hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / mm / tlb.c
blobbddd6b3cee1de51ac8321974b827d208dbab1831
1 #include <linux/init.h>
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10 #include <linux/ptrace.h>
12 #include <asm/tlbflush.h>
13 #include <asm/mmu_context.h>
14 #include <asm/nospec-branch.h>
15 #include <asm/cache.h>
16 #include <asm/apic.h>
17 #include <asm/uv/uv.h>
20 * TLB flushing, formerly SMP-only
21 * c/o Linus Torvalds.
23 * These mean you can really definitely utterly forget about
24 * writing to user space from interrupts. (Its not allowed anyway).
26 * Optimizations Manfred Spraul <manfred@colorfullife.com>
28 * More scalable flush, from Andi Kleen
30 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
34 * We get here when we do something requiring a TLB invalidation
35 * but could not go invalidate all of the contexts. We do the
36 * necessary invalidation by clearing out the 'ctx_id' which
37 * forces a TLB flush when the context is loaded.
39 static void clear_asid_other(void)
41 u16 asid;
44 * This is only expected to be set if we have disabled
45 * kernel _PAGE_GLOBAL pages.
47 if (!static_cpu_has(X86_FEATURE_PTI)) {
48 WARN_ON_ONCE(1);
49 return;
52 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
53 /* Do not need to flush the current asid */
54 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
55 continue;
57 * Make sure the next time we go to switch to
58 * this asid, we do a flush:
60 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
62 this_cpu_write(cpu_tlbstate.invalidate_other, false);
65 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
68 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
69 u16 *new_asid, bool *need_flush)
71 u16 asid;
73 if (!static_cpu_has(X86_FEATURE_PCID)) {
74 *new_asid = 0;
75 *need_flush = true;
76 return;
79 if (this_cpu_read(cpu_tlbstate.invalidate_other))
80 clear_asid_other();
82 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
83 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
84 next->context.ctx_id)
85 continue;
87 *new_asid = asid;
88 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
89 next_tlb_gen);
90 return;
94 * We don't currently own an ASID slot on this CPU.
95 * Allocate a slot.
97 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
98 if (*new_asid >= TLB_NR_DYN_ASIDS) {
99 *new_asid = 0;
100 this_cpu_write(cpu_tlbstate.next_asid, 1);
102 *need_flush = true;
105 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
107 unsigned long new_mm_cr3;
109 if (need_flush) {
110 invalidate_user_asid(new_asid);
111 new_mm_cr3 = build_cr3(pgdir, new_asid);
112 } else {
113 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
117 * Caution: many callers of this function expect
118 * that load_cr3() is serializing and orders TLB
119 * fills with respect to the mm_cpumask writes.
121 write_cr3(new_mm_cr3);
124 void leave_mm(int cpu)
126 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
129 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
130 * If so, our callers still expect us to flush the TLB, but there
131 * aren't any user TLB entries in init_mm to worry about.
133 * This needs to happen before any other sanity checks due to
134 * intel_idle's shenanigans.
136 if (loaded_mm == &init_mm)
137 return;
139 /* Warn if we're not lazy. */
140 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
142 switch_mm(NULL, &init_mm, NULL);
144 EXPORT_SYMBOL_GPL(leave_mm);
146 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
147 struct task_struct *tsk)
149 unsigned long flags;
151 local_irq_save(flags);
152 switch_mm_irqs_off(prev, next, tsk);
153 local_irq_restore(flags);
156 static void sync_current_stack_to_mm(struct mm_struct *mm)
158 unsigned long sp = current_stack_pointer;
159 pgd_t *pgd = pgd_offset(mm, sp);
161 if (pgtable_l5_enabled()) {
162 if (unlikely(pgd_none(*pgd))) {
163 pgd_t *pgd_ref = pgd_offset_k(sp);
165 set_pgd(pgd, *pgd_ref);
167 } else {
169 * "pgd" is faked. The top level entries are "p4d"s, so sync
170 * the p4d. This compiles to approximately the same code as
171 * the 5-level case.
173 p4d_t *p4d = p4d_offset(pgd, sp);
175 if (unlikely(p4d_none(*p4d))) {
176 pgd_t *pgd_ref = pgd_offset_k(sp);
177 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
179 set_p4d(p4d, *p4d_ref);
184 static bool ibpb_needed(struct task_struct *tsk, u64 last_ctx_id)
187 * Check if the current (previous) task has access to the memory
188 * of the @tsk (next) task. If access is denied, make sure to
189 * issue a IBPB to stop user->user Spectre-v2 attacks.
191 * Note: __ptrace_may_access() returns 0 or -ERRNO.
193 return (tsk && tsk->mm && tsk->mm->context.ctx_id != last_ctx_id &&
194 ptrace_may_access_sched(tsk, PTRACE_MODE_SPEC_IBPB));
197 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
198 struct task_struct *tsk)
200 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
201 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
202 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
203 unsigned cpu = smp_processor_id();
204 u64 next_tlb_gen;
205 bool need_flush;
206 u16 new_asid;
209 * NB: The scheduler will call us with prev == next when switching
210 * from lazy TLB mode to normal mode if active_mm isn't changing.
211 * When this happens, we don't assume that CR3 (and hence
212 * cpu_tlbstate.loaded_mm) matches next.
214 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
217 /* We don't want flush_tlb_func_* to run concurrently with us. */
218 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
219 WARN_ON_ONCE(!irqs_disabled());
222 * Verify that CR3 is what we think it is. This will catch
223 * hypothetical buggy code that directly switches to swapper_pg_dir
224 * without going through leave_mm() / switch_mm_irqs_off() or that
225 * does something like write_cr3(read_cr3_pa()).
227 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
228 * isn't free.
230 #ifdef CONFIG_DEBUG_VM
231 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
233 * If we were to BUG here, we'd be very likely to kill
234 * the system so hard that we don't see the call trace.
235 * Try to recover instead by ignoring the error and doing
236 * a global flush to minimize the chance of corruption.
238 * (This is far from being a fully correct recovery.
239 * Architecturally, the CPU could prefetch something
240 * back into an incorrect ASID slot and leave it there
241 * to cause trouble down the road. It's better than
242 * nothing, though.)
244 __flush_tlb_all();
246 #endif
247 this_cpu_write(cpu_tlbstate.is_lazy, false);
250 * The membarrier system call requires a full memory barrier and
251 * core serialization before returning to user-space, after
252 * storing to rq->curr. Writing to CR3 provides that full
253 * memory barrier and core serializing instruction.
255 if (real_prev == next) {
256 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
257 next->context.ctx_id);
260 * Even in lazy TLB mode, the CPU should stay set in the
261 * mm_cpumask. The TLB shootdown code can figure out from
262 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
264 if (WARN_ON_ONCE(real_prev != &init_mm &&
265 !cpumask_test_cpu(cpu, mm_cpumask(next))))
266 cpumask_set_cpu(cpu, mm_cpumask(next));
269 * If the CPU is not in lazy TLB mode, we are just switching
270 * from one thread in a process to another thread in the same
271 * process. No TLB flush required.
273 if (!was_lazy)
274 return;
277 * Read the tlb_gen to check whether a flush is needed.
278 * If the TLB is up to date, just use it.
279 * The barrier synchronizes with the tlb_gen increment in
280 * the TLB shootdown code.
282 smp_mb();
283 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
284 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
285 next_tlb_gen)
286 return;
289 * TLB contents went out of date while we were in lazy
290 * mode. Fall through to the TLB switching code below.
292 new_asid = prev_asid;
293 need_flush = true;
294 } else {
295 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
298 * Avoid user/user BTB poisoning by flushing the branch
299 * predictor when switching between processes. This stops
300 * one process from doing Spectre-v2 attacks on another.
302 * As an optimization, flush indirect branches only when
303 * switching into a processes that can't be ptrace by the
304 * current one (as in such case, attacker has much more
305 * convenient way how to tamper with the next process than
306 * branch buffer poisoning).
308 if (static_cpu_has(X86_FEATURE_USE_IBPB) &&
309 ibpb_needed(tsk, last_ctx_id))
310 indirect_branch_prediction_barrier();
312 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
314 * If our current stack is in vmalloc space and isn't
315 * mapped in the new pgd, we'll double-fault. Forcibly
316 * map it.
318 sync_current_stack_to_mm(next);
322 * Stop remote flushes for the previous mm.
323 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
324 * but the bitmap manipulation can cause cache line contention.
326 if (real_prev != &init_mm) {
327 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
328 mm_cpumask(real_prev)));
329 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
333 * Start remote flushes and then read tlb_gen.
335 if (next != &init_mm)
336 cpumask_set_cpu(cpu, mm_cpumask(next));
337 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
339 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
341 /* Let nmi_uaccess_okay() know that we're changing CR3. */
342 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
343 barrier();
346 if (need_flush) {
347 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
348 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
349 load_new_mm_cr3(next->pgd, new_asid, true);
352 * NB: This gets called via leave_mm() in the idle path
353 * where RCU functions differently. Tracing normally
354 * uses RCU, so we need to use the _rcuidle variant.
356 * (There is no good reason for this. The idle code should
357 * be rearranged to call this before rcu_idle_enter().)
359 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
360 } else {
361 /* The new ASID is already up to date. */
362 load_new_mm_cr3(next->pgd, new_asid, false);
364 /* See above wrt _rcuidle. */
365 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
369 * Record last user mm's context id, so we can avoid
370 * flushing branch buffer with IBPB if we switch back
371 * to the same user.
373 if (next != &init_mm)
374 this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
376 /* Make sure we write CR3 before loaded_mm. */
377 barrier();
379 this_cpu_write(cpu_tlbstate.loaded_mm, next);
380 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
382 if (next != real_prev) {
383 load_mm_cr4(next);
384 switch_ldt(real_prev, next);
389 * Please ignore the name of this function. It should be called
390 * switch_to_kernel_thread().
392 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
393 * kernel thread or other context without an mm. Acceptable implementations
394 * include doing nothing whatsoever, switching to init_mm, or various clever
395 * lazy tricks to try to minimize TLB flushes.
397 * The scheduler reserves the right to call enter_lazy_tlb() several times
398 * in a row. It will notify us that we're going back to a real mm by
399 * calling switch_mm_irqs_off().
401 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
403 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
404 return;
406 this_cpu_write(cpu_tlbstate.is_lazy, true);
410 * Call this when reinitializing a CPU. It fixes the following potential
411 * problems:
413 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
414 * because the CPU was taken down and came back up with CR3's PCID
415 * bits clear. CPU hotplug can do this.
417 * - The TLB contains junk in slots corresponding to inactive ASIDs.
419 * - The CPU went so far out to lunch that it may have missed a TLB
420 * flush.
422 void initialize_tlbstate_and_flush(void)
424 int i;
425 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
426 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
427 unsigned long cr3 = __read_cr3();
429 /* Assert that CR3 already references the right mm. */
430 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
433 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
434 * doesn't work like other CR4 bits because it can only be set from
435 * long mode.)
437 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
438 !(cr4_read_shadow() & X86_CR4_PCIDE));
440 /* Force ASID 0 and force a TLB flush. */
441 write_cr3(build_cr3(mm->pgd, 0));
443 /* Reinitialize tlbstate. */
444 this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
445 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
446 this_cpu_write(cpu_tlbstate.next_asid, 1);
447 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
448 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
450 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
451 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
455 * flush_tlb_func_common()'s memory ordering requirement is that any
456 * TLB fills that happen after we flush the TLB are ordered after we
457 * read active_mm's tlb_gen. We don't need any explicit barriers
458 * because all x86 flush operations are serializing and the
459 * atomic64_read operation won't be reordered by the compiler.
461 static void flush_tlb_func_common(const struct flush_tlb_info *f,
462 bool local, enum tlb_flush_reason reason)
465 * We have three different tlb_gen values in here. They are:
467 * - mm_tlb_gen: the latest generation.
468 * - local_tlb_gen: the generation that this CPU has already caught
469 * up to.
470 * - f->new_tlb_gen: the generation that the requester of the flush
471 * wants us to catch up to.
473 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
474 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
475 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
476 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
478 /* This code cannot presently handle being reentered. */
479 VM_WARN_ON(!irqs_disabled());
481 if (unlikely(loaded_mm == &init_mm))
482 return;
484 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
485 loaded_mm->context.ctx_id);
487 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
489 * We're in lazy mode. We need to at least flush our
490 * paging-structure cache to avoid speculatively reading
491 * garbage into our TLB. Since switching to init_mm is barely
492 * slower than a minimal flush, just switch to init_mm.
494 * This should be rare, with native_flush_tlb_others skipping
495 * IPIs to lazy TLB mode CPUs.
497 switch_mm_irqs_off(NULL, &init_mm, NULL);
498 return;
501 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
503 * There's nothing to do: we're already up to date. This can
504 * happen if two concurrent flushes happen -- the first flush to
505 * be handled can catch us all the way up, leaving no work for
506 * the second flush.
508 trace_tlb_flush(reason, 0);
509 return;
512 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
513 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
516 * If we get to this point, we know that our TLB is out of date.
517 * This does not strictly imply that we need to flush (it's
518 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
519 * going to need to flush in the very near future, so we might
520 * as well get it over with.
522 * The only question is whether to do a full or partial flush.
524 * We do a partial flush if requested and two extra conditions
525 * are met:
527 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
528 * we've always done all needed flushes to catch up to
529 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
530 * f->new_tlb_gen == 3, then we know that the flush needed to bring
531 * us up to date for tlb_gen 3 is the partial flush we're
532 * processing.
534 * As an example of why this check is needed, suppose that there
535 * are two concurrent flushes. The first is a full flush that
536 * changes context.tlb_gen from 1 to 2. The second is a partial
537 * flush that changes context.tlb_gen from 2 to 3. If they get
538 * processed on this CPU in reverse order, we'll see
539 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
540 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
541 * 3, we'd be break the invariant: we'd update local_tlb_gen above
542 * 1 without the full flush that's needed for tlb_gen 2.
544 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
545 * Partial TLB flushes are not all that much cheaper than full TLB
546 * flushes, so it seems unlikely that it would be a performance win
547 * to do a partial flush if that won't bring our TLB fully up to
548 * date. By doing a full flush instead, we can increase
549 * local_tlb_gen all the way to mm_tlb_gen and we can probably
550 * avoid another flush in the very near future.
552 if (f->end != TLB_FLUSH_ALL &&
553 f->new_tlb_gen == local_tlb_gen + 1 &&
554 f->new_tlb_gen == mm_tlb_gen) {
555 /* Partial flush */
556 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
557 unsigned long addr = f->start;
559 while (addr < f->end) {
560 __flush_tlb_one_user(addr);
561 addr += 1UL << f->stride_shift;
563 if (local)
564 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
565 trace_tlb_flush(reason, nr_invalidate);
566 } else {
567 /* Full flush. */
568 local_flush_tlb();
569 if (local)
570 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
571 trace_tlb_flush(reason, TLB_FLUSH_ALL);
574 /* Both paths above update our state to mm_tlb_gen. */
575 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
578 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
580 const struct flush_tlb_info *f = info;
582 flush_tlb_func_common(f, true, reason);
585 static void flush_tlb_func_remote(void *info)
587 const struct flush_tlb_info *f = info;
589 inc_irq_stat(irq_tlb_count);
591 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
592 return;
594 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
595 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
598 static bool tlb_is_not_lazy(int cpu, void *data)
600 return !per_cpu(cpu_tlbstate.is_lazy, cpu);
603 void native_flush_tlb_others(const struct cpumask *cpumask,
604 const struct flush_tlb_info *info)
606 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
607 if (info->end == TLB_FLUSH_ALL)
608 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
609 else
610 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
611 (info->end - info->start) >> PAGE_SHIFT);
613 if (is_uv_system()) {
615 * This whole special case is confused. UV has a "Broadcast
616 * Assist Unit", which seems to be a fancy way to send IPIs.
617 * Back when x86 used an explicit TLB flush IPI, UV was
618 * optimized to use its own mechanism. These days, x86 uses
619 * smp_call_function_many(), but UV still uses a manual IPI,
620 * and that IPI's action is out of date -- it does a manual
621 * flush instead of calling flush_tlb_func_remote(). This
622 * means that the percpu tlb_gen variables won't be updated
623 * and we'll do pointless flushes on future context switches.
625 * Rather than hooking native_flush_tlb_others() here, I think
626 * that UV should be updated so that smp_call_function_many(),
627 * etc, are optimal on UV.
629 unsigned int cpu;
631 cpu = smp_processor_id();
632 cpumask = uv_flush_tlb_others(cpumask, info);
633 if (cpumask)
634 smp_call_function_many(cpumask, flush_tlb_func_remote,
635 (void *)info, 1);
636 return;
640 * If no page tables were freed, we can skip sending IPIs to
641 * CPUs in lazy TLB mode. They will flush the CPU themselves
642 * at the next context switch.
644 * However, if page tables are getting freed, we need to send the
645 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
646 * up on the new contents of what used to be page tables, while
647 * doing a speculative memory access.
649 if (info->freed_tables)
650 smp_call_function_many(cpumask, flush_tlb_func_remote,
651 (void *)info, 1);
652 else
653 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
654 (void *)info, 1, GFP_ATOMIC, cpumask);
658 * See Documentation/x86/tlb.txt for details. We choose 33
659 * because it is large enough to cover the vast majority (at
660 * least 95%) of allocations, and is small enough that we are
661 * confident it will not cause too much overhead. Each single
662 * flush is about 100 ns, so this caps the maximum overhead at
663 * _about_ 3,000 ns.
665 * This is in units of pages.
667 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
669 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
670 unsigned long end, unsigned int stride_shift,
671 bool freed_tables)
673 int cpu;
675 struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
676 .mm = mm,
677 .stride_shift = stride_shift,
678 .freed_tables = freed_tables,
681 cpu = get_cpu();
683 /* This is also a barrier that synchronizes with switch_mm(). */
684 info.new_tlb_gen = inc_mm_tlb_gen(mm);
686 /* Should we flush just the requested range? */
687 if ((end != TLB_FLUSH_ALL) &&
688 ((end - start) >> stride_shift) <= tlb_single_page_flush_ceiling) {
689 info.start = start;
690 info.end = end;
691 } else {
692 info.start = 0UL;
693 info.end = TLB_FLUSH_ALL;
696 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
697 VM_WARN_ON(irqs_disabled());
698 local_irq_disable();
699 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
700 local_irq_enable();
703 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
704 flush_tlb_others(mm_cpumask(mm), &info);
706 put_cpu();
710 static void do_flush_tlb_all(void *info)
712 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
713 __flush_tlb_all();
716 void flush_tlb_all(void)
718 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
719 on_each_cpu(do_flush_tlb_all, NULL, 1);
722 static void do_kernel_range_flush(void *info)
724 struct flush_tlb_info *f = info;
725 unsigned long addr;
727 /* flush range by one by one 'invlpg' */
728 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
729 __flush_tlb_one_kernel(addr);
732 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
735 /* Balance as user space task's flush, a bit conservative */
736 if (end == TLB_FLUSH_ALL ||
737 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
738 on_each_cpu(do_flush_tlb_all, NULL, 1);
739 } else {
740 struct flush_tlb_info info;
741 info.start = start;
742 info.end = end;
743 on_each_cpu(do_kernel_range_flush, &info, 1);
747 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
749 struct flush_tlb_info info = {
750 .mm = NULL,
751 .start = 0UL,
752 .end = TLB_FLUSH_ALL,
755 int cpu = get_cpu();
757 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
758 VM_WARN_ON(irqs_disabled());
759 local_irq_disable();
760 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
761 local_irq_enable();
764 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
765 flush_tlb_others(&batch->cpumask, &info);
767 cpumask_clear(&batch->cpumask);
769 put_cpu();
772 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
773 size_t count, loff_t *ppos)
775 char buf[32];
776 unsigned int len;
778 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
779 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
782 static ssize_t tlbflush_write_file(struct file *file,
783 const char __user *user_buf, size_t count, loff_t *ppos)
785 char buf[32];
786 ssize_t len;
787 int ceiling;
789 len = min(count, sizeof(buf) - 1);
790 if (copy_from_user(buf, user_buf, len))
791 return -EFAULT;
793 buf[len] = '\0';
794 if (kstrtoint(buf, 0, &ceiling))
795 return -EINVAL;
797 if (ceiling < 0)
798 return -EINVAL;
800 tlb_single_page_flush_ceiling = ceiling;
801 return count;
804 static const struct file_operations fops_tlbflush = {
805 .read = tlbflush_read_file,
806 .write = tlbflush_write_file,
807 .llseek = default_llseek,
810 static int __init create_tlb_single_page_flush_ceiling(void)
812 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
813 arch_debugfs_dir, NULL, &fops_tlbflush);
814 return 0;
816 late_initcall(create_tlb_single_page_flush_ceiling);