1 // SPDX-License-Identifier: GPL-2.0
2 /* Support for MMIO probes.
3 * Benfit many code from kprobes
4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
5 * 2007 Alexander Eichner
6 * 2008 Pekka Paalanen <pq@iki.fi>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/list.h>
12 #include <linux/rculist.h>
13 #include <linux/spinlock.h>
14 #include <linux/hash.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/uaccess.h>
18 #include <linux/ptrace.h>
19 #include <linux/preempt.h>
20 #include <linux/percpu.h>
21 #include <linux/kdebug.h>
22 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <linux/errno.h>
28 #include <asm/debugreg.h>
29 #include <linux/mmiotrace.h>
31 #define KMMIO_PAGE_HASH_BITS 4
32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
34 struct kmmio_fault_page
{
35 struct list_head list
;
36 struct kmmio_fault_page
*release_next
;
37 unsigned long addr
; /* the requested address */
38 pteval_t old_presence
; /* page presence prior to arming */
42 * Number of times this page has been registered as a part
43 * of a probe. If zero, page is disarmed and this may be freed.
44 * Used only by writers (RCU) and post_kmmio_handler().
45 * Protected by kmmio_lock, when linked into kmmio_page_table.
49 bool scheduled_for_release
;
52 struct kmmio_delayed_release
{
54 struct kmmio_fault_page
*release_list
;
57 struct kmmio_context
{
58 struct kmmio_fault_page
*fpage
;
59 struct kmmio_probe
*probe
;
60 unsigned long saved_flags
;
65 static DEFINE_SPINLOCK(kmmio_lock
);
67 /* Protected by kmmio_lock */
68 unsigned int kmmio_count
;
70 /* Read-protected by RCU, write-protected by kmmio_lock. */
71 static struct list_head kmmio_page_table
[KMMIO_PAGE_TABLE_SIZE
];
72 static LIST_HEAD(kmmio_probes
);
74 static struct list_head
*kmmio_page_list(unsigned long addr
)
77 pte_t
*pte
= lookup_address(addr
, &l
);
81 addr
&= page_level_mask(l
);
83 return &kmmio_page_table
[hash_long(addr
, KMMIO_PAGE_HASH_BITS
)];
86 /* Accessed per-cpu */
87 static DEFINE_PER_CPU(struct kmmio_context
, kmmio_ctx
);
90 * this is basically a dynamic stabbing problem:
91 * Could use the existing prio tree code or
92 * Possible better implementations:
93 * The Interval Skip List: A Data Structure for Finding All Intervals That
94 * Overlap a Point (might be simple)
95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
97 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
98 static struct kmmio_probe
*get_kmmio_probe(unsigned long addr
)
100 struct kmmio_probe
*p
;
101 list_for_each_entry_rcu(p
, &kmmio_probes
, list
) {
102 if (addr
>= p
->addr
&& addr
< (p
->addr
+ p
->len
))
108 /* You must be holding RCU read lock. */
109 static struct kmmio_fault_page
*get_kmmio_fault_page(unsigned long addr
)
111 struct list_head
*head
;
112 struct kmmio_fault_page
*f
;
114 pte_t
*pte
= lookup_address(addr
, &l
);
118 addr
&= page_level_mask(l
);
119 head
= kmmio_page_list(addr
);
120 list_for_each_entry_rcu(f
, head
, list
) {
127 static void clear_pmd_presence(pmd_t
*pmd
, bool clear
, pmdval_t
*old
)
130 pmdval_t v
= pmd_val(*pmd
);
133 new_pmd
= pmd_mknotpresent(*pmd
);
135 /* Presume this has been called with clear==true previously */
136 new_pmd
= __pmd(*old
);
138 set_pmd(pmd
, new_pmd
);
141 static void clear_pte_presence(pte_t
*pte
, bool clear
, pteval_t
*old
)
143 pteval_t v
= pte_val(*pte
);
146 /* Nothing should care about address */
147 pte_clear(&init_mm
, 0, pte
);
149 /* Presume this has been called with clear==true previously */
150 set_pte_atomic(pte
, __pte(*old
));
154 static int clear_page_presence(struct kmmio_fault_page
*f
, bool clear
)
157 pte_t
*pte
= lookup_address(f
->addr
, &level
);
160 pr_err("no pte for addr 0x%08lx\n", f
->addr
);
166 clear_pmd_presence((pmd_t
*)pte
, clear
, &f
->old_presence
);
169 clear_pte_presence(pte
, clear
, &f
->old_presence
);
172 pr_err("unexpected page level 0x%x.\n", level
);
176 __flush_tlb_one_kernel(f
->addr
);
181 * Mark the given page as not present. Access to it will trigger a fault.
183 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
184 * protection is ignored here. RCU read lock is assumed held, so the struct
185 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
186 * that double arming the same virtual address (page) cannot occur.
188 * Double disarming on the other hand is allowed, and may occur when a fault
189 * and mmiotrace shutdown happen simultaneously.
191 static int arm_kmmio_fault_page(struct kmmio_fault_page
*f
)
194 WARN_ONCE(f
->armed
, KERN_ERR
pr_fmt("kmmio page already armed.\n"));
196 pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
197 f
->addr
, f
->count
, !!f
->old_presence
);
199 ret
= clear_page_presence(f
, true);
200 WARN_ONCE(ret
< 0, KERN_ERR
pr_fmt("arming at 0x%08lx failed.\n"),
206 /** Restore the given page to saved presence state. */
207 static void disarm_kmmio_fault_page(struct kmmio_fault_page
*f
)
209 int ret
= clear_page_presence(f
, false);
211 KERN_ERR
"kmmio disarming at 0x%08lx failed.\n", f
->addr
);
216 * This is being called from do_page_fault().
218 * We may be in an interrupt or a critical section. Also prefecthing may
219 * trigger a page fault. We may be in the middle of process switch.
220 * We cannot take any locks, because we could be executing especially
221 * within a kmmio critical section.
223 * Local interrupts are disabled, so preemption cannot happen.
224 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
227 * Interrupts are disabled on entry as trap3 is an interrupt gate
228 * and they remain disabled throughout this function.
230 int kmmio_handler(struct pt_regs
*regs
, unsigned long addr
)
232 struct kmmio_context
*ctx
;
233 struct kmmio_fault_page
*faultpage
;
234 int ret
= 0; /* default to fault not handled */
235 unsigned long page_base
= addr
;
237 pte_t
*pte
= lookup_address(addr
, &l
);
240 page_base
&= page_level_mask(l
);
243 * Preemption is now disabled to prevent process switch during
244 * single stepping. We can only handle one active kmmio trace
245 * per cpu, so ensure that we finish it before something else
246 * gets to run. We also hold the RCU read lock over single
247 * stepping to avoid looking up the probe and kmmio_fault_page
253 faultpage
= get_kmmio_fault_page(page_base
);
256 * Either this page fault is not caused by kmmio, or
257 * another CPU just pulled the kmmio probe from under
258 * our feet. The latter case should not be possible.
263 ctx
= &get_cpu_var(kmmio_ctx
);
265 if (page_base
== ctx
->addr
) {
267 * A second fault on the same page means some other
268 * condition needs handling by do_page_fault(), the
269 * page really not being present is the most common.
271 pr_debug("secondary hit for 0x%08lx CPU %d.\n",
272 addr
, smp_processor_id());
274 if (!faultpage
->old_presence
)
275 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
276 addr
, smp_processor_id());
279 * Prevent overwriting already in-flight context.
280 * This should not happen, let's hope disarming at
281 * least prevents a panic.
283 pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
284 smp_processor_id(), addr
);
285 pr_emerg("previous hit was at 0x%08lx.\n", ctx
->addr
);
286 disarm_kmmio_fault_page(faultpage
);
292 ctx
->fpage
= faultpage
;
293 ctx
->probe
= get_kmmio_probe(page_base
);
294 ctx
->saved_flags
= (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
295 ctx
->addr
= page_base
;
297 if (ctx
->probe
&& ctx
->probe
->pre_handler
)
298 ctx
->probe
->pre_handler(ctx
->probe
, regs
, addr
);
301 * Enable single-stepping and disable interrupts for the faulting
302 * context. Local interrupts must not get enabled during stepping.
304 regs
->flags
|= X86_EFLAGS_TF
;
305 regs
->flags
&= ~X86_EFLAGS_IF
;
307 /* Now we set present bit in PTE and single step. */
308 disarm_kmmio_fault_page(ctx
->fpage
);
311 * If another cpu accesses the same page while we are stepping,
312 * the access will not be caught. It will simply succeed and the
313 * only downside is we lose the event. If this becomes a problem,
314 * the user should drop to single cpu before tracing.
317 put_cpu_var(kmmio_ctx
);
318 return 1; /* fault handled */
321 put_cpu_var(kmmio_ctx
);
324 preempt_enable_no_resched();
329 * Interrupts are disabled on entry as trap1 is an interrupt gate
330 * and they remain disabled throughout this function.
331 * This must always get called as the pair to kmmio_handler().
333 static int post_kmmio_handler(unsigned long condition
, struct pt_regs
*regs
)
336 struct kmmio_context
*ctx
= &get_cpu_var(kmmio_ctx
);
340 * debug traps without an active context are due to either
341 * something external causing them (f.e. using a debugger while
342 * mmio tracing enabled), or erroneous behaviour
344 pr_warning("unexpected debug trap on CPU %d.\n",
349 if (ctx
->probe
&& ctx
->probe
->post_handler
)
350 ctx
->probe
->post_handler(ctx
->probe
, condition
, regs
);
352 /* Prevent racing against release_kmmio_fault_page(). */
353 spin_lock(&kmmio_lock
);
354 if (ctx
->fpage
->count
)
355 arm_kmmio_fault_page(ctx
->fpage
);
356 spin_unlock(&kmmio_lock
);
358 regs
->flags
&= ~X86_EFLAGS_TF
;
359 regs
->flags
|= ctx
->saved_flags
;
361 /* These were acquired in kmmio_handler(). */
365 preempt_enable_no_resched();
368 * if somebody else is singlestepping across a probe point, flags
369 * will have TF set, in which case, continue the remaining processing
370 * of do_debug, as if this is not a probe hit.
372 if (!(regs
->flags
& X86_EFLAGS_TF
))
375 put_cpu_var(kmmio_ctx
);
379 /* You must be holding kmmio_lock. */
380 static int add_kmmio_fault_page(unsigned long addr
)
382 struct kmmio_fault_page
*f
;
384 f
= get_kmmio_fault_page(addr
);
387 arm_kmmio_fault_page(f
);
392 f
= kzalloc(sizeof(*f
), GFP_ATOMIC
);
399 if (arm_kmmio_fault_page(f
)) {
404 list_add_rcu(&f
->list
, kmmio_page_list(f
->addr
));
409 /* You must be holding kmmio_lock. */
410 static void release_kmmio_fault_page(unsigned long addr
,
411 struct kmmio_fault_page
**release_list
)
413 struct kmmio_fault_page
*f
;
415 f
= get_kmmio_fault_page(addr
);
420 BUG_ON(f
->count
< 0);
422 disarm_kmmio_fault_page(f
);
423 if (!f
->scheduled_for_release
) {
424 f
->release_next
= *release_list
;
426 f
->scheduled_for_release
= true;
432 * With page-unaligned ioremaps, one or two armed pages may contain
433 * addresses from outside the intended mapping. Events for these addresses
434 * are currently silently dropped. The events may result only from programming
435 * mistakes by accessing addresses before the beginning or past the end of a
438 int register_kmmio_probe(struct kmmio_probe
*p
)
442 unsigned long size
= 0;
443 unsigned long addr
= p
->addr
& PAGE_MASK
;
444 const unsigned long size_lim
= p
->len
+ (p
->addr
& ~PAGE_MASK
);
448 spin_lock_irqsave(&kmmio_lock
, flags
);
449 if (get_kmmio_probe(addr
)) {
454 pte
= lookup_address(addr
, &l
);
461 list_add_rcu(&p
->list
, &kmmio_probes
);
462 while (size
< size_lim
) {
463 if (add_kmmio_fault_page(addr
+ size
))
464 pr_err("Unable to set page fault.\n");
465 size
+= page_level_size(l
);
468 spin_unlock_irqrestore(&kmmio_lock
, flags
);
470 * XXX: What should I do here?
471 * Here was a call to global_flush_tlb(), but it does not exist
472 * anymore. It seems it's not needed after all.
476 EXPORT_SYMBOL(register_kmmio_probe
);
478 static void rcu_free_kmmio_fault_pages(struct rcu_head
*head
)
480 struct kmmio_delayed_release
*dr
= container_of(
482 struct kmmio_delayed_release
,
484 struct kmmio_fault_page
*f
= dr
->release_list
;
486 struct kmmio_fault_page
*next
= f
->release_next
;
494 static void remove_kmmio_fault_pages(struct rcu_head
*head
)
496 struct kmmio_delayed_release
*dr
=
497 container_of(head
, struct kmmio_delayed_release
, rcu
);
498 struct kmmio_fault_page
*f
= dr
->release_list
;
499 struct kmmio_fault_page
**prevp
= &dr
->release_list
;
502 spin_lock_irqsave(&kmmio_lock
, flags
);
505 list_del_rcu(&f
->list
);
506 prevp
= &f
->release_next
;
508 *prevp
= f
->release_next
;
509 f
->release_next
= NULL
;
510 f
->scheduled_for_release
= false;
514 spin_unlock_irqrestore(&kmmio_lock
, flags
);
516 /* This is the real RCU destroy call. */
517 call_rcu(&dr
->rcu
, rcu_free_kmmio_fault_pages
);
521 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
522 * sure that the callbacks will not be called anymore. Only after that
523 * you may actually release your struct kmmio_probe.
525 * Unregistering a kmmio fault page has three steps:
526 * 1. release_kmmio_fault_page()
527 * Disarm the page, wait a grace period to let all faults finish.
528 * 2. remove_kmmio_fault_pages()
529 * Remove the pages from kmmio_page_table.
530 * 3. rcu_free_kmmio_fault_pages()
531 * Actually free the kmmio_fault_page structs as with RCU.
533 void unregister_kmmio_probe(struct kmmio_probe
*p
)
536 unsigned long size
= 0;
537 unsigned long addr
= p
->addr
& PAGE_MASK
;
538 const unsigned long size_lim
= p
->len
+ (p
->addr
& ~PAGE_MASK
);
539 struct kmmio_fault_page
*release_list
= NULL
;
540 struct kmmio_delayed_release
*drelease
;
544 pte
= lookup_address(addr
, &l
);
548 spin_lock_irqsave(&kmmio_lock
, flags
);
549 while (size
< size_lim
) {
550 release_kmmio_fault_page(addr
+ size
, &release_list
);
551 size
+= page_level_size(l
);
553 list_del_rcu(&p
->list
);
555 spin_unlock_irqrestore(&kmmio_lock
, flags
);
560 drelease
= kmalloc(sizeof(*drelease
), GFP_ATOMIC
);
562 pr_crit("leaking kmmio_fault_page objects.\n");
565 drelease
->release_list
= release_list
;
568 * This is not really RCU here. We have just disarmed a set of
569 * pages so that they cannot trigger page faults anymore. However,
570 * we cannot remove the pages from kmmio_page_table,
571 * because a probe hit might be in flight on another CPU. The
572 * pages are collected into a list, and they will be removed from
573 * kmmio_page_table when it is certain that no probe hit related to
574 * these pages can be in flight. RCU grace period sounds like a
577 * If we removed the pages too early, kmmio page fault handler might
578 * not find the respective kmmio_fault_page and determine it's not
579 * a kmmio fault, when it actually is. This would lead to madness.
581 call_rcu(&drelease
->rcu
, remove_kmmio_fault_pages
);
583 EXPORT_SYMBOL(unregister_kmmio_probe
);
586 kmmio_die_notifier(struct notifier_block
*nb
, unsigned long val
, void *args
)
588 struct die_args
*arg
= args
;
589 unsigned long* dr6_p
= (unsigned long *)ERR_PTR(arg
->err
);
591 if (val
== DIE_DEBUG
&& (*dr6_p
& DR_STEP
))
592 if (post_kmmio_handler(*dr6_p
, arg
->regs
) == 1) {
594 * Reset the BS bit in dr6 (pointed by args->err) to
595 * denote completion of processing
604 static struct notifier_block nb_die
= {
605 .notifier_call
= kmmio_die_notifier
612 for (i
= 0; i
< KMMIO_PAGE_TABLE_SIZE
; i
++)
613 INIT_LIST_HEAD(&kmmio_page_table
[i
]);
615 return register_die_notifier(&nb_die
);
618 void kmmio_cleanup(void)
622 unregister_die_notifier(&nb_die
);
623 for (i
= 0; i
< KMMIO_PAGE_TABLE_SIZE
; i
++) {
624 WARN_ONCE(!list_empty(&kmmio_page_table
[i
]),
625 KERN_ERR
"kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");