hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / mm / mem_encrypt_identity.c
bloba19ef1a416ff66f0f1c70928644815dc385aa1e0
1 /*
2 * AMD Memory Encryption Support
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #define DISABLE_BRANCH_PROFILING
16 * Since we're dealing with identity mappings, physical and virtual
17 * addresses are the same, so override these defines which are ultimately
18 * used by the headers in misc.h.
20 #define __pa(x) ((unsigned long)(x))
21 #define __va(x) ((void *)((unsigned long)(x)))
24 * Special hack: we have to be careful, because no indirections are
25 * allowed here, and paravirt_ops is a kind of one. As it will only run in
26 * baremetal anyway, we just keep it from happening. (This list needs to
27 * be extended when new paravirt and debugging variants are added.)
29 #undef CONFIG_PARAVIRT
30 #undef CONFIG_PARAVIRT_XXL
31 #undef CONFIG_PARAVIRT_SPINLOCKS
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/mem_encrypt.h>
37 #include <asm/setup.h>
38 #include <asm/sections.h>
39 #include <asm/cmdline.h>
41 #include "mm_internal.h"
43 #define PGD_FLAGS _KERNPG_TABLE_NOENC
44 #define P4D_FLAGS _KERNPG_TABLE_NOENC
45 #define PUD_FLAGS _KERNPG_TABLE_NOENC
46 #define PMD_FLAGS _KERNPG_TABLE_NOENC
48 #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
50 #define PMD_FLAGS_DEC PMD_FLAGS_LARGE
51 #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
52 (_PAGE_PAT | _PAGE_PWT))
54 #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
56 #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
58 #define PTE_FLAGS_DEC PTE_FLAGS
59 #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
60 (_PAGE_PAT | _PAGE_PWT))
62 #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
64 struct sme_populate_pgd_data {
65 void *pgtable_area;
66 pgd_t *pgd;
68 pmdval_t pmd_flags;
69 pteval_t pte_flags;
70 unsigned long paddr;
72 unsigned long vaddr;
73 unsigned long vaddr_end;
76 static char sme_cmdline_arg[] __initdata = "mem_encrypt";
77 static char sme_cmdline_on[] __initdata = "on";
78 static char sme_cmdline_off[] __initdata = "off";
80 static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
82 unsigned long pgd_start, pgd_end, pgd_size;
83 pgd_t *pgd_p;
85 pgd_start = ppd->vaddr & PGDIR_MASK;
86 pgd_end = ppd->vaddr_end & PGDIR_MASK;
88 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
90 pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
92 memset(pgd_p, 0, pgd_size);
95 static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
97 pgd_t *pgd;
98 p4d_t *p4d;
99 pud_t *pud;
100 pmd_t *pmd;
102 pgd = ppd->pgd + pgd_index(ppd->vaddr);
103 if (pgd_none(*pgd)) {
104 p4d = ppd->pgtable_area;
105 memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
106 ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
107 set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
110 p4d = p4d_offset(pgd, ppd->vaddr);
111 if (p4d_none(*p4d)) {
112 pud = ppd->pgtable_area;
113 memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
114 ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
115 set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
118 pud = pud_offset(p4d, ppd->vaddr);
119 if (pud_none(*pud)) {
120 pmd = ppd->pgtable_area;
121 memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
122 ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
123 set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
126 if (pud_large(*pud))
127 return NULL;
129 return pud;
132 static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
134 pud_t *pud;
135 pmd_t *pmd;
137 pud = sme_prepare_pgd(ppd);
138 if (!pud)
139 return;
141 pmd = pmd_offset(pud, ppd->vaddr);
142 if (pmd_large(*pmd))
143 return;
145 set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
148 static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
150 pud_t *pud;
151 pmd_t *pmd;
152 pte_t *pte;
154 pud = sme_prepare_pgd(ppd);
155 if (!pud)
156 return;
158 pmd = pmd_offset(pud, ppd->vaddr);
159 if (pmd_none(*pmd)) {
160 pte = ppd->pgtable_area;
161 memset(pte, 0, sizeof(pte) * PTRS_PER_PTE);
162 ppd->pgtable_area += sizeof(pte) * PTRS_PER_PTE;
163 set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
166 if (pmd_large(*pmd))
167 return;
169 pte = pte_offset_map(pmd, ppd->vaddr);
170 if (pte_none(*pte))
171 set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
174 static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
176 while (ppd->vaddr < ppd->vaddr_end) {
177 sme_populate_pgd_large(ppd);
179 ppd->vaddr += PMD_PAGE_SIZE;
180 ppd->paddr += PMD_PAGE_SIZE;
184 static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
186 while (ppd->vaddr < ppd->vaddr_end) {
187 sme_populate_pgd(ppd);
189 ppd->vaddr += PAGE_SIZE;
190 ppd->paddr += PAGE_SIZE;
194 static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
195 pmdval_t pmd_flags, pteval_t pte_flags)
197 unsigned long vaddr_end;
199 ppd->pmd_flags = pmd_flags;
200 ppd->pte_flags = pte_flags;
202 /* Save original end value since we modify the struct value */
203 vaddr_end = ppd->vaddr_end;
205 /* If start is not 2MB aligned, create PTE entries */
206 ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
207 __sme_map_range_pte(ppd);
209 /* Create PMD entries */
210 ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
211 __sme_map_range_pmd(ppd);
213 /* If end is not 2MB aligned, create PTE entries */
214 ppd->vaddr_end = vaddr_end;
215 __sme_map_range_pte(ppd);
218 static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
220 __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
223 static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
225 __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
228 static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
230 __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
233 static unsigned long __init sme_pgtable_calc(unsigned long len)
235 unsigned long entries = 0, tables = 0;
238 * Perform a relatively simplistic calculation of the pagetable
239 * entries that are needed. Those mappings will be covered mostly
240 * by 2MB PMD entries so we can conservatively calculate the required
241 * number of P4D, PUD and PMD structures needed to perform the
242 * mappings. For mappings that are not 2MB aligned, PTE mappings
243 * would be needed for the start and end portion of the address range
244 * that fall outside of the 2MB alignment. This results in, at most,
245 * two extra pages to hold PTE entries for each range that is mapped.
246 * Incrementing the count for each covers the case where the addresses
247 * cross entries.
250 /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
251 if (PTRS_PER_P4D > 1)
252 entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
253 entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
254 entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
255 entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
258 * Now calculate the added pagetable structures needed to populate
259 * the new pagetables.
262 if (PTRS_PER_P4D > 1)
263 tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
264 tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
265 tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
267 return entries + tables;
270 void __init sme_encrypt_kernel(struct boot_params *bp)
272 unsigned long workarea_start, workarea_end, workarea_len;
273 unsigned long execute_start, execute_end, execute_len;
274 unsigned long kernel_start, kernel_end, kernel_len;
275 unsigned long initrd_start, initrd_end, initrd_len;
276 struct sme_populate_pgd_data ppd;
277 unsigned long pgtable_area_len;
278 unsigned long decrypted_base;
280 if (!sme_active())
281 return;
284 * Prepare for encrypting the kernel and initrd by building new
285 * pagetables with the necessary attributes needed to encrypt the
286 * kernel in place.
288 * One range of virtual addresses will map the memory occupied
289 * by the kernel and initrd as encrypted.
291 * Another range of virtual addresses will map the memory occupied
292 * by the kernel and initrd as decrypted and write-protected.
294 * The use of write-protect attribute will prevent any of the
295 * memory from being cached.
298 /* Physical addresses gives us the identity mapped virtual addresses */
299 kernel_start = __pa_symbol(_text);
300 kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
301 kernel_len = kernel_end - kernel_start;
303 initrd_start = 0;
304 initrd_end = 0;
305 initrd_len = 0;
306 #ifdef CONFIG_BLK_DEV_INITRD
307 initrd_len = (unsigned long)bp->hdr.ramdisk_size |
308 ((unsigned long)bp->ext_ramdisk_size << 32);
309 if (initrd_len) {
310 initrd_start = (unsigned long)bp->hdr.ramdisk_image |
311 ((unsigned long)bp->ext_ramdisk_image << 32);
312 initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
313 initrd_len = initrd_end - initrd_start;
315 #endif
317 /* Set the encryption workarea to be immediately after the kernel */
318 workarea_start = kernel_end;
321 * Calculate required number of workarea bytes needed:
322 * executable encryption area size:
323 * stack page (PAGE_SIZE)
324 * encryption routine page (PAGE_SIZE)
325 * intermediate copy buffer (PMD_PAGE_SIZE)
326 * pagetable structures for the encryption of the kernel
327 * pagetable structures for workarea (in case not currently mapped)
329 execute_start = workarea_start;
330 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
331 execute_len = execute_end - execute_start;
334 * One PGD for both encrypted and decrypted mappings and a set of
335 * PUDs and PMDs for each of the encrypted and decrypted mappings.
337 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
338 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
339 if (initrd_len)
340 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
342 /* PUDs and PMDs needed in the current pagetables for the workarea */
343 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
346 * The total workarea includes the executable encryption area and
347 * the pagetable area. The start of the workarea is already 2MB
348 * aligned, align the end of the workarea on a 2MB boundary so that
349 * we don't try to create/allocate PTE entries from the workarea
350 * before it is mapped.
352 workarea_len = execute_len + pgtable_area_len;
353 workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
356 * Set the address to the start of where newly created pagetable
357 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
358 * structures are created when the workarea is added to the current
359 * pagetables and when the new encrypted and decrypted kernel
360 * mappings are populated.
362 ppd.pgtable_area = (void *)execute_end;
365 * Make sure the current pagetable structure has entries for
366 * addressing the workarea.
368 ppd.pgd = (pgd_t *)native_read_cr3_pa();
369 ppd.paddr = workarea_start;
370 ppd.vaddr = workarea_start;
371 ppd.vaddr_end = workarea_end;
372 sme_map_range_decrypted(&ppd);
374 /* Flush the TLB - no globals so cr3 is enough */
375 native_write_cr3(__native_read_cr3());
378 * A new pagetable structure is being built to allow for the kernel
379 * and initrd to be encrypted. It starts with an empty PGD that will
380 * then be populated with new PUDs and PMDs as the encrypted and
381 * decrypted kernel mappings are created.
383 ppd.pgd = ppd.pgtable_area;
384 memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
385 ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
388 * A different PGD index/entry must be used to get different
389 * pagetable entries for the decrypted mapping. Choose the next
390 * PGD index and convert it to a virtual address to be used as
391 * the base of the mapping.
393 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
394 if (initrd_len) {
395 unsigned long check_base;
397 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
398 decrypted_base = max(decrypted_base, check_base);
400 decrypted_base <<= PGDIR_SHIFT;
402 /* Add encrypted kernel (identity) mappings */
403 ppd.paddr = kernel_start;
404 ppd.vaddr = kernel_start;
405 ppd.vaddr_end = kernel_end;
406 sme_map_range_encrypted(&ppd);
408 /* Add decrypted, write-protected kernel (non-identity) mappings */
409 ppd.paddr = kernel_start;
410 ppd.vaddr = kernel_start + decrypted_base;
411 ppd.vaddr_end = kernel_end + decrypted_base;
412 sme_map_range_decrypted_wp(&ppd);
414 if (initrd_len) {
415 /* Add encrypted initrd (identity) mappings */
416 ppd.paddr = initrd_start;
417 ppd.vaddr = initrd_start;
418 ppd.vaddr_end = initrd_end;
419 sme_map_range_encrypted(&ppd);
421 * Add decrypted, write-protected initrd (non-identity) mappings
423 ppd.paddr = initrd_start;
424 ppd.vaddr = initrd_start + decrypted_base;
425 ppd.vaddr_end = initrd_end + decrypted_base;
426 sme_map_range_decrypted_wp(&ppd);
429 /* Add decrypted workarea mappings to both kernel mappings */
430 ppd.paddr = workarea_start;
431 ppd.vaddr = workarea_start;
432 ppd.vaddr_end = workarea_end;
433 sme_map_range_decrypted(&ppd);
435 ppd.paddr = workarea_start;
436 ppd.vaddr = workarea_start + decrypted_base;
437 ppd.vaddr_end = workarea_end + decrypted_base;
438 sme_map_range_decrypted(&ppd);
440 /* Perform the encryption */
441 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
442 kernel_len, workarea_start, (unsigned long)ppd.pgd);
444 if (initrd_len)
445 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
446 initrd_len, workarea_start,
447 (unsigned long)ppd.pgd);
450 * At this point we are running encrypted. Remove the mappings for
451 * the decrypted areas - all that is needed for this is to remove
452 * the PGD entry/entries.
454 ppd.vaddr = kernel_start + decrypted_base;
455 ppd.vaddr_end = kernel_end + decrypted_base;
456 sme_clear_pgd(&ppd);
458 if (initrd_len) {
459 ppd.vaddr = initrd_start + decrypted_base;
460 ppd.vaddr_end = initrd_end + decrypted_base;
461 sme_clear_pgd(&ppd);
464 ppd.vaddr = workarea_start + decrypted_base;
465 ppd.vaddr_end = workarea_end + decrypted_base;
466 sme_clear_pgd(&ppd);
468 /* Flush the TLB - no globals so cr3 is enough */
469 native_write_cr3(__native_read_cr3());
472 void __init sme_enable(struct boot_params *bp)
474 const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
475 unsigned int eax, ebx, ecx, edx;
476 unsigned long feature_mask;
477 bool active_by_default;
478 unsigned long me_mask;
479 char buffer[16];
480 u64 msr;
482 /* Check for the SME/SEV support leaf */
483 eax = 0x80000000;
484 ecx = 0;
485 native_cpuid(&eax, &ebx, &ecx, &edx);
486 if (eax < 0x8000001f)
487 return;
489 #define AMD_SME_BIT BIT(0)
490 #define AMD_SEV_BIT BIT(1)
492 * Set the feature mask (SME or SEV) based on whether we are
493 * running under a hypervisor.
495 eax = 1;
496 ecx = 0;
497 native_cpuid(&eax, &ebx, &ecx, &edx);
498 feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
501 * Check for the SME/SEV feature:
502 * CPUID Fn8000_001F[EAX]
503 * - Bit 0 - Secure Memory Encryption support
504 * - Bit 1 - Secure Encrypted Virtualization support
505 * CPUID Fn8000_001F[EBX]
506 * - Bits 5:0 - Pagetable bit position used to indicate encryption
508 eax = 0x8000001f;
509 ecx = 0;
510 native_cpuid(&eax, &ebx, &ecx, &edx);
511 if (!(eax & feature_mask))
512 return;
514 me_mask = 1UL << (ebx & 0x3f);
516 /* Check if memory encryption is enabled */
517 if (feature_mask == AMD_SME_BIT) {
518 /* For SME, check the SYSCFG MSR */
519 msr = __rdmsr(MSR_K8_SYSCFG);
520 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
521 return;
522 } else {
523 /* For SEV, check the SEV MSR */
524 msr = __rdmsr(MSR_AMD64_SEV);
525 if (!(msr & MSR_AMD64_SEV_ENABLED))
526 return;
528 /* SEV state cannot be controlled by a command line option */
529 sme_me_mask = me_mask;
530 sev_enabled = true;
531 physical_mask &= ~sme_me_mask;
532 return;
536 * Fixups have not been applied to phys_base yet and we're running
537 * identity mapped, so we must obtain the address to the SME command
538 * line argument data using rip-relative addressing.
540 asm ("lea sme_cmdline_arg(%%rip), %0"
541 : "=r" (cmdline_arg)
542 : "p" (sme_cmdline_arg));
543 asm ("lea sme_cmdline_on(%%rip), %0"
544 : "=r" (cmdline_on)
545 : "p" (sme_cmdline_on));
546 asm ("lea sme_cmdline_off(%%rip), %0"
547 : "=r" (cmdline_off)
548 : "p" (sme_cmdline_off));
550 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
551 active_by_default = true;
552 else
553 active_by_default = false;
555 cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
556 ((u64)bp->ext_cmd_line_ptr << 32));
558 cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
560 if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
561 sme_me_mask = me_mask;
562 else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
563 sme_me_mask = 0;
564 else
565 sme_me_mask = active_by_default ? me_mask : 0;
567 physical_mask &= ~sme_me_mask;