2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
27 #include <asm/set_memory.h>
30 * The current flushing context - we pass it instead of 5 arguments:
37 unsigned long numpages
;
40 unsigned force_split
: 1,
41 force_static_prot
: 1;
52 static const int cpa_warn_level
= CPA_PROTECT
;
55 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
56 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
57 * entries change the page attribute in parallel to some other cpu
58 * splitting a large page entry along with changing the attribute.
60 static DEFINE_SPINLOCK(cpa_lock
);
62 #define CPA_FLUSHTLB 1
64 #define CPA_PAGES_ARRAY 4
65 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
68 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
70 void update_page_count(int level
, unsigned long pages
)
72 /* Protect against CPA */
74 direct_pages_count
[level
] += pages
;
75 spin_unlock(&pgd_lock
);
78 static void split_page_count(int level
)
80 if (direct_pages_count
[level
] == 0)
83 direct_pages_count
[level
]--;
84 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
87 void arch_report_meminfo(struct seq_file
*m
)
89 seq_printf(m
, "DirectMap4k: %8lu kB\n",
90 direct_pages_count
[PG_LEVEL_4K
] << 2);
91 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
92 seq_printf(m
, "DirectMap2M: %8lu kB\n",
93 direct_pages_count
[PG_LEVEL_2M
] << 11);
95 seq_printf(m
, "DirectMap4M: %8lu kB\n",
96 direct_pages_count
[PG_LEVEL_2M
] << 12);
99 seq_printf(m
, "DirectMap1G: %8lu kB\n",
100 direct_pages_count
[PG_LEVEL_1G
] << 20);
103 static inline void split_page_count(int level
) { }
106 #ifdef CONFIG_X86_CPA_STATISTICS
108 static unsigned long cpa_1g_checked
;
109 static unsigned long cpa_1g_sameprot
;
110 static unsigned long cpa_1g_preserved
;
111 static unsigned long cpa_2m_checked
;
112 static unsigned long cpa_2m_sameprot
;
113 static unsigned long cpa_2m_preserved
;
114 static unsigned long cpa_4k_install
;
116 static inline void cpa_inc_1g_checked(void)
121 static inline void cpa_inc_2m_checked(void)
126 static inline void cpa_inc_4k_install(void)
131 static inline void cpa_inc_lp_sameprot(int level
)
133 if (level
== PG_LEVEL_1G
)
139 static inline void cpa_inc_lp_preserved(int level
)
141 if (level
== PG_LEVEL_1G
)
147 static int cpastats_show(struct seq_file
*m
, void *p
)
149 seq_printf(m
, "1G pages checked: %16lu\n", cpa_1g_checked
);
150 seq_printf(m
, "1G pages sameprot: %16lu\n", cpa_1g_sameprot
);
151 seq_printf(m
, "1G pages preserved: %16lu\n", cpa_1g_preserved
);
152 seq_printf(m
, "2M pages checked: %16lu\n", cpa_2m_checked
);
153 seq_printf(m
, "2M pages sameprot: %16lu\n", cpa_2m_sameprot
);
154 seq_printf(m
, "2M pages preserved: %16lu\n", cpa_2m_preserved
);
155 seq_printf(m
, "4K pages set-checked: %16lu\n", cpa_4k_install
);
159 static int cpastats_open(struct inode
*inode
, struct file
*file
)
161 return single_open(file
, cpastats_show
, NULL
);
164 static const struct file_operations cpastats_fops
= {
165 .open
= cpastats_open
,
168 .release
= single_release
,
171 static int __init
cpa_stats_init(void)
173 debugfs_create_file("cpa_stats", S_IRUSR
, arch_debugfs_dir
, NULL
,
177 late_initcall(cpa_stats_init
);
179 static inline void cpa_inc_1g_checked(void) { }
180 static inline void cpa_inc_2m_checked(void) { }
181 static inline void cpa_inc_4k_install(void) { }
182 static inline void cpa_inc_lp_sameprot(int level
) { }
183 static inline void cpa_inc_lp_preserved(int level
) { }
188 within(unsigned long addr
, unsigned long start
, unsigned long end
)
190 return addr
>= start
&& addr
< end
;
194 within_inclusive(unsigned long addr
, unsigned long start
, unsigned long end
)
196 return addr
>= start
&& addr
<= end
;
201 static inline unsigned long highmap_start_pfn(void)
203 return __pa_symbol(_text
) >> PAGE_SHIFT
;
206 static inline unsigned long highmap_end_pfn(void)
208 /* Do not reference physical address outside the kernel. */
209 return __pa_symbol(roundup(_brk_end
, PMD_SIZE
) - 1) >> PAGE_SHIFT
;
212 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
215 * Kernel text has an alias mapping at a high address, known
218 return within_inclusive(pfn
, highmap_start_pfn(), highmap_end_pfn());
223 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
225 /* There is no highmap on 32-bit */
236 * clflush_cache_range - flush a cache range with clflush
237 * @vaddr: virtual start address
238 * @size: number of bytes to flush
240 * clflushopt is an unordered instruction which needs fencing with mfence or
241 * sfence to avoid ordering issues.
243 void clflush_cache_range(void *vaddr
, unsigned int size
)
245 const unsigned long clflush_size
= boot_cpu_data
.x86_clflush_size
;
246 void *p
= (void *)((unsigned long)vaddr
& ~(clflush_size
- 1));
247 void *vend
= vaddr
+ size
;
254 for (; p
< vend
; p
+= clflush_size
)
259 EXPORT_SYMBOL_GPL(clflush_cache_range
);
261 void arch_invalidate_pmem(void *addr
, size_t size
)
263 clflush_cache_range(addr
, size
);
265 EXPORT_SYMBOL_GPL(arch_invalidate_pmem
);
267 static void __cpa_flush_all(void *arg
)
269 unsigned long cache
= (unsigned long)arg
;
272 * Flush all to work around Errata in early athlons regarding
273 * large page flushing.
277 if (cache
&& boot_cpu_data
.x86
>= 4)
281 static void cpa_flush_all(unsigned long cache
)
283 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
285 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
288 static bool __cpa_flush_range(unsigned long start
, int numpages
, int cache
)
290 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
292 WARN_ON(PAGE_ALIGN(start
) != start
);
294 if (cache
&& !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
295 cpa_flush_all(cache
);
299 flush_tlb_kernel_range(start
, start
+ PAGE_SIZE
* numpages
);
304 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
306 unsigned int i
, level
;
309 if (__cpa_flush_range(start
, numpages
, cache
))
313 * We only need to flush on one CPU,
314 * clflush is a MESI-coherent instruction that
315 * will cause all other CPUs to flush the same
318 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
319 pte_t
*pte
= lookup_address(addr
, &level
);
322 * Only flush present addresses:
324 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
325 clflush_cache_range((void *) addr
, PAGE_SIZE
);
329 static void cpa_flush_array(unsigned long baddr
, unsigned long *start
,
330 int numpages
, int cache
,
331 int in_flags
, struct page
**pages
)
333 unsigned int i
, level
;
335 if (__cpa_flush_range(baddr
, numpages
, cache
))
339 * We only need to flush on one CPU,
340 * clflush is a MESI-coherent instruction that
341 * will cause all other CPUs to flush the same
344 for (i
= 0; i
< numpages
; i
++) {
348 if (in_flags
& CPA_PAGES_ARRAY
)
349 addr
= (unsigned long)page_address(pages
[i
]);
353 pte
= lookup_address(addr
, &level
);
356 * Only flush present addresses:
358 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
359 clflush_cache_range((void *)addr
, PAGE_SIZE
);
363 static bool overlaps(unsigned long r1_start
, unsigned long r1_end
,
364 unsigned long r2_start
, unsigned long r2_end
)
366 return (r1_start
<= r2_end
&& r1_end
>= r2_start
) ||
367 (r2_start
<= r1_end
&& r2_end
>= r1_start
);
370 #ifdef CONFIG_PCI_BIOS
372 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
373 * based config access (CONFIG_PCI_GOBIOS) support.
375 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
376 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
378 static pgprotval_t
protect_pci_bios(unsigned long spfn
, unsigned long epfn
)
380 if (pcibios_enabled
&& overlaps(spfn
, epfn
, BIOS_PFN
, BIOS_PFN_END
))
385 static pgprotval_t
protect_pci_bios(unsigned long spfn
, unsigned long epfn
)
392 * The .rodata section needs to be read-only. Using the pfn catches all
393 * aliases. This also includes __ro_after_init, so do not enforce until
394 * kernel_set_to_readonly is true.
396 static pgprotval_t
protect_rodata(unsigned long spfn
, unsigned long epfn
)
398 unsigned long epfn_ro
, spfn_ro
= PFN_DOWN(__pa_symbol(__start_rodata
));
401 * Note: __end_rodata is at page aligned and not inclusive, so
402 * subtract 1 to get the last enforced PFN in the rodata area.
404 epfn_ro
= PFN_DOWN(__pa_symbol(__end_rodata
)) - 1;
406 if (kernel_set_to_readonly
&& overlaps(spfn
, epfn
, spfn_ro
, epfn_ro
))
412 * Protect kernel text against becoming non executable by forbidding
413 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
414 * out of which the kernel actually executes. Do not protect the low
417 * This does not cover __inittext since that is gone after boot.
419 static pgprotval_t
protect_kernel_text(unsigned long start
, unsigned long end
)
421 unsigned long t_end
= (unsigned long)_etext
- 1;
422 unsigned long t_start
= (unsigned long)_text
;
424 if (overlaps(start
, end
, t_start
, t_end
))
429 #if defined(CONFIG_X86_64)
431 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
432 * kernel text mappings for the large page aligned text, rodata sections
433 * will be always read-only. For the kernel identity mappings covering the
434 * holes caused by this alignment can be anything that user asks.
436 * This will preserve the large page mappings for kernel text/data at no
439 static pgprotval_t
protect_kernel_text_ro(unsigned long start
,
442 unsigned long t_end
= (unsigned long)__end_rodata_hpage_align
- 1;
443 unsigned long t_start
= (unsigned long)_text
;
446 if (!kernel_set_to_readonly
|| !overlaps(start
, end
, t_start
, t_end
))
449 * Don't enforce the !RW mapping for the kernel text mapping, if
450 * the current mapping is already using small page mapping. No
451 * need to work hard to preserve large page mappings in this case.
453 * This also fixes the Linux Xen paravirt guest boot failure caused
454 * by unexpected read-only mappings for kernel identity
455 * mappings. In this paravirt guest case, the kernel text mapping
456 * and the kernel identity mapping share the same page-table pages,
457 * so the protections for kernel text and identity mappings have to
460 if (lookup_address(start
, &level
) && (level
!= PG_LEVEL_4K
))
465 static pgprotval_t
protect_kernel_text_ro(unsigned long start
,
472 static inline bool conflicts(pgprot_t prot
, pgprotval_t val
)
474 return (pgprot_val(prot
) & ~val
) != pgprot_val(prot
);
477 static inline void check_conflict(int warnlvl
, pgprot_t prot
, pgprotval_t val
,
478 unsigned long start
, unsigned long end
,
479 unsigned long pfn
, const char *txt
)
481 static const char *lvltxt
[] = {
482 [CPA_CONFLICT
] = "conflict",
483 [CPA_PROTECT
] = "protect",
484 [CPA_DETECT
] = "detect",
487 if (warnlvl
> cpa_warn_level
|| !conflicts(prot
, val
))
490 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
491 lvltxt
[warnlvl
], txt
, start
, end
, pfn
, (unsigned long long)pgprot_val(prot
),
492 (unsigned long long)val
);
496 * Certain areas of memory on x86 require very specific protection flags,
497 * for example the BIOS area or kernel text. Callers don't always get this
498 * right (again, ioremap() on BIOS memory is not uncommon) so this function
499 * checks and fixes these known static required protection bits.
501 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long start
,
502 unsigned long pfn
, unsigned long npg
,
505 pgprotval_t forbidden
, res
;
509 * There is no point in checking RW/NX conflicts when the requested
510 * mapping is setting the page !PRESENT.
512 if (!(pgprot_val(prot
) & _PAGE_PRESENT
))
515 /* Operate on the virtual address */
516 end
= start
+ npg
* PAGE_SIZE
- 1;
518 res
= protect_kernel_text(start
, end
);
519 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Text NX");
522 res
= protect_kernel_text_ro(start
, end
);
523 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Text RO");
526 /* Check the PFN directly */
527 res
= protect_pci_bios(pfn
, pfn
+ npg
- 1);
528 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "PCIBIOS NX");
531 res
= protect_rodata(pfn
, pfn
+ npg
- 1);
532 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Rodata RO");
535 return __pgprot(pgprot_val(prot
) & ~forbidden
);
539 * Lookup the page table entry for a virtual address in a specific pgd.
540 * Return a pointer to the entry and the level of the mapping.
542 pte_t
*lookup_address_in_pgd(pgd_t
*pgd
, unsigned long address
,
549 *level
= PG_LEVEL_NONE
;
554 p4d
= p4d_offset(pgd
, address
);
558 *level
= PG_LEVEL_512G
;
559 if (p4d_large(*p4d
) || !p4d_present(*p4d
))
562 pud
= pud_offset(p4d
, address
);
566 *level
= PG_LEVEL_1G
;
567 if (pud_large(*pud
) || !pud_present(*pud
))
570 pmd
= pmd_offset(pud
, address
);
574 *level
= PG_LEVEL_2M
;
575 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
578 *level
= PG_LEVEL_4K
;
580 return pte_offset_kernel(pmd
, address
);
584 * Lookup the page table entry for a virtual address. Return a pointer
585 * to the entry and the level of the mapping.
587 * Note: We return pud and pmd either when the entry is marked large
588 * or when the present bit is not set. Otherwise we would return a
589 * pointer to a nonexisting mapping.
591 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
593 return lookup_address_in_pgd(pgd_offset_k(address
), address
, level
);
595 EXPORT_SYMBOL_GPL(lookup_address
);
597 static pte_t
*_lookup_address_cpa(struct cpa_data
*cpa
, unsigned long address
,
601 return lookup_address_in_pgd(cpa
->pgd
+ pgd_index(address
),
604 return lookup_address(address
, level
);
608 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
609 * or NULL if not present.
611 pmd_t
*lookup_pmd_address(unsigned long address
)
617 pgd
= pgd_offset_k(address
);
621 p4d
= p4d_offset(pgd
, address
);
622 if (p4d_none(*p4d
) || p4d_large(*p4d
) || !p4d_present(*p4d
))
625 pud
= pud_offset(p4d
, address
);
626 if (pud_none(*pud
) || pud_large(*pud
) || !pud_present(*pud
))
629 return pmd_offset(pud
, address
);
633 * This is necessary because __pa() does not work on some
634 * kinds of memory, like vmalloc() or the alloc_remap()
635 * areas on 32-bit NUMA systems. The percpu areas can
636 * end up in this kind of memory, for instance.
638 * This could be optimized, but it is only intended to be
639 * used at inititalization time, and keeping it
640 * unoptimized should increase the testing coverage for
641 * the more obscure platforms.
643 phys_addr_t
slow_virt_to_phys(void *__virt_addr
)
645 unsigned long virt_addr
= (unsigned long)__virt_addr
;
646 phys_addr_t phys_addr
;
647 unsigned long offset
;
651 pte
= lookup_address(virt_addr
, &level
);
655 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
656 * before being left-shifted PAGE_SHIFT bits -- this trick is to
657 * make 32-PAE kernel work correctly.
661 phys_addr
= (phys_addr_t
)pud_pfn(*(pud_t
*)pte
) << PAGE_SHIFT
;
662 offset
= virt_addr
& ~PUD_PAGE_MASK
;
665 phys_addr
= (phys_addr_t
)pmd_pfn(*(pmd_t
*)pte
) << PAGE_SHIFT
;
666 offset
= virt_addr
& ~PMD_PAGE_MASK
;
669 phys_addr
= (phys_addr_t
)pte_pfn(*pte
) << PAGE_SHIFT
;
670 offset
= virt_addr
& ~PAGE_MASK
;
673 return (phys_addr_t
)(phys_addr
| offset
);
675 EXPORT_SYMBOL_GPL(slow_virt_to_phys
);
678 * Set the new pmd in all the pgds we know about:
680 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
683 set_pte_atomic(kpte
, pte
);
685 if (!SHARED_KERNEL_PMD
) {
688 list_for_each_entry(page
, &pgd_list
, lru
) {
694 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
695 p4d
= p4d_offset(pgd
, address
);
696 pud
= pud_offset(p4d
, address
);
697 pmd
= pmd_offset(pud
, address
);
698 set_pte_atomic((pte_t
*)pmd
, pte
);
704 static pgprot_t
pgprot_clear_protnone_bits(pgprot_t prot
)
707 * _PAGE_GLOBAL means "global page" for present PTEs.
708 * But, it is also used to indicate _PAGE_PROTNONE
709 * for non-present PTEs.
711 * This ensures that a _PAGE_GLOBAL PTE going from
712 * present to non-present is not confused as
715 if (!(pgprot_val(prot
) & _PAGE_PRESENT
))
716 pgprot_val(prot
) &= ~_PAGE_GLOBAL
;
721 static int __should_split_large_page(pte_t
*kpte
, unsigned long address
,
722 struct cpa_data
*cpa
)
724 unsigned long numpages
, pmask
, psize
, lpaddr
, pfn
, old_pfn
;
725 pgprot_t old_prot
, new_prot
, req_prot
, chk_prot
;
726 pte_t new_pte
, old_pte
, *tmp
;
730 * Check for races, another CPU might have split this page
733 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
739 old_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
740 old_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
741 cpa_inc_2m_checked();
744 old_prot
= pud_pgprot(*(pud_t
*)kpte
);
745 old_pfn
= pud_pfn(*(pud_t
*)kpte
);
746 cpa_inc_1g_checked();
752 psize
= page_level_size(level
);
753 pmask
= page_level_mask(level
);
756 * Calculate the number of pages, which fit into this large
757 * page starting at address:
759 lpaddr
= (address
+ psize
) & pmask
;
760 numpages
= (lpaddr
- address
) >> PAGE_SHIFT
;
761 if (numpages
< cpa
->numpages
)
762 cpa
->numpages
= numpages
;
765 * We are safe now. Check whether the new pgprot is the same:
766 * Convert protection attributes to 4k-format, as cpa->mask* are set
770 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
771 req_prot
= pgprot_large_2_4k(old_prot
);
773 pgprot_val(req_prot
) &= ~pgprot_val(cpa
->mask_clr
);
774 pgprot_val(req_prot
) |= pgprot_val(cpa
->mask_set
);
777 * req_prot is in format of 4k pages. It must be converted to large
778 * page format: the caching mode includes the PAT bit located at
779 * different bit positions in the two formats.
781 req_prot
= pgprot_4k_2_large(req_prot
);
782 req_prot
= pgprot_clear_protnone_bits(req_prot
);
783 if (pgprot_val(req_prot
) & _PAGE_PRESENT
)
784 pgprot_val(req_prot
) |= _PAGE_PSE
;
787 * old_pfn points to the large page base pfn. So we need to add the
788 * offset of the virtual address:
790 pfn
= old_pfn
+ ((address
& (psize
- 1)) >> PAGE_SHIFT
);
794 * Calculate the large page base address and the number of 4K pages
797 lpaddr
= address
& pmask
;
798 numpages
= psize
>> PAGE_SHIFT
;
801 * Sanity check that the existing mapping is correct versus the static
802 * protections. static_protections() guards against !PRESENT, so no
803 * extra conditional required here.
805 chk_prot
= static_protections(old_prot
, lpaddr
, old_pfn
, numpages
,
808 if (WARN_ON_ONCE(pgprot_val(chk_prot
) != pgprot_val(old_prot
))) {
810 * Split the large page and tell the split code to
811 * enforce static protections.
813 cpa
->force_static_prot
= 1;
818 * Optimization: If the requested pgprot is the same as the current
819 * pgprot, then the large page can be preserved and no updates are
820 * required independent of alignment and length of the requested
821 * range. The above already established that the current pgprot is
822 * correct, which in consequence makes the requested pgprot correct
823 * as well if it is the same. The static protection scan below will
824 * not come to a different conclusion.
826 if (pgprot_val(req_prot
) == pgprot_val(old_prot
)) {
827 cpa_inc_lp_sameprot(level
);
832 * If the requested range does not cover the full page, split it up
834 if (address
!= lpaddr
|| cpa
->numpages
!= numpages
)
838 * Check whether the requested pgprot is conflicting with a static
839 * protection requirement in the large page.
841 new_prot
= static_protections(req_prot
, lpaddr
, old_pfn
, numpages
,
845 * If there is a conflict, split the large page.
847 * There used to be a 4k wise evaluation trying really hard to
848 * preserve the large pages, but experimentation has shown, that this
849 * does not help at all. There might be corner cases which would
850 * preserve one large page occasionally, but it's really not worth the
851 * extra code and cycles for the common case.
853 if (pgprot_val(req_prot
) != pgprot_val(new_prot
))
856 /* All checks passed. Update the large page mapping. */
857 new_pte
= pfn_pte(old_pfn
, new_prot
);
858 __set_pmd_pte(kpte
, address
, new_pte
);
859 cpa
->flags
|= CPA_FLUSHTLB
;
860 cpa_inc_lp_preserved(level
);
864 static int should_split_large_page(pte_t
*kpte
, unsigned long address
,
865 struct cpa_data
*cpa
)
869 if (cpa
->force_split
)
872 spin_lock(&pgd_lock
);
873 do_split
= __should_split_large_page(kpte
, address
, cpa
);
874 spin_unlock(&pgd_lock
);
879 static void split_set_pte(struct cpa_data
*cpa
, pte_t
*pte
, unsigned long pfn
,
880 pgprot_t ref_prot
, unsigned long address
,
883 unsigned int npg
= PFN_DOWN(size
);
887 * If should_split_large_page() discovered an inconsistent mapping,
888 * remove the invalid protection in the split mapping.
890 if (!cpa
->force_static_prot
)
893 prot
= static_protections(ref_prot
, address
, pfn
, npg
, CPA_PROTECT
);
895 if (pgprot_val(prot
) == pgprot_val(ref_prot
))
899 * If this is splitting a PMD, fix it up. PUD splits cannot be
900 * fixed trivially as that would require to rescan the newly
901 * installed PMD mappings after returning from split_large_page()
902 * so an eventual further split can allocate the necessary PTE
903 * pages. Warn for now and revisit it in case this actually
906 if (size
== PAGE_SIZE
)
909 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
911 set_pte(pte
, pfn_pte(pfn
, ref_prot
));
915 __split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
, unsigned long address
,
918 unsigned long lpaddr
, lpinc
, ref_pfn
, pfn
, pfninc
= 1;
919 pte_t
*pbase
= (pte_t
*)page_address(base
);
920 unsigned int i
, level
;
924 spin_lock(&pgd_lock
);
926 * Check for races, another CPU might have split this page
929 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
931 spin_unlock(&pgd_lock
);
935 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
939 ref_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
941 * Clear PSE (aka _PAGE_PAT) and move
942 * PAT bit to correct position.
944 ref_prot
= pgprot_large_2_4k(ref_prot
);
945 ref_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
946 lpaddr
= address
& PMD_MASK
;
951 ref_prot
= pud_pgprot(*(pud_t
*)kpte
);
952 ref_pfn
= pud_pfn(*(pud_t
*)kpte
);
953 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
954 lpaddr
= address
& PUD_MASK
;
957 * Clear the PSE flags if the PRESENT flag is not set
958 * otherwise pmd_present/pmd_huge will return true
959 * even on a non present pmd.
961 if (!(pgprot_val(ref_prot
) & _PAGE_PRESENT
))
962 pgprot_val(ref_prot
) &= ~_PAGE_PSE
;
966 spin_unlock(&pgd_lock
);
970 ref_prot
= pgprot_clear_protnone_bits(ref_prot
);
973 * Get the target pfn from the original entry:
976 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
, lpaddr
+= lpinc
)
977 split_set_pte(cpa
, pbase
+ i
, pfn
, ref_prot
, lpaddr
, lpinc
);
979 if (virt_addr_valid(address
)) {
980 unsigned long pfn
= PFN_DOWN(__pa(address
));
982 if (pfn_range_is_mapped(pfn
, pfn
+ 1))
983 split_page_count(level
);
987 * Install the new, split up pagetable.
989 * We use the standard kernel pagetable protections for the new
990 * pagetable protections, the actual ptes set above control the
991 * primary protection behavior:
993 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
996 * Do a global flush tlb after splitting the large page
997 * and before we do the actual change page attribute in the PTE.
999 * Without this, we violate the TLB application note, that says:
1000 * "The TLBs may contain both ordinary and large-page
1001 * translations for a 4-KByte range of linear addresses. This
1002 * may occur if software modifies the paging structures so that
1003 * the page size used for the address range changes. If the two
1004 * translations differ with respect to page frame or attributes
1005 * (e.g., permissions), processor behavior is undefined and may
1006 * be implementation-specific."
1008 * We do this global tlb flush inside the cpa_lock, so that we
1009 * don't allow any other cpu, with stale tlb entries change the
1010 * page attribute in parallel, that also falls into the
1011 * just split large page entry.
1014 spin_unlock(&pgd_lock
);
1019 static int split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
,
1020 unsigned long address
)
1024 if (!debug_pagealloc_enabled())
1025 spin_unlock(&cpa_lock
);
1026 base
= alloc_pages(GFP_KERNEL
, 0);
1027 if (!debug_pagealloc_enabled())
1028 spin_lock(&cpa_lock
);
1032 if (__split_large_page(cpa
, kpte
, address
, base
))
1038 static bool try_to_free_pte_page(pte_t
*pte
)
1042 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1043 if (!pte_none(pte
[i
]))
1046 free_page((unsigned long)pte
);
1050 static bool try_to_free_pmd_page(pmd_t
*pmd
)
1054 for (i
= 0; i
< PTRS_PER_PMD
; i
++)
1055 if (!pmd_none(pmd
[i
]))
1058 free_page((unsigned long)pmd
);
1062 static bool unmap_pte_range(pmd_t
*pmd
, unsigned long start
, unsigned long end
)
1064 pte_t
*pte
= pte_offset_kernel(pmd
, start
);
1066 while (start
< end
) {
1067 set_pte(pte
, __pte(0));
1073 if (try_to_free_pte_page((pte_t
*)pmd_page_vaddr(*pmd
))) {
1080 static void __unmap_pmd_range(pud_t
*pud
, pmd_t
*pmd
,
1081 unsigned long start
, unsigned long end
)
1083 if (unmap_pte_range(pmd
, start
, end
))
1084 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
1088 static void unmap_pmd_range(pud_t
*pud
, unsigned long start
, unsigned long end
)
1090 pmd_t
*pmd
= pmd_offset(pud
, start
);
1093 * Not on a 2MB page boundary?
1095 if (start
& (PMD_SIZE
- 1)) {
1096 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
1097 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
1099 __unmap_pmd_range(pud
, pmd
, start
, pre_end
);
1106 * Try to unmap in 2M chunks.
1108 while (end
- start
>= PMD_SIZE
) {
1109 if (pmd_large(*pmd
))
1112 __unmap_pmd_range(pud
, pmd
, start
, start
+ PMD_SIZE
);
1122 return __unmap_pmd_range(pud
, pmd
, start
, end
);
1125 * Try again to free the PMD page if haven't succeeded above.
1127 if (!pud_none(*pud
))
1128 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
1132 static void unmap_pud_range(p4d_t
*p4d
, unsigned long start
, unsigned long end
)
1134 pud_t
*pud
= pud_offset(p4d
, start
);
1137 * Not on a GB page boundary?
1139 if (start
& (PUD_SIZE
- 1)) {
1140 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1141 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
1143 unmap_pmd_range(pud
, start
, pre_end
);
1150 * Try to unmap in 1G chunks?
1152 while (end
- start
>= PUD_SIZE
) {
1154 if (pud_large(*pud
))
1157 unmap_pmd_range(pud
, start
, start
+ PUD_SIZE
);
1167 unmap_pmd_range(pud
, start
, end
);
1170 * No need to try to free the PUD page because we'll free it in
1171 * populate_pgd's error path
1175 static int alloc_pte_page(pmd_t
*pmd
)
1177 pte_t
*pte
= (pte_t
*)get_zeroed_page(GFP_KERNEL
);
1181 set_pmd(pmd
, __pmd(__pa(pte
) | _KERNPG_TABLE
));
1185 static int alloc_pmd_page(pud_t
*pud
)
1187 pmd_t
*pmd
= (pmd_t
*)get_zeroed_page(GFP_KERNEL
);
1191 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
));
1195 static void populate_pte(struct cpa_data
*cpa
,
1196 unsigned long start
, unsigned long end
,
1197 unsigned num_pages
, pmd_t
*pmd
, pgprot_t pgprot
)
1201 pte
= pte_offset_kernel(pmd
, start
);
1203 pgprot
= pgprot_clear_protnone_bits(pgprot
);
1205 while (num_pages
-- && start
< end
) {
1206 set_pte(pte
, pfn_pte(cpa
->pfn
, pgprot
));
1214 static long populate_pmd(struct cpa_data
*cpa
,
1215 unsigned long start
, unsigned long end
,
1216 unsigned num_pages
, pud_t
*pud
, pgprot_t pgprot
)
1220 pgprot_t pmd_pgprot
;
1223 * Not on a 2M boundary?
1225 if (start
& (PMD_SIZE
- 1)) {
1226 unsigned long pre_end
= start
+ (num_pages
<< PAGE_SHIFT
);
1227 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
1229 pre_end
= min_t(unsigned long, pre_end
, next_page
);
1230 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1231 cur_pages
= min_t(unsigned int, num_pages
, cur_pages
);
1236 pmd
= pmd_offset(pud
, start
);
1238 if (alloc_pte_page(pmd
))
1241 populate_pte(cpa
, start
, pre_end
, cur_pages
, pmd
, pgprot
);
1247 * We mapped them all?
1249 if (num_pages
== cur_pages
)
1252 pmd_pgprot
= pgprot_4k_2_large(pgprot
);
1254 while (end
- start
>= PMD_SIZE
) {
1257 * We cannot use a 1G page so allocate a PMD page if needed.
1260 if (alloc_pmd_page(pud
))
1263 pmd
= pmd_offset(pud
, start
);
1265 set_pmd(pmd
, pmd_mkhuge(pfn_pmd(cpa
->pfn
,
1266 canon_pgprot(pmd_pgprot
))));
1269 cpa
->pfn
+= PMD_SIZE
>> PAGE_SHIFT
;
1270 cur_pages
+= PMD_SIZE
>> PAGE_SHIFT
;
1274 * Map trailing 4K pages.
1277 pmd
= pmd_offset(pud
, start
);
1279 if (alloc_pte_page(pmd
))
1282 populate_pte(cpa
, start
, end
, num_pages
- cur_pages
,
1288 static int populate_pud(struct cpa_data
*cpa
, unsigned long start
, p4d_t
*p4d
,
1294 pgprot_t pud_pgprot
;
1296 end
= start
+ (cpa
->numpages
<< PAGE_SHIFT
);
1299 * Not on a Gb page boundary? => map everything up to it with
1302 if (start
& (PUD_SIZE
- 1)) {
1303 unsigned long pre_end
;
1304 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1306 pre_end
= min_t(unsigned long, end
, next_page
);
1307 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1308 cur_pages
= min_t(int, (int)cpa
->numpages
, cur_pages
);
1310 pud
= pud_offset(p4d
, start
);
1316 if (alloc_pmd_page(pud
))
1319 cur_pages
= populate_pmd(cpa
, start
, pre_end
, cur_pages
,
1327 /* We mapped them all? */
1328 if (cpa
->numpages
== cur_pages
)
1331 pud
= pud_offset(p4d
, start
);
1332 pud_pgprot
= pgprot_4k_2_large(pgprot
);
1335 * Map everything starting from the Gb boundary, possibly with 1G pages
1337 while (boot_cpu_has(X86_FEATURE_GBPAGES
) && end
- start
>= PUD_SIZE
) {
1338 set_pud(pud
, pud_mkhuge(pfn_pud(cpa
->pfn
,
1339 canon_pgprot(pud_pgprot
))));
1342 cpa
->pfn
+= PUD_SIZE
>> PAGE_SHIFT
;
1343 cur_pages
+= PUD_SIZE
>> PAGE_SHIFT
;
1347 /* Map trailing leftover */
1351 pud
= pud_offset(p4d
, start
);
1353 if (alloc_pmd_page(pud
))
1356 tmp
= populate_pmd(cpa
, start
, end
, cpa
->numpages
- cur_pages
,
1367 * Restrictions for kernel page table do not necessarily apply when mapping in
1370 static int populate_pgd(struct cpa_data
*cpa
, unsigned long addr
)
1372 pgprot_t pgprot
= __pgprot(_KERNPG_TABLE
);
1373 pud_t
*pud
= NULL
; /* shut up gcc */
1378 pgd_entry
= cpa
->pgd
+ pgd_index(addr
);
1380 if (pgd_none(*pgd_entry
)) {
1381 p4d
= (p4d_t
*)get_zeroed_page(GFP_KERNEL
);
1385 set_pgd(pgd_entry
, __pgd(__pa(p4d
) | _KERNPG_TABLE
));
1389 * Allocate a PUD page and hand it down for mapping.
1391 p4d
= p4d_offset(pgd_entry
, addr
);
1392 if (p4d_none(*p4d
)) {
1393 pud
= (pud_t
*)get_zeroed_page(GFP_KERNEL
);
1397 set_p4d(p4d
, __p4d(__pa(pud
) | _KERNPG_TABLE
));
1400 pgprot_val(pgprot
) &= ~pgprot_val(cpa
->mask_clr
);
1401 pgprot_val(pgprot
) |= pgprot_val(cpa
->mask_set
);
1403 ret
= populate_pud(cpa
, addr
, p4d
, pgprot
);
1406 * Leave the PUD page in place in case some other CPU or thread
1407 * already found it, but remove any useless entries we just
1410 unmap_pud_range(p4d
, addr
,
1411 addr
+ (cpa
->numpages
<< PAGE_SHIFT
));
1415 cpa
->numpages
= ret
;
1419 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
1424 * Right now, we only execute this code path when mapping
1425 * the EFI virtual memory map regions, no other users
1426 * provide a ->pgd value. This may change in the future.
1428 return populate_pgd(cpa
, vaddr
);
1432 * Ignore all non primary paths.
1440 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1442 * Also set numpages to '1' indicating that we processed cpa req for
1443 * one virtual address page and its pfn. TBD: numpages can be set based
1444 * on the initial value and the level returned by lookup_address().
1446 if (within(vaddr
, PAGE_OFFSET
,
1447 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
1449 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
1452 } else if (__cpa_pfn_in_highmap(cpa
->pfn
)) {
1453 /* Faults in the highmap are OK, so do not warn: */
1456 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
1457 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
1464 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
1466 unsigned long address
;
1469 pte_t
*kpte
, old_pte
;
1471 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
1472 struct page
*page
= cpa
->pages
[cpa
->curpage
];
1473 if (unlikely(PageHighMem(page
)))
1475 address
= (unsigned long)page_address(page
);
1476 } else if (cpa
->flags
& CPA_ARRAY
)
1477 address
= cpa
->vaddr
[cpa
->curpage
];
1479 address
= *cpa
->vaddr
;
1481 kpte
= _lookup_address_cpa(cpa
, address
, &level
);
1483 return __cpa_process_fault(cpa
, address
, primary
);
1486 if (pte_none(old_pte
))
1487 return __cpa_process_fault(cpa
, address
, primary
);
1489 if (level
== PG_LEVEL_4K
) {
1491 pgprot_t new_prot
= pte_pgprot(old_pte
);
1492 unsigned long pfn
= pte_pfn(old_pte
);
1494 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
1495 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
1497 cpa_inc_4k_install();
1498 new_prot
= static_protections(new_prot
, address
, pfn
, 1,
1501 new_prot
= pgprot_clear_protnone_bits(new_prot
);
1504 * We need to keep the pfn from the existing PTE,
1505 * after all we're only going to change it's attributes
1506 * not the memory it points to
1508 new_pte
= pfn_pte(pfn
, new_prot
);
1511 * Do we really change anything ?
1513 if (pte_val(old_pte
) != pte_val(new_pte
)) {
1514 set_pte_atomic(kpte
, new_pte
);
1515 cpa
->flags
|= CPA_FLUSHTLB
;
1522 * Check, whether we can keep the large page intact
1523 * and just change the pte:
1525 do_split
= should_split_large_page(kpte
, address
, cpa
);
1527 * When the range fits into the existing large page,
1528 * return. cp->numpages and cpa->tlbflush have been updated in
1535 * We have to split the large page:
1537 err
= split_large_page(cpa
, kpte
, address
);
1544 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
1546 static int cpa_process_alias(struct cpa_data
*cpa
)
1548 struct cpa_data alias_cpa
;
1549 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
1550 unsigned long vaddr
;
1553 if (!pfn_range_is_mapped(cpa
->pfn
, cpa
->pfn
+ 1))
1557 * No need to redo, when the primary call touched the direct
1560 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
1561 struct page
*page
= cpa
->pages
[cpa
->curpage
];
1562 if (unlikely(PageHighMem(page
)))
1564 vaddr
= (unsigned long)page_address(page
);
1565 } else if (cpa
->flags
& CPA_ARRAY
)
1566 vaddr
= cpa
->vaddr
[cpa
->curpage
];
1568 vaddr
= *cpa
->vaddr
;
1570 if (!(within(vaddr
, PAGE_OFFSET
,
1571 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
1574 alias_cpa
.vaddr
= &laddr
;
1575 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1577 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
1582 #ifdef CONFIG_X86_64
1584 * If the primary call didn't touch the high mapping already
1585 * and the physical address is inside the kernel map, we need
1586 * to touch the high mapped kernel as well:
1588 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
1589 __cpa_pfn_in_highmap(cpa
->pfn
)) {
1590 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
1591 __START_KERNEL_map
- phys_base
;
1593 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
1594 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1597 * The high mapping range is imprecise, so ignore the
1600 __change_page_attr_set_clr(&alias_cpa
, 0);
1607 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
1609 unsigned long numpages
= cpa
->numpages
;
1614 * Store the remaining nr of pages for the large page
1615 * preservation check.
1617 cpa
->numpages
= numpages
;
1618 /* for array changes, we can't use large page */
1619 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1622 if (!debug_pagealloc_enabled())
1623 spin_lock(&cpa_lock
);
1624 ret
= __change_page_attr(cpa
, checkalias
);
1625 if (!debug_pagealloc_enabled())
1626 spin_unlock(&cpa_lock
);
1631 ret
= cpa_process_alias(cpa
);
1637 * Adjust the number of pages with the result of the
1638 * CPA operation. Either a large page has been
1639 * preserved or a single page update happened.
1641 BUG_ON(cpa
->numpages
> numpages
|| !cpa
->numpages
);
1642 numpages
-= cpa
->numpages
;
1643 if (cpa
->flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
))
1646 *cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
1653 * Machine check recovery code needs to change cache mode of poisoned
1654 * pages to UC to avoid speculative access logging another error. But
1655 * passing the address of the 1:1 mapping to set_memory_uc() is a fine
1656 * way to encourage a speculative access. So we cheat and flip the top
1657 * bit of the address. This works fine for the code that updates the
1658 * page tables. But at the end of the process we need to flush the cache
1659 * and the non-canonical address causes a #GP fault when used by the
1660 * CLFLUSH instruction.
1662 * But in the common case we already have a canonical address. This code
1663 * will fix the top bit if needed and is a no-op otherwise.
1665 static inline unsigned long make_addr_canonical_again(unsigned long addr
)
1667 #ifdef CONFIG_X86_64
1668 return (long)(addr
<< 1) >> 1;
1675 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
1676 pgprot_t mask_set
, pgprot_t mask_clr
,
1677 int force_split
, int in_flag
,
1678 struct page
**pages
)
1680 struct cpa_data cpa
;
1681 int ret
, cache
, checkalias
;
1682 unsigned long baddr
= 0;
1684 memset(&cpa
, 0, sizeof(cpa
));
1687 * Check, if we are requested to set a not supported
1688 * feature. Clearing non-supported features is OK.
1690 mask_set
= canon_pgprot(mask_set
);
1692 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
1695 /* Ensure we are PAGE_SIZE aligned */
1696 if (in_flag
& CPA_ARRAY
) {
1698 for (i
= 0; i
< numpages
; i
++) {
1699 if (addr
[i
] & ~PAGE_MASK
) {
1700 addr
[i
] &= PAGE_MASK
;
1704 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
1706 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1707 * No need to cehck in that case
1709 if (*addr
& ~PAGE_MASK
) {
1712 * People should not be passing in unaligned addresses:
1717 * Save address for cache flush. *addr is modified in the call
1718 * to __change_page_attr_set_clr() below.
1720 baddr
= make_addr_canonical_again(*addr
);
1723 /* Must avoid aliasing mappings in the highmem code */
1724 kmap_flush_unused();
1730 cpa
.numpages
= numpages
;
1731 cpa
.mask_set
= mask_set
;
1732 cpa
.mask_clr
= mask_clr
;
1735 cpa
.force_split
= force_split
;
1737 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1738 cpa
.flags
|= in_flag
;
1740 /* No alias checking for _NX bit modifications */
1741 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
1742 /* Has caller explicitly disabled alias checking? */
1743 if (in_flag
& CPA_NO_CHECK_ALIAS
)
1746 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
1749 * Check whether we really changed something:
1751 if (!(cpa
.flags
& CPA_FLUSHTLB
))
1755 * No need to flush, when we did not set any of the caching
1758 cache
= !!pgprot2cachemode(mask_set
);
1761 * On error; flush everything to be sure.
1764 cpa_flush_all(cache
);
1768 if (cpa
.flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
)) {
1769 cpa_flush_array(baddr
, addr
, numpages
, cache
,
1772 cpa_flush_range(baddr
, numpages
, cache
);
1779 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
1780 pgprot_t mask
, int array
)
1782 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
1783 (array
? CPA_ARRAY
: 0), NULL
);
1786 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
1787 pgprot_t mask
, int array
)
1789 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
1790 (array
? CPA_ARRAY
: 0), NULL
);
1793 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
1796 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
1797 CPA_PAGES_ARRAY
, pages
);
1800 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
1803 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
1804 CPA_PAGES_ARRAY
, pages
);
1807 int _set_memory_uc(unsigned long addr
, int numpages
)
1810 * for now UC MINUS. see comments in ioremap_nocache()
1811 * If you really need strong UC use ioremap_uc(), but note
1812 * that you cannot override IO areas with set_memory_*() as
1813 * these helpers cannot work with IO memory.
1815 return change_page_attr_set(&addr
, numpages
,
1816 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1820 int set_memory_uc(unsigned long addr
, int numpages
)
1825 * for now UC MINUS. see comments in ioremap_nocache()
1827 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1828 _PAGE_CACHE_MODE_UC_MINUS
, NULL
);
1832 ret
= _set_memory_uc(addr
, numpages
);
1839 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1843 EXPORT_SYMBOL(set_memory_uc
);
1845 static int _set_memory_array(unsigned long *addr
, int addrinarray
,
1846 enum page_cache_mode new_type
)
1848 enum page_cache_mode set_type
;
1852 for (i
= 0; i
< addrinarray
; i
++) {
1853 ret
= reserve_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
,
1859 /* If WC, set to UC- first and then WC */
1860 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
1861 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
1863 ret
= change_page_attr_set(addr
, addrinarray
,
1864 cachemode2pgprot(set_type
), 1);
1866 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
1867 ret
= change_page_attr_set_clr(addr
, addrinarray
,
1869 _PAGE_CACHE_MODE_WC
),
1870 __pgprot(_PAGE_CACHE_MASK
),
1871 0, CPA_ARRAY
, NULL
);
1878 for (j
= 0; j
< i
; j
++)
1879 free_memtype(__pa(addr
[j
]), __pa(addr
[j
]) + PAGE_SIZE
);
1884 int set_memory_array_uc(unsigned long *addr
, int addrinarray
)
1886 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_UC_MINUS
);
1888 EXPORT_SYMBOL(set_memory_array_uc
);
1890 int set_memory_array_wc(unsigned long *addr
, int addrinarray
)
1892 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_WC
);
1894 EXPORT_SYMBOL(set_memory_array_wc
);
1896 int set_memory_array_wt(unsigned long *addr
, int addrinarray
)
1898 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_WT
);
1900 EXPORT_SYMBOL_GPL(set_memory_array_wt
);
1902 int _set_memory_wc(unsigned long addr
, int numpages
)
1905 unsigned long addr_copy
= addr
;
1907 ret
= change_page_attr_set(&addr
, numpages
,
1908 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1911 ret
= change_page_attr_set_clr(&addr_copy
, numpages
,
1913 _PAGE_CACHE_MODE_WC
),
1914 __pgprot(_PAGE_CACHE_MASK
),
1920 int set_memory_wc(unsigned long addr
, int numpages
)
1924 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1925 _PAGE_CACHE_MODE_WC
, NULL
);
1929 ret
= _set_memory_wc(addr
, numpages
);
1931 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1935 EXPORT_SYMBOL(set_memory_wc
);
1937 int _set_memory_wt(unsigned long addr
, int numpages
)
1939 return change_page_attr_set(&addr
, numpages
,
1940 cachemode2pgprot(_PAGE_CACHE_MODE_WT
), 0);
1943 int set_memory_wt(unsigned long addr
, int numpages
)
1947 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1948 _PAGE_CACHE_MODE_WT
, NULL
);
1952 ret
= _set_memory_wt(addr
, numpages
);
1954 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1958 EXPORT_SYMBOL_GPL(set_memory_wt
);
1960 int _set_memory_wb(unsigned long addr
, int numpages
)
1962 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1963 return change_page_attr_clear(&addr
, numpages
,
1964 __pgprot(_PAGE_CACHE_MASK
), 0);
1967 int set_memory_wb(unsigned long addr
, int numpages
)
1971 ret
= _set_memory_wb(addr
, numpages
);
1975 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1978 EXPORT_SYMBOL(set_memory_wb
);
1980 int set_memory_array_wb(unsigned long *addr
, int addrinarray
)
1985 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1986 ret
= change_page_attr_clear(addr
, addrinarray
,
1987 __pgprot(_PAGE_CACHE_MASK
), 1);
1991 for (i
= 0; i
< addrinarray
; i
++)
1992 free_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
);
1996 EXPORT_SYMBOL(set_memory_array_wb
);
1998 int set_memory_x(unsigned long addr
, int numpages
)
2000 if (!(__supported_pte_mask
& _PAGE_NX
))
2003 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
2005 EXPORT_SYMBOL(set_memory_x
);
2007 int set_memory_nx(unsigned long addr
, int numpages
)
2009 if (!(__supported_pte_mask
& _PAGE_NX
))
2012 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
2014 EXPORT_SYMBOL(set_memory_nx
);
2016 int set_memory_ro(unsigned long addr
, int numpages
)
2018 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
2021 int set_memory_rw(unsigned long addr
, int numpages
)
2023 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
2026 int set_memory_np(unsigned long addr
, int numpages
)
2028 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
2031 int set_memory_np_noalias(unsigned long addr
, int numpages
)
2033 int cpa_flags
= CPA_NO_CHECK_ALIAS
;
2035 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
2036 __pgprot(_PAGE_PRESENT
), 0,
2040 int set_memory_4k(unsigned long addr
, int numpages
)
2042 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
2043 __pgprot(0), 1, 0, NULL
);
2046 int set_memory_nonglobal(unsigned long addr
, int numpages
)
2048 return change_page_attr_clear(&addr
, numpages
,
2049 __pgprot(_PAGE_GLOBAL
), 0);
2052 int set_memory_global(unsigned long addr
, int numpages
)
2054 return change_page_attr_set(&addr
, numpages
,
2055 __pgprot(_PAGE_GLOBAL
), 0);
2058 static int __set_memory_enc_dec(unsigned long addr
, int numpages
, bool enc
)
2060 struct cpa_data cpa
;
2061 unsigned long start
;
2064 /* Nothing to do if memory encryption is not active */
2065 if (!mem_encrypt_active())
2068 /* Should not be working on unaligned addresses */
2069 if (WARN_ONCE(addr
& ~PAGE_MASK
, "misaligned address: %#lx\n", addr
))
2074 memset(&cpa
, 0, sizeof(cpa
));
2076 cpa
.numpages
= numpages
;
2077 cpa
.mask_set
= enc
? __pgprot(_PAGE_ENC
) : __pgprot(0);
2078 cpa
.mask_clr
= enc
? __pgprot(0) : __pgprot(_PAGE_ENC
);
2079 cpa
.pgd
= init_mm
.pgd
;
2081 /* Must avoid aliasing mappings in the highmem code */
2082 kmap_flush_unused();
2086 * Before changing the encryption attribute, we need to flush caches.
2088 cpa_flush_range(start
, numpages
, 1);
2090 ret
= __change_page_attr_set_clr(&cpa
, 1);
2093 * After changing the encryption attribute, we need to flush TLBs
2094 * again in case any speculative TLB caching occurred (but no need
2095 * to flush caches again). We could just use cpa_flush_all(), but
2096 * in case TLB flushing gets optimized in the cpa_flush_range()
2097 * path use the same logic as above.
2099 cpa_flush_range(start
, numpages
, 0);
2104 int set_memory_encrypted(unsigned long addr
, int numpages
)
2106 return __set_memory_enc_dec(addr
, numpages
, true);
2108 EXPORT_SYMBOL_GPL(set_memory_encrypted
);
2110 int set_memory_decrypted(unsigned long addr
, int numpages
)
2112 return __set_memory_enc_dec(addr
, numpages
, false);
2114 EXPORT_SYMBOL_GPL(set_memory_decrypted
);
2116 int set_pages_uc(struct page
*page
, int numpages
)
2118 unsigned long addr
= (unsigned long)page_address(page
);
2120 return set_memory_uc(addr
, numpages
);
2122 EXPORT_SYMBOL(set_pages_uc
);
2124 static int _set_pages_array(struct page
**pages
, int addrinarray
,
2125 enum page_cache_mode new_type
)
2127 unsigned long start
;
2129 enum page_cache_mode set_type
;
2134 for (i
= 0; i
< addrinarray
; i
++) {
2135 if (PageHighMem(pages
[i
]))
2137 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2138 end
= start
+ PAGE_SIZE
;
2139 if (reserve_memtype(start
, end
, new_type
, NULL
))
2143 /* If WC, set to UC- first and then WC */
2144 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
2145 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
2147 ret
= cpa_set_pages_array(pages
, addrinarray
,
2148 cachemode2pgprot(set_type
));
2149 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
2150 ret
= change_page_attr_set_clr(NULL
, addrinarray
,
2152 _PAGE_CACHE_MODE_WC
),
2153 __pgprot(_PAGE_CACHE_MASK
),
2154 0, CPA_PAGES_ARRAY
, pages
);
2157 return 0; /* Success */
2160 for (i
= 0; i
< free_idx
; i
++) {
2161 if (PageHighMem(pages
[i
]))
2163 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2164 end
= start
+ PAGE_SIZE
;
2165 free_memtype(start
, end
);
2170 int set_pages_array_uc(struct page
**pages
, int addrinarray
)
2172 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_UC_MINUS
);
2174 EXPORT_SYMBOL(set_pages_array_uc
);
2176 int set_pages_array_wc(struct page
**pages
, int addrinarray
)
2178 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_WC
);
2180 EXPORT_SYMBOL(set_pages_array_wc
);
2182 int set_pages_array_wt(struct page
**pages
, int addrinarray
)
2184 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_WT
);
2186 EXPORT_SYMBOL_GPL(set_pages_array_wt
);
2188 int set_pages_wb(struct page
*page
, int numpages
)
2190 unsigned long addr
= (unsigned long)page_address(page
);
2192 return set_memory_wb(addr
, numpages
);
2194 EXPORT_SYMBOL(set_pages_wb
);
2196 int set_pages_array_wb(struct page
**pages
, int addrinarray
)
2199 unsigned long start
;
2203 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2204 retval
= cpa_clear_pages_array(pages
, addrinarray
,
2205 __pgprot(_PAGE_CACHE_MASK
));
2209 for (i
= 0; i
< addrinarray
; i
++) {
2210 if (PageHighMem(pages
[i
]))
2212 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2213 end
= start
+ PAGE_SIZE
;
2214 free_memtype(start
, end
);
2219 EXPORT_SYMBOL(set_pages_array_wb
);
2221 int set_pages_x(struct page
*page
, int numpages
)
2223 unsigned long addr
= (unsigned long)page_address(page
);
2225 return set_memory_x(addr
, numpages
);
2227 EXPORT_SYMBOL(set_pages_x
);
2229 int set_pages_nx(struct page
*page
, int numpages
)
2231 unsigned long addr
= (unsigned long)page_address(page
);
2233 return set_memory_nx(addr
, numpages
);
2235 EXPORT_SYMBOL(set_pages_nx
);
2237 int set_pages_ro(struct page
*page
, int numpages
)
2239 unsigned long addr
= (unsigned long)page_address(page
);
2241 return set_memory_ro(addr
, numpages
);
2244 int set_pages_rw(struct page
*page
, int numpages
)
2246 unsigned long addr
= (unsigned long)page_address(page
);
2248 return set_memory_rw(addr
, numpages
);
2251 #ifdef CONFIG_DEBUG_PAGEALLOC
2253 static int __set_pages_p(struct page
*page
, int numpages
)
2255 unsigned long tempaddr
= (unsigned long) page_address(page
);
2256 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2258 .numpages
= numpages
,
2259 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2260 .mask_clr
= __pgprot(0),
2264 * No alias checking needed for setting present flag. otherwise,
2265 * we may need to break large pages for 64-bit kernel text
2266 * mappings (this adds to complexity if we want to do this from
2267 * atomic context especially). Let's keep it simple!
2269 return __change_page_attr_set_clr(&cpa
, 0);
2272 static int __set_pages_np(struct page
*page
, int numpages
)
2274 unsigned long tempaddr
= (unsigned long) page_address(page
);
2275 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2277 .numpages
= numpages
,
2278 .mask_set
= __pgprot(0),
2279 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2283 * No alias checking needed for setting not present flag. otherwise,
2284 * we may need to break large pages for 64-bit kernel text
2285 * mappings (this adds to complexity if we want to do this from
2286 * atomic context especially). Let's keep it simple!
2288 return __change_page_attr_set_clr(&cpa
, 0);
2291 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
2293 if (PageHighMem(page
))
2296 debug_check_no_locks_freed(page_address(page
),
2297 numpages
* PAGE_SIZE
);
2301 * The return value is ignored as the calls cannot fail.
2302 * Large pages for identity mappings are not used at boot time
2303 * and hence no memory allocations during large page split.
2306 __set_pages_p(page
, numpages
);
2308 __set_pages_np(page
, numpages
);
2311 * We should perform an IPI and flush all tlbs,
2312 * but that can deadlock->flush only current cpu:
2316 arch_flush_lazy_mmu_mode();
2319 #ifdef CONFIG_HIBERNATION
2321 bool kernel_page_present(struct page
*page
)
2326 if (PageHighMem(page
))
2329 pte
= lookup_address((unsigned long)page_address(page
), &level
);
2330 return (pte_val(*pte
) & _PAGE_PRESENT
);
2333 #endif /* CONFIG_HIBERNATION */
2335 #endif /* CONFIG_DEBUG_PAGEALLOC */
2337 int kernel_map_pages_in_pgd(pgd_t
*pgd
, u64 pfn
, unsigned long address
,
2338 unsigned numpages
, unsigned long page_flags
)
2340 int retval
= -EINVAL
;
2342 struct cpa_data cpa
= {
2346 .numpages
= numpages
,
2347 .mask_set
= __pgprot(0),
2348 .mask_clr
= __pgprot(0),
2352 if (!(__supported_pte_mask
& _PAGE_NX
))
2355 if (!(page_flags
& _PAGE_NX
))
2356 cpa
.mask_clr
= __pgprot(_PAGE_NX
);
2358 if (!(page_flags
& _PAGE_RW
))
2359 cpa
.mask_clr
= __pgprot(_PAGE_RW
);
2361 if (!(page_flags
& _PAGE_ENC
))
2362 cpa
.mask_clr
= pgprot_encrypted(cpa
.mask_clr
);
2364 cpa
.mask_set
= __pgprot(_PAGE_PRESENT
| page_flags
);
2366 retval
= __change_page_attr_set_clr(&cpa
, 0);
2374 * The testcases use internal knowledge of the implementation that shouldn't
2375 * be exposed to the rest of the kernel. Include these directly here.
2377 #ifdef CONFIG_CPA_DEBUG
2378 #include "pageattr-test.c"