hugetlb: introduce generic version of hugetlb_free_pgd_range
[linux/fpc-iii.git] / arch / x86 / net / bpf_jit_comp.c
blob2580cd2e98b1700f2bc048377d431a56dd69eccb
1 /*
2 * bpf_jit_comp.c: BPF JIT compiler
4 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
5 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
12 #include <linux/netdevice.h>
13 #include <linux/filter.h>
14 #include <linux/if_vlan.h>
15 #include <linux/bpf.h>
17 #include <asm/set_memory.h>
18 #include <asm/nospec-branch.h>
20 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
22 if (len == 1)
23 *ptr = bytes;
24 else if (len == 2)
25 *(u16 *)ptr = bytes;
26 else {
27 *(u32 *)ptr = bytes;
28 barrier();
30 return ptr + len;
33 #define EMIT(bytes, len) \
34 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
36 #define EMIT1(b1) EMIT(b1, 1)
37 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
38 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
39 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
41 #define EMIT1_off32(b1, off) \
42 do { EMIT1(b1); EMIT(off, 4); } while (0)
43 #define EMIT2_off32(b1, b2, off) \
44 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
45 #define EMIT3_off32(b1, b2, b3, off) \
46 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
47 #define EMIT4_off32(b1, b2, b3, b4, off) \
48 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
50 static bool is_imm8(int value)
52 return value <= 127 && value >= -128;
55 static bool is_simm32(s64 value)
57 return value == (s64)(s32)value;
60 static bool is_uimm32(u64 value)
62 return value == (u64)(u32)value;
65 /* mov dst, src */
66 #define EMIT_mov(DST, SRC) \
67 do { \
68 if (DST != SRC) \
69 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
70 } while (0)
72 static int bpf_size_to_x86_bytes(int bpf_size)
74 if (bpf_size == BPF_W)
75 return 4;
76 else if (bpf_size == BPF_H)
77 return 2;
78 else if (bpf_size == BPF_B)
79 return 1;
80 else if (bpf_size == BPF_DW)
81 return 4; /* imm32 */
82 else
83 return 0;
87 * List of x86 cond jumps opcodes (. + s8)
88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
90 #define X86_JB 0x72
91 #define X86_JAE 0x73
92 #define X86_JE 0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA 0x77
96 #define X86_JL 0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG 0x7F
101 /* Pick a register outside of BPF range for JIT internal work */
102 #define AUX_REG (MAX_BPF_JIT_REG + 1)
105 * The following table maps BPF registers to x86-64 registers.
107 * x86-64 register R12 is unused, since if used as base address
108 * register in load/store instructions, it always needs an
109 * extra byte of encoding and is callee saved.
111 * Also x86-64 register R9 is unused. x86-64 register R10 is
112 * used for blinding (if enabled).
114 static const int reg2hex[] = {
115 [BPF_REG_0] = 0, /* RAX */
116 [BPF_REG_1] = 7, /* RDI */
117 [BPF_REG_2] = 6, /* RSI */
118 [BPF_REG_3] = 2, /* RDX */
119 [BPF_REG_4] = 1, /* RCX */
120 [BPF_REG_5] = 0, /* R8 */
121 [BPF_REG_6] = 3, /* RBX callee saved */
122 [BPF_REG_7] = 5, /* R13 callee saved */
123 [BPF_REG_8] = 6, /* R14 callee saved */
124 [BPF_REG_9] = 7, /* R15 callee saved */
125 [BPF_REG_FP] = 5, /* RBP readonly */
126 [BPF_REG_AX] = 2, /* R10 temp register */
127 [AUX_REG] = 3, /* R11 temp register */
131 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
132 * which need extra byte of encoding.
133 * rax,rcx,...,rbp have simpler encoding
135 static bool is_ereg(u32 reg)
137 return (1 << reg) & (BIT(BPF_REG_5) |
138 BIT(AUX_REG) |
139 BIT(BPF_REG_7) |
140 BIT(BPF_REG_8) |
141 BIT(BPF_REG_9) |
142 BIT(BPF_REG_AX));
145 static bool is_axreg(u32 reg)
147 return reg == BPF_REG_0;
150 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
151 static u8 add_1mod(u8 byte, u32 reg)
153 if (is_ereg(reg))
154 byte |= 1;
155 return byte;
158 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
160 if (is_ereg(r1))
161 byte |= 1;
162 if (is_ereg(r2))
163 byte |= 4;
164 return byte;
167 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
168 static u8 add_1reg(u8 byte, u32 dst_reg)
170 return byte + reg2hex[dst_reg];
173 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
174 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
176 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
179 static void jit_fill_hole(void *area, unsigned int size)
181 /* Fill whole space with INT3 instructions */
182 memset(area, 0xcc, size);
185 struct jit_context {
186 int cleanup_addr; /* Epilogue code offset */
189 /* Maximum number of bytes emitted while JITing one eBPF insn */
190 #define BPF_MAX_INSN_SIZE 128
191 #define BPF_INSN_SAFETY 64
193 #define AUX_STACK_SPACE 40 /* Space for RBX, R13, R14, R15, tailcnt */
195 #define PROLOGUE_SIZE 37
198 * Emit x86-64 prologue code for BPF program and check its size.
199 * bpf_tail_call helper will skip it while jumping into another program
201 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
203 u8 *prog = *pprog;
204 int cnt = 0;
206 /* push rbp */
207 EMIT1(0x55);
209 /* mov rbp,rsp */
210 EMIT3(0x48, 0x89, 0xE5);
212 /* sub rsp, rounded_stack_depth + AUX_STACK_SPACE */
213 EMIT3_off32(0x48, 0x81, 0xEC,
214 round_up(stack_depth, 8) + AUX_STACK_SPACE);
216 /* sub rbp, AUX_STACK_SPACE */
217 EMIT4(0x48, 0x83, 0xED, AUX_STACK_SPACE);
219 /* mov qword ptr [rbp+0],rbx */
220 EMIT4(0x48, 0x89, 0x5D, 0);
221 /* mov qword ptr [rbp+8],r13 */
222 EMIT4(0x4C, 0x89, 0x6D, 8);
223 /* mov qword ptr [rbp+16],r14 */
224 EMIT4(0x4C, 0x89, 0x75, 16);
225 /* mov qword ptr [rbp+24],r15 */
226 EMIT4(0x4C, 0x89, 0x7D, 24);
228 if (!ebpf_from_cbpf) {
230 * Clear the tail call counter (tail_call_cnt): for eBPF tail
231 * calls we need to reset the counter to 0. It's done in two
232 * instructions, resetting RAX register to 0, and moving it
233 * to the counter location.
236 /* xor eax, eax */
237 EMIT2(0x31, 0xc0);
238 /* mov qword ptr [rbp+32], rax */
239 EMIT4(0x48, 0x89, 0x45, 32);
241 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
244 *pprog = prog;
248 * Generate the following code:
250 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
251 * if (index >= array->map.max_entries)
252 * goto out;
253 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
254 * goto out;
255 * prog = array->ptrs[index];
256 * if (prog == NULL)
257 * goto out;
258 * goto *(prog->bpf_func + prologue_size);
259 * out:
261 static void emit_bpf_tail_call(u8 **pprog)
263 u8 *prog = *pprog;
264 int label1, label2, label3;
265 int cnt = 0;
268 * rdi - pointer to ctx
269 * rsi - pointer to bpf_array
270 * rdx - index in bpf_array
274 * if (index >= array->map.max_entries)
275 * goto out;
277 EMIT2(0x89, 0xD2); /* mov edx, edx */
278 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
279 offsetof(struct bpf_array, map.max_entries));
280 #define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
281 EMIT2(X86_JBE, OFFSET1); /* jbe out */
282 label1 = cnt;
285 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
286 * goto out;
288 EMIT2_off32(0x8B, 0x85, 36); /* mov eax, dword ptr [rbp + 36] */
289 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
290 #define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
291 EMIT2(X86_JA, OFFSET2); /* ja out */
292 label2 = cnt;
293 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
294 EMIT2_off32(0x89, 0x85, 36); /* mov dword ptr [rbp + 36], eax */
296 /* prog = array->ptrs[index]; */
297 EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
298 offsetof(struct bpf_array, ptrs));
301 * if (prog == NULL)
302 * goto out;
304 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
305 #define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
306 EMIT2(X86_JE, OFFSET3); /* je out */
307 label3 = cnt;
309 /* goto *(prog->bpf_func + prologue_size); */
310 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
311 offsetof(struct bpf_prog, bpf_func));
312 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
315 * Wow we're ready to jump into next BPF program
316 * rdi == ctx (1st arg)
317 * rax == prog->bpf_func + prologue_size
319 RETPOLINE_RAX_BPF_JIT();
321 /* out: */
322 BUILD_BUG_ON(cnt - label1 != OFFSET1);
323 BUILD_BUG_ON(cnt - label2 != OFFSET2);
324 BUILD_BUG_ON(cnt - label3 != OFFSET3);
325 *pprog = prog;
328 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
329 u32 dst_reg, const u32 imm32)
331 u8 *prog = *pprog;
332 u8 b1, b2, b3;
333 int cnt = 0;
336 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
337 * (which zero-extends imm32) to save 2 bytes.
339 if (sign_propagate && (s32)imm32 < 0) {
340 /* 'mov %rax, imm32' sign extends imm32 */
341 b1 = add_1mod(0x48, dst_reg);
342 b2 = 0xC7;
343 b3 = 0xC0;
344 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
345 goto done;
349 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
350 * to save 3 bytes.
352 if (imm32 == 0) {
353 if (is_ereg(dst_reg))
354 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
355 b2 = 0x31; /* xor */
356 b3 = 0xC0;
357 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
358 goto done;
361 /* mov %eax, imm32 */
362 if (is_ereg(dst_reg))
363 EMIT1(add_1mod(0x40, dst_reg));
364 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
365 done:
366 *pprog = prog;
369 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
370 const u32 imm32_hi, const u32 imm32_lo)
372 u8 *prog = *pprog;
373 int cnt = 0;
375 if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
377 * For emitting plain u32, where sign bit must not be
378 * propagated LLVM tends to load imm64 over mov32
379 * directly, so save couple of bytes by just doing
380 * 'mov %eax, imm32' instead.
382 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
383 } else {
384 /* movabsq %rax, imm64 */
385 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
386 EMIT(imm32_lo, 4);
387 EMIT(imm32_hi, 4);
390 *pprog = prog;
393 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
395 u8 *prog = *pprog;
396 int cnt = 0;
398 if (is64) {
399 /* mov dst, src */
400 EMIT_mov(dst_reg, src_reg);
401 } else {
402 /* mov32 dst, src */
403 if (is_ereg(dst_reg) || is_ereg(src_reg))
404 EMIT1(add_2mod(0x40, dst_reg, src_reg));
405 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
408 *pprog = prog;
411 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
412 int oldproglen, struct jit_context *ctx)
414 struct bpf_insn *insn = bpf_prog->insnsi;
415 int insn_cnt = bpf_prog->len;
416 bool seen_exit = false;
417 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
418 int i, cnt = 0;
419 int proglen = 0;
420 u8 *prog = temp;
422 emit_prologue(&prog, bpf_prog->aux->stack_depth,
423 bpf_prog_was_classic(bpf_prog));
425 for (i = 0; i < insn_cnt; i++, insn++) {
426 const s32 imm32 = insn->imm;
427 u32 dst_reg = insn->dst_reg;
428 u32 src_reg = insn->src_reg;
429 u8 b2 = 0, b3 = 0;
430 s64 jmp_offset;
431 u8 jmp_cond;
432 int ilen;
433 u8 *func;
435 switch (insn->code) {
436 /* ALU */
437 case BPF_ALU | BPF_ADD | BPF_X:
438 case BPF_ALU | BPF_SUB | BPF_X:
439 case BPF_ALU | BPF_AND | BPF_X:
440 case BPF_ALU | BPF_OR | BPF_X:
441 case BPF_ALU | BPF_XOR | BPF_X:
442 case BPF_ALU64 | BPF_ADD | BPF_X:
443 case BPF_ALU64 | BPF_SUB | BPF_X:
444 case BPF_ALU64 | BPF_AND | BPF_X:
445 case BPF_ALU64 | BPF_OR | BPF_X:
446 case BPF_ALU64 | BPF_XOR | BPF_X:
447 switch (BPF_OP(insn->code)) {
448 case BPF_ADD: b2 = 0x01; break;
449 case BPF_SUB: b2 = 0x29; break;
450 case BPF_AND: b2 = 0x21; break;
451 case BPF_OR: b2 = 0x09; break;
452 case BPF_XOR: b2 = 0x31; break;
454 if (BPF_CLASS(insn->code) == BPF_ALU64)
455 EMIT1(add_2mod(0x48, dst_reg, src_reg));
456 else if (is_ereg(dst_reg) || is_ereg(src_reg))
457 EMIT1(add_2mod(0x40, dst_reg, src_reg));
458 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
459 break;
461 case BPF_ALU64 | BPF_MOV | BPF_X:
462 case BPF_ALU | BPF_MOV | BPF_X:
463 emit_mov_reg(&prog,
464 BPF_CLASS(insn->code) == BPF_ALU64,
465 dst_reg, src_reg);
466 break;
468 /* neg dst */
469 case BPF_ALU | BPF_NEG:
470 case BPF_ALU64 | BPF_NEG:
471 if (BPF_CLASS(insn->code) == BPF_ALU64)
472 EMIT1(add_1mod(0x48, dst_reg));
473 else if (is_ereg(dst_reg))
474 EMIT1(add_1mod(0x40, dst_reg));
475 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
476 break;
478 case BPF_ALU | BPF_ADD | BPF_K:
479 case BPF_ALU | BPF_SUB | BPF_K:
480 case BPF_ALU | BPF_AND | BPF_K:
481 case BPF_ALU | BPF_OR | BPF_K:
482 case BPF_ALU | BPF_XOR | BPF_K:
483 case BPF_ALU64 | BPF_ADD | BPF_K:
484 case BPF_ALU64 | BPF_SUB | BPF_K:
485 case BPF_ALU64 | BPF_AND | BPF_K:
486 case BPF_ALU64 | BPF_OR | BPF_K:
487 case BPF_ALU64 | BPF_XOR | BPF_K:
488 if (BPF_CLASS(insn->code) == BPF_ALU64)
489 EMIT1(add_1mod(0x48, dst_reg));
490 else if (is_ereg(dst_reg))
491 EMIT1(add_1mod(0x40, dst_reg));
494 * b3 holds 'normal' opcode, b2 short form only valid
495 * in case dst is eax/rax.
497 switch (BPF_OP(insn->code)) {
498 case BPF_ADD:
499 b3 = 0xC0;
500 b2 = 0x05;
501 break;
502 case BPF_SUB:
503 b3 = 0xE8;
504 b2 = 0x2D;
505 break;
506 case BPF_AND:
507 b3 = 0xE0;
508 b2 = 0x25;
509 break;
510 case BPF_OR:
511 b3 = 0xC8;
512 b2 = 0x0D;
513 break;
514 case BPF_XOR:
515 b3 = 0xF0;
516 b2 = 0x35;
517 break;
520 if (is_imm8(imm32))
521 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
522 else if (is_axreg(dst_reg))
523 EMIT1_off32(b2, imm32);
524 else
525 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
526 break;
528 case BPF_ALU64 | BPF_MOV | BPF_K:
529 case BPF_ALU | BPF_MOV | BPF_K:
530 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
531 dst_reg, imm32);
532 break;
534 case BPF_LD | BPF_IMM | BPF_DW:
535 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
536 insn++;
537 i++;
538 break;
540 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
541 case BPF_ALU | BPF_MOD | BPF_X:
542 case BPF_ALU | BPF_DIV | BPF_X:
543 case BPF_ALU | BPF_MOD | BPF_K:
544 case BPF_ALU | BPF_DIV | BPF_K:
545 case BPF_ALU64 | BPF_MOD | BPF_X:
546 case BPF_ALU64 | BPF_DIV | BPF_X:
547 case BPF_ALU64 | BPF_MOD | BPF_K:
548 case BPF_ALU64 | BPF_DIV | BPF_K:
549 EMIT1(0x50); /* push rax */
550 EMIT1(0x52); /* push rdx */
552 if (BPF_SRC(insn->code) == BPF_X)
553 /* mov r11, src_reg */
554 EMIT_mov(AUX_REG, src_reg);
555 else
556 /* mov r11, imm32 */
557 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
559 /* mov rax, dst_reg */
560 EMIT_mov(BPF_REG_0, dst_reg);
563 * xor edx, edx
564 * equivalent to 'xor rdx, rdx', but one byte less
566 EMIT2(0x31, 0xd2);
568 if (BPF_CLASS(insn->code) == BPF_ALU64)
569 /* div r11 */
570 EMIT3(0x49, 0xF7, 0xF3);
571 else
572 /* div r11d */
573 EMIT3(0x41, 0xF7, 0xF3);
575 if (BPF_OP(insn->code) == BPF_MOD)
576 /* mov r11, rdx */
577 EMIT3(0x49, 0x89, 0xD3);
578 else
579 /* mov r11, rax */
580 EMIT3(0x49, 0x89, 0xC3);
582 EMIT1(0x5A); /* pop rdx */
583 EMIT1(0x58); /* pop rax */
585 /* mov dst_reg, r11 */
586 EMIT_mov(dst_reg, AUX_REG);
587 break;
589 case BPF_ALU | BPF_MUL | BPF_K:
590 case BPF_ALU | BPF_MUL | BPF_X:
591 case BPF_ALU64 | BPF_MUL | BPF_K:
592 case BPF_ALU64 | BPF_MUL | BPF_X:
594 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
596 if (dst_reg != BPF_REG_0)
597 EMIT1(0x50); /* push rax */
598 if (dst_reg != BPF_REG_3)
599 EMIT1(0x52); /* push rdx */
601 /* mov r11, dst_reg */
602 EMIT_mov(AUX_REG, dst_reg);
604 if (BPF_SRC(insn->code) == BPF_X)
605 emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
606 else
607 emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
609 if (is64)
610 EMIT1(add_1mod(0x48, AUX_REG));
611 else if (is_ereg(AUX_REG))
612 EMIT1(add_1mod(0x40, AUX_REG));
613 /* mul(q) r11 */
614 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
616 if (dst_reg != BPF_REG_3)
617 EMIT1(0x5A); /* pop rdx */
618 if (dst_reg != BPF_REG_0) {
619 /* mov dst_reg, rax */
620 EMIT_mov(dst_reg, BPF_REG_0);
621 EMIT1(0x58); /* pop rax */
623 break;
625 /* Shifts */
626 case BPF_ALU | BPF_LSH | BPF_K:
627 case BPF_ALU | BPF_RSH | BPF_K:
628 case BPF_ALU | BPF_ARSH | BPF_K:
629 case BPF_ALU64 | BPF_LSH | BPF_K:
630 case BPF_ALU64 | BPF_RSH | BPF_K:
631 case BPF_ALU64 | BPF_ARSH | BPF_K:
632 if (BPF_CLASS(insn->code) == BPF_ALU64)
633 EMIT1(add_1mod(0x48, dst_reg));
634 else if (is_ereg(dst_reg))
635 EMIT1(add_1mod(0x40, dst_reg));
637 switch (BPF_OP(insn->code)) {
638 case BPF_LSH: b3 = 0xE0; break;
639 case BPF_RSH: b3 = 0xE8; break;
640 case BPF_ARSH: b3 = 0xF8; break;
643 if (imm32 == 1)
644 EMIT2(0xD1, add_1reg(b3, dst_reg));
645 else
646 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
647 break;
649 case BPF_ALU | BPF_LSH | BPF_X:
650 case BPF_ALU | BPF_RSH | BPF_X:
651 case BPF_ALU | BPF_ARSH | BPF_X:
652 case BPF_ALU64 | BPF_LSH | BPF_X:
653 case BPF_ALU64 | BPF_RSH | BPF_X:
654 case BPF_ALU64 | BPF_ARSH | BPF_X:
656 /* Check for bad case when dst_reg == rcx */
657 if (dst_reg == BPF_REG_4) {
658 /* mov r11, dst_reg */
659 EMIT_mov(AUX_REG, dst_reg);
660 dst_reg = AUX_REG;
663 if (src_reg != BPF_REG_4) { /* common case */
664 EMIT1(0x51); /* push rcx */
666 /* mov rcx, src_reg */
667 EMIT_mov(BPF_REG_4, src_reg);
670 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
671 if (BPF_CLASS(insn->code) == BPF_ALU64)
672 EMIT1(add_1mod(0x48, dst_reg));
673 else if (is_ereg(dst_reg))
674 EMIT1(add_1mod(0x40, dst_reg));
676 switch (BPF_OP(insn->code)) {
677 case BPF_LSH: b3 = 0xE0; break;
678 case BPF_RSH: b3 = 0xE8; break;
679 case BPF_ARSH: b3 = 0xF8; break;
681 EMIT2(0xD3, add_1reg(b3, dst_reg));
683 if (src_reg != BPF_REG_4)
684 EMIT1(0x59); /* pop rcx */
686 if (insn->dst_reg == BPF_REG_4)
687 /* mov dst_reg, r11 */
688 EMIT_mov(insn->dst_reg, AUX_REG);
689 break;
691 case BPF_ALU | BPF_END | BPF_FROM_BE:
692 switch (imm32) {
693 case 16:
694 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
695 EMIT1(0x66);
696 if (is_ereg(dst_reg))
697 EMIT1(0x41);
698 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
700 /* Emit 'movzwl eax, ax' */
701 if (is_ereg(dst_reg))
702 EMIT3(0x45, 0x0F, 0xB7);
703 else
704 EMIT2(0x0F, 0xB7);
705 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
706 break;
707 case 32:
708 /* Emit 'bswap eax' to swap lower 4 bytes */
709 if (is_ereg(dst_reg))
710 EMIT2(0x41, 0x0F);
711 else
712 EMIT1(0x0F);
713 EMIT1(add_1reg(0xC8, dst_reg));
714 break;
715 case 64:
716 /* Emit 'bswap rax' to swap 8 bytes */
717 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
718 add_1reg(0xC8, dst_reg));
719 break;
721 break;
723 case BPF_ALU | BPF_END | BPF_FROM_LE:
724 switch (imm32) {
725 case 16:
727 * Emit 'movzwl eax, ax' to zero extend 16-bit
728 * into 64 bit
730 if (is_ereg(dst_reg))
731 EMIT3(0x45, 0x0F, 0xB7);
732 else
733 EMIT2(0x0F, 0xB7);
734 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
735 break;
736 case 32:
737 /* Emit 'mov eax, eax' to clear upper 32-bits */
738 if (is_ereg(dst_reg))
739 EMIT1(0x45);
740 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
741 break;
742 case 64:
743 /* nop */
744 break;
746 break;
748 /* ST: *(u8*)(dst_reg + off) = imm */
749 case BPF_ST | BPF_MEM | BPF_B:
750 if (is_ereg(dst_reg))
751 EMIT2(0x41, 0xC6);
752 else
753 EMIT1(0xC6);
754 goto st;
755 case BPF_ST | BPF_MEM | BPF_H:
756 if (is_ereg(dst_reg))
757 EMIT3(0x66, 0x41, 0xC7);
758 else
759 EMIT2(0x66, 0xC7);
760 goto st;
761 case BPF_ST | BPF_MEM | BPF_W:
762 if (is_ereg(dst_reg))
763 EMIT2(0x41, 0xC7);
764 else
765 EMIT1(0xC7);
766 goto st;
767 case BPF_ST | BPF_MEM | BPF_DW:
768 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
770 st: if (is_imm8(insn->off))
771 EMIT2(add_1reg(0x40, dst_reg), insn->off);
772 else
773 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
775 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
776 break;
778 /* STX: *(u8*)(dst_reg + off) = src_reg */
779 case BPF_STX | BPF_MEM | BPF_B:
780 /* Emit 'mov byte ptr [rax + off], al' */
781 if (is_ereg(dst_reg) || is_ereg(src_reg) ||
782 /* We have to add extra byte for x86 SIL, DIL regs */
783 src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
784 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
785 else
786 EMIT1(0x88);
787 goto stx;
788 case BPF_STX | BPF_MEM | BPF_H:
789 if (is_ereg(dst_reg) || is_ereg(src_reg))
790 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
791 else
792 EMIT2(0x66, 0x89);
793 goto stx;
794 case BPF_STX | BPF_MEM | BPF_W:
795 if (is_ereg(dst_reg) || is_ereg(src_reg))
796 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
797 else
798 EMIT1(0x89);
799 goto stx;
800 case BPF_STX | BPF_MEM | BPF_DW:
801 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
802 stx: if (is_imm8(insn->off))
803 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
804 else
805 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
806 insn->off);
807 break;
809 /* LDX: dst_reg = *(u8*)(src_reg + off) */
810 case BPF_LDX | BPF_MEM | BPF_B:
811 /* Emit 'movzx rax, byte ptr [rax + off]' */
812 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
813 goto ldx;
814 case BPF_LDX | BPF_MEM | BPF_H:
815 /* Emit 'movzx rax, word ptr [rax + off]' */
816 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
817 goto ldx;
818 case BPF_LDX | BPF_MEM | BPF_W:
819 /* Emit 'mov eax, dword ptr [rax+0x14]' */
820 if (is_ereg(dst_reg) || is_ereg(src_reg))
821 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
822 else
823 EMIT1(0x8B);
824 goto ldx;
825 case BPF_LDX | BPF_MEM | BPF_DW:
826 /* Emit 'mov rax, qword ptr [rax+0x14]' */
827 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
828 ldx: /*
829 * If insn->off == 0 we can save one extra byte, but
830 * special case of x86 R13 which always needs an offset
831 * is not worth the hassle
833 if (is_imm8(insn->off))
834 EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
835 else
836 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
837 insn->off);
838 break;
840 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
841 case BPF_STX | BPF_XADD | BPF_W:
842 /* Emit 'lock add dword ptr [rax + off], eax' */
843 if (is_ereg(dst_reg) || is_ereg(src_reg))
844 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
845 else
846 EMIT2(0xF0, 0x01);
847 goto xadd;
848 case BPF_STX | BPF_XADD | BPF_DW:
849 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
850 xadd: if (is_imm8(insn->off))
851 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
852 else
853 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
854 insn->off);
855 break;
857 /* call */
858 case BPF_JMP | BPF_CALL:
859 func = (u8 *) __bpf_call_base + imm32;
860 jmp_offset = func - (image + addrs[i]);
861 if (!imm32 || !is_simm32(jmp_offset)) {
862 pr_err("unsupported BPF func %d addr %p image %p\n",
863 imm32, func, image);
864 return -EINVAL;
866 EMIT1_off32(0xE8, jmp_offset);
867 break;
869 case BPF_JMP | BPF_TAIL_CALL:
870 emit_bpf_tail_call(&prog);
871 break;
873 /* cond jump */
874 case BPF_JMP | BPF_JEQ | BPF_X:
875 case BPF_JMP | BPF_JNE | BPF_X:
876 case BPF_JMP | BPF_JGT | BPF_X:
877 case BPF_JMP | BPF_JLT | BPF_X:
878 case BPF_JMP | BPF_JGE | BPF_X:
879 case BPF_JMP | BPF_JLE | BPF_X:
880 case BPF_JMP | BPF_JSGT | BPF_X:
881 case BPF_JMP | BPF_JSLT | BPF_X:
882 case BPF_JMP | BPF_JSGE | BPF_X:
883 case BPF_JMP | BPF_JSLE | BPF_X:
884 /* cmp dst_reg, src_reg */
885 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
886 add_2reg(0xC0, dst_reg, src_reg));
887 goto emit_cond_jmp;
889 case BPF_JMP | BPF_JSET | BPF_X:
890 /* test dst_reg, src_reg */
891 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
892 add_2reg(0xC0, dst_reg, src_reg));
893 goto emit_cond_jmp;
895 case BPF_JMP | BPF_JSET | BPF_K:
896 /* test dst_reg, imm32 */
897 EMIT1(add_1mod(0x48, dst_reg));
898 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
899 goto emit_cond_jmp;
901 case BPF_JMP | BPF_JEQ | BPF_K:
902 case BPF_JMP | BPF_JNE | BPF_K:
903 case BPF_JMP | BPF_JGT | BPF_K:
904 case BPF_JMP | BPF_JLT | BPF_K:
905 case BPF_JMP | BPF_JGE | BPF_K:
906 case BPF_JMP | BPF_JLE | BPF_K:
907 case BPF_JMP | BPF_JSGT | BPF_K:
908 case BPF_JMP | BPF_JSLT | BPF_K:
909 case BPF_JMP | BPF_JSGE | BPF_K:
910 case BPF_JMP | BPF_JSLE | BPF_K:
911 /* cmp dst_reg, imm8/32 */
912 EMIT1(add_1mod(0x48, dst_reg));
914 if (is_imm8(imm32))
915 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
916 else
917 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
919 emit_cond_jmp: /* Convert BPF opcode to x86 */
920 switch (BPF_OP(insn->code)) {
921 case BPF_JEQ:
922 jmp_cond = X86_JE;
923 break;
924 case BPF_JSET:
925 case BPF_JNE:
926 jmp_cond = X86_JNE;
927 break;
928 case BPF_JGT:
929 /* GT is unsigned '>', JA in x86 */
930 jmp_cond = X86_JA;
931 break;
932 case BPF_JLT:
933 /* LT is unsigned '<', JB in x86 */
934 jmp_cond = X86_JB;
935 break;
936 case BPF_JGE:
937 /* GE is unsigned '>=', JAE in x86 */
938 jmp_cond = X86_JAE;
939 break;
940 case BPF_JLE:
941 /* LE is unsigned '<=', JBE in x86 */
942 jmp_cond = X86_JBE;
943 break;
944 case BPF_JSGT:
945 /* Signed '>', GT in x86 */
946 jmp_cond = X86_JG;
947 break;
948 case BPF_JSLT:
949 /* Signed '<', LT in x86 */
950 jmp_cond = X86_JL;
951 break;
952 case BPF_JSGE:
953 /* Signed '>=', GE in x86 */
954 jmp_cond = X86_JGE;
955 break;
956 case BPF_JSLE:
957 /* Signed '<=', LE in x86 */
958 jmp_cond = X86_JLE;
959 break;
960 default: /* to silence GCC warning */
961 return -EFAULT;
963 jmp_offset = addrs[i + insn->off] - addrs[i];
964 if (is_imm8(jmp_offset)) {
965 EMIT2(jmp_cond, jmp_offset);
966 } else if (is_simm32(jmp_offset)) {
967 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
968 } else {
969 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
970 return -EFAULT;
973 break;
975 case BPF_JMP | BPF_JA:
976 if (insn->off == -1)
977 /* -1 jmp instructions will always jump
978 * backwards two bytes. Explicitly handling
979 * this case avoids wasting too many passes
980 * when there are long sequences of replaced
981 * dead code.
983 jmp_offset = -2;
984 else
985 jmp_offset = addrs[i + insn->off] - addrs[i];
987 if (!jmp_offset)
988 /* Optimize out nop jumps */
989 break;
990 emit_jmp:
991 if (is_imm8(jmp_offset)) {
992 EMIT2(0xEB, jmp_offset);
993 } else if (is_simm32(jmp_offset)) {
994 EMIT1_off32(0xE9, jmp_offset);
995 } else {
996 pr_err("jmp gen bug %llx\n", jmp_offset);
997 return -EFAULT;
999 break;
1001 case BPF_JMP | BPF_EXIT:
1002 if (seen_exit) {
1003 jmp_offset = ctx->cleanup_addr - addrs[i];
1004 goto emit_jmp;
1006 seen_exit = true;
1007 /* Update cleanup_addr */
1008 ctx->cleanup_addr = proglen;
1009 /* mov rbx, qword ptr [rbp+0] */
1010 EMIT4(0x48, 0x8B, 0x5D, 0);
1011 /* mov r13, qword ptr [rbp+8] */
1012 EMIT4(0x4C, 0x8B, 0x6D, 8);
1013 /* mov r14, qword ptr [rbp+16] */
1014 EMIT4(0x4C, 0x8B, 0x75, 16);
1015 /* mov r15, qword ptr [rbp+24] */
1016 EMIT4(0x4C, 0x8B, 0x7D, 24);
1018 /* add rbp, AUX_STACK_SPACE */
1019 EMIT4(0x48, 0x83, 0xC5, AUX_STACK_SPACE);
1020 EMIT1(0xC9); /* leave */
1021 EMIT1(0xC3); /* ret */
1022 break;
1024 default:
1026 * By design x86-64 JIT should support all BPF instructions.
1027 * This error will be seen if new instruction was added
1028 * to the interpreter, but not to the JIT, or if there is
1029 * junk in bpf_prog.
1031 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1032 return -EINVAL;
1035 ilen = prog - temp;
1036 if (ilen > BPF_MAX_INSN_SIZE) {
1037 pr_err("bpf_jit: fatal insn size error\n");
1038 return -EFAULT;
1041 if (image) {
1042 if (unlikely(proglen + ilen > oldproglen)) {
1043 pr_err("bpf_jit: fatal error\n");
1044 return -EFAULT;
1046 memcpy(image + proglen, temp, ilen);
1048 proglen += ilen;
1049 addrs[i] = proglen;
1050 prog = temp;
1052 return proglen;
1055 struct x64_jit_data {
1056 struct bpf_binary_header *header;
1057 int *addrs;
1058 u8 *image;
1059 int proglen;
1060 struct jit_context ctx;
1063 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1065 struct bpf_binary_header *header = NULL;
1066 struct bpf_prog *tmp, *orig_prog = prog;
1067 struct x64_jit_data *jit_data;
1068 int proglen, oldproglen = 0;
1069 struct jit_context ctx = {};
1070 bool tmp_blinded = false;
1071 bool extra_pass = false;
1072 u8 *image = NULL;
1073 int *addrs;
1074 int pass;
1075 int i;
1077 if (!prog->jit_requested)
1078 return orig_prog;
1080 tmp = bpf_jit_blind_constants(prog);
1082 * If blinding was requested and we failed during blinding,
1083 * we must fall back to the interpreter.
1085 if (IS_ERR(tmp))
1086 return orig_prog;
1087 if (tmp != prog) {
1088 tmp_blinded = true;
1089 prog = tmp;
1092 jit_data = prog->aux->jit_data;
1093 if (!jit_data) {
1094 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1095 if (!jit_data) {
1096 prog = orig_prog;
1097 goto out;
1099 prog->aux->jit_data = jit_data;
1101 addrs = jit_data->addrs;
1102 if (addrs) {
1103 ctx = jit_data->ctx;
1104 oldproglen = jit_data->proglen;
1105 image = jit_data->image;
1106 header = jit_data->header;
1107 extra_pass = true;
1108 goto skip_init_addrs;
1110 addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
1111 if (!addrs) {
1112 prog = orig_prog;
1113 goto out_addrs;
1117 * Before first pass, make a rough estimation of addrs[]
1118 * each BPF instruction is translated to less than 64 bytes
1120 for (proglen = 0, i = 0; i < prog->len; i++) {
1121 proglen += 64;
1122 addrs[i] = proglen;
1124 ctx.cleanup_addr = proglen;
1125 skip_init_addrs:
1128 * JITed image shrinks with every pass and the loop iterates
1129 * until the image stops shrinking. Very large BPF programs
1130 * may converge on the last pass. In such case do one more
1131 * pass to emit the final image.
1133 for (pass = 0; pass < 20 || image; pass++) {
1134 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1135 if (proglen <= 0) {
1136 out_image:
1137 image = NULL;
1138 if (header)
1139 bpf_jit_binary_free(header);
1140 prog = orig_prog;
1141 goto out_addrs;
1143 if (image) {
1144 if (proglen != oldproglen) {
1145 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1146 proglen, oldproglen);
1147 goto out_image;
1149 break;
1151 if (proglen == oldproglen) {
1152 header = bpf_jit_binary_alloc(proglen, &image,
1153 1, jit_fill_hole);
1154 if (!header) {
1155 prog = orig_prog;
1156 goto out_addrs;
1159 oldproglen = proglen;
1160 cond_resched();
1163 if (bpf_jit_enable > 1)
1164 bpf_jit_dump(prog->len, proglen, pass + 1, image);
1166 if (image) {
1167 if (!prog->is_func || extra_pass) {
1168 bpf_jit_binary_lock_ro(header);
1169 } else {
1170 jit_data->addrs = addrs;
1171 jit_data->ctx = ctx;
1172 jit_data->proglen = proglen;
1173 jit_data->image = image;
1174 jit_data->header = header;
1176 prog->bpf_func = (void *)image;
1177 prog->jited = 1;
1178 prog->jited_len = proglen;
1179 } else {
1180 prog = orig_prog;
1183 if (!image || !prog->is_func || extra_pass) {
1184 out_addrs:
1185 kfree(addrs);
1186 kfree(jit_data);
1187 prog->aux->jit_data = NULL;
1189 out:
1190 if (tmp_blinded)
1191 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1192 tmp : orig_prog);
1193 return prog;