFY_OK;
257 static struct notifier_block kasan_die_notifier = {
258 .notifier_call = kasan_die_handler,
260 #endif
262 void __init kasan_early_init(void)
264 int i;
265 pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL | _PAGE_ENC;
266 pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
267 pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
268 p4dval_t p4d_val = __pa_nodebug(kasan_zero_pud) | _KERNPG_TABLE;
270 /* Mask out unsupported __PAGE_KERNEL bits: */
271 pte_val &= __default_kernel_pte_mask;
272 pmd_val &= __default_kernel_pte_mask;
273 pud_val &= __default_kernel_pte_mask;
274 p4d_val &= __default_kernel_pte_mask;
276 for (i = 0; i < PTRS_PER_PTE; i++)
277 kasan_zero_pte[i] = __pte(pte_val);
279 for (i = 0; i < PTRS_PER_PMD; i++)
280 kasan_zero_pmd[i] = __pmd(pmd_val);
282 for (i = 0; i < PTRS_PER_PUD; i++)
283 kasan_zero_pud[i] = __pud(pud_val);
285 for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
286 kasan_zero_p4d[i] = __p4d(p4d_val);
288 kasan_map_early_shadow(early_top_pgt);
289 kasan_map_early_shadow(init_top_pgt);
292 void __init kasan_init(void)
294 int i;
295 void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
297 #ifdef CONFIG_KASAN_INLINE
298 register_die_notifier(&kasan_die_notifier);
299 #endif
301 memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
304 * We use the same shadow offset for 4- and 5-level paging to
305 * facilitate boot-time switching between paging modes.
306 * As result in 5-level paging mode KASAN_SHADOW_START and
307 * KASAN_SHADOW_END are not aligned to PGD boundary.
309 * KASAN_SHADOW_START doesn't share PGD with anything else.
310 * We claim whole PGD entry to make things easier.
312 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
313 * bunch of things like kernel code, modules, EFI mapping, etc.
314 * We need to take extra steps to not overwrite them.
316 if (pgtable_l5_enabled()) {
317 void *ptr;
319 ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
320 memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
321 set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
322 __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
325 load_cr3(early_top_pgt);
326 __flush_tlb_all();
328 clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
330 kasan_populate_zero_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
331 kasan_mem_to_shadow((void *)PAGE_OFFSET));
333 for (i = 0; i < E820_MAX_ENTRIES; i++) {
334 if (pfn_mapped[i].end == 0)
335 break;
337 map_range(&pfn_mapped[i]);
340 shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
341 shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
342 shadow_cpu_entry_begin = (void *)round_down((unsigned long)shadow_cpu_entry_begin,
343 PAGE_SIZE);
345 shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
346 CPU_ENTRY_AREA_MAP_SIZE);
347 shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
348 shadow_cpu_entry_end = (void *)round_up((unsigned long)shadow_cpu_entry_end,
349 PAGE_SIZE);
351 kasan_populate_zero_shadow(
352 kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
353 shadow_cpu_entry_begin);
355 kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
356 (unsigned long)shadow_cpu_entry_end, 0);
358 kasan_populate_zero_shadow(shadow_cpu_entry_end,
359 kasan_mem_to_shadow((void *)__START_KERNEL_map));
361 kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
362 (unsigned long)kasan_mem_to_shadow(_end),
363 early_pfn_to_nid(__pa(_stext)));
365 kasan_populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
366 (void *)KASAN_SHADOW_END);
368 load_cr3(init_top_pgt);
369 __flush_tlb_all();
372 * kasan_zero_page has been used as early shadow memory, thus it may
373 * contain some garbage. Now we can clear and write protect it, since
374 * after the TLB flush no one should write to it.
376 memset(kasan_zero_page, 0, PAGE_SIZE);
377 for (i = 0; i < PTRS_PER_PTE; i++) {
378 pte_t pte;
379 pgprot_t prot;
381 prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
382 pgprot_val(prot) &= __default_kernel_pte_mask;
384 pte = __pte(__pa(kasan_zero_page) | pgprot_val(prot));
385 set_pte(&kasan_zero_pte[i], pte);
387 /* Flush TLBs again to be sure that write protection applied. */
388 __flush_tlb_all();
390 init_task.kasan_depth = 0;
391 pr_info("KernelAddressSanitizer initialized\n");