1 // SPDX-License-Identifier: GPL-2.0
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
8 #include <asm/fixmap.h>
11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
12 phys_addr_t physical_mask __ro_after_init
= (1ULL << __PHYSICAL_MASK_SHIFT
) - 1;
13 EXPORT_SYMBOL(physical_mask
);
16 #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
19 #define PGALLOC_USER_GFP __GFP_HIGHMEM
21 #define PGALLOC_USER_GFP 0
24 gfp_t __userpte_alloc_gfp
= PGALLOC_GFP
| PGALLOC_USER_GFP
;
26 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
28 return (pte_t
*)__get_free_page(PGALLOC_GFP
& ~__GFP_ACCOUNT
);
31 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
35 pte
= alloc_pages(__userpte_alloc_gfp
, 0);
38 if (!pgtable_page_ctor(pte
)) {
45 static int __init
setup_userpte(char *arg
)
51 * "userpte=nohigh" disables allocation of user pagetables in
54 if (strcmp(arg
, "nohigh") == 0)
55 __userpte_alloc_gfp
&= ~__GFP_HIGHMEM
;
60 early_param("userpte", setup_userpte
);
62 void ___pte_free_tlb(struct mmu_gather
*tlb
, struct page
*pte
)
64 pgtable_page_dtor(pte
);
65 paravirt_release_pte(page_to_pfn(pte
));
66 paravirt_tlb_remove_table(tlb
, pte
);
69 #if CONFIG_PGTABLE_LEVELS > 2
70 void ___pmd_free_tlb(struct mmu_gather
*tlb
, pmd_t
*pmd
)
72 struct page
*page
= virt_to_page(pmd
);
73 paravirt_release_pmd(__pa(pmd
) >> PAGE_SHIFT
);
75 * NOTE! For PAE, any changes to the top page-directory-pointer-table
76 * entries need a full cr3 reload to flush.
79 tlb
->need_flush_all
= 1;
81 pgtable_pmd_page_dtor(page
);
82 paravirt_tlb_remove_table(tlb
, page
);
85 #if CONFIG_PGTABLE_LEVELS > 3
86 void ___pud_free_tlb(struct mmu_gather
*tlb
, pud_t
*pud
)
88 paravirt_release_pud(__pa(pud
) >> PAGE_SHIFT
);
89 paravirt_tlb_remove_table(tlb
, virt_to_page(pud
));
92 #if CONFIG_PGTABLE_LEVELS > 4
93 void ___p4d_free_tlb(struct mmu_gather
*tlb
, p4d_t
*p4d
)
95 paravirt_release_p4d(__pa(p4d
) >> PAGE_SHIFT
);
96 paravirt_tlb_remove_table(tlb
, virt_to_page(p4d
));
98 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
99 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
100 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
102 static inline void pgd_list_add(pgd_t
*pgd
)
104 struct page
*page
= virt_to_page(pgd
);
106 list_add(&page
->lru
, &pgd_list
);
109 static inline void pgd_list_del(pgd_t
*pgd
)
111 struct page
*page
= virt_to_page(pgd
);
113 list_del(&page
->lru
);
116 #define UNSHARED_PTRS_PER_PGD \
117 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
118 #define MAX_UNSHARED_PTRS_PER_PGD \
119 max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
122 static void pgd_set_mm(pgd_t
*pgd
, struct mm_struct
*mm
)
124 virt_to_page(pgd
)->pt_mm
= mm
;
127 struct mm_struct
*pgd_page_get_mm(struct page
*page
)
132 static void pgd_ctor(struct mm_struct
*mm
, pgd_t
*pgd
)
134 /* If the pgd points to a shared pagetable level (either the
135 ptes in non-PAE, or shared PMD in PAE), then just copy the
136 references from swapper_pg_dir. */
137 if (CONFIG_PGTABLE_LEVELS
== 2 ||
138 (CONFIG_PGTABLE_LEVELS
== 3 && SHARED_KERNEL_PMD
) ||
139 CONFIG_PGTABLE_LEVELS
>= 4) {
140 clone_pgd_range(pgd
+ KERNEL_PGD_BOUNDARY
,
141 swapper_pg_dir
+ KERNEL_PGD_BOUNDARY
,
145 /* list required to sync kernel mapping updates */
146 if (!SHARED_KERNEL_PMD
) {
152 static void pgd_dtor(pgd_t
*pgd
)
154 if (SHARED_KERNEL_PMD
)
157 spin_lock(&pgd_lock
);
159 spin_unlock(&pgd_lock
);
163 * List of all pgd's needed for non-PAE so it can invalidate entries
164 * in both cached and uncached pgd's; not needed for PAE since the
165 * kernel pmd is shared. If PAE were not to share the pmd a similar
166 * tactic would be needed. This is essentially codepath-based locking
167 * against pageattr.c; it is the unique case in which a valid change
168 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
169 * vmalloc faults work because attached pagetables are never freed.
173 #ifdef CONFIG_X86_PAE
175 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
176 * updating the top-level pagetable entries to guarantee the
177 * processor notices the update. Since this is expensive, and
178 * all 4 top-level entries are used almost immediately in a
179 * new process's life, we just pre-populate them here.
181 * Also, if we're in a paravirt environment where the kernel pmd is
182 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
183 * and initialize the kernel pmds here.
185 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
186 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
189 * We allocate separate PMDs for the kernel part of the user page-table
190 * when PTI is enabled. We need them to map the per-process LDT into the
191 * user-space page-table.
193 #define PREALLOCATED_USER_PMDS (static_cpu_has(X86_FEATURE_PTI) ? \
195 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
197 void pud_populate(struct mm_struct
*mm
, pud_t
*pudp
, pmd_t
*pmd
)
199 paravirt_alloc_pmd(mm
, __pa(pmd
) >> PAGE_SHIFT
);
201 /* Note: almost everything apart from _PAGE_PRESENT is
202 reserved at the pmd (PDPT) level. */
203 set_pud(pudp
, __pud(__pa(pmd
) | _PAGE_PRESENT
));
206 * According to Intel App note "TLBs, Paging-Structure Caches,
207 * and Their Invalidation", April 2007, document 317080-001,
208 * section 8.1: in PAE mode we explicitly have to flush the
209 * TLB via cr3 if the top-level pgd is changed...
213 #else /* !CONFIG_X86_PAE */
215 /* No need to prepopulate any pagetable entries in non-PAE modes. */
216 #define PREALLOCATED_PMDS 0
217 #define MAX_PREALLOCATED_PMDS 0
218 #define PREALLOCATED_USER_PMDS 0
219 #define MAX_PREALLOCATED_USER_PMDS 0
220 #endif /* CONFIG_X86_PAE */
222 static void free_pmds(struct mm_struct
*mm
, pmd_t
*pmds
[], int count
)
226 for (i
= 0; i
< count
; i
++)
228 pgtable_pmd_page_dtor(virt_to_page(pmds
[i
]));
229 free_page((unsigned long)pmds
[i
]);
234 static int preallocate_pmds(struct mm_struct
*mm
, pmd_t
*pmds
[], int count
)
238 gfp_t gfp
= PGALLOC_GFP
;
241 gfp
&= ~__GFP_ACCOUNT
;
243 for (i
= 0; i
< count
; i
++) {
244 pmd_t
*pmd
= (pmd_t
*)__get_free_page(gfp
);
247 if (pmd
&& !pgtable_pmd_page_ctor(virt_to_page(pmd
))) {
248 free_page((unsigned long)pmd
);
258 free_pmds(mm
, pmds
, count
);
266 * Mop up any pmd pages which may still be attached to the pgd.
267 * Normally they will be freed by munmap/exit_mmap, but any pmd we
268 * preallocate which never got a corresponding vma will need to be
271 static void mop_up_one_pmd(struct mm_struct
*mm
, pgd_t
*pgdp
)
275 if (pgd_val(pgd
) != 0) {
276 pmd_t
*pmd
= (pmd_t
*)pgd_page_vaddr(pgd
);
280 paravirt_release_pmd(pgd_val(pgd
) >> PAGE_SHIFT
);
286 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
290 for (i
= 0; i
< PREALLOCATED_PMDS
; i
++)
291 mop_up_one_pmd(mm
, &pgdp
[i
]);
293 #ifdef CONFIG_PAGE_TABLE_ISOLATION
295 if (!static_cpu_has(X86_FEATURE_PTI
))
298 pgdp
= kernel_to_user_pgdp(pgdp
);
300 for (i
= 0; i
< PREALLOCATED_USER_PMDS
; i
++)
301 mop_up_one_pmd(mm
, &pgdp
[i
+ KERNEL_PGD_BOUNDARY
]);
305 static void pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
, pmd_t
*pmds
[])
311 if (PREALLOCATED_PMDS
== 0) /* Work around gcc-3.4.x bug */
314 p4d
= p4d_offset(pgd
, 0);
315 pud
= pud_offset(p4d
, 0);
317 for (i
= 0; i
< PREALLOCATED_PMDS
; i
++, pud
++) {
318 pmd_t
*pmd
= pmds
[i
];
320 if (i
>= KERNEL_PGD_BOUNDARY
)
321 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(swapper_pg_dir
[i
]),
322 sizeof(pmd_t
) * PTRS_PER_PMD
);
324 pud_populate(mm
, pud
, pmd
);
328 #ifdef CONFIG_PAGE_TABLE_ISOLATION
329 static void pgd_prepopulate_user_pmd(struct mm_struct
*mm
,
330 pgd_t
*k_pgd
, pmd_t
*pmds
[])
332 pgd_t
*s_pgd
= kernel_to_user_pgdp(swapper_pg_dir
);
333 pgd_t
*u_pgd
= kernel_to_user_pgdp(k_pgd
);
338 u_p4d
= p4d_offset(u_pgd
, 0);
339 u_pud
= pud_offset(u_p4d
, 0);
341 s_pgd
+= KERNEL_PGD_BOUNDARY
;
342 u_pud
+= KERNEL_PGD_BOUNDARY
;
344 for (i
= 0; i
< PREALLOCATED_USER_PMDS
; i
++, u_pud
++, s_pgd
++) {
345 pmd_t
*pmd
= pmds
[i
];
347 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(*s_pgd
),
348 sizeof(pmd_t
) * PTRS_PER_PMD
);
350 pud_populate(mm
, u_pud
, pmd
);
355 static void pgd_prepopulate_user_pmd(struct mm_struct
*mm
,
356 pgd_t
*k_pgd
, pmd_t
*pmds
[])
361 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
362 * assumes that pgd should be in one page.
364 * But kernel with PAE paging that is not running as a Xen domain
365 * only needs to allocate 32 bytes for pgd instead of one page.
367 #ifdef CONFIG_X86_PAE
369 #include <linux/slab.h>
371 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
374 static struct kmem_cache
*pgd_cache
;
376 static int __init
pgd_cache_init(void)
379 * When PAE kernel is running as a Xen domain, it does not use
380 * shared kernel pmd. And this requires a whole page for pgd.
382 if (!SHARED_KERNEL_PMD
)
386 * when PAE kernel is not running as a Xen domain, it uses
387 * shared kernel pmd. Shared kernel pmd does not require a whole
388 * page for pgd. We are able to just allocate a 32-byte for pgd.
389 * During boot time, we create a 32-byte slab for pgd table allocation.
391 pgd_cache
= kmem_cache_create("pgd_cache", PGD_SIZE
, PGD_ALIGN
,
395 core_initcall(pgd_cache_init
);
397 static inline pgd_t
*_pgd_alloc(void)
400 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
401 * We allocate one page for pgd.
403 if (!SHARED_KERNEL_PMD
)
404 return (pgd_t
*)__get_free_pages(PGALLOC_GFP
,
405 PGD_ALLOCATION_ORDER
);
408 * Now PAE kernel is not running as a Xen domain. We can allocate
409 * a 32-byte slab for pgd to save memory space.
411 return kmem_cache_alloc(pgd_cache
, PGALLOC_GFP
);
414 static inline void _pgd_free(pgd_t
*pgd
)
416 if (!SHARED_KERNEL_PMD
)
417 free_pages((unsigned long)pgd
, PGD_ALLOCATION_ORDER
);
419 kmem_cache_free(pgd_cache
, pgd
);
423 static inline pgd_t
*_pgd_alloc(void)
425 return (pgd_t
*)__get_free_pages(PGALLOC_GFP
, PGD_ALLOCATION_ORDER
);
428 static inline void _pgd_free(pgd_t
*pgd
)
430 free_pages((unsigned long)pgd
, PGD_ALLOCATION_ORDER
);
432 #endif /* CONFIG_X86_PAE */
434 pgd_t
*pgd_alloc(struct mm_struct
*mm
)
437 pmd_t
*u_pmds
[MAX_PREALLOCATED_USER_PMDS
];
438 pmd_t
*pmds
[MAX_PREALLOCATED_PMDS
];
447 if (preallocate_pmds(mm
, pmds
, PREALLOCATED_PMDS
) != 0)
450 if (preallocate_pmds(mm
, u_pmds
, PREALLOCATED_USER_PMDS
) != 0)
453 if (paravirt_pgd_alloc(mm
) != 0)
454 goto out_free_user_pmds
;
457 * Make sure that pre-populating the pmds is atomic with
458 * respect to anything walking the pgd_list, so that they
459 * never see a partially populated pgd.
461 spin_lock(&pgd_lock
);
464 pgd_prepopulate_pmd(mm
, pgd
, pmds
);
465 pgd_prepopulate_user_pmd(mm
, pgd
, u_pmds
);
467 spin_unlock(&pgd_lock
);
472 free_pmds(mm
, u_pmds
, PREALLOCATED_USER_PMDS
);
474 free_pmds(mm
, pmds
, PREALLOCATED_PMDS
);
481 void pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
483 pgd_mop_up_pmds(mm
, pgd
);
485 paravirt_pgd_free(mm
, pgd
);
490 * Used to set accessed or dirty bits in the page table entries
491 * on other architectures. On x86, the accessed and dirty bits
492 * are tracked by hardware. However, do_wp_page calls this function
493 * to also make the pte writeable at the same time the dirty bit is
494 * set. In that case we do actually need to write the PTE.
496 int ptep_set_access_flags(struct vm_area_struct
*vma
,
497 unsigned long address
, pte_t
*ptep
,
498 pte_t entry
, int dirty
)
500 int changed
= !pte_same(*ptep
, entry
);
502 if (changed
&& dirty
)
503 set_pte(ptep
, entry
);
508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
509 int pmdp_set_access_flags(struct vm_area_struct
*vma
,
510 unsigned long address
, pmd_t
*pmdp
,
511 pmd_t entry
, int dirty
)
513 int changed
= !pmd_same(*pmdp
, entry
);
515 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
517 if (changed
&& dirty
) {
518 set_pmd(pmdp
, entry
);
520 * We had a write-protection fault here and changed the pmd
521 * to to more permissive. No need to flush the TLB for that,
522 * #PF is architecturally guaranteed to do that and in the
523 * worst-case we'll generate a spurious fault.
530 int pudp_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
531 pud_t
*pudp
, pud_t entry
, int dirty
)
533 int changed
= !pud_same(*pudp
, entry
);
535 VM_BUG_ON(address
& ~HPAGE_PUD_MASK
);
537 if (changed
&& dirty
) {
538 set_pud(pudp
, entry
);
540 * We had a write-protection fault here and changed the pud
541 * to to more permissive. No need to flush the TLB for that,
542 * #PF is architecturally guaranteed to do that and in the
543 * worst-case we'll generate a spurious fault.
551 int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
552 unsigned long addr
, pte_t
*ptep
)
556 if (pte_young(*ptep
))
557 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
558 (unsigned long *) &ptep
->pte
);
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
565 unsigned long addr
, pmd_t
*pmdp
)
569 if (pmd_young(*pmdp
))
570 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
571 (unsigned long *)pmdp
);
575 int pudp_test_and_clear_young(struct vm_area_struct
*vma
,
576 unsigned long addr
, pud_t
*pudp
)
580 if (pud_young(*pudp
))
581 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
582 (unsigned long *)pudp
);
588 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
589 unsigned long address
, pte_t
*ptep
)
592 * On x86 CPUs, clearing the accessed bit without a TLB flush
593 * doesn't cause data corruption. [ It could cause incorrect
594 * page aging and the (mistaken) reclaim of hot pages, but the
595 * chance of that should be relatively low. ]
597 * So as a performance optimization don't flush the TLB when
598 * clearing the accessed bit, it will eventually be flushed by
599 * a context switch or a VM operation anyway. [ In the rare
600 * event of it not getting flushed for a long time the delay
601 * shouldn't really matter because there's no real memory
602 * pressure for swapout to react to. ]
604 return ptep_test_and_clear_young(vma
, address
, ptep
);
607 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
608 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
609 unsigned long address
, pmd_t
*pmdp
)
613 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
615 young
= pmdp_test_and_clear_young(vma
, address
, pmdp
);
617 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
624 * reserve_top_address - reserves a hole in the top of kernel address space
625 * @reserve - size of hole to reserve
627 * Can be used to relocate the fixmap area and poke a hole in the top
628 * of kernel address space to make room for a hypervisor.
630 void __init
reserve_top_address(unsigned long reserve
)
633 BUG_ON(fixmaps_set
> 0);
634 __FIXADDR_TOP
= round_down(-reserve
, 1 << PMD_SHIFT
) - PAGE_SIZE
;
635 printk(KERN_INFO
"Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
636 -reserve
, __FIXADDR_TOP
+ PAGE_SIZE
);
642 void __native_set_fixmap(enum fixed_addresses idx
, pte_t pte
)
644 unsigned long address
= __fix_to_virt(idx
);
648 * Ensure that the static initial page tables are covering the
651 BUILD_BUG_ON(__end_of_permanent_fixed_addresses
>
652 (FIXMAP_PMD_NUM
* PTRS_PER_PTE
));
655 if (idx
>= __end_of_fixed_addresses
) {
659 set_pte_vaddr(address
, pte
);
663 void native_set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
,
666 /* Sanitize 'prot' against any unsupported bits: */
667 pgprot_val(flags
) &= __default_kernel_pte_mask
;
669 __native_set_fixmap(idx
, pfn_pte(phys
>> PAGE_SHIFT
, flags
));
672 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
673 #ifdef CONFIG_X86_5LEVEL
675 * p4d_set_huge - setup kernel P4D mapping
677 * No 512GB pages yet -- always return 0
679 int p4d_set_huge(p4d_t
*p4d
, phys_addr_t addr
, pgprot_t prot
)
685 * p4d_clear_huge - clear kernel P4D mapping when it is set
687 * No 512GB pages yet -- always return 0
689 int p4d_clear_huge(p4d_t
*p4d
)
696 * pud_set_huge - setup kernel PUD mapping
698 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
699 * function sets up a huge page only if any of the following conditions are met:
701 * - MTRRs are disabled, or
703 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
705 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
706 * has no effect on the requested PAT memory type.
708 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
709 * page mapping attempt fails.
711 * Returns 1 on success and 0 on failure.
713 int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
)
717 mtrr
= mtrr_type_lookup(addr
, addr
+ PUD_SIZE
, &uniform
);
718 if ((mtrr
!= MTRR_TYPE_INVALID
) && (!uniform
) &&
719 (mtrr
!= MTRR_TYPE_WRBACK
))
722 /* Bail out if we are we on a populated non-leaf entry: */
723 if (pud_present(*pud
) && !pud_huge(*pud
))
726 prot
= pgprot_4k_2_large(prot
);
728 set_pte((pte_t
*)pud
, pfn_pte(
729 (u64
)addr
>> PAGE_SHIFT
,
730 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
736 * pmd_set_huge - setup kernel PMD mapping
738 * See text over pud_set_huge() above.
740 * Returns 1 on success and 0 on failure.
742 int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
)
746 mtrr
= mtrr_type_lookup(addr
, addr
+ PMD_SIZE
, &uniform
);
747 if ((mtrr
!= MTRR_TYPE_INVALID
) && (!uniform
) &&
748 (mtrr
!= MTRR_TYPE_WRBACK
)) {
749 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
750 __func__
, addr
, addr
+ PMD_SIZE
);
754 /* Bail out if we are we on a populated non-leaf entry: */
755 if (pmd_present(*pmd
) && !pmd_huge(*pmd
))
758 prot
= pgprot_4k_2_large(prot
);
760 set_pte((pte_t
*)pmd
, pfn_pte(
761 (u64
)addr
>> PAGE_SHIFT
,
762 __pgprot(pgprot_val(prot
) | _PAGE_PSE
)));
768 * pud_clear_huge - clear kernel PUD mapping when it is set
770 * Returns 1 on success and 0 on failure (no PUD map is found).
772 int pud_clear_huge(pud_t
*pud
)
774 if (pud_large(*pud
)) {
783 * pmd_clear_huge - clear kernel PMD mapping when it is set
785 * Returns 1 on success and 0 on failure (no PMD map is found).
787 int pmd_clear_huge(pmd_t
*pmd
)
789 if (pmd_large(*pmd
)) {
799 * pud_free_pmd_page - Clear pud entry and free pmd page.
800 * @pud: Pointer to a PUD.
801 * @addr: Virtual address associated with pud.
803 * Context: The pud range has been unmapped and TLB purged.
804 * Return: 1 if clearing the entry succeeded. 0 otherwise.
806 * NOTE: Callers must allow a single page allocation.
808 int pud_free_pmd_page(pud_t
*pud
, unsigned long addr
)
817 pmd
= (pmd_t
*)pud_page_vaddr(*pud
);
818 pmd_sv
= (pmd_t
*)__get_free_page(GFP_KERNEL
);
822 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
824 if (!pmd_none(pmd
[i
]))
830 /* INVLPG to clear all paging-structure caches */
831 flush_tlb_kernel_range(addr
, addr
+ PAGE_SIZE
-1);
833 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
834 if (!pmd_none(pmd_sv
[i
])) {
835 pte
= (pte_t
*)pmd_page_vaddr(pmd_sv
[i
]);
836 free_page((unsigned long)pte
);
840 free_page((unsigned long)pmd_sv
);
841 free_page((unsigned long)pmd
);
847 * pmd_free_pte_page - Clear pmd entry and free pte page.
848 * @pmd: Pointer to a PMD.
849 * @addr: Virtual address associated with pmd.
851 * Context: The pmd range has been unmapped and TLB purged.
852 * Return: 1 if clearing the entry succeeded. 0 otherwise.
854 int pmd_free_pte_page(pmd_t
*pmd
, unsigned long addr
)
861 pte
= (pte_t
*)pmd_page_vaddr(*pmd
);
864 /* INVLPG to clear all paging-structure caches */
865 flush_tlb_kernel_range(addr
, addr
+ PAGE_SIZE
-1);
867 free_page((unsigned long)pte
);
872 #else /* !CONFIG_X86_64 */
874 int pud_free_pmd_page(pud_t
*pud
, unsigned long addr
)
876 return pud_none(*pud
);
880 * Disable free page handling on x86-PAE. This assures that ioremap()
881 * does not update sync'd pmd entries. See vmalloc_sync_one().
883 int pmd_free_pte_page(pmd_t
*pmd
, unsigned long addr
)
885 return pmd_none(*pmd
);
888 #endif /* CONFIG_X86_64 */
889 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */