hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / mm / pat_rbtree.c
blobfa16036fa5929b44fa5c2d4df1a2c5df41fc2d84
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Handle caching attributes in page tables (PAT)
5 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
6 * Suresh B Siddha <suresh.b.siddha@intel.com>
8 * Interval tree (augmented rbtree) used to store the PAT memory type
9 * reservations.
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14 #include <linux/kernel.h>
15 #include <linux/rbtree_augmented.h>
16 #include <linux/sched.h>
17 #include <linux/gfp.h>
19 #include <asm/pgtable.h>
20 #include <asm/pat.h>
22 #include "pat_internal.h"
25 * The memtype tree keeps track of memory type for specific
26 * physical memory areas. Without proper tracking, conflicting memory
27 * types in different mappings can cause CPU cache corruption.
29 * The tree is an interval tree (augmented rbtree) with tree ordered
30 * on starting address. Tree can contain multiple entries for
31 * different regions which overlap. All the aliases have the same
32 * cache attributes of course.
34 * memtype_lock protects the rbtree.
37 static struct rb_root memtype_rbroot = RB_ROOT;
39 static int is_node_overlap(struct memtype *node, u64 start, u64 end)
41 if (node->start >= end || node->end <= start)
42 return 0;
44 return 1;
47 static u64 get_subtree_max_end(struct rb_node *node)
49 u64 ret = 0;
50 if (node) {
51 struct memtype *data = rb_entry(node, struct memtype, rb);
52 ret = data->subtree_max_end;
54 return ret;
57 static u64 compute_subtree_max_end(struct memtype *data)
59 u64 max_end = data->end, child_max_end;
61 child_max_end = get_subtree_max_end(data->rb.rb_right);
62 if (child_max_end > max_end)
63 max_end = child_max_end;
65 child_max_end = get_subtree_max_end(data->rb.rb_left);
66 if (child_max_end > max_end)
67 max_end = child_max_end;
69 return max_end;
72 RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb,
73 u64, subtree_max_end, compute_subtree_max_end)
75 /* Find the first (lowest start addr) overlapping range from rb tree */
76 static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
77 u64 start, u64 end)
79 struct rb_node *node = root->rb_node;
80 struct memtype *last_lower = NULL;
82 while (node) {
83 struct memtype *data = rb_entry(node, struct memtype, rb);
85 if (get_subtree_max_end(node->rb_left) > start) {
86 /* Lowest overlap if any must be on left side */
87 node = node->rb_left;
88 } else if (is_node_overlap(data, start, end)) {
89 last_lower = data;
90 break;
91 } else if (start >= data->start) {
92 /* Lowest overlap if any must be on right side */
93 node = node->rb_right;
94 } else {
95 break;
98 return last_lower; /* Returns NULL if there is no overlap */
101 enum {
102 MEMTYPE_EXACT_MATCH = 0,
103 MEMTYPE_END_MATCH = 1
106 static struct memtype *memtype_rb_match(struct rb_root *root,
107 u64 start, u64 end, int match_type)
109 struct memtype *match;
111 match = memtype_rb_lowest_match(root, start, end);
112 while (match != NULL && match->start < end) {
113 struct rb_node *node;
115 if ((match_type == MEMTYPE_EXACT_MATCH) &&
116 (match->start == start) && (match->end == end))
117 return match;
119 if ((match_type == MEMTYPE_END_MATCH) &&
120 (match->start < start) && (match->end == end))
121 return match;
123 node = rb_next(&match->rb);
124 if (node)
125 match = rb_entry(node, struct memtype, rb);
126 else
127 match = NULL;
130 return NULL; /* Returns NULL if there is no match */
133 static int memtype_rb_check_conflict(struct rb_root *root,
134 u64 start, u64 end,
135 enum page_cache_mode reqtype,
136 enum page_cache_mode *newtype)
138 struct rb_node *node;
139 struct memtype *match;
140 enum page_cache_mode found_type = reqtype;
142 match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
143 if (match == NULL)
144 goto success;
146 if (match->type != found_type && newtype == NULL)
147 goto failure;
149 dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
150 found_type = match->type;
152 node = rb_next(&match->rb);
153 while (node) {
154 match = rb_entry(node, struct memtype, rb);
156 if (match->start >= end) /* Checked all possible matches */
157 goto success;
159 if (is_node_overlap(match, start, end) &&
160 match->type != found_type) {
161 goto failure;
164 node = rb_next(&match->rb);
166 success:
167 if (newtype)
168 *newtype = found_type;
170 return 0;
172 failure:
173 pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
174 current->comm, current->pid, start, end,
175 cattr_name(found_type), cattr_name(match->type));
176 return -EBUSY;
179 static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
181 struct rb_node **node = &(root->rb_node);
182 struct rb_node *parent = NULL;
184 while (*node) {
185 struct memtype *data = rb_entry(*node, struct memtype, rb);
187 parent = *node;
188 if (data->subtree_max_end < newdata->end)
189 data->subtree_max_end = newdata->end;
190 if (newdata->start <= data->start)
191 node = &((*node)->rb_left);
192 else if (newdata->start > data->start)
193 node = &((*node)->rb_right);
196 newdata->subtree_max_end = newdata->end;
197 rb_link_node(&newdata->rb, parent, node);
198 rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb);
201 int rbt_memtype_check_insert(struct memtype *new,
202 enum page_cache_mode *ret_type)
204 int err = 0;
206 err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
207 new->type, ret_type);
209 if (!err) {
210 if (ret_type)
211 new->type = *ret_type;
213 new->subtree_max_end = new->end;
214 memtype_rb_insert(&memtype_rbroot, new);
216 return err;
219 struct memtype *rbt_memtype_erase(u64 start, u64 end)
221 struct memtype *data;
224 * Since the memtype_rbroot tree allows overlapping ranges,
225 * rbt_memtype_erase() checks with EXACT_MATCH first, i.e. free
226 * a whole node for the munmap case. If no such entry is found,
227 * it then checks with END_MATCH, i.e. shrink the size of a node
228 * from the end for the mremap case.
230 data = memtype_rb_match(&memtype_rbroot, start, end,
231 MEMTYPE_EXACT_MATCH);
232 if (!data) {
233 data = memtype_rb_match(&memtype_rbroot, start, end,
234 MEMTYPE_END_MATCH);
235 if (!data)
236 return ERR_PTR(-EINVAL);
239 if (data->start == start) {
240 /* munmap: erase this node */
241 rb_erase_augmented(&data->rb, &memtype_rbroot,
242 &memtype_rb_augment_cb);
243 } else {
244 /* mremap: update the end value of this node */
245 rb_erase_augmented(&data->rb, &memtype_rbroot,
246 &memtype_rb_augment_cb);
247 data->end = start;
248 data->subtree_max_end = data->end;
249 memtype_rb_insert(&memtype_rbroot, data);
250 return NULL;
253 return data;
256 struct memtype *rbt_memtype_lookup(u64 addr)
258 return memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
261 #if defined(CONFIG_DEBUG_FS)
262 int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
264 struct rb_node *node;
265 int i = 1;
267 node = rb_first(&memtype_rbroot);
268 while (node && pos != i) {
269 node = rb_next(node);
270 i++;
273 if (node) { /* pos == i */
274 struct memtype *this = rb_entry(node, struct memtype, rb);
275 *out = *this;
276 return 0;
277 } else {
278 return 1;
281 #endif