4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 #include <linux/oom.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/uaccess.h>
62 #include <linux/atomic.h>
63 #include <linux/mutex.h>
64 #include <linux/cgroup.h>
65 #include <linux/wait.h>
67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key
);
68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key
);
70 /* See "Frequency meter" comments, below. */
73 int cnt
; /* unprocessed events count */
74 int val
; /* most recent output value */
75 time64_t time
; /* clock (secs) when val computed */
76 spinlock_t lock
; /* guards read or write of above */
80 struct cgroup_subsys_state css
;
82 unsigned long flags
; /* "unsigned long" so bitops work */
85 * On default hierarchy:
87 * The user-configured masks can only be changed by writing to
88 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 * The effective masks is the real masks that apply to the tasks
92 * in the cpuset. They may be changed if the configured masks are
93 * changed or hotplug happens.
95 * effective_mask == configured_mask & parent's effective_mask,
96 * and if it ends up empty, it will inherit the parent's mask.
101 * The user-configured masks are always the same with effective masks.
104 /* user-configured CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t cpus_allowed
;
106 nodemask_t mems_allowed
;
108 /* effective CPUs and Memory Nodes allow to tasks */
109 cpumask_var_t effective_cpus
;
110 nodemask_t effective_mems
;
113 * This is old Memory Nodes tasks took on.
115 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
116 * - A new cpuset's old_mems_allowed is initialized when some
117 * task is moved into it.
118 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
119 * cpuset.mems_allowed and have tasks' nodemask updated, and
120 * then old_mems_allowed is updated to mems_allowed.
122 nodemask_t old_mems_allowed
;
124 struct fmeter fmeter
; /* memory_pressure filter */
127 * Tasks are being attached to this cpuset. Used to prevent
128 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
130 int attach_in_progress
;
132 /* partition number for rebuild_sched_domains() */
135 /* for custom sched domain */
136 int relax_domain_level
;
139 static inline struct cpuset
*css_cs(struct cgroup_subsys_state
*css
)
141 return css
? container_of(css
, struct cpuset
, css
) : NULL
;
144 /* Retrieve the cpuset for a task */
145 static inline struct cpuset
*task_cs(struct task_struct
*task
)
147 return css_cs(task_css(task
, cpuset_cgrp_id
));
150 static inline struct cpuset
*parent_cs(struct cpuset
*cs
)
152 return css_cs(cs
->css
.parent
);
156 static inline bool task_has_mempolicy(struct task_struct
*task
)
158 return task
->mempolicy
;
161 static inline bool task_has_mempolicy(struct task_struct
*task
)
168 /* bits in struct cpuset flags field */
175 CS_SCHED_LOAD_BALANCE
,
180 /* convenient tests for these bits */
181 static inline bool is_cpuset_online(struct cpuset
*cs
)
183 return test_bit(CS_ONLINE
, &cs
->flags
) && !css_is_dying(&cs
->css
);
186 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
188 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
191 static inline int is_mem_exclusive(const struct cpuset
*cs
)
193 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
196 static inline int is_mem_hardwall(const struct cpuset
*cs
)
198 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
201 static inline int is_sched_load_balance(const struct cpuset
*cs
)
203 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
206 static inline int is_memory_migrate(const struct cpuset
*cs
)
208 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
211 static inline int is_spread_page(const struct cpuset
*cs
)
213 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
216 static inline int is_spread_slab(const struct cpuset
*cs
)
218 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
221 static struct cpuset top_cpuset
= {
222 .flags
= ((1 << CS_ONLINE
) | (1 << CS_CPU_EXCLUSIVE
) |
223 (1 << CS_MEM_EXCLUSIVE
)),
227 * cpuset_for_each_child - traverse online children of a cpuset
228 * @child_cs: loop cursor pointing to the current child
229 * @pos_css: used for iteration
230 * @parent_cs: target cpuset to walk children of
232 * Walk @child_cs through the online children of @parent_cs. Must be used
233 * with RCU read locked.
235 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
236 css_for_each_child((pos_css), &(parent_cs)->css) \
237 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
240 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
241 * @des_cs: loop cursor pointing to the current descendant
242 * @pos_css: used for iteration
243 * @root_cs: target cpuset to walk ancestor of
245 * Walk @des_cs through the online descendants of @root_cs. Must be used
246 * with RCU read locked. The caller may modify @pos_css by calling
247 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
248 * iteration and the first node to be visited.
250 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
251 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
252 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
255 * There are two global locks guarding cpuset structures - cpuset_mutex and
256 * callback_lock. We also require taking task_lock() when dereferencing a
257 * task's cpuset pointer. See "The task_lock() exception", at the end of this
260 * A task must hold both locks to modify cpusets. If a task holds
261 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
262 * is the only task able to also acquire callback_lock and be able to
263 * modify cpusets. It can perform various checks on the cpuset structure
264 * first, knowing nothing will change. It can also allocate memory while
265 * just holding cpuset_mutex. While it is performing these checks, various
266 * callback routines can briefly acquire callback_lock to query cpusets.
267 * Once it is ready to make the changes, it takes callback_lock, blocking
270 * Calls to the kernel memory allocator can not be made while holding
271 * callback_lock, as that would risk double tripping on callback_lock
272 * from one of the callbacks into the cpuset code from within
275 * If a task is only holding callback_lock, then it has read-only
278 * Now, the task_struct fields mems_allowed and mempolicy may be changed
279 * by other task, we use alloc_lock in the task_struct fields to protect
282 * The cpuset_common_file_read() handlers only hold callback_lock across
283 * small pieces of code, such as when reading out possibly multi-word
284 * cpumasks and nodemasks.
286 * Accessing a task's cpuset should be done in accordance with the
287 * guidelines for accessing subsystem state in kernel/cgroup.c
290 static DEFINE_MUTEX(cpuset_mutex
);
291 static DEFINE_SPINLOCK(callback_lock
);
293 static struct workqueue_struct
*cpuset_migrate_mm_wq
;
296 * CPU / memory hotplug is handled asynchronously.
298 static void cpuset_hotplug_workfn(struct work_struct
*work
);
299 static DECLARE_WORK(cpuset_hotplug_work
, cpuset_hotplug_workfn
);
301 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq
);
304 * Cgroup v2 behavior is used when on default hierarchy or the
305 * cgroup_v2_mode flag is set.
307 static inline bool is_in_v2_mode(void)
309 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) ||
310 (cpuset_cgrp_subsys
.root
->flags
& CGRP_ROOT_CPUSET_V2_MODE
);
314 * This is ugly, but preserves the userspace API for existing cpuset
315 * users. If someone tries to mount the "cpuset" filesystem, we
316 * silently switch it to mount "cgroup" instead
318 static struct dentry
*cpuset_mount(struct file_system_type
*fs_type
,
319 int flags
, const char *unused_dev_name
, void *data
)
321 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
322 struct dentry
*ret
= ERR_PTR(-ENODEV
);
326 "release_agent=/sbin/cpuset_release_agent";
327 ret
= cgroup_fs
->mount(cgroup_fs
, flags
,
328 unused_dev_name
, mountopts
);
329 put_filesystem(cgroup_fs
);
334 static struct file_system_type cpuset_fs_type
= {
336 .mount
= cpuset_mount
,
340 * Return in pmask the portion of a cpusets's cpus_allowed that
341 * are online. If none are online, walk up the cpuset hierarchy
342 * until we find one that does have some online cpus.
344 * One way or another, we guarantee to return some non-empty subset
345 * of cpu_online_mask.
347 * Call with callback_lock or cpuset_mutex held.
349 static void guarantee_online_cpus(struct cpuset
*cs
, struct cpumask
*pmask
)
351 while (!cpumask_intersects(cs
->effective_cpus
, cpu_online_mask
)) {
355 * The top cpuset doesn't have any online cpu as a
356 * consequence of a race between cpuset_hotplug_work
357 * and cpu hotplug notifier. But we know the top
358 * cpuset's effective_cpus is on its way to to be
359 * identical to cpu_online_mask.
361 cpumask_copy(pmask
, cpu_online_mask
);
365 cpumask_and(pmask
, cs
->effective_cpus
, cpu_online_mask
);
369 * Return in *pmask the portion of a cpusets's mems_allowed that
370 * are online, with memory. If none are online with memory, walk
371 * up the cpuset hierarchy until we find one that does have some
372 * online mems. The top cpuset always has some mems online.
374 * One way or another, we guarantee to return some non-empty subset
375 * of node_states[N_MEMORY].
377 * Call with callback_lock or cpuset_mutex held.
379 static void guarantee_online_mems(struct cpuset
*cs
, nodemask_t
*pmask
)
381 while (!nodes_intersects(cs
->effective_mems
, node_states
[N_MEMORY
]))
383 nodes_and(*pmask
, cs
->effective_mems
, node_states
[N_MEMORY
]);
387 * update task's spread flag if cpuset's page/slab spread flag is set
389 * Call with callback_lock or cpuset_mutex held.
391 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
392 struct task_struct
*tsk
)
394 if (is_spread_page(cs
))
395 task_set_spread_page(tsk
);
397 task_clear_spread_page(tsk
);
399 if (is_spread_slab(cs
))
400 task_set_spread_slab(tsk
);
402 task_clear_spread_slab(tsk
);
406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
408 * One cpuset is a subset of another if all its allowed CPUs and
409 * Memory Nodes are a subset of the other, and its exclusive flags
410 * are only set if the other's are set. Call holding cpuset_mutex.
413 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
415 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
416 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
417 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
418 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
422 * alloc_trial_cpuset - allocate a trial cpuset
423 * @cs: the cpuset that the trial cpuset duplicates
425 static struct cpuset
*alloc_trial_cpuset(struct cpuset
*cs
)
427 struct cpuset
*trial
;
429 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
433 if (!alloc_cpumask_var(&trial
->cpus_allowed
, GFP_KERNEL
))
435 if (!alloc_cpumask_var(&trial
->effective_cpus
, GFP_KERNEL
))
438 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
439 cpumask_copy(trial
->effective_cpus
, cs
->effective_cpus
);
443 free_cpumask_var(trial
->cpus_allowed
);
450 * free_trial_cpuset - free the trial cpuset
451 * @trial: the trial cpuset to be freed
453 static void free_trial_cpuset(struct cpuset
*trial
)
455 free_cpumask_var(trial
->effective_cpus
);
456 free_cpumask_var(trial
->cpus_allowed
);
461 * validate_change() - Used to validate that any proposed cpuset change
462 * follows the structural rules for cpusets.
464 * If we replaced the flag and mask values of the current cpuset
465 * (cur) with those values in the trial cpuset (trial), would
466 * our various subset and exclusive rules still be valid? Presumes
469 * 'cur' is the address of an actual, in-use cpuset. Operations
470 * such as list traversal that depend on the actual address of the
471 * cpuset in the list must use cur below, not trial.
473 * 'trial' is the address of bulk structure copy of cur, with
474 * perhaps one or more of the fields cpus_allowed, mems_allowed,
475 * or flags changed to new, trial values.
477 * Return 0 if valid, -errno if not.
480 static int validate_change(struct cpuset
*cur
, struct cpuset
*trial
)
482 struct cgroup_subsys_state
*css
;
483 struct cpuset
*c
, *par
;
488 /* Each of our child cpusets must be a subset of us */
490 cpuset_for_each_child(c
, css
, cur
)
491 if (!is_cpuset_subset(c
, trial
))
494 /* Remaining checks don't apply to root cpuset */
496 if (cur
== &top_cpuset
)
499 par
= parent_cs(cur
);
501 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
503 if (!is_in_v2_mode() && !is_cpuset_subset(trial
, par
))
507 * If either I or some sibling (!= me) is exclusive, we can't
511 cpuset_for_each_child(c
, css
, par
) {
512 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
514 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
516 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
518 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
523 * Cpusets with tasks - existing or newly being attached - can't
524 * be changed to have empty cpus_allowed or mems_allowed.
527 if ((cgroup_is_populated(cur
->css
.cgroup
) || cur
->attach_in_progress
)) {
528 if (!cpumask_empty(cur
->cpus_allowed
) &&
529 cpumask_empty(trial
->cpus_allowed
))
531 if (!nodes_empty(cur
->mems_allowed
) &&
532 nodes_empty(trial
->mems_allowed
))
537 * We can't shrink if we won't have enough room for SCHED_DEADLINE
541 if (is_cpu_exclusive(cur
) &&
542 !cpuset_cpumask_can_shrink(cur
->cpus_allowed
,
543 trial
->cpus_allowed
))
554 * Helper routine for generate_sched_domains().
555 * Do cpusets a, b have overlapping effective cpus_allowed masks?
557 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
559 return cpumask_intersects(a
->effective_cpus
, b
->effective_cpus
);
563 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
565 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
566 dattr
->relax_domain_level
= c
->relax_domain_level
;
570 static void update_domain_attr_tree(struct sched_domain_attr
*dattr
,
571 struct cpuset
*root_cs
)
574 struct cgroup_subsys_state
*pos_css
;
577 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
578 /* skip the whole subtree if @cp doesn't have any CPU */
579 if (cpumask_empty(cp
->cpus_allowed
)) {
580 pos_css
= css_rightmost_descendant(pos_css
);
584 if (is_sched_load_balance(cp
))
585 update_domain_attr(dattr
, cp
);
590 /* Must be called with cpuset_mutex held. */
591 static inline int nr_cpusets(void)
593 /* jump label reference count + the top-level cpuset */
594 return static_key_count(&cpusets_enabled_key
.key
) + 1;
598 * generate_sched_domains()
600 * This function builds a partial partition of the systems CPUs
601 * A 'partial partition' is a set of non-overlapping subsets whose
602 * union is a subset of that set.
603 * The output of this function needs to be passed to kernel/sched/core.c
604 * partition_sched_domains() routine, which will rebuild the scheduler's
605 * load balancing domains (sched domains) as specified by that partial
608 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
609 * for a background explanation of this.
611 * Does not return errors, on the theory that the callers of this
612 * routine would rather not worry about failures to rebuild sched
613 * domains when operating in the severe memory shortage situations
614 * that could cause allocation failures below.
616 * Must be called with cpuset_mutex held.
618 * The three key local variables below are:
619 * q - a linked-list queue of cpuset pointers, used to implement a
620 * top-down scan of all cpusets. This scan loads a pointer
621 * to each cpuset marked is_sched_load_balance into the
622 * array 'csa'. For our purposes, rebuilding the schedulers
623 * sched domains, we can ignore !is_sched_load_balance cpusets.
624 * csa - (for CpuSet Array) Array of pointers to all the cpusets
625 * that need to be load balanced, for convenient iterative
626 * access by the subsequent code that finds the best partition,
627 * i.e the set of domains (subsets) of CPUs such that the
628 * cpus_allowed of every cpuset marked is_sched_load_balance
629 * is a subset of one of these domains, while there are as
630 * many such domains as possible, each as small as possible.
631 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
632 * the kernel/sched/core.c routine partition_sched_domains() in a
633 * convenient format, that can be easily compared to the prior
634 * value to determine what partition elements (sched domains)
635 * were changed (added or removed.)
637 * Finding the best partition (set of domains):
638 * The triple nested loops below over i, j, k scan over the
639 * load balanced cpusets (using the array of cpuset pointers in
640 * csa[]) looking for pairs of cpusets that have overlapping
641 * cpus_allowed, but which don't have the same 'pn' partition
642 * number and gives them in the same partition number. It keeps
643 * looping on the 'restart' label until it can no longer find
646 * The union of the cpus_allowed masks from the set of
647 * all cpusets having the same 'pn' value then form the one
648 * element of the partition (one sched domain) to be passed to
649 * partition_sched_domains().
651 static int generate_sched_domains(cpumask_var_t
**domains
,
652 struct sched_domain_attr
**attributes
)
654 struct cpuset
*cp
; /* scans q */
655 struct cpuset
**csa
; /* array of all cpuset ptrs */
656 int csn
; /* how many cpuset ptrs in csa so far */
657 int i
, j
, k
; /* indices for partition finding loops */
658 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
659 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
660 int ndoms
= 0; /* number of sched domains in result */
661 int nslot
; /* next empty doms[] struct cpumask slot */
662 struct cgroup_subsys_state
*pos_css
;
668 /* Special case for the 99% of systems with one, full, sched domain */
669 if (is_sched_load_balance(&top_cpuset
)) {
671 doms
= alloc_sched_domains(ndoms
);
675 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
677 *dattr
= SD_ATTR_INIT
;
678 update_domain_attr_tree(dattr
, &top_cpuset
);
680 cpumask_and(doms
[0], top_cpuset
.effective_cpus
,
681 housekeeping_cpumask(HK_FLAG_DOMAIN
));
686 csa
= kmalloc_array(nr_cpusets(), sizeof(cp
), GFP_KERNEL
);
692 cpuset_for_each_descendant_pre(cp
, pos_css
, &top_cpuset
) {
693 if (cp
== &top_cpuset
)
696 * Continue traversing beyond @cp iff @cp has some CPUs and
697 * isn't load balancing. The former is obvious. The
698 * latter: All child cpusets contain a subset of the
699 * parent's cpus, so just skip them, and then we call
700 * update_domain_attr_tree() to calc relax_domain_level of
701 * the corresponding sched domain.
703 if (!cpumask_empty(cp
->cpus_allowed
) &&
704 !(is_sched_load_balance(cp
) &&
705 cpumask_intersects(cp
->cpus_allowed
,
706 housekeeping_cpumask(HK_FLAG_DOMAIN
))))
709 if (is_sched_load_balance(cp
))
712 /* skip @cp's subtree */
713 pos_css
= css_rightmost_descendant(pos_css
);
717 for (i
= 0; i
< csn
; i
++)
722 /* Find the best partition (set of sched domains) */
723 for (i
= 0; i
< csn
; i
++) {
724 struct cpuset
*a
= csa
[i
];
727 for (j
= 0; j
< csn
; j
++) {
728 struct cpuset
*b
= csa
[j
];
731 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
732 for (k
= 0; k
< csn
; k
++) {
733 struct cpuset
*c
= csa
[k
];
738 ndoms
--; /* one less element */
745 * Now we know how many domains to create.
746 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
748 doms
= alloc_sched_domains(ndoms
);
753 * The rest of the code, including the scheduler, can deal with
754 * dattr==NULL case. No need to abort if alloc fails.
756 dattr
= kmalloc_array(ndoms
, sizeof(struct sched_domain_attr
),
759 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
760 struct cpuset
*a
= csa
[i
];
765 /* Skip completed partitions */
771 if (nslot
== ndoms
) {
772 static int warnings
= 10;
774 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
775 nslot
, ndoms
, csn
, i
, apn
);
783 *(dattr
+ nslot
) = SD_ATTR_INIT
;
784 for (j
= i
; j
< csn
; j
++) {
785 struct cpuset
*b
= csa
[j
];
788 cpumask_or(dp
, dp
, b
->effective_cpus
);
789 cpumask_and(dp
, dp
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
791 update_domain_attr_tree(dattr
+ nslot
, b
);
793 /* Done with this partition */
799 BUG_ON(nslot
!= ndoms
);
805 * Fallback to the default domain if kmalloc() failed.
806 * See comments in partition_sched_domains().
817 * Rebuild scheduler domains.
819 * If the flag 'sched_load_balance' of any cpuset with non-empty
820 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
821 * which has that flag enabled, or if any cpuset with a non-empty
822 * 'cpus' is removed, then call this routine to rebuild the
823 * scheduler's dynamic sched domains.
825 * Call with cpuset_mutex held. Takes get_online_cpus().
827 static void rebuild_sched_domains_locked(void)
829 struct sched_domain_attr
*attr
;
833 lockdep_assert_held(&cpuset_mutex
);
837 * We have raced with CPU hotplug. Don't do anything to avoid
838 * passing doms with offlined cpu to partition_sched_domains().
839 * Anyways, hotplug work item will rebuild sched domains.
841 if (!cpumask_equal(top_cpuset
.effective_cpus
, cpu_active_mask
))
844 /* Generate domain masks and attrs */
845 ndoms
= generate_sched_domains(&doms
, &attr
);
847 /* Have scheduler rebuild the domains */
848 partition_sched_domains(ndoms
, doms
, attr
);
852 #else /* !CONFIG_SMP */
853 static void rebuild_sched_domains_locked(void)
856 #endif /* CONFIG_SMP */
858 void rebuild_sched_domains(void)
860 mutex_lock(&cpuset_mutex
);
861 rebuild_sched_domains_locked();
862 mutex_unlock(&cpuset_mutex
);
866 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
867 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
869 * Iterate through each task of @cs updating its cpus_allowed to the
870 * effective cpuset's. As this function is called with cpuset_mutex held,
871 * cpuset membership stays stable.
873 static void update_tasks_cpumask(struct cpuset
*cs
)
875 struct css_task_iter it
;
876 struct task_struct
*task
;
878 css_task_iter_start(&cs
->css
, 0, &it
);
879 while ((task
= css_task_iter_next(&it
)))
880 set_cpus_allowed_ptr(task
, cs
->effective_cpus
);
881 css_task_iter_end(&it
);
885 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
886 * @cs: the cpuset to consider
887 * @new_cpus: temp variable for calculating new effective_cpus
889 * When congifured cpumask is changed, the effective cpumasks of this cpuset
890 * and all its descendants need to be updated.
892 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
894 * Called with cpuset_mutex held
896 static void update_cpumasks_hier(struct cpuset
*cs
, struct cpumask
*new_cpus
)
899 struct cgroup_subsys_state
*pos_css
;
900 bool need_rebuild_sched_domains
= false;
903 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
904 struct cpuset
*parent
= parent_cs(cp
);
906 cpumask_and(new_cpus
, cp
->cpus_allowed
, parent
->effective_cpus
);
909 * If it becomes empty, inherit the effective mask of the
910 * parent, which is guaranteed to have some CPUs.
912 if (is_in_v2_mode() && cpumask_empty(new_cpus
))
913 cpumask_copy(new_cpus
, parent
->effective_cpus
);
915 /* Skip the whole subtree if the cpumask remains the same. */
916 if (cpumask_equal(new_cpus
, cp
->effective_cpus
)) {
917 pos_css
= css_rightmost_descendant(pos_css
);
921 if (!css_tryget_online(&cp
->css
))
925 spin_lock_irq(&callback_lock
);
926 cpumask_copy(cp
->effective_cpus
, new_cpus
);
927 spin_unlock_irq(&callback_lock
);
929 WARN_ON(!is_in_v2_mode() &&
930 !cpumask_equal(cp
->cpus_allowed
, cp
->effective_cpus
));
932 update_tasks_cpumask(cp
);
935 * If the effective cpumask of any non-empty cpuset is changed,
936 * we need to rebuild sched domains.
938 if (!cpumask_empty(cp
->cpus_allowed
) &&
939 is_sched_load_balance(cp
))
940 need_rebuild_sched_domains
= true;
947 if (need_rebuild_sched_domains
)
948 rebuild_sched_domains_locked();
952 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
953 * @cs: the cpuset to consider
954 * @trialcs: trial cpuset
955 * @buf: buffer of cpu numbers written to this cpuset
957 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
962 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
963 if (cs
== &top_cpuset
)
967 * An empty cpus_allowed is ok only if the cpuset has no tasks.
968 * Since cpulist_parse() fails on an empty mask, we special case
969 * that parsing. The validate_change() call ensures that cpusets
970 * with tasks have cpus.
973 cpumask_clear(trialcs
->cpus_allowed
);
975 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
979 if (!cpumask_subset(trialcs
->cpus_allowed
,
980 top_cpuset
.cpus_allowed
))
984 /* Nothing to do if the cpus didn't change */
985 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
988 retval
= validate_change(cs
, trialcs
);
992 spin_lock_irq(&callback_lock
);
993 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
994 spin_unlock_irq(&callback_lock
);
996 /* use trialcs->cpus_allowed as a temp variable */
997 update_cpumasks_hier(cs
, trialcs
->cpus_allowed
);
1002 * Migrate memory region from one set of nodes to another. This is
1003 * performed asynchronously as it can be called from process migration path
1004 * holding locks involved in process management. All mm migrations are
1005 * performed in the queued order and can be waited for by flushing
1006 * cpuset_migrate_mm_wq.
1009 struct cpuset_migrate_mm_work
{
1010 struct work_struct work
;
1011 struct mm_struct
*mm
;
1016 static void cpuset_migrate_mm_workfn(struct work_struct
*work
)
1018 struct cpuset_migrate_mm_work
*mwork
=
1019 container_of(work
, struct cpuset_migrate_mm_work
, work
);
1021 /* on a wq worker, no need to worry about %current's mems_allowed */
1022 do_migrate_pages(mwork
->mm
, &mwork
->from
, &mwork
->to
, MPOL_MF_MOVE_ALL
);
1027 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
1028 const nodemask_t
*to
)
1030 struct cpuset_migrate_mm_work
*mwork
;
1032 mwork
= kzalloc(sizeof(*mwork
), GFP_KERNEL
);
1035 mwork
->from
= *from
;
1037 INIT_WORK(&mwork
->work
, cpuset_migrate_mm_workfn
);
1038 queue_work(cpuset_migrate_mm_wq
, &mwork
->work
);
1044 static void cpuset_post_attach(void)
1046 flush_workqueue(cpuset_migrate_mm_wq
);
1050 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1051 * @tsk: the task to change
1052 * @newmems: new nodes that the task will be set
1054 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1055 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1056 * parallel, it might temporarily see an empty intersection, which results in
1057 * a seqlock check and retry before OOM or allocation failure.
1059 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
1060 nodemask_t
*newmems
)
1064 local_irq_disable();
1065 write_seqcount_begin(&tsk
->mems_allowed_seq
);
1067 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
1068 mpol_rebind_task(tsk
, newmems
);
1069 tsk
->mems_allowed
= *newmems
;
1071 write_seqcount_end(&tsk
->mems_allowed_seq
);
1077 static void *cpuset_being_rebound
;
1080 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1081 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1083 * Iterate through each task of @cs updating its mems_allowed to the
1084 * effective cpuset's. As this function is called with cpuset_mutex held,
1085 * cpuset membership stays stable.
1087 static void update_tasks_nodemask(struct cpuset
*cs
)
1089 static nodemask_t newmems
; /* protected by cpuset_mutex */
1090 struct css_task_iter it
;
1091 struct task_struct
*task
;
1093 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1095 guarantee_online_mems(cs
, &newmems
);
1098 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1099 * take while holding tasklist_lock. Forks can happen - the
1100 * mpol_dup() cpuset_being_rebound check will catch such forks,
1101 * and rebind their vma mempolicies too. Because we still hold
1102 * the global cpuset_mutex, we know that no other rebind effort
1103 * will be contending for the global variable cpuset_being_rebound.
1104 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1105 * is idempotent. Also migrate pages in each mm to new nodes.
1107 css_task_iter_start(&cs
->css
, 0, &it
);
1108 while ((task
= css_task_iter_next(&it
))) {
1109 struct mm_struct
*mm
;
1112 cpuset_change_task_nodemask(task
, &newmems
);
1114 mm
= get_task_mm(task
);
1118 migrate
= is_memory_migrate(cs
);
1120 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1122 cpuset_migrate_mm(mm
, &cs
->old_mems_allowed
, &newmems
);
1126 css_task_iter_end(&it
);
1129 * All the tasks' nodemasks have been updated, update
1130 * cs->old_mems_allowed.
1132 cs
->old_mems_allowed
= newmems
;
1134 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1135 cpuset_being_rebound
= NULL
;
1139 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1140 * @cs: the cpuset to consider
1141 * @new_mems: a temp variable for calculating new effective_mems
1143 * When configured nodemask is changed, the effective nodemasks of this cpuset
1144 * and all its descendants need to be updated.
1146 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1148 * Called with cpuset_mutex held
1150 static void update_nodemasks_hier(struct cpuset
*cs
, nodemask_t
*new_mems
)
1153 struct cgroup_subsys_state
*pos_css
;
1156 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
1157 struct cpuset
*parent
= parent_cs(cp
);
1159 nodes_and(*new_mems
, cp
->mems_allowed
, parent
->effective_mems
);
1162 * If it becomes empty, inherit the effective mask of the
1163 * parent, which is guaranteed to have some MEMs.
1165 if (is_in_v2_mode() && nodes_empty(*new_mems
))
1166 *new_mems
= parent
->effective_mems
;
1168 /* Skip the whole subtree if the nodemask remains the same. */
1169 if (nodes_equal(*new_mems
, cp
->effective_mems
)) {
1170 pos_css
= css_rightmost_descendant(pos_css
);
1174 if (!css_tryget_online(&cp
->css
))
1178 spin_lock_irq(&callback_lock
);
1179 cp
->effective_mems
= *new_mems
;
1180 spin_unlock_irq(&callback_lock
);
1182 WARN_ON(!is_in_v2_mode() &&
1183 !nodes_equal(cp
->mems_allowed
, cp
->effective_mems
));
1185 update_tasks_nodemask(cp
);
1194 * Handle user request to change the 'mems' memory placement
1195 * of a cpuset. Needs to validate the request, update the
1196 * cpusets mems_allowed, and for each task in the cpuset,
1197 * update mems_allowed and rebind task's mempolicy and any vma
1198 * mempolicies and if the cpuset is marked 'memory_migrate',
1199 * migrate the tasks pages to the new memory.
1201 * Call with cpuset_mutex held. May take callback_lock during call.
1202 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1203 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1204 * their mempolicies to the cpusets new mems_allowed.
1206 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1212 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1215 if (cs
== &top_cpuset
) {
1221 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1222 * Since nodelist_parse() fails on an empty mask, we special case
1223 * that parsing. The validate_change() call ensures that cpusets
1224 * with tasks have memory.
1227 nodes_clear(trialcs
->mems_allowed
);
1229 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1233 if (!nodes_subset(trialcs
->mems_allowed
,
1234 top_cpuset
.mems_allowed
)) {
1240 if (nodes_equal(cs
->mems_allowed
, trialcs
->mems_allowed
)) {
1241 retval
= 0; /* Too easy - nothing to do */
1244 retval
= validate_change(cs
, trialcs
);
1248 spin_lock_irq(&callback_lock
);
1249 cs
->mems_allowed
= trialcs
->mems_allowed
;
1250 spin_unlock_irq(&callback_lock
);
1252 /* use trialcs->mems_allowed as a temp variable */
1253 update_nodemasks_hier(cs
, &trialcs
->mems_allowed
);
1258 bool current_cpuset_is_being_rebound(void)
1263 ret
= task_cs(current
) == cpuset_being_rebound
;
1269 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1272 if (val
< -1 || val
>= sched_domain_level_max
)
1276 if (val
!= cs
->relax_domain_level
) {
1277 cs
->relax_domain_level
= val
;
1278 if (!cpumask_empty(cs
->cpus_allowed
) &&
1279 is_sched_load_balance(cs
))
1280 rebuild_sched_domains_locked();
1287 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1288 * @cs: the cpuset in which each task's spread flags needs to be changed
1290 * Iterate through each task of @cs updating its spread flags. As this
1291 * function is called with cpuset_mutex held, cpuset membership stays
1294 static void update_tasks_flags(struct cpuset
*cs
)
1296 struct css_task_iter it
;
1297 struct task_struct
*task
;
1299 css_task_iter_start(&cs
->css
, 0, &it
);
1300 while ((task
= css_task_iter_next(&it
)))
1301 cpuset_update_task_spread_flag(cs
, task
);
1302 css_task_iter_end(&it
);
1306 * update_flag - read a 0 or a 1 in a file and update associated flag
1307 * bit: the bit to update (see cpuset_flagbits_t)
1308 * cs: the cpuset to update
1309 * turning_on: whether the flag is being set or cleared
1311 * Call with cpuset_mutex held.
1314 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1317 struct cpuset
*trialcs
;
1318 int balance_flag_changed
;
1319 int spread_flag_changed
;
1322 trialcs
= alloc_trial_cpuset(cs
);
1327 set_bit(bit
, &trialcs
->flags
);
1329 clear_bit(bit
, &trialcs
->flags
);
1331 err
= validate_change(cs
, trialcs
);
1335 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1336 is_sched_load_balance(trialcs
));
1338 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1339 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1341 spin_lock_irq(&callback_lock
);
1342 cs
->flags
= trialcs
->flags
;
1343 spin_unlock_irq(&callback_lock
);
1345 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1346 rebuild_sched_domains_locked();
1348 if (spread_flag_changed
)
1349 update_tasks_flags(cs
);
1351 free_trial_cpuset(trialcs
);
1356 * Frequency meter - How fast is some event occurring?
1358 * These routines manage a digitally filtered, constant time based,
1359 * event frequency meter. There are four routines:
1360 * fmeter_init() - initialize a frequency meter.
1361 * fmeter_markevent() - called each time the event happens.
1362 * fmeter_getrate() - returns the recent rate of such events.
1363 * fmeter_update() - internal routine used to update fmeter.
1365 * A common data structure is passed to each of these routines,
1366 * which is used to keep track of the state required to manage the
1367 * frequency meter and its digital filter.
1369 * The filter works on the number of events marked per unit time.
1370 * The filter is single-pole low-pass recursive (IIR). The time unit
1371 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1372 * simulate 3 decimal digits of precision (multiplied by 1000).
1374 * With an FM_COEF of 933, and a time base of 1 second, the filter
1375 * has a half-life of 10 seconds, meaning that if the events quit
1376 * happening, then the rate returned from the fmeter_getrate()
1377 * will be cut in half each 10 seconds, until it converges to zero.
1379 * It is not worth doing a real infinitely recursive filter. If more
1380 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1381 * just compute FM_MAXTICKS ticks worth, by which point the level
1384 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1385 * arithmetic overflow in the fmeter_update() routine.
1387 * Given the simple 32 bit integer arithmetic used, this meter works
1388 * best for reporting rates between one per millisecond (msec) and
1389 * one per 32 (approx) seconds. At constant rates faster than one
1390 * per msec it maxes out at values just under 1,000,000. At constant
1391 * rates between one per msec, and one per second it will stabilize
1392 * to a value N*1000, where N is the rate of events per second.
1393 * At constant rates between one per second and one per 32 seconds,
1394 * it will be choppy, moving up on the seconds that have an event,
1395 * and then decaying until the next event. At rates slower than
1396 * about one in 32 seconds, it decays all the way back to zero between
1400 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1401 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1402 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1403 #define FM_SCALE 1000 /* faux fixed point scale */
1405 /* Initialize a frequency meter */
1406 static void fmeter_init(struct fmeter
*fmp
)
1411 spin_lock_init(&fmp
->lock
);
1414 /* Internal meter update - process cnt events and update value */
1415 static void fmeter_update(struct fmeter
*fmp
)
1420 now
= ktime_get_seconds();
1421 ticks
= now
- fmp
->time
;
1426 ticks
= min(FM_MAXTICKS
, ticks
);
1428 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1431 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1435 /* Process any previous ticks, then bump cnt by one (times scale). */
1436 static void fmeter_markevent(struct fmeter
*fmp
)
1438 spin_lock(&fmp
->lock
);
1440 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1441 spin_unlock(&fmp
->lock
);
1444 /* Process any previous ticks, then return current value. */
1445 static int fmeter_getrate(struct fmeter
*fmp
)
1449 spin_lock(&fmp
->lock
);
1452 spin_unlock(&fmp
->lock
);
1456 static struct cpuset
*cpuset_attach_old_cs
;
1458 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1459 static int cpuset_can_attach(struct cgroup_taskset
*tset
)
1461 struct cgroup_subsys_state
*css
;
1463 struct task_struct
*task
;
1466 /* used later by cpuset_attach() */
1467 cpuset_attach_old_cs
= task_cs(cgroup_taskset_first(tset
, &css
));
1470 mutex_lock(&cpuset_mutex
);
1472 /* allow moving tasks into an empty cpuset if on default hierarchy */
1474 if (!is_in_v2_mode() &&
1475 (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
)))
1478 cgroup_taskset_for_each(task
, css
, tset
) {
1479 ret
= task_can_attach(task
, cs
->cpus_allowed
);
1482 ret
= security_task_setscheduler(task
);
1488 * Mark attach is in progress. This makes validate_change() fail
1489 * changes which zero cpus/mems_allowed.
1491 cs
->attach_in_progress
++;
1494 mutex_unlock(&cpuset_mutex
);
1498 static void cpuset_cancel_attach(struct cgroup_taskset
*tset
)
1500 struct cgroup_subsys_state
*css
;
1503 cgroup_taskset_first(tset
, &css
);
1506 mutex_lock(&cpuset_mutex
);
1507 css_cs(css
)->attach_in_progress
--;
1508 mutex_unlock(&cpuset_mutex
);
1512 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1513 * but we can't allocate it dynamically there. Define it global and
1514 * allocate from cpuset_init().
1516 static cpumask_var_t cpus_attach
;
1518 static void cpuset_attach(struct cgroup_taskset
*tset
)
1520 /* static buf protected by cpuset_mutex */
1521 static nodemask_t cpuset_attach_nodemask_to
;
1522 struct task_struct
*task
;
1523 struct task_struct
*leader
;
1524 struct cgroup_subsys_state
*css
;
1526 struct cpuset
*oldcs
= cpuset_attach_old_cs
;
1528 cgroup_taskset_first(tset
, &css
);
1531 mutex_lock(&cpuset_mutex
);
1533 /* prepare for attach */
1534 if (cs
== &top_cpuset
)
1535 cpumask_copy(cpus_attach
, cpu_possible_mask
);
1537 guarantee_online_cpus(cs
, cpus_attach
);
1539 guarantee_online_mems(cs
, &cpuset_attach_nodemask_to
);
1541 cgroup_taskset_for_each(task
, css
, tset
) {
1543 * can_attach beforehand should guarantee that this doesn't
1544 * fail. TODO: have a better way to handle failure here
1546 WARN_ON_ONCE(set_cpus_allowed_ptr(task
, cpus_attach
));
1548 cpuset_change_task_nodemask(task
, &cpuset_attach_nodemask_to
);
1549 cpuset_update_task_spread_flag(cs
, task
);
1553 * Change mm for all threadgroup leaders. This is expensive and may
1554 * sleep and should be moved outside migration path proper.
1556 cpuset_attach_nodemask_to
= cs
->effective_mems
;
1557 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
1558 struct mm_struct
*mm
= get_task_mm(leader
);
1561 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
1564 * old_mems_allowed is the same with mems_allowed
1565 * here, except if this task is being moved
1566 * automatically due to hotplug. In that case
1567 * @mems_allowed has been updated and is empty, so
1568 * @old_mems_allowed is the right nodesets that we
1571 if (is_memory_migrate(cs
))
1572 cpuset_migrate_mm(mm
, &oldcs
->old_mems_allowed
,
1573 &cpuset_attach_nodemask_to
);
1579 cs
->old_mems_allowed
= cpuset_attach_nodemask_to
;
1581 cs
->attach_in_progress
--;
1582 if (!cs
->attach_in_progress
)
1583 wake_up(&cpuset_attach_wq
);
1585 mutex_unlock(&cpuset_mutex
);
1588 /* The various types of files and directories in a cpuset file system */
1591 FILE_MEMORY_MIGRATE
,
1594 FILE_EFFECTIVE_CPULIST
,
1595 FILE_EFFECTIVE_MEMLIST
,
1599 FILE_SCHED_LOAD_BALANCE
,
1600 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1601 FILE_MEMORY_PRESSURE_ENABLED
,
1602 FILE_MEMORY_PRESSURE
,
1605 } cpuset_filetype_t
;
1607 static int cpuset_write_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1610 struct cpuset
*cs
= css_cs(css
);
1611 cpuset_filetype_t type
= cft
->private;
1614 mutex_lock(&cpuset_mutex
);
1615 if (!is_cpuset_online(cs
)) {
1621 case FILE_CPU_EXCLUSIVE
:
1622 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
1624 case FILE_MEM_EXCLUSIVE
:
1625 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
1627 case FILE_MEM_HARDWALL
:
1628 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
1630 case FILE_SCHED_LOAD_BALANCE
:
1631 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
1633 case FILE_MEMORY_MIGRATE
:
1634 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
1636 case FILE_MEMORY_PRESSURE_ENABLED
:
1637 cpuset_memory_pressure_enabled
= !!val
;
1639 case FILE_SPREAD_PAGE
:
1640 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
1642 case FILE_SPREAD_SLAB
:
1643 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
1650 mutex_unlock(&cpuset_mutex
);
1654 static int cpuset_write_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1657 struct cpuset
*cs
= css_cs(css
);
1658 cpuset_filetype_t type
= cft
->private;
1659 int retval
= -ENODEV
;
1661 mutex_lock(&cpuset_mutex
);
1662 if (!is_cpuset_online(cs
))
1666 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1667 retval
= update_relax_domain_level(cs
, val
);
1674 mutex_unlock(&cpuset_mutex
);
1679 * Common handling for a write to a "cpus" or "mems" file.
1681 static ssize_t
cpuset_write_resmask(struct kernfs_open_file
*of
,
1682 char *buf
, size_t nbytes
, loff_t off
)
1684 struct cpuset
*cs
= css_cs(of_css(of
));
1685 struct cpuset
*trialcs
;
1686 int retval
= -ENODEV
;
1688 buf
= strstrip(buf
);
1691 * CPU or memory hotunplug may leave @cs w/o any execution
1692 * resources, in which case the hotplug code asynchronously updates
1693 * configuration and transfers all tasks to the nearest ancestor
1694 * which can execute.
1696 * As writes to "cpus" or "mems" may restore @cs's execution
1697 * resources, wait for the previously scheduled operations before
1698 * proceeding, so that we don't end up keep removing tasks added
1699 * after execution capability is restored.
1701 * cpuset_hotplug_work calls back into cgroup core via
1702 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1703 * operation like this one can lead to a deadlock through kernfs
1704 * active_ref protection. Let's break the protection. Losing the
1705 * protection is okay as we check whether @cs is online after
1706 * grabbing cpuset_mutex anyway. This only happens on the legacy
1710 kernfs_break_active_protection(of
->kn
);
1711 flush_work(&cpuset_hotplug_work
);
1713 mutex_lock(&cpuset_mutex
);
1714 if (!is_cpuset_online(cs
))
1717 trialcs
= alloc_trial_cpuset(cs
);
1723 switch (of_cft(of
)->private) {
1725 retval
= update_cpumask(cs
, trialcs
, buf
);
1728 retval
= update_nodemask(cs
, trialcs
, buf
);
1735 free_trial_cpuset(trialcs
);
1737 mutex_unlock(&cpuset_mutex
);
1738 kernfs_unbreak_active_protection(of
->kn
);
1740 flush_workqueue(cpuset_migrate_mm_wq
);
1741 return retval
?: nbytes
;
1745 * These ascii lists should be read in a single call, by using a user
1746 * buffer large enough to hold the entire map. If read in smaller
1747 * chunks, there is no guarantee of atomicity. Since the display format
1748 * used, list of ranges of sequential numbers, is variable length,
1749 * and since these maps can change value dynamically, one could read
1750 * gibberish by doing partial reads while a list was changing.
1752 static int cpuset_common_seq_show(struct seq_file
*sf
, void *v
)
1754 struct cpuset
*cs
= css_cs(seq_css(sf
));
1755 cpuset_filetype_t type
= seq_cft(sf
)->private;
1758 spin_lock_irq(&callback_lock
);
1762 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->cpus_allowed
));
1765 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->mems_allowed
));
1767 case FILE_EFFECTIVE_CPULIST
:
1768 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->effective_cpus
));
1770 case FILE_EFFECTIVE_MEMLIST
:
1771 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->effective_mems
));
1777 spin_unlock_irq(&callback_lock
);
1781 static u64
cpuset_read_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1783 struct cpuset
*cs
= css_cs(css
);
1784 cpuset_filetype_t type
= cft
->private;
1786 case FILE_CPU_EXCLUSIVE
:
1787 return is_cpu_exclusive(cs
);
1788 case FILE_MEM_EXCLUSIVE
:
1789 return is_mem_exclusive(cs
);
1790 case FILE_MEM_HARDWALL
:
1791 return is_mem_hardwall(cs
);
1792 case FILE_SCHED_LOAD_BALANCE
:
1793 return is_sched_load_balance(cs
);
1794 case FILE_MEMORY_MIGRATE
:
1795 return is_memory_migrate(cs
);
1796 case FILE_MEMORY_PRESSURE_ENABLED
:
1797 return cpuset_memory_pressure_enabled
;
1798 case FILE_MEMORY_PRESSURE
:
1799 return fmeter_getrate(&cs
->fmeter
);
1800 case FILE_SPREAD_PAGE
:
1801 return is_spread_page(cs
);
1802 case FILE_SPREAD_SLAB
:
1803 return is_spread_slab(cs
);
1808 /* Unreachable but makes gcc happy */
1812 static s64
cpuset_read_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
1814 struct cpuset
*cs
= css_cs(css
);
1815 cpuset_filetype_t type
= cft
->private;
1817 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1818 return cs
->relax_domain_level
;
1823 /* Unrechable but makes gcc happy */
1829 * for the common functions, 'private' gives the type of file
1832 static struct cftype files
[] = {
1835 .seq_show
= cpuset_common_seq_show
,
1836 .write
= cpuset_write_resmask
,
1837 .max_write_len
= (100U + 6 * NR_CPUS
),
1838 .private = FILE_CPULIST
,
1843 .seq_show
= cpuset_common_seq_show
,
1844 .write
= cpuset_write_resmask
,
1845 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
1846 .private = FILE_MEMLIST
,
1850 .name
= "effective_cpus",
1851 .seq_show
= cpuset_common_seq_show
,
1852 .private = FILE_EFFECTIVE_CPULIST
,
1856 .name
= "effective_mems",
1857 .seq_show
= cpuset_common_seq_show
,
1858 .private = FILE_EFFECTIVE_MEMLIST
,
1862 .name
= "cpu_exclusive",
1863 .read_u64
= cpuset_read_u64
,
1864 .write_u64
= cpuset_write_u64
,
1865 .private = FILE_CPU_EXCLUSIVE
,
1869 .name
= "mem_exclusive",
1870 .read_u64
= cpuset_read_u64
,
1871 .write_u64
= cpuset_write_u64
,
1872 .private = FILE_MEM_EXCLUSIVE
,
1876 .name
= "mem_hardwall",
1877 .read_u64
= cpuset_read_u64
,
1878 .write_u64
= cpuset_write_u64
,
1879 .private = FILE_MEM_HARDWALL
,
1883 .name
= "sched_load_balance",
1884 .read_u64
= cpuset_read_u64
,
1885 .write_u64
= cpuset_write_u64
,
1886 .private = FILE_SCHED_LOAD_BALANCE
,
1890 .name
= "sched_relax_domain_level",
1891 .read_s64
= cpuset_read_s64
,
1892 .write_s64
= cpuset_write_s64
,
1893 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1897 .name
= "memory_migrate",
1898 .read_u64
= cpuset_read_u64
,
1899 .write_u64
= cpuset_write_u64
,
1900 .private = FILE_MEMORY_MIGRATE
,
1904 .name
= "memory_pressure",
1905 .read_u64
= cpuset_read_u64
,
1906 .private = FILE_MEMORY_PRESSURE
,
1910 .name
= "memory_spread_page",
1911 .read_u64
= cpuset_read_u64
,
1912 .write_u64
= cpuset_write_u64
,
1913 .private = FILE_SPREAD_PAGE
,
1917 .name
= "memory_spread_slab",
1918 .read_u64
= cpuset_read_u64
,
1919 .write_u64
= cpuset_write_u64
,
1920 .private = FILE_SPREAD_SLAB
,
1924 .name
= "memory_pressure_enabled",
1925 .flags
= CFTYPE_ONLY_ON_ROOT
,
1926 .read_u64
= cpuset_read_u64
,
1927 .write_u64
= cpuset_write_u64
,
1928 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1935 * cpuset_css_alloc - allocate a cpuset css
1936 * cgrp: control group that the new cpuset will be part of
1939 static struct cgroup_subsys_state
*
1940 cpuset_css_alloc(struct cgroup_subsys_state
*parent_css
)
1945 return &top_cpuset
.css
;
1947 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
1949 return ERR_PTR(-ENOMEM
);
1950 if (!alloc_cpumask_var(&cs
->cpus_allowed
, GFP_KERNEL
))
1952 if (!alloc_cpumask_var(&cs
->effective_cpus
, GFP_KERNEL
))
1955 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1956 cpumask_clear(cs
->cpus_allowed
);
1957 nodes_clear(cs
->mems_allowed
);
1958 cpumask_clear(cs
->effective_cpus
);
1959 nodes_clear(cs
->effective_mems
);
1960 fmeter_init(&cs
->fmeter
);
1961 cs
->relax_domain_level
= -1;
1966 free_cpumask_var(cs
->cpus_allowed
);
1969 return ERR_PTR(-ENOMEM
);
1972 static int cpuset_css_online(struct cgroup_subsys_state
*css
)
1974 struct cpuset
*cs
= css_cs(css
);
1975 struct cpuset
*parent
= parent_cs(cs
);
1976 struct cpuset
*tmp_cs
;
1977 struct cgroup_subsys_state
*pos_css
;
1982 mutex_lock(&cpuset_mutex
);
1984 set_bit(CS_ONLINE
, &cs
->flags
);
1985 if (is_spread_page(parent
))
1986 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1987 if (is_spread_slab(parent
))
1988 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1992 spin_lock_irq(&callback_lock
);
1993 if (is_in_v2_mode()) {
1994 cpumask_copy(cs
->effective_cpus
, parent
->effective_cpus
);
1995 cs
->effective_mems
= parent
->effective_mems
;
1997 spin_unlock_irq(&callback_lock
);
1999 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
))
2003 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2004 * set. This flag handling is implemented in cgroup core for
2005 * histrical reasons - the flag may be specified during mount.
2007 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2008 * refuse to clone the configuration - thereby refusing the task to
2009 * be entered, and as a result refusing the sys_unshare() or
2010 * clone() which initiated it. If this becomes a problem for some
2011 * users who wish to allow that scenario, then this could be
2012 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2013 * (and likewise for mems) to the new cgroup.
2016 cpuset_for_each_child(tmp_cs
, pos_css
, parent
) {
2017 if (is_mem_exclusive(tmp_cs
) || is_cpu_exclusive(tmp_cs
)) {
2024 spin_lock_irq(&callback_lock
);
2025 cs
->mems_allowed
= parent
->mems_allowed
;
2026 cs
->effective_mems
= parent
->mems_allowed
;
2027 cpumask_copy(cs
->cpus_allowed
, parent
->cpus_allowed
);
2028 cpumask_copy(cs
->effective_cpus
, parent
->cpus_allowed
);
2029 spin_unlock_irq(&callback_lock
);
2031 mutex_unlock(&cpuset_mutex
);
2036 * If the cpuset being removed has its flag 'sched_load_balance'
2037 * enabled, then simulate turning sched_load_balance off, which
2038 * will call rebuild_sched_domains_locked().
2041 static void cpuset_css_offline(struct cgroup_subsys_state
*css
)
2043 struct cpuset
*cs
= css_cs(css
);
2045 mutex_lock(&cpuset_mutex
);
2047 if (is_sched_load_balance(cs
))
2048 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
2051 clear_bit(CS_ONLINE
, &cs
->flags
);
2053 mutex_unlock(&cpuset_mutex
);
2056 static void cpuset_css_free(struct cgroup_subsys_state
*css
)
2058 struct cpuset
*cs
= css_cs(css
);
2060 free_cpumask_var(cs
->effective_cpus
);
2061 free_cpumask_var(cs
->cpus_allowed
);
2065 static void cpuset_bind(struct cgroup_subsys_state
*root_css
)
2067 mutex_lock(&cpuset_mutex
);
2068 spin_lock_irq(&callback_lock
);
2070 if (is_in_v2_mode()) {
2071 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_possible_mask
);
2072 top_cpuset
.mems_allowed
= node_possible_map
;
2074 cpumask_copy(top_cpuset
.cpus_allowed
,
2075 top_cpuset
.effective_cpus
);
2076 top_cpuset
.mems_allowed
= top_cpuset
.effective_mems
;
2079 spin_unlock_irq(&callback_lock
);
2080 mutex_unlock(&cpuset_mutex
);
2084 * Make sure the new task conform to the current state of its parent,
2085 * which could have been changed by cpuset just after it inherits the
2086 * state from the parent and before it sits on the cgroup's task list.
2088 static void cpuset_fork(struct task_struct
*task
)
2090 if (task_css_is_root(task
, cpuset_cgrp_id
))
2093 set_cpus_allowed_ptr(task
, ¤t
->cpus_allowed
);
2094 task
->mems_allowed
= current
->mems_allowed
;
2097 struct cgroup_subsys cpuset_cgrp_subsys
= {
2098 .css_alloc
= cpuset_css_alloc
,
2099 .css_online
= cpuset_css_online
,
2100 .css_offline
= cpuset_css_offline
,
2101 .css_free
= cpuset_css_free
,
2102 .can_attach
= cpuset_can_attach
,
2103 .cancel_attach
= cpuset_cancel_attach
,
2104 .attach
= cpuset_attach
,
2105 .post_attach
= cpuset_post_attach
,
2106 .bind
= cpuset_bind
,
2107 .fork
= cpuset_fork
,
2108 .legacy_cftypes
= files
,
2113 * cpuset_init - initialize cpusets at system boot
2115 * Description: Initialize top_cpuset and the cpuset internal file system,
2118 int __init
cpuset_init(void)
2122 BUG_ON(!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
));
2123 BUG_ON(!alloc_cpumask_var(&top_cpuset
.effective_cpus
, GFP_KERNEL
));
2125 cpumask_setall(top_cpuset
.cpus_allowed
);
2126 nodes_setall(top_cpuset
.mems_allowed
);
2127 cpumask_setall(top_cpuset
.effective_cpus
);
2128 nodes_setall(top_cpuset
.effective_mems
);
2130 fmeter_init(&top_cpuset
.fmeter
);
2131 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
2132 top_cpuset
.relax_domain_level
= -1;
2134 err
= register_filesystem(&cpuset_fs_type
);
2138 BUG_ON(!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
));
2144 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2145 * or memory nodes, we need to walk over the cpuset hierarchy,
2146 * removing that CPU or node from all cpusets. If this removes the
2147 * last CPU or node from a cpuset, then move the tasks in the empty
2148 * cpuset to its next-highest non-empty parent.
2150 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2152 struct cpuset
*parent
;
2155 * Find its next-highest non-empty parent, (top cpuset
2156 * has online cpus, so can't be empty).
2158 parent
= parent_cs(cs
);
2159 while (cpumask_empty(parent
->cpus_allowed
) ||
2160 nodes_empty(parent
->mems_allowed
))
2161 parent
= parent_cs(parent
);
2163 if (cgroup_transfer_tasks(parent
->css
.cgroup
, cs
->css
.cgroup
)) {
2164 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2165 pr_cont_cgroup_name(cs
->css
.cgroup
);
2171 hotplug_update_tasks_legacy(struct cpuset
*cs
,
2172 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2173 bool cpus_updated
, bool mems_updated
)
2177 spin_lock_irq(&callback_lock
);
2178 cpumask_copy(cs
->cpus_allowed
, new_cpus
);
2179 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2180 cs
->mems_allowed
= *new_mems
;
2181 cs
->effective_mems
= *new_mems
;
2182 spin_unlock_irq(&callback_lock
);
2185 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2186 * as the tasks will be migratecd to an ancestor.
2188 if (cpus_updated
&& !cpumask_empty(cs
->cpus_allowed
))
2189 update_tasks_cpumask(cs
);
2190 if (mems_updated
&& !nodes_empty(cs
->mems_allowed
))
2191 update_tasks_nodemask(cs
);
2193 is_empty
= cpumask_empty(cs
->cpus_allowed
) ||
2194 nodes_empty(cs
->mems_allowed
);
2196 mutex_unlock(&cpuset_mutex
);
2199 * Move tasks to the nearest ancestor with execution resources,
2200 * This is full cgroup operation which will also call back into
2201 * cpuset. Should be done outside any lock.
2204 remove_tasks_in_empty_cpuset(cs
);
2206 mutex_lock(&cpuset_mutex
);
2210 hotplug_update_tasks(struct cpuset
*cs
,
2211 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2212 bool cpus_updated
, bool mems_updated
)
2214 if (cpumask_empty(new_cpus
))
2215 cpumask_copy(new_cpus
, parent_cs(cs
)->effective_cpus
);
2216 if (nodes_empty(*new_mems
))
2217 *new_mems
= parent_cs(cs
)->effective_mems
;
2219 spin_lock_irq(&callback_lock
);
2220 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2221 cs
->effective_mems
= *new_mems
;
2222 spin_unlock_irq(&callback_lock
);
2225 update_tasks_cpumask(cs
);
2227 update_tasks_nodemask(cs
);
2231 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2232 * @cs: cpuset in interest
2234 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2235 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2236 * all its tasks are moved to the nearest ancestor with both resources.
2238 static void cpuset_hotplug_update_tasks(struct cpuset
*cs
)
2240 static cpumask_t new_cpus
;
2241 static nodemask_t new_mems
;
2245 wait_event(cpuset_attach_wq
, cs
->attach_in_progress
== 0);
2247 mutex_lock(&cpuset_mutex
);
2250 * We have raced with task attaching. We wait until attaching
2251 * is finished, so we won't attach a task to an empty cpuset.
2253 if (cs
->attach_in_progress
) {
2254 mutex_unlock(&cpuset_mutex
);
2258 cpumask_and(&new_cpus
, cs
->cpus_allowed
, parent_cs(cs
)->effective_cpus
);
2259 nodes_and(new_mems
, cs
->mems_allowed
, parent_cs(cs
)->effective_mems
);
2261 cpus_updated
= !cpumask_equal(&new_cpus
, cs
->effective_cpus
);
2262 mems_updated
= !nodes_equal(new_mems
, cs
->effective_mems
);
2264 if (is_in_v2_mode())
2265 hotplug_update_tasks(cs
, &new_cpus
, &new_mems
,
2266 cpus_updated
, mems_updated
);
2268 hotplug_update_tasks_legacy(cs
, &new_cpus
, &new_mems
,
2269 cpus_updated
, mems_updated
);
2271 mutex_unlock(&cpuset_mutex
);
2274 static bool force_rebuild
;
2276 void cpuset_force_rebuild(void)
2278 force_rebuild
= true;
2282 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2284 * This function is called after either CPU or memory configuration has
2285 * changed and updates cpuset accordingly. The top_cpuset is always
2286 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2287 * order to make cpusets transparent (of no affect) on systems that are
2288 * actively using CPU hotplug but making no active use of cpusets.
2290 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2291 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2294 * Note that CPU offlining during suspend is ignored. We don't modify
2295 * cpusets across suspend/resume cycles at all.
2297 static void cpuset_hotplug_workfn(struct work_struct
*work
)
2299 static cpumask_t new_cpus
;
2300 static nodemask_t new_mems
;
2301 bool cpus_updated
, mems_updated
;
2302 bool on_dfl
= is_in_v2_mode();
2304 mutex_lock(&cpuset_mutex
);
2306 /* fetch the available cpus/mems and find out which changed how */
2307 cpumask_copy(&new_cpus
, cpu_active_mask
);
2308 new_mems
= node_states
[N_MEMORY
];
2310 cpus_updated
= !cpumask_equal(top_cpuset
.effective_cpus
, &new_cpus
);
2311 mems_updated
= !nodes_equal(top_cpuset
.effective_mems
, new_mems
);
2313 /* synchronize cpus_allowed to cpu_active_mask */
2315 spin_lock_irq(&callback_lock
);
2317 cpumask_copy(top_cpuset
.cpus_allowed
, &new_cpus
);
2318 cpumask_copy(top_cpuset
.effective_cpus
, &new_cpus
);
2319 spin_unlock_irq(&callback_lock
);
2320 /* we don't mess with cpumasks of tasks in top_cpuset */
2323 /* synchronize mems_allowed to N_MEMORY */
2325 spin_lock_irq(&callback_lock
);
2327 top_cpuset
.mems_allowed
= new_mems
;
2328 top_cpuset
.effective_mems
= new_mems
;
2329 spin_unlock_irq(&callback_lock
);
2330 update_tasks_nodemask(&top_cpuset
);
2333 mutex_unlock(&cpuset_mutex
);
2335 /* if cpus or mems changed, we need to propagate to descendants */
2336 if (cpus_updated
|| mems_updated
) {
2338 struct cgroup_subsys_state
*pos_css
;
2341 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
2342 if (cs
== &top_cpuset
|| !css_tryget_online(&cs
->css
))
2346 cpuset_hotplug_update_tasks(cs
);
2354 /* rebuild sched domains if cpus_allowed has changed */
2355 if (cpus_updated
|| force_rebuild
) {
2356 force_rebuild
= false;
2357 rebuild_sched_domains();
2361 void cpuset_update_active_cpus(void)
2364 * We're inside cpu hotplug critical region which usually nests
2365 * inside cgroup synchronization. Bounce actual hotplug processing
2366 * to a work item to avoid reverse locking order.
2368 schedule_work(&cpuset_hotplug_work
);
2371 void cpuset_wait_for_hotplug(void)
2373 flush_work(&cpuset_hotplug_work
);
2377 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2378 * Call this routine anytime after node_states[N_MEMORY] changes.
2379 * See cpuset_update_active_cpus() for CPU hotplug handling.
2381 static int cpuset_track_online_nodes(struct notifier_block
*self
,
2382 unsigned long action
, void *arg
)
2384 schedule_work(&cpuset_hotplug_work
);
2388 static struct notifier_block cpuset_track_online_nodes_nb
= {
2389 .notifier_call
= cpuset_track_online_nodes
,
2390 .priority
= 10, /* ??! */
2394 * cpuset_init_smp - initialize cpus_allowed
2396 * Description: Finish top cpuset after cpu, node maps are initialized
2398 void __init
cpuset_init_smp(void)
2400 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
2401 top_cpuset
.mems_allowed
= node_states
[N_MEMORY
];
2402 top_cpuset
.old_mems_allowed
= top_cpuset
.mems_allowed
;
2404 cpumask_copy(top_cpuset
.effective_cpus
, cpu_active_mask
);
2405 top_cpuset
.effective_mems
= node_states
[N_MEMORY
];
2407 register_hotmemory_notifier(&cpuset_track_online_nodes_nb
);
2409 cpuset_migrate_mm_wq
= alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2410 BUG_ON(!cpuset_migrate_mm_wq
);
2414 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2415 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2416 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2418 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2419 * attached to the specified @tsk. Guaranteed to return some non-empty
2420 * subset of cpu_online_mask, even if this means going outside the
2424 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
2426 unsigned long flags
;
2428 spin_lock_irqsave(&callback_lock
, flags
);
2430 guarantee_online_cpus(task_cs(tsk
), pmask
);
2432 spin_unlock_irqrestore(&callback_lock
, flags
);
2435 void cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
2438 do_set_cpus_allowed(tsk
, task_cs(tsk
)->effective_cpus
);
2442 * We own tsk->cpus_allowed, nobody can change it under us.
2444 * But we used cs && cs->cpus_allowed lockless and thus can
2445 * race with cgroup_attach_task() or update_cpumask() and get
2446 * the wrong tsk->cpus_allowed. However, both cases imply the
2447 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2448 * which takes task_rq_lock().
2450 * If we are called after it dropped the lock we must see all
2451 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2452 * set any mask even if it is not right from task_cs() pov,
2453 * the pending set_cpus_allowed_ptr() will fix things.
2455 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2460 void __init
cpuset_init_current_mems_allowed(void)
2462 nodes_setall(current
->mems_allowed
);
2466 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2467 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2469 * Description: Returns the nodemask_t mems_allowed of the cpuset
2470 * attached to the specified @tsk. Guaranteed to return some non-empty
2471 * subset of node_states[N_MEMORY], even if this means going outside the
2475 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2478 unsigned long flags
;
2480 spin_lock_irqsave(&callback_lock
, flags
);
2482 guarantee_online_mems(task_cs(tsk
), &mask
);
2484 spin_unlock_irqrestore(&callback_lock
, flags
);
2490 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2491 * @nodemask: the nodemask to be checked
2493 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2495 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
2497 return nodes_intersects(*nodemask
, current
->mems_allowed
);
2501 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2502 * mem_hardwall ancestor to the specified cpuset. Call holding
2503 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2504 * (an unusual configuration), then returns the root cpuset.
2506 static struct cpuset
*nearest_hardwall_ancestor(struct cpuset
*cs
)
2508 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && parent_cs(cs
))
2514 * cpuset_node_allowed - Can we allocate on a memory node?
2515 * @node: is this an allowed node?
2516 * @gfp_mask: memory allocation flags
2518 * If we're in interrupt, yes, we can always allocate. If @node is set in
2519 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2520 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2521 * yes. If current has access to memory reserves as an oom victim, yes.
2524 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2525 * and do not allow allocations outside the current tasks cpuset
2526 * unless the task has been OOM killed.
2527 * GFP_KERNEL allocations are not so marked, so can escape to the
2528 * nearest enclosing hardwalled ancestor cpuset.
2530 * Scanning up parent cpusets requires callback_lock. The
2531 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2532 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2533 * current tasks mems_allowed came up empty on the first pass over
2534 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2535 * cpuset are short of memory, might require taking the callback_lock.
2537 * The first call here from mm/page_alloc:get_page_from_freelist()
2538 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2539 * so no allocation on a node outside the cpuset is allowed (unless
2540 * in interrupt, of course).
2542 * The second pass through get_page_from_freelist() doesn't even call
2543 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2544 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2545 * in alloc_flags. That logic and the checks below have the combined
2547 * in_interrupt - any node ok (current task context irrelevant)
2548 * GFP_ATOMIC - any node ok
2549 * tsk_is_oom_victim - any node ok
2550 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2551 * GFP_USER - only nodes in current tasks mems allowed ok.
2553 bool __cpuset_node_allowed(int node
, gfp_t gfp_mask
)
2555 struct cpuset
*cs
; /* current cpuset ancestors */
2556 int allowed
; /* is allocation in zone z allowed? */
2557 unsigned long flags
;
2561 if (node_isset(node
, current
->mems_allowed
))
2564 * Allow tasks that have access to memory reserves because they have
2565 * been OOM killed to get memory anywhere.
2567 if (unlikely(tsk_is_oom_victim(current
)))
2569 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2572 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2575 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2576 spin_lock_irqsave(&callback_lock
, flags
);
2579 cs
= nearest_hardwall_ancestor(task_cs(current
));
2580 allowed
= node_isset(node
, cs
->mems_allowed
);
2583 spin_unlock_irqrestore(&callback_lock
, flags
);
2588 * cpuset_mem_spread_node() - On which node to begin search for a file page
2589 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2591 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2592 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2593 * and if the memory allocation used cpuset_mem_spread_node()
2594 * to determine on which node to start looking, as it will for
2595 * certain page cache or slab cache pages such as used for file
2596 * system buffers and inode caches, then instead of starting on the
2597 * local node to look for a free page, rather spread the starting
2598 * node around the tasks mems_allowed nodes.
2600 * We don't have to worry about the returned node being offline
2601 * because "it can't happen", and even if it did, it would be ok.
2603 * The routines calling guarantee_online_mems() are careful to
2604 * only set nodes in task->mems_allowed that are online. So it
2605 * should not be possible for the following code to return an
2606 * offline node. But if it did, that would be ok, as this routine
2607 * is not returning the node where the allocation must be, only
2608 * the node where the search should start. The zonelist passed to
2609 * __alloc_pages() will include all nodes. If the slab allocator
2610 * is passed an offline node, it will fall back to the local node.
2611 * See kmem_cache_alloc_node().
2614 static int cpuset_spread_node(int *rotor
)
2616 return *rotor
= next_node_in(*rotor
, current
->mems_allowed
);
2619 int cpuset_mem_spread_node(void)
2621 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
2622 current
->cpuset_mem_spread_rotor
=
2623 node_random(¤t
->mems_allowed
);
2625 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
2628 int cpuset_slab_spread_node(void)
2630 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
2631 current
->cpuset_slab_spread_rotor
=
2632 node_random(¤t
->mems_allowed
);
2634 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
2637 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2640 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2641 * @tsk1: pointer to task_struct of some task.
2642 * @tsk2: pointer to task_struct of some other task.
2644 * Description: Return true if @tsk1's mems_allowed intersects the
2645 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2646 * one of the task's memory usage might impact the memory available
2650 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2651 const struct task_struct
*tsk2
)
2653 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2657 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2659 * Description: Prints current's name, cpuset name, and cached copy of its
2660 * mems_allowed to the kernel log.
2662 void cpuset_print_current_mems_allowed(void)
2664 struct cgroup
*cgrp
;
2668 cgrp
= task_cs(current
)->css
.cgroup
;
2669 pr_info("%s cpuset=", current
->comm
);
2670 pr_cont_cgroup_name(cgrp
);
2671 pr_cont(" mems_allowed=%*pbl\n",
2672 nodemask_pr_args(¤t
->mems_allowed
));
2678 * Collection of memory_pressure is suppressed unless
2679 * this flag is enabled by writing "1" to the special
2680 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2683 int cpuset_memory_pressure_enabled __read_mostly
;
2686 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2688 * Keep a running average of the rate of synchronous (direct)
2689 * page reclaim efforts initiated by tasks in each cpuset.
2691 * This represents the rate at which some task in the cpuset
2692 * ran low on memory on all nodes it was allowed to use, and
2693 * had to enter the kernels page reclaim code in an effort to
2694 * create more free memory by tossing clean pages or swapping
2695 * or writing dirty pages.
2697 * Display to user space in the per-cpuset read-only file
2698 * "memory_pressure". Value displayed is an integer
2699 * representing the recent rate of entry into the synchronous
2700 * (direct) page reclaim by any task attached to the cpuset.
2703 void __cpuset_memory_pressure_bump(void)
2706 fmeter_markevent(&task_cs(current
)->fmeter
);
2710 #ifdef CONFIG_PROC_PID_CPUSET
2712 * proc_cpuset_show()
2713 * - Print tasks cpuset path into seq_file.
2714 * - Used for /proc/<pid>/cpuset.
2715 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2716 * doesn't really matter if tsk->cpuset changes after we read it,
2717 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2720 int proc_cpuset_show(struct seq_file
*m
, struct pid_namespace
*ns
,
2721 struct pid
*pid
, struct task_struct
*tsk
)
2724 struct cgroup_subsys_state
*css
;
2728 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
2732 css
= task_get_css(tsk
, cpuset_cgrp_id
);
2733 retval
= cgroup_path_ns(css
->cgroup
, buf
, PATH_MAX
,
2734 current
->nsproxy
->cgroup_ns
);
2736 if (retval
>= PATH_MAX
)
2737 retval
= -ENAMETOOLONG
;
2748 #endif /* CONFIG_PROC_PID_CPUSET */
2750 /* Display task mems_allowed in /proc/<pid>/status file. */
2751 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2753 seq_printf(m
, "Mems_allowed:\t%*pb\n",
2754 nodemask_pr_args(&task
->mems_allowed
));
2755 seq_printf(m
, "Mems_allowed_list:\t%*pbl\n",
2756 nodemask_pr_args(&task
->mems_allowed
));