2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
31 #define pr_fmt(fmt) "rcu: " fmt
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/rcupdate_wait.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/sched/debug.h>
42 #include <linux/nmi.h>
43 #include <linux/atomic.h>
44 #include <linux/bitops.h>
45 #include <linux/export.h>
46 #include <linux/completion.h>
47 #include <linux/moduleparam.h>
48 #include <linux/percpu.h>
49 #include <linux/notifier.h>
50 #include <linux/cpu.h>
51 #include <linux/mutex.h>
52 #include <linux/time.h>
53 #include <linux/kernel_stat.h>
54 #include <linux/wait.h>
55 #include <linux/kthread.h>
56 #include <uapi/linux/sched/types.h>
57 #include <linux/prefetch.h>
58 #include <linux/delay.h>
59 #include <linux/stop_machine.h>
60 #include <linux/random.h>
61 #include <linux/trace_events.h>
62 #include <linux/suspend.h>
63 #include <linux/ftrace.h>
64 #include <linux/tick.h>
69 #ifdef MODULE_PARAM_PREFIX
70 #undef MODULE_PARAM_PREFIX
72 #define MODULE_PARAM_PREFIX "rcutree."
74 /* Data structures. */
77 * Steal a bit from the bottom of ->dynticks for idle entry/exit
78 * control. Initially this is for TLB flushing.
80 #define RCU_DYNTICK_CTRL_MASK 0x1
81 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
82 #ifndef rcu_eqs_special_exit
83 #define rcu_eqs_special_exit() do { } while (0)
86 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data
, rcu_data
) = {
87 .dynticks_nesting
= 1,
88 .dynticks_nmi_nesting
= DYNTICK_IRQ_NONIDLE
,
89 .dynticks
= ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR
),
91 struct rcu_state rcu_state
= {
92 .level
= { &rcu_state
.node
[0] },
93 .gp_state
= RCU_GP_IDLE
,
94 .gp_seq
= (0UL - 300UL) << RCU_SEQ_CTR_SHIFT
,
95 .barrier_mutex
= __MUTEX_INITIALIZER(rcu_state
.barrier_mutex
),
98 .exp_mutex
= __MUTEX_INITIALIZER(rcu_state
.exp_mutex
),
99 .exp_wake_mutex
= __MUTEX_INITIALIZER(rcu_state
.exp_wake_mutex
),
100 .ofl_lock
= __RAW_SPIN_LOCK_UNLOCKED(rcu_state
.ofl_lock
),
103 /* Dump rcu_node combining tree at boot to verify correct setup. */
104 static bool dump_tree
;
105 module_param(dump_tree
, bool, 0444);
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact
;
108 module_param(rcu_fanout_exact
, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
111 module_param(rcu_fanout_leaf
, int, 0444);
112 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
115 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
116 /* panic() on RCU Stall sysctl. */
117 int sysctl_panic_on_rcu_stall __read_mostly
;
120 * The rcu_scheduler_active variable is initialized to the value
121 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
122 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
123 * RCU can assume that there is but one task, allowing RCU to (for example)
124 * optimize synchronize_rcu() to a simple barrier(). When this variable
125 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
126 * to detect real grace periods. This variable is also used to suppress
127 * boot-time false positives from lockdep-RCU error checking. Finally, it
128 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
129 * is fully initialized, including all of its kthreads having been spawned.
131 int rcu_scheduler_active __read_mostly
;
132 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
146 static int rcu_scheduler_fully_active __read_mostly
;
148 static void rcu_report_qs_rnp(unsigned long mask
, struct rcu_node
*rnp
,
149 unsigned long gps
, unsigned long flags
);
150 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
151 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
152 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
153 static void invoke_rcu_core(void);
154 static void invoke_rcu_callbacks(struct rcu_data
*rdp
);
155 static void rcu_report_exp_rdp(struct rcu_data
*rdp
);
156 static void sync_sched_exp_online_cleanup(int cpu
);
158 /* rcuc/rcub kthread realtime priority */
159 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
160 module_param(kthread_prio
, int, 0644);
162 /* Delay in jiffies for grace-period initialization delays, debug only. */
164 static int gp_preinit_delay
;
165 module_param(gp_preinit_delay
, int, 0444);
166 static int gp_init_delay
;
167 module_param(gp_init_delay
, int, 0444);
168 static int gp_cleanup_delay
;
169 module_param(gp_cleanup_delay
, int, 0444);
171 /* Retrieve RCU kthreads priority for rcutorture */
172 int rcu_get_gp_kthreads_prio(void)
176 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio
);
179 * Number of grace periods between delays, normalized by the duration of
180 * the delay. The longer the delay, the more the grace periods between
181 * each delay. The reason for this normalization is that it means that,
182 * for non-zero delays, the overall slowdown of grace periods is constant
183 * regardless of the duration of the delay. This arrangement balances
184 * the need for long delays to increase some race probabilities with the
185 * need for fast grace periods to increase other race probabilities.
187 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
190 * Compute the mask of online CPUs for the specified rcu_node structure.
191 * This will not be stable unless the rcu_node structure's ->lock is
192 * held, but the bit corresponding to the current CPU will be stable
195 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
197 return READ_ONCE(rnp
->qsmaskinitnext
);
201 * Return true if an RCU grace period is in progress. The READ_ONCE()s
202 * permit this function to be invoked without holding the root rcu_node
203 * structure's ->lock, but of course results can be subject to change.
205 static int rcu_gp_in_progress(void)
207 return rcu_seq_state(rcu_seq_current(&rcu_state
.gp_seq
));
210 void rcu_softirq_qs(void)
213 rcu_preempt_deferred_qs(current
);
217 * Record entry into an extended quiescent state. This is only to be
218 * called when not already in an extended quiescent state.
220 static void rcu_dynticks_eqs_enter(void)
222 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
226 * CPUs seeing atomic_add_return() must see prior RCU read-side
227 * critical sections, and we also must force ordering with the
230 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdp
->dynticks
);
231 /* Better be in an extended quiescent state! */
232 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
233 (seq
& RCU_DYNTICK_CTRL_CTR
));
234 /* Better not have special action (TLB flush) pending! */
235 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
236 (seq
& RCU_DYNTICK_CTRL_MASK
));
240 * Record exit from an extended quiescent state. This is only to be
241 * called from an extended quiescent state.
243 static void rcu_dynticks_eqs_exit(void)
245 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
249 * CPUs seeing atomic_add_return() must see prior idle sojourns,
250 * and we also must force ordering with the next RCU read-side
253 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdp
->dynticks
);
254 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
255 !(seq
& RCU_DYNTICK_CTRL_CTR
));
256 if (seq
& RCU_DYNTICK_CTRL_MASK
) {
257 atomic_andnot(RCU_DYNTICK_CTRL_MASK
, &rdp
->dynticks
);
258 smp_mb__after_atomic(); /* _exit after clearing mask. */
259 /* Prefer duplicate flushes to losing a flush. */
260 rcu_eqs_special_exit();
265 * Reset the current CPU's ->dynticks counter to indicate that the
266 * newly onlined CPU is no longer in an extended quiescent state.
267 * This will either leave the counter unchanged, or increment it
268 * to the next non-quiescent value.
270 * The non-atomic test/increment sequence works because the upper bits
271 * of the ->dynticks counter are manipulated only by the corresponding CPU,
272 * or when the corresponding CPU is offline.
274 static void rcu_dynticks_eqs_online(void)
276 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
278 if (atomic_read(&rdp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
)
280 atomic_add(RCU_DYNTICK_CTRL_CTR
, &rdp
->dynticks
);
284 * Is the current CPU in an extended quiescent state?
286 * No ordering, as we are sampling CPU-local information.
288 bool rcu_dynticks_curr_cpu_in_eqs(void)
290 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
292 return !(atomic_read(&rdp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
);
296 * Snapshot the ->dynticks counter with full ordering so as to allow
297 * stable comparison of this counter with past and future snapshots.
299 int rcu_dynticks_snap(struct rcu_data
*rdp
)
301 int snap
= atomic_add_return(0, &rdp
->dynticks
);
303 return snap
& ~RCU_DYNTICK_CTRL_MASK
;
307 * Return true if the snapshot returned from rcu_dynticks_snap()
308 * indicates that RCU is in an extended quiescent state.
310 static bool rcu_dynticks_in_eqs(int snap
)
312 return !(snap
& RCU_DYNTICK_CTRL_CTR
);
316 * Return true if the CPU corresponding to the specified rcu_data
317 * structure has spent some time in an extended quiescent state since
318 * rcu_dynticks_snap() returned the specified snapshot.
320 static bool rcu_dynticks_in_eqs_since(struct rcu_data
*rdp
, int snap
)
322 return snap
!= rcu_dynticks_snap(rdp
);
326 * Set the special (bottom) bit of the specified CPU so that it
327 * will take special action (such as flushing its TLB) on the
328 * next exit from an extended quiescent state. Returns true if
329 * the bit was successfully set, or false if the CPU was not in
330 * an extended quiescent state.
332 bool rcu_eqs_special_set(int cpu
)
336 struct rcu_data
*rdp
= &per_cpu(rcu_data
, cpu
);
339 old
= atomic_read(&rdp
->dynticks
);
340 if (old
& RCU_DYNTICK_CTRL_CTR
)
342 new = old
| RCU_DYNTICK_CTRL_MASK
;
343 } while (atomic_cmpxchg(&rdp
->dynticks
, old
, new) != old
);
348 * Let the RCU core know that this CPU has gone through the scheduler,
349 * which is a quiescent state. This is called when the need for a
350 * quiescent state is urgent, so we burn an atomic operation and full
351 * memory barriers to let the RCU core know about it, regardless of what
352 * this CPU might (or might not) do in the near future.
354 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
356 * The caller must have disabled interrupts and must not be idle.
358 static void __maybe_unused
rcu_momentary_dyntick_idle(void)
362 raw_cpu_write(rcu_data
.rcu_need_heavy_qs
, false);
363 special
= atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR
,
364 &this_cpu_ptr(&rcu_data
)->dynticks
);
365 /* It is illegal to call this from idle state. */
366 WARN_ON_ONCE(!(special
& RCU_DYNTICK_CTRL_CTR
));
367 rcu_preempt_deferred_qs(current
);
371 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
373 * If the current CPU is idle or running at a first-level (not nested)
374 * interrupt from idle, return true. The caller must have at least
375 * disabled preemption.
377 static int rcu_is_cpu_rrupt_from_idle(void)
379 return __this_cpu_read(rcu_data
.dynticks_nesting
) <= 0 &&
380 __this_cpu_read(rcu_data
.dynticks_nmi_nesting
) <= 1;
383 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
384 static long blimit
= DEFAULT_RCU_BLIMIT
;
385 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
386 static long qhimark
= DEFAULT_RCU_QHIMARK
;
387 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
388 static long qlowmark
= DEFAULT_RCU_QLOMARK
;
390 module_param(blimit
, long, 0444);
391 module_param(qhimark
, long, 0444);
392 module_param(qlowmark
, long, 0444);
394 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
395 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
396 static bool rcu_kick_kthreads
;
399 * How long the grace period must be before we start recruiting
400 * quiescent-state help from rcu_note_context_switch().
402 static ulong jiffies_till_sched_qs
= ULONG_MAX
;
403 module_param(jiffies_till_sched_qs
, ulong
, 0444);
404 static ulong jiffies_to_sched_qs
; /* Adjusted version of above if not default */
405 module_param(jiffies_to_sched_qs
, ulong
, 0444); /* Display only! */
408 * Make sure that we give the grace-period kthread time to detect any
409 * idle CPUs before taking active measures to force quiescent states.
410 * However, don't go below 100 milliseconds, adjusted upwards for really
413 static void adjust_jiffies_till_sched_qs(void)
417 /* If jiffies_till_sched_qs was specified, respect the request. */
418 if (jiffies_till_sched_qs
!= ULONG_MAX
) {
419 WRITE_ONCE(jiffies_to_sched_qs
, jiffies_till_sched_qs
);
422 j
= READ_ONCE(jiffies_till_first_fqs
) +
423 2 * READ_ONCE(jiffies_till_next_fqs
);
424 if (j
< HZ
/ 10 + nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
)
425 j
= HZ
/ 10 + nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
426 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j
);
427 WRITE_ONCE(jiffies_to_sched_qs
, j
);
430 static int param_set_first_fqs_jiffies(const char *val
, const struct kernel_param
*kp
)
433 int ret
= kstrtoul(val
, 0, &j
);
436 WRITE_ONCE(*(ulong
*)kp
->arg
, (j
> HZ
) ? HZ
: j
);
437 adjust_jiffies_till_sched_qs();
442 static int param_set_next_fqs_jiffies(const char *val
, const struct kernel_param
*kp
)
445 int ret
= kstrtoul(val
, 0, &j
);
448 WRITE_ONCE(*(ulong
*)kp
->arg
, (j
> HZ
) ? HZ
: (j
?: 1));
449 adjust_jiffies_till_sched_qs();
454 static struct kernel_param_ops first_fqs_jiffies_ops
= {
455 .set
= param_set_first_fqs_jiffies
,
456 .get
= param_get_ulong
,
459 static struct kernel_param_ops next_fqs_jiffies_ops
= {
460 .set
= param_set_next_fqs_jiffies
,
461 .get
= param_get_ulong
,
464 module_param_cb(jiffies_till_first_fqs
, &first_fqs_jiffies_ops
, &jiffies_till_first_fqs
, 0644);
465 module_param_cb(jiffies_till_next_fqs
, &next_fqs_jiffies_ops
, &jiffies_till_next_fqs
, 0644);
466 module_param(rcu_kick_kthreads
, bool, 0644);
468 static void force_qs_rnp(int (*f
)(struct rcu_data
*rdp
));
469 static void force_quiescent_state(void);
470 static int rcu_pending(void);
473 * Return the number of RCU GPs completed thus far for debug & stats.
475 unsigned long rcu_get_gp_seq(void)
477 return READ_ONCE(rcu_state
.gp_seq
);
479 EXPORT_SYMBOL_GPL(rcu_get_gp_seq
);
482 * Return the number of RCU expedited batches completed thus far for
483 * debug & stats. Odd numbers mean that a batch is in progress, even
484 * numbers mean idle. The value returned will thus be roughly double
485 * the cumulative batches since boot.
487 unsigned long rcu_exp_batches_completed(void)
489 return rcu_state
.expedited_sequence
;
491 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
494 * Force a quiescent state.
496 void rcu_force_quiescent_state(void)
498 force_quiescent_state();
500 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
503 * Show the state of the grace-period kthreads.
505 void show_rcu_gp_kthreads(void)
508 struct rcu_data
*rdp
;
509 struct rcu_node
*rnp
;
511 pr_info("%s: wait state: %d ->state: %#lx\n", rcu_state
.name
,
512 rcu_state
.gp_state
, rcu_state
.gp_kthread
->state
);
513 rcu_for_each_node_breadth_first(rnp
) {
514 if (ULONG_CMP_GE(rcu_state
.gp_seq
, rnp
->gp_seq_needed
))
516 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
517 rnp
->grplo
, rnp
->grphi
, rnp
->gp_seq
,
519 if (!rcu_is_leaf_node(rnp
))
521 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
522 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
524 ULONG_CMP_GE(rcu_state
.gp_seq
,
527 pr_info("\tcpu %d ->gp_seq_needed %lu\n",
528 cpu
, rdp
->gp_seq_needed
);
531 /* sched_show_task(rcu_state.gp_kthread); */
533 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
536 * Send along grace-period-related data for rcutorture diagnostics.
538 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
539 unsigned long *gp_seq
)
544 case RCU_SCHED_FLAVOR
:
545 *flags
= READ_ONCE(rcu_state
.gp_flags
);
546 *gp_seq
= rcu_seq_current(&rcu_state
.gp_seq
);
552 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
555 * Return the root node of the rcu_state structure.
557 static struct rcu_node
*rcu_get_root(void)
559 return &rcu_state
.node
[0];
563 * Enter an RCU extended quiescent state, which can be either the
564 * idle loop or adaptive-tickless usermode execution.
566 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
567 * the possibility of usermode upcalls having messed up our count
568 * of interrupt nesting level during the prior busy period.
570 static void rcu_eqs_enter(bool user
)
572 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
574 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
!= DYNTICK_IRQ_NONIDLE
);
575 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, 0);
576 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
577 rdp
->dynticks_nesting
== 0);
578 if (rdp
->dynticks_nesting
!= 1) {
579 rdp
->dynticks_nesting
--;
583 lockdep_assert_irqs_disabled();
584 trace_rcu_dyntick(TPS("Start"), rdp
->dynticks_nesting
, 0, rdp
->dynticks
);
585 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
586 rdp
= this_cpu_ptr(&rcu_data
);
587 do_nocb_deferred_wakeup(rdp
);
588 rcu_prepare_for_idle();
589 rcu_preempt_deferred_qs(current
);
590 WRITE_ONCE(rdp
->dynticks_nesting
, 0); /* Avoid irq-access tearing. */
591 rcu_dynticks_eqs_enter();
592 rcu_dynticks_task_enter();
596 * rcu_idle_enter - inform RCU that current CPU is entering idle
598 * Enter idle mode, in other words, -leave- the mode in which RCU
599 * read-side critical sections can occur. (Though RCU read-side
600 * critical sections can occur in irq handlers in idle, a possibility
601 * handled by irq_enter() and irq_exit().)
603 * If you add or remove a call to rcu_idle_enter(), be sure to test with
604 * CONFIG_RCU_EQS_DEBUG=y.
606 void rcu_idle_enter(void)
608 lockdep_assert_irqs_disabled();
609 rcu_eqs_enter(false);
612 #ifdef CONFIG_NO_HZ_FULL
614 * rcu_user_enter - inform RCU that we are resuming userspace.
616 * Enter RCU idle mode right before resuming userspace. No use of RCU
617 * is permitted between this call and rcu_user_exit(). This way the
618 * CPU doesn't need to maintain the tick for RCU maintenance purposes
619 * when the CPU runs in userspace.
621 * If you add or remove a call to rcu_user_enter(), be sure to test with
622 * CONFIG_RCU_EQS_DEBUG=y.
624 void rcu_user_enter(void)
626 lockdep_assert_irqs_disabled();
629 #endif /* CONFIG_NO_HZ_FULL */
632 * If we are returning from the outermost NMI handler that interrupted an
633 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
634 * to let the RCU grace-period handling know that the CPU is back to
637 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
638 * with CONFIG_RCU_EQS_DEBUG=y.
640 static __always_inline
void rcu_nmi_exit_common(bool irq
)
642 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
645 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
646 * (We are exiting an NMI handler, so RCU better be paying attention
649 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
<= 0);
650 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
653 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
654 * leave it in non-RCU-idle state.
656 if (rdp
->dynticks_nmi_nesting
!= 1) {
657 trace_rcu_dyntick(TPS("--="), rdp
->dynticks_nmi_nesting
, rdp
->dynticks_nmi_nesting
- 2, rdp
->dynticks
);
658 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, /* No store tearing. */
659 rdp
->dynticks_nmi_nesting
- 2);
663 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
664 trace_rcu_dyntick(TPS("Startirq"), rdp
->dynticks_nmi_nesting
, 0, rdp
->dynticks
);
665 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, 0); /* Avoid store tearing. */
668 rcu_prepare_for_idle();
670 rcu_dynticks_eqs_enter();
673 rcu_dynticks_task_enter();
677 * rcu_nmi_exit - inform RCU of exit from NMI context
678 * @irq: Is this call from rcu_irq_exit?
680 * If you add or remove a call to rcu_nmi_exit(), be sure to test
681 * with CONFIG_RCU_EQS_DEBUG=y.
683 void rcu_nmi_exit(void)
685 rcu_nmi_exit_common(false);
689 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
691 * Exit from an interrupt handler, which might possibly result in entering
692 * idle mode, in other words, leaving the mode in which read-side critical
693 * sections can occur. The caller must have disabled interrupts.
695 * This code assumes that the idle loop never does anything that might
696 * result in unbalanced calls to irq_enter() and irq_exit(). If your
697 * architecture's idle loop violates this assumption, RCU will give you what
698 * you deserve, good and hard. But very infrequently and irreproducibly.
700 * Use things like work queues to work around this limitation.
702 * You have been warned.
704 * If you add or remove a call to rcu_irq_exit(), be sure to test with
705 * CONFIG_RCU_EQS_DEBUG=y.
707 void rcu_irq_exit(void)
709 lockdep_assert_irqs_disabled();
710 rcu_nmi_exit_common(true);
714 * Wrapper for rcu_irq_exit() where interrupts are enabled.
716 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
717 * with CONFIG_RCU_EQS_DEBUG=y.
719 void rcu_irq_exit_irqson(void)
723 local_irq_save(flags
);
725 local_irq_restore(flags
);
729 * Exit an RCU extended quiescent state, which can be either the
730 * idle loop or adaptive-tickless usermode execution.
732 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
733 * allow for the possibility of usermode upcalls messing up our count of
734 * interrupt nesting level during the busy period that is just now starting.
736 static void rcu_eqs_exit(bool user
)
738 struct rcu_data
*rdp
;
741 lockdep_assert_irqs_disabled();
742 rdp
= this_cpu_ptr(&rcu_data
);
743 oldval
= rdp
->dynticks_nesting
;
744 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
746 rdp
->dynticks_nesting
++;
749 rcu_dynticks_task_exit();
750 rcu_dynticks_eqs_exit();
751 rcu_cleanup_after_idle();
752 trace_rcu_dyntick(TPS("End"), rdp
->dynticks_nesting
, 1, rdp
->dynticks
);
753 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
754 WRITE_ONCE(rdp
->dynticks_nesting
, 1);
755 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
);
756 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, DYNTICK_IRQ_NONIDLE
);
760 * rcu_idle_exit - inform RCU that current CPU is leaving idle
762 * Exit idle mode, in other words, -enter- the mode in which RCU
763 * read-side critical sections can occur.
765 * If you add or remove a call to rcu_idle_exit(), be sure to test with
766 * CONFIG_RCU_EQS_DEBUG=y.
768 void rcu_idle_exit(void)
772 local_irq_save(flags
);
774 local_irq_restore(flags
);
777 #ifdef CONFIG_NO_HZ_FULL
779 * rcu_user_exit - inform RCU that we are exiting userspace.
781 * Exit RCU idle mode while entering the kernel because it can
782 * run a RCU read side critical section anytime.
784 * If you add or remove a call to rcu_user_exit(), be sure to test with
785 * CONFIG_RCU_EQS_DEBUG=y.
787 void rcu_user_exit(void)
791 #endif /* CONFIG_NO_HZ_FULL */
794 * rcu_nmi_enter_common - inform RCU of entry to NMI context
795 * @irq: Is this call from rcu_irq_enter?
797 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
798 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
799 * that the CPU is active. This implementation permits nested NMIs, as
800 * long as the nesting level does not overflow an int. (You will probably
801 * run out of stack space first.)
803 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
804 * with CONFIG_RCU_EQS_DEBUG=y.
806 static __always_inline
void rcu_nmi_enter_common(bool irq
)
808 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
811 /* Complain about underflow. */
812 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
< 0);
815 * If idle from RCU viewpoint, atomically increment ->dynticks
816 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
817 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
818 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
819 * to be in the outermost NMI handler that interrupted an RCU-idle
820 * period (observation due to Andy Lutomirski).
822 if (rcu_dynticks_curr_cpu_in_eqs()) {
825 rcu_dynticks_task_exit();
827 rcu_dynticks_eqs_exit();
830 rcu_cleanup_after_idle();
834 trace_rcu_dyntick(incby
== 1 ? TPS("Endirq") : TPS("++="),
835 rdp
->dynticks_nmi_nesting
,
836 rdp
->dynticks_nmi_nesting
+ incby
, rdp
->dynticks
);
837 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, /* Prevent store tearing. */
838 rdp
->dynticks_nmi_nesting
+ incby
);
843 * rcu_nmi_enter - inform RCU of entry to NMI context
845 void rcu_nmi_enter(void)
847 rcu_nmi_enter_common(false);
851 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
853 * Enter an interrupt handler, which might possibly result in exiting
854 * idle mode, in other words, entering the mode in which read-side critical
855 * sections can occur. The caller must have disabled interrupts.
857 * Note that the Linux kernel is fully capable of entering an interrupt
858 * handler that it never exits, for example when doing upcalls to user mode!
859 * This code assumes that the idle loop never does upcalls to user mode.
860 * If your architecture's idle loop does do upcalls to user mode (or does
861 * anything else that results in unbalanced calls to the irq_enter() and
862 * irq_exit() functions), RCU will give you what you deserve, good and hard.
863 * But very infrequently and irreproducibly.
865 * Use things like work queues to work around this limitation.
867 * You have been warned.
869 * If you add or remove a call to rcu_irq_enter(), be sure to test with
870 * CONFIG_RCU_EQS_DEBUG=y.
872 void rcu_irq_enter(void)
874 lockdep_assert_irqs_disabled();
875 rcu_nmi_enter_common(true);
879 * Wrapper for rcu_irq_enter() where interrupts are enabled.
881 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
882 * with CONFIG_RCU_EQS_DEBUG=y.
884 void rcu_irq_enter_irqson(void)
888 local_irq_save(flags
);
890 local_irq_restore(flags
);
894 * rcu_is_watching - see if RCU thinks that the current CPU is idle
896 * Return true if RCU is watching the running CPU, which means that this
897 * CPU can safely enter RCU read-side critical sections. In other words,
898 * if the current CPU is in its idle loop and is neither in an interrupt
899 * or NMI handler, return true.
901 bool notrace
rcu_is_watching(void)
905 preempt_disable_notrace();
906 ret
= !rcu_dynticks_curr_cpu_in_eqs();
907 preempt_enable_notrace();
910 EXPORT_SYMBOL_GPL(rcu_is_watching
);
913 * If a holdout task is actually running, request an urgent quiescent
914 * state from its CPU. This is unsynchronized, so migrations can cause
915 * the request to go to the wrong CPU. Which is OK, all that will happen
916 * is that the CPU's next context switch will be a bit slower and next
917 * time around this task will generate another request.
919 void rcu_request_urgent_qs_task(struct task_struct
*t
)
926 return; /* This task is not running on that CPU. */
927 smp_store_release(per_cpu_ptr(&rcu_data
.rcu_urgent_qs
, cpu
), true);
930 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
933 * Is the current CPU online as far as RCU is concerned?
935 * Disable preemption to avoid false positives that could otherwise
936 * happen due to the current CPU number being sampled, this task being
937 * preempted, its old CPU being taken offline, resuming on some other CPU,
938 * then determining that its old CPU is now offline.
940 * Disable checking if in an NMI handler because we cannot safely
941 * report errors from NMI handlers anyway. In addition, it is OK to use
942 * RCU on an offline processor during initial boot, hence the check for
943 * rcu_scheduler_fully_active.
945 bool rcu_lockdep_current_cpu_online(void)
947 struct rcu_data
*rdp
;
948 struct rcu_node
*rnp
;
951 if (in_nmi() || !rcu_scheduler_fully_active
)
954 rdp
= this_cpu_ptr(&rcu_data
);
956 if (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
))
961 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
963 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
966 * We are reporting a quiescent state on behalf of some other CPU, so
967 * it is our responsibility to check for and handle potential overflow
968 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
969 * After all, the CPU might be in deep idle state, and thus executing no
972 static void rcu_gpnum_ovf(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
974 raw_lockdep_assert_held_rcu_node(rnp
);
975 if (ULONG_CMP_LT(rcu_seq_current(&rdp
->gp_seq
) + ULONG_MAX
/ 4,
977 WRITE_ONCE(rdp
->gpwrap
, true);
978 if (ULONG_CMP_LT(rdp
->rcu_iw_gp_seq
+ ULONG_MAX
/ 4, rnp
->gp_seq
))
979 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
+ ULONG_MAX
/ 4;
983 * Snapshot the specified CPU's dynticks counter so that we can later
984 * credit them with an implicit quiescent state. Return 1 if this CPU
985 * is in dynticks idle mode, which is an extended quiescent state.
987 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
989 rdp
->dynticks_snap
= rcu_dynticks_snap(rdp
);
990 if (rcu_dynticks_in_eqs(rdp
->dynticks_snap
)) {
991 trace_rcu_fqs(rcu_state
.name
, rdp
->gp_seq
, rdp
->cpu
, TPS("dti"));
992 rcu_gpnum_ovf(rdp
->mynode
, rdp
);
999 * Handler for the irq_work request posted when a grace period has
1000 * gone on for too long, but not yet long enough for an RCU CPU
1001 * stall warning. Set state appropriately, but just complain if
1002 * there is unexpected state on entry.
1004 static void rcu_iw_handler(struct irq_work
*iwp
)
1006 struct rcu_data
*rdp
;
1007 struct rcu_node
*rnp
;
1009 rdp
= container_of(iwp
, struct rcu_data
, rcu_iw
);
1011 raw_spin_lock_rcu_node(rnp
);
1012 if (!WARN_ON_ONCE(!rdp
->rcu_iw_pending
)) {
1013 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
;
1014 rdp
->rcu_iw_pending
= false;
1016 raw_spin_unlock_rcu_node(rnp
);
1020 * Return true if the specified CPU has passed through a quiescent
1021 * state by virtue of being in or having passed through an dynticks
1022 * idle state since the last call to dyntick_save_progress_counter()
1023 * for this same CPU, or by virtue of having been offline.
1025 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
1030 struct rcu_node
*rnp
= rdp
->mynode
;
1033 * If the CPU passed through or entered a dynticks idle phase with
1034 * no active irq/NMI handlers, then we can safely pretend that the CPU
1035 * already acknowledged the request to pass through a quiescent
1036 * state. Either way, that CPU cannot possibly be in an RCU
1037 * read-side critical section that started before the beginning
1038 * of the current RCU grace period.
1040 if (rcu_dynticks_in_eqs_since(rdp
, rdp
->dynticks_snap
)) {
1041 trace_rcu_fqs(rcu_state
.name
, rdp
->gp_seq
, rdp
->cpu
, TPS("dti"));
1042 rcu_gpnum_ovf(rnp
, rdp
);
1046 /* If waiting too long on an offline CPU, complain. */
1047 if (!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) &&
1048 time_after(jiffies
, rcu_state
.gp_start
+ HZ
)) {
1050 struct rcu_node
*rnp1
;
1052 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1053 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1054 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
1055 (long)rnp
->gp_seq
, (long)rnp
->completedqs
);
1056 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
1057 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1058 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
, rnp1
->rcu_gp_init_mask
);
1059 onl
= !!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
));
1060 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1061 __func__
, rdp
->cpu
, ".o"[onl
],
1062 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_flags
,
1063 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_flags
);
1064 return 1; /* Break things loose after complaining. */
1068 * A CPU running for an extended time within the kernel can
1069 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1070 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1071 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1072 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1073 * variable are safe because the assignments are repeated if this
1074 * CPU failed to pass through a quiescent state. This code
1075 * also checks .jiffies_resched in case jiffies_to_sched_qs
1078 jtsq
= READ_ONCE(jiffies_to_sched_qs
);
1079 ruqp
= per_cpu_ptr(&rcu_data
.rcu_urgent_qs
, rdp
->cpu
);
1080 rnhqp
= &per_cpu(rcu_data
.rcu_need_heavy_qs
, rdp
->cpu
);
1081 if (!READ_ONCE(*rnhqp
) &&
1082 (time_after(jiffies
, rcu_state
.gp_start
+ jtsq
* 2) ||
1083 time_after(jiffies
, rcu_state
.jiffies_resched
))) {
1084 WRITE_ONCE(*rnhqp
, true);
1085 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1086 smp_store_release(ruqp
, true);
1087 } else if (time_after(jiffies
, rcu_state
.gp_start
+ jtsq
)) {
1088 WRITE_ONCE(*ruqp
, true);
1092 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks!
1093 * The above code handles this, but only for straight cond_resched().
1094 * And some in-kernel loops check need_resched() before calling
1095 * cond_resched(), which defeats the above code for CPUs that are
1096 * running in-kernel with scheduling-clock interrupts disabled.
1097 * So hit them over the head with the resched_cpu() hammer!
1099 if (tick_nohz_full_cpu(rdp
->cpu
) &&
1101 READ_ONCE(rdp
->last_fqs_resched
) + jtsq
* 3)) {
1102 resched_cpu(rdp
->cpu
);
1103 WRITE_ONCE(rdp
->last_fqs_resched
, jiffies
);
1107 * If more than halfway to RCU CPU stall-warning time, invoke
1108 * resched_cpu() more frequently to try to loosen things up a bit.
1109 * Also check to see if the CPU is getting hammered with interrupts,
1110 * but only once per grace period, just to keep the IPIs down to
1113 if (time_after(jiffies
, rcu_state
.jiffies_resched
)) {
1114 if (time_after(jiffies
,
1115 READ_ONCE(rdp
->last_fqs_resched
) + jtsq
)) {
1116 resched_cpu(rdp
->cpu
);
1117 WRITE_ONCE(rdp
->last_fqs_resched
, jiffies
);
1119 if (IS_ENABLED(CONFIG_IRQ_WORK
) &&
1120 !rdp
->rcu_iw_pending
&& rdp
->rcu_iw_gp_seq
!= rnp
->gp_seq
&&
1121 (rnp
->ffmask
& rdp
->grpmask
)) {
1122 init_irq_work(&rdp
->rcu_iw
, rcu_iw_handler
);
1123 rdp
->rcu_iw_pending
= true;
1124 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
;
1125 irq_work_queue_on(&rdp
->rcu_iw
, rdp
->cpu
);
1132 static void record_gp_stall_check_time(void)
1134 unsigned long j
= jiffies
;
1137 rcu_state
.gp_start
= j
;
1138 j1
= rcu_jiffies_till_stall_check();
1139 /* Record ->gp_start before ->jiffies_stall. */
1140 smp_store_release(&rcu_state
.jiffies_stall
, j
+ j1
); /* ^^^ */
1141 rcu_state
.jiffies_resched
= j
+ j1
/ 2;
1142 rcu_state
.n_force_qs_gpstart
= READ_ONCE(rcu_state
.n_force_qs
);
1146 * Convert a ->gp_state value to a character string.
1148 static const char *gp_state_getname(short gs
)
1150 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1152 return gp_state_names
[gs
];
1156 * Complain about starvation of grace-period kthread.
1158 static void rcu_check_gp_kthread_starvation(void)
1160 struct task_struct
*gpk
= rcu_state
.gp_kthread
;
1163 j
= jiffies
- READ_ONCE(rcu_state
.gp_activity
);
1165 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1167 (long)rcu_seq_current(&rcu_state
.gp_seq
),
1169 gp_state_getname(rcu_state
.gp_state
), rcu_state
.gp_state
,
1170 gpk
? gpk
->state
: ~0, gpk
? task_cpu(gpk
) : -1);
1172 pr_err("RCU grace-period kthread stack dump:\n");
1173 sched_show_task(gpk
);
1174 wake_up_process(gpk
);
1180 * Dump stacks of all tasks running on stalled CPUs. First try using
1181 * NMIs, but fall back to manual remote stack tracing on architectures
1182 * that don't support NMI-based stack dumps. The NMI-triggered stack
1183 * traces are more accurate because they are printed by the target CPU.
1185 static void rcu_dump_cpu_stacks(void)
1188 unsigned long flags
;
1189 struct rcu_node
*rnp
;
1191 rcu_for_each_leaf_node(rnp
) {
1192 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1193 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1194 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
))
1195 if (!trigger_single_cpu_backtrace(cpu
))
1197 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1202 * If too much time has passed in the current grace period, and if
1203 * so configured, go kick the relevant kthreads.
1205 static void rcu_stall_kick_kthreads(void)
1209 if (!rcu_kick_kthreads
)
1211 j
= READ_ONCE(rcu_state
.jiffies_kick_kthreads
);
1212 if (time_after(jiffies
, j
) && rcu_state
.gp_kthread
&&
1213 (rcu_gp_in_progress() || READ_ONCE(rcu_state
.gp_flags
))) {
1214 WARN_ONCE(1, "Kicking %s grace-period kthread\n",
1216 rcu_ftrace_dump(DUMP_ALL
);
1217 wake_up_process(rcu_state
.gp_kthread
);
1218 WRITE_ONCE(rcu_state
.jiffies_kick_kthreads
, j
+ HZ
);
1222 static void panic_on_rcu_stall(void)
1224 if (sysctl_panic_on_rcu_stall
)
1225 panic("RCU Stall\n");
1228 static void print_other_cpu_stall(unsigned long gp_seq
)
1231 unsigned long flags
;
1235 struct rcu_node
*rnp
= rcu_get_root();
1238 /* Kick and suppress, if so configured. */
1239 rcu_stall_kick_kthreads();
1240 if (rcu_cpu_stall_suppress
)
1244 * OK, time to rat on our buddy...
1245 * See Documentation/RCU/stallwarn.txt for info on how to debug
1246 * RCU CPU stall warnings.
1248 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state
.name
);
1249 print_cpu_stall_info_begin();
1250 rcu_for_each_leaf_node(rnp
) {
1251 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1252 ndetected
+= rcu_print_task_stall(rnp
);
1253 if (rnp
->qsmask
!= 0) {
1254 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1255 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
)) {
1256 print_cpu_stall_info(cpu
);
1260 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1263 print_cpu_stall_info_end();
1264 for_each_possible_cpu(cpu
)
1265 totqlen
+= rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data
,
1267 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1268 smp_processor_id(), (long)(jiffies
- rcu_state
.gp_start
),
1269 (long)rcu_seq_current(&rcu_state
.gp_seq
), totqlen
);
1271 rcu_dump_cpu_stacks();
1273 /* Complain about tasks blocking the grace period. */
1274 rcu_print_detail_task_stall();
1276 if (rcu_seq_current(&rcu_state
.gp_seq
) != gp_seq
) {
1277 pr_err("INFO: Stall ended before state dump start\n");
1280 gpa
= READ_ONCE(rcu_state
.gp_activity
);
1281 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1282 rcu_state
.name
, j
- gpa
, j
, gpa
,
1283 READ_ONCE(jiffies_till_next_fqs
),
1284 rcu_get_root()->qsmask
);
1285 /* In this case, the current CPU might be at fault. */
1286 sched_show_task(current
);
1289 /* Rewrite if needed in case of slow consoles. */
1290 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rcu_state
.jiffies_stall
)))
1291 WRITE_ONCE(rcu_state
.jiffies_stall
,
1292 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1294 rcu_check_gp_kthread_starvation();
1296 panic_on_rcu_stall();
1298 force_quiescent_state(); /* Kick them all. */
1301 static void print_cpu_stall(void)
1304 unsigned long flags
;
1305 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1306 struct rcu_node
*rnp
= rcu_get_root();
1309 /* Kick and suppress, if so configured. */
1310 rcu_stall_kick_kthreads();
1311 if (rcu_cpu_stall_suppress
)
1315 * OK, time to rat on ourselves...
1316 * See Documentation/RCU/stallwarn.txt for info on how to debug
1317 * RCU CPU stall warnings.
1319 pr_err("INFO: %s self-detected stall on CPU", rcu_state
.name
);
1320 print_cpu_stall_info_begin();
1321 raw_spin_lock_irqsave_rcu_node(rdp
->mynode
, flags
);
1322 print_cpu_stall_info(smp_processor_id());
1323 raw_spin_unlock_irqrestore_rcu_node(rdp
->mynode
, flags
);
1324 print_cpu_stall_info_end();
1325 for_each_possible_cpu(cpu
)
1326 totqlen
+= rcu_segcblist_n_cbs(&per_cpu_ptr(&rcu_data
,
1328 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1329 jiffies
- rcu_state
.gp_start
,
1330 (long)rcu_seq_current(&rcu_state
.gp_seq
), totqlen
);
1332 rcu_check_gp_kthread_starvation();
1334 rcu_dump_cpu_stacks();
1336 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1337 /* Rewrite if needed in case of slow consoles. */
1338 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rcu_state
.jiffies_stall
)))
1339 WRITE_ONCE(rcu_state
.jiffies_stall
,
1340 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1341 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1343 panic_on_rcu_stall();
1346 * Attempt to revive the RCU machinery by forcing a context switch.
1348 * A context switch would normally allow the RCU state machine to make
1349 * progress and it could be we're stuck in kernel space without context
1350 * switches for an entirely unreasonable amount of time.
1352 set_tsk_need_resched(current
);
1353 set_preempt_need_resched();
1356 static void check_cpu_stall(struct rcu_data
*rdp
)
1364 struct rcu_node
*rnp
;
1366 if ((rcu_cpu_stall_suppress
&& !rcu_kick_kthreads
) ||
1367 !rcu_gp_in_progress())
1369 rcu_stall_kick_kthreads();
1373 * Lots of memory barriers to reject false positives.
1375 * The idea is to pick up rcu_state.gp_seq, then
1376 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
1377 * another copy of rcu_state.gp_seq. These values are updated in
1378 * the opposite order with memory barriers (or equivalent) during
1379 * grace-period initialization and cleanup. Now, a false positive
1380 * can occur if we get an new value of rcu_state.gp_start and a old
1381 * value of rcu_state.jiffies_stall. But given the memory barriers,
1382 * the only way that this can happen is if one grace period ends
1383 * and another starts between these two fetches. This is detected
1384 * by comparing the second fetch of rcu_state.gp_seq with the
1385 * previous fetch from rcu_state.gp_seq.
1387 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
1388 * and rcu_state.gp_start suffice to forestall false positives.
1390 gs1
= READ_ONCE(rcu_state
.gp_seq
);
1391 smp_rmb(); /* Pick up ->gp_seq first... */
1392 js
= READ_ONCE(rcu_state
.jiffies_stall
);
1393 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1394 gps
= READ_ONCE(rcu_state
.gp_start
);
1395 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1396 gs2
= READ_ONCE(rcu_state
.gp_seq
);
1398 ULONG_CMP_LT(j
, js
) ||
1399 ULONG_CMP_GE(gps
, js
))
1400 return; /* No stall or GP completed since entering function. */
1402 jn
= jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3;
1403 if (rcu_gp_in_progress() &&
1404 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
) &&
1405 cmpxchg(&rcu_state
.jiffies_stall
, js
, jn
) == js
) {
1407 /* We haven't checked in, so go dump stack. */
1410 } else if (rcu_gp_in_progress() &&
1411 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
) &&
1412 cmpxchg(&rcu_state
.jiffies_stall
, js
, jn
) == js
) {
1414 /* They had a few time units to dump stack, so complain. */
1415 print_other_cpu_stall(gs2
);
1420 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1422 * Set the stall-warning timeout way off into the future, thus preventing
1423 * any RCU CPU stall-warning messages from appearing in the current set of
1424 * RCU grace periods.
1426 * The caller must disable hard irqs.
1428 void rcu_cpu_stall_reset(void)
1430 WRITE_ONCE(rcu_state
.jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1433 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1434 static void trace_rcu_this_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1435 unsigned long gp_seq_req
, const char *s
)
1437 trace_rcu_future_grace_period(rcu_state
.name
, rnp
->gp_seq
, gp_seq_req
,
1438 rnp
->level
, rnp
->grplo
, rnp
->grphi
, s
);
1442 * rcu_start_this_gp - Request the start of a particular grace period
1443 * @rnp_start: The leaf node of the CPU from which to start.
1444 * @rdp: The rcu_data corresponding to the CPU from which to start.
1445 * @gp_seq_req: The gp_seq of the grace period to start.
1447 * Start the specified grace period, as needed to handle newly arrived
1448 * callbacks. The required future grace periods are recorded in each
1449 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1450 * is reason to awaken the grace-period kthread.
1452 * The caller must hold the specified rcu_node structure's ->lock, which
1453 * is why the caller is responsible for waking the grace-period kthread.
1455 * Returns true if the GP thread needs to be awakened else false.
1457 static bool rcu_start_this_gp(struct rcu_node
*rnp_start
, struct rcu_data
*rdp
,
1458 unsigned long gp_seq_req
)
1461 struct rcu_node
*rnp
;
1464 * Use funnel locking to either acquire the root rcu_node
1465 * structure's lock or bail out if the need for this grace period
1466 * has already been recorded -- or if that grace period has in
1467 * fact already started. If there is already a grace period in
1468 * progress in a non-leaf node, no recording is needed because the
1469 * end of the grace period will scan the leaf rcu_node structures.
1470 * Note that rnp_start->lock must not be released.
1472 raw_lockdep_assert_held_rcu_node(rnp_start
);
1473 trace_rcu_this_gp(rnp_start
, rdp
, gp_seq_req
, TPS("Startleaf"));
1474 for (rnp
= rnp_start
; 1; rnp
= rnp
->parent
) {
1475 if (rnp
!= rnp_start
)
1476 raw_spin_lock_rcu_node(rnp
);
1477 if (ULONG_CMP_GE(rnp
->gp_seq_needed
, gp_seq_req
) ||
1478 rcu_seq_started(&rnp
->gp_seq
, gp_seq_req
) ||
1479 (rnp
!= rnp_start
&&
1480 rcu_seq_state(rcu_seq_current(&rnp
->gp_seq
)))) {
1481 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
,
1485 rnp
->gp_seq_needed
= gp_seq_req
;
1486 if (rcu_seq_state(rcu_seq_current(&rnp
->gp_seq
))) {
1488 * We just marked the leaf or internal node, and a
1489 * grace period is in progress, which means that
1490 * rcu_gp_cleanup() will see the marking. Bail to
1491 * reduce contention.
1493 trace_rcu_this_gp(rnp_start
, rdp
, gp_seq_req
,
1494 TPS("Startedleaf"));
1497 if (rnp
!= rnp_start
&& rnp
->parent
!= NULL
)
1498 raw_spin_unlock_rcu_node(rnp
);
1500 break; /* At root, and perhaps also leaf. */
1503 /* If GP already in progress, just leave, otherwise start one. */
1504 if (rcu_gp_in_progress()) {
1505 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("Startedleafroot"));
1508 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("Startedroot"));
1509 WRITE_ONCE(rcu_state
.gp_flags
, rcu_state
.gp_flags
| RCU_GP_FLAG_INIT
);
1510 rcu_state
.gp_req_activity
= jiffies
;
1511 if (!rcu_state
.gp_kthread
) {
1512 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("NoGPkthread"));
1515 trace_rcu_grace_period(rcu_state
.name
, READ_ONCE(rcu_state
.gp_seq
), TPS("newreq"));
1516 ret
= true; /* Caller must wake GP kthread. */
1518 /* Push furthest requested GP to leaf node and rcu_data structure. */
1519 if (ULONG_CMP_LT(gp_seq_req
, rnp
->gp_seq_needed
)) {
1520 rnp_start
->gp_seq_needed
= rnp
->gp_seq_needed
;
1521 rdp
->gp_seq_needed
= rnp
->gp_seq_needed
;
1523 if (rnp
!= rnp_start
)
1524 raw_spin_unlock_rcu_node(rnp
);
1529 * Clean up any old requests for the just-ended grace period. Also return
1530 * whether any additional grace periods have been requested.
1532 static bool rcu_future_gp_cleanup(struct rcu_node
*rnp
)
1535 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1537 needmore
= ULONG_CMP_LT(rnp
->gp_seq
, rnp
->gp_seq_needed
);
1539 rnp
->gp_seq_needed
= rnp
->gp_seq
; /* Avoid counter wrap. */
1540 trace_rcu_this_gp(rnp
, rdp
, rnp
->gp_seq
,
1541 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1546 * Awaken the grace-period kthread. Don't do a self-awaken, and don't
1547 * bother awakening when there is nothing for the grace-period kthread
1548 * to do (as in several CPUs raced to awaken, and we lost), and finally
1549 * don't try to awaken a kthread that has not yet been created.
1551 static void rcu_gp_kthread_wake(void)
1553 if (current
== rcu_state
.gp_kthread
||
1554 !READ_ONCE(rcu_state
.gp_flags
) ||
1555 !rcu_state
.gp_kthread
)
1557 swake_up_one(&rcu_state
.gp_wq
);
1561 * If there is room, assign a ->gp_seq number to any callbacks on this
1562 * CPU that have not already been assigned. Also accelerate any callbacks
1563 * that were previously assigned a ->gp_seq number that has since proven
1564 * to be too conservative, which can happen if callbacks get assigned a
1565 * ->gp_seq number while RCU is idle, but with reference to a non-root
1566 * rcu_node structure. This function is idempotent, so it does not hurt
1567 * to call it repeatedly. Returns an flag saying that we should awaken
1568 * the RCU grace-period kthread.
1570 * The caller must hold rnp->lock with interrupts disabled.
1572 static bool rcu_accelerate_cbs(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1574 unsigned long gp_seq_req
;
1577 raw_lockdep_assert_held_rcu_node(rnp
);
1579 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1580 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1584 * Callbacks are often registered with incomplete grace-period
1585 * information. Something about the fact that getting exact
1586 * information requires acquiring a global lock... RCU therefore
1587 * makes a conservative estimate of the grace period number at which
1588 * a given callback will become ready to invoke. The following
1589 * code checks this estimate and improves it when possible, thus
1590 * accelerating callback invocation to an earlier grace-period
1593 gp_seq_req
= rcu_seq_snap(&rcu_state
.gp_seq
);
1594 if (rcu_segcblist_accelerate(&rdp
->cblist
, gp_seq_req
))
1595 ret
= rcu_start_this_gp(rnp
, rdp
, gp_seq_req
);
1597 /* Trace depending on how much we were able to accelerate. */
1598 if (rcu_segcblist_restempty(&rdp
->cblist
, RCU_WAIT_TAIL
))
1599 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("AccWaitCB"));
1601 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("AccReadyCB"));
1606 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1607 * rcu_node structure's ->lock be held. It consults the cached value
1608 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1609 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1610 * while holding the leaf rcu_node structure's ->lock.
1612 static void rcu_accelerate_cbs_unlocked(struct rcu_node
*rnp
,
1613 struct rcu_data
*rdp
)
1618 lockdep_assert_irqs_disabled();
1619 c
= rcu_seq_snap(&rcu_state
.gp_seq
);
1620 if (!rdp
->gpwrap
&& ULONG_CMP_GE(rdp
->gp_seq_needed
, c
)) {
1621 /* Old request still live, so mark recent callbacks. */
1622 (void)rcu_segcblist_accelerate(&rdp
->cblist
, c
);
1625 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1626 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
1627 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1629 rcu_gp_kthread_wake();
1633 * Move any callbacks whose grace period has completed to the
1634 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1635 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1636 * sublist. This function is idempotent, so it does not hurt to
1637 * invoke it repeatedly. As long as it is not invoked -too- often...
1638 * Returns true if the RCU grace-period kthread needs to be awakened.
1640 * The caller must hold rnp->lock with interrupts disabled.
1642 static bool rcu_advance_cbs(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1644 raw_lockdep_assert_held_rcu_node(rnp
);
1646 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1647 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1651 * Find all callbacks whose ->gp_seq numbers indicate that they
1652 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1654 rcu_segcblist_advance(&rdp
->cblist
, rnp
->gp_seq
);
1656 /* Classify any remaining callbacks. */
1657 return rcu_accelerate_cbs(rnp
, rdp
);
1661 * Update CPU-local rcu_data state to record the beginnings and ends of
1662 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1663 * structure corresponding to the current CPU, and must have irqs disabled.
1664 * Returns true if the grace-period kthread needs to be awakened.
1666 static bool __note_gp_changes(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1671 raw_lockdep_assert_held_rcu_node(rnp
);
1673 if (rdp
->gp_seq
== rnp
->gp_seq
)
1674 return false; /* Nothing to do. */
1676 /* Handle the ends of any preceding grace periods first. */
1677 if (rcu_seq_completed_gp(rdp
->gp_seq
, rnp
->gp_seq
) ||
1678 unlikely(READ_ONCE(rdp
->gpwrap
))) {
1679 ret
= rcu_advance_cbs(rnp
, rdp
); /* Advance callbacks. */
1680 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("cpuend"));
1682 ret
= rcu_accelerate_cbs(rnp
, rdp
); /* Recent callbacks. */
1685 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1686 if (rcu_seq_new_gp(rdp
->gp_seq
, rnp
->gp_seq
) ||
1687 unlikely(READ_ONCE(rdp
->gpwrap
))) {
1689 * If the current grace period is waiting for this CPU,
1690 * set up to detect a quiescent state, otherwise don't
1691 * go looking for one.
1693 trace_rcu_grace_period(rcu_state
.name
, rnp
->gp_seq
, TPS("cpustart"));
1694 need_gp
= !!(rnp
->qsmask
& rdp
->grpmask
);
1695 rdp
->cpu_no_qs
.b
.norm
= need_gp
;
1696 rdp
->core_needs_qs
= need_gp
;
1697 zero_cpu_stall_ticks(rdp
);
1699 rdp
->gp_seq
= rnp
->gp_seq
; /* Remember new grace-period state. */
1700 if (ULONG_CMP_GE(rnp
->gp_seq_needed
, rdp
->gp_seq_needed
) || rdp
->gpwrap
)
1701 rdp
->gp_seq_needed
= rnp
->gp_seq_needed
;
1702 WRITE_ONCE(rdp
->gpwrap
, false);
1703 rcu_gpnum_ovf(rnp
, rdp
);
1707 static void note_gp_changes(struct rcu_data
*rdp
)
1709 unsigned long flags
;
1711 struct rcu_node
*rnp
;
1713 local_irq_save(flags
);
1715 if ((rdp
->gp_seq
== rcu_seq_current(&rnp
->gp_seq
) &&
1716 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1717 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1718 local_irq_restore(flags
);
1721 needwake
= __note_gp_changes(rnp
, rdp
);
1722 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1724 rcu_gp_kthread_wake();
1727 static void rcu_gp_slow(int delay
)
1730 !(rcu_seq_ctr(rcu_state
.gp_seq
) %
1731 (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1732 schedule_timeout_uninterruptible(delay
);
1736 * Initialize a new grace period. Return false if no grace period required.
1738 static bool rcu_gp_init(void)
1740 unsigned long flags
;
1741 unsigned long oldmask
;
1743 struct rcu_data
*rdp
;
1744 struct rcu_node
*rnp
= rcu_get_root();
1746 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1747 raw_spin_lock_irq_rcu_node(rnp
);
1748 if (!READ_ONCE(rcu_state
.gp_flags
)) {
1749 /* Spurious wakeup, tell caller to go back to sleep. */
1750 raw_spin_unlock_irq_rcu_node(rnp
);
1753 WRITE_ONCE(rcu_state
.gp_flags
, 0); /* Clear all flags: New GP. */
1755 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1757 * Grace period already in progress, don't start another.
1758 * Not supposed to be able to happen.
1760 raw_spin_unlock_irq_rcu_node(rnp
);
1764 /* Advance to a new grace period and initialize state. */
1765 record_gp_stall_check_time();
1766 /* Record GP times before starting GP, hence rcu_seq_start(). */
1767 rcu_seq_start(&rcu_state
.gp_seq
);
1768 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
, TPS("start"));
1769 raw_spin_unlock_irq_rcu_node(rnp
);
1772 * Apply per-leaf buffered online and offline operations to the
1773 * rcu_node tree. Note that this new grace period need not wait
1774 * for subsequent online CPUs, and that quiescent-state forcing
1775 * will handle subsequent offline CPUs.
1777 rcu_state
.gp_state
= RCU_GP_ONOFF
;
1778 rcu_for_each_leaf_node(rnp
) {
1779 raw_spin_lock(&rcu_state
.ofl_lock
);
1780 raw_spin_lock_irq_rcu_node(rnp
);
1781 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1782 !rnp
->wait_blkd_tasks
) {
1783 /* Nothing to do on this leaf rcu_node structure. */
1784 raw_spin_unlock_irq_rcu_node(rnp
);
1785 raw_spin_unlock(&rcu_state
.ofl_lock
);
1789 /* Record old state, apply changes to ->qsmaskinit field. */
1790 oldmask
= rnp
->qsmaskinit
;
1791 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1793 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1794 if (!oldmask
!= !rnp
->qsmaskinit
) {
1795 if (!oldmask
) { /* First online CPU for rcu_node. */
1796 if (!rnp
->wait_blkd_tasks
) /* Ever offline? */
1797 rcu_init_new_rnp(rnp
);
1798 } else if (rcu_preempt_has_tasks(rnp
)) {
1799 rnp
->wait_blkd_tasks
= true; /* blocked tasks */
1800 } else { /* Last offline CPU and can propagate. */
1801 rcu_cleanup_dead_rnp(rnp
);
1806 * If all waited-on tasks from prior grace period are
1807 * done, and if all this rcu_node structure's CPUs are
1808 * still offline, propagate up the rcu_node tree and
1809 * clear ->wait_blkd_tasks. Otherwise, if one of this
1810 * rcu_node structure's CPUs has since come back online,
1811 * simply clear ->wait_blkd_tasks.
1813 if (rnp
->wait_blkd_tasks
&&
1814 (!rcu_preempt_has_tasks(rnp
) || rnp
->qsmaskinit
)) {
1815 rnp
->wait_blkd_tasks
= false;
1816 if (!rnp
->qsmaskinit
)
1817 rcu_cleanup_dead_rnp(rnp
);
1820 raw_spin_unlock_irq_rcu_node(rnp
);
1821 raw_spin_unlock(&rcu_state
.ofl_lock
);
1823 rcu_gp_slow(gp_preinit_delay
); /* Races with CPU hotplug. */
1826 * Set the quiescent-state-needed bits in all the rcu_node
1827 * structures for all currently online CPUs in breadth-first
1828 * order, starting from the root rcu_node structure, relying on the
1829 * layout of the tree within the rcu_state.node[] array. Note that
1830 * other CPUs will access only the leaves of the hierarchy, thus
1831 * seeing that no grace period is in progress, at least until the
1832 * corresponding leaf node has been initialized.
1834 * The grace period cannot complete until the initialization
1835 * process finishes, because this kthread handles both.
1837 rcu_state
.gp_state
= RCU_GP_INIT
;
1838 rcu_for_each_node_breadth_first(rnp
) {
1839 rcu_gp_slow(gp_init_delay
);
1840 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1841 rdp
= this_cpu_ptr(&rcu_data
);
1842 rcu_preempt_check_blocked_tasks(rnp
);
1843 rnp
->qsmask
= rnp
->qsmaskinit
;
1844 WRITE_ONCE(rnp
->gp_seq
, rcu_state
.gp_seq
);
1845 if (rnp
== rdp
->mynode
)
1846 (void)__note_gp_changes(rnp
, rdp
);
1847 rcu_preempt_boost_start_gp(rnp
);
1848 trace_rcu_grace_period_init(rcu_state
.name
, rnp
->gp_seq
,
1849 rnp
->level
, rnp
->grplo
,
1850 rnp
->grphi
, rnp
->qsmask
);
1851 /* Quiescent states for tasks on any now-offline CPUs. */
1852 mask
= rnp
->qsmask
& ~rnp
->qsmaskinitnext
;
1853 rnp
->rcu_gp_init_mask
= mask
;
1854 if ((mask
|| rnp
->wait_blkd_tasks
) && rcu_is_leaf_node(rnp
))
1855 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
1857 raw_spin_unlock_irq_rcu_node(rnp
);
1858 cond_resched_tasks_rcu_qs();
1859 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1866 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1869 static bool rcu_gp_fqs_check_wake(int *gfp
)
1871 struct rcu_node
*rnp
= rcu_get_root();
1873 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1874 *gfp
= READ_ONCE(rcu_state
.gp_flags
);
1875 if (*gfp
& RCU_GP_FLAG_FQS
)
1878 /* The current grace period has completed. */
1879 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
1886 * Do one round of quiescent-state forcing.
1888 static void rcu_gp_fqs(bool first_time
)
1890 struct rcu_node
*rnp
= rcu_get_root();
1892 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1893 rcu_state
.n_force_qs
++;
1895 /* Collect dyntick-idle snapshots. */
1896 force_qs_rnp(dyntick_save_progress_counter
);
1898 /* Handle dyntick-idle and offline CPUs. */
1899 force_qs_rnp(rcu_implicit_dynticks_qs
);
1901 /* Clear flag to prevent immediate re-entry. */
1902 if (READ_ONCE(rcu_state
.gp_flags
) & RCU_GP_FLAG_FQS
) {
1903 raw_spin_lock_irq_rcu_node(rnp
);
1904 WRITE_ONCE(rcu_state
.gp_flags
,
1905 READ_ONCE(rcu_state
.gp_flags
) & ~RCU_GP_FLAG_FQS
);
1906 raw_spin_unlock_irq_rcu_node(rnp
);
1911 * Loop doing repeated quiescent-state forcing until the grace period ends.
1913 static void rcu_gp_fqs_loop(void)
1919 struct rcu_node
*rnp
= rcu_get_root();
1921 first_gp_fqs
= true;
1922 j
= READ_ONCE(jiffies_till_first_fqs
);
1926 rcu_state
.jiffies_force_qs
= jiffies
+ j
;
1927 WRITE_ONCE(rcu_state
.jiffies_kick_kthreads
,
1930 trace_rcu_grace_period(rcu_state
.name
,
1931 READ_ONCE(rcu_state
.gp_seq
),
1933 rcu_state
.gp_state
= RCU_GP_WAIT_FQS
;
1934 ret
= swait_event_idle_timeout_exclusive(
1935 rcu_state
.gp_wq
, rcu_gp_fqs_check_wake(&gf
), j
);
1936 rcu_state
.gp_state
= RCU_GP_DOING_FQS
;
1937 /* Locking provides needed memory barriers. */
1938 /* If grace period done, leave loop. */
1939 if (!READ_ONCE(rnp
->qsmask
) &&
1940 !rcu_preempt_blocked_readers_cgp(rnp
))
1942 /* If time for quiescent-state forcing, do it. */
1943 if (ULONG_CMP_GE(jiffies
, rcu_state
.jiffies_force_qs
) ||
1944 (gf
& RCU_GP_FLAG_FQS
)) {
1945 trace_rcu_grace_period(rcu_state
.name
,
1946 READ_ONCE(rcu_state
.gp_seq
),
1948 rcu_gp_fqs(first_gp_fqs
);
1949 first_gp_fqs
= false;
1950 trace_rcu_grace_period(rcu_state
.name
,
1951 READ_ONCE(rcu_state
.gp_seq
),
1953 cond_resched_tasks_rcu_qs();
1954 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1955 ret
= 0; /* Force full wait till next FQS. */
1956 j
= READ_ONCE(jiffies_till_next_fqs
);
1958 /* Deal with stray signal. */
1959 cond_resched_tasks_rcu_qs();
1960 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1961 WARN_ON(signal_pending(current
));
1962 trace_rcu_grace_period(rcu_state
.name
,
1963 READ_ONCE(rcu_state
.gp_seq
),
1965 ret
= 1; /* Keep old FQS timing. */
1967 if (time_after(jiffies
, rcu_state
.jiffies_force_qs
))
1970 j
= rcu_state
.jiffies_force_qs
- j
;
1976 * Clean up after the old grace period.
1978 static void rcu_gp_cleanup(void)
1980 unsigned long gp_duration
;
1981 bool needgp
= false;
1982 unsigned long new_gp_seq
;
1983 struct rcu_data
*rdp
;
1984 struct rcu_node
*rnp
= rcu_get_root();
1985 struct swait_queue_head
*sq
;
1987 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1988 raw_spin_lock_irq_rcu_node(rnp
);
1989 gp_duration
= jiffies
- rcu_state
.gp_start
;
1990 if (gp_duration
> rcu_state
.gp_max
)
1991 rcu_state
.gp_max
= gp_duration
;
1994 * We know the grace period is complete, but to everyone else
1995 * it appears to still be ongoing. But it is also the case
1996 * that to everyone else it looks like there is nothing that
1997 * they can do to advance the grace period. It is therefore
1998 * safe for us to drop the lock in order to mark the grace
1999 * period as completed in all of the rcu_node structures.
2001 raw_spin_unlock_irq_rcu_node(rnp
);
2004 * Propagate new ->gp_seq value to rcu_node structures so that
2005 * other CPUs don't have to wait until the start of the next grace
2006 * period to process their callbacks. This also avoids some nasty
2007 * RCU grace-period initialization races by forcing the end of
2008 * the current grace period to be completely recorded in all of
2009 * the rcu_node structures before the beginning of the next grace
2010 * period is recorded in any of the rcu_node structures.
2012 new_gp_seq
= rcu_state
.gp_seq
;
2013 rcu_seq_end(&new_gp_seq
);
2014 rcu_for_each_node_breadth_first(rnp
) {
2015 raw_spin_lock_irq_rcu_node(rnp
);
2016 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
2017 dump_blkd_tasks(rnp
, 10);
2018 WARN_ON_ONCE(rnp
->qsmask
);
2019 WRITE_ONCE(rnp
->gp_seq
, new_gp_seq
);
2020 rdp
= this_cpu_ptr(&rcu_data
);
2021 if (rnp
== rdp
->mynode
)
2022 needgp
= __note_gp_changes(rnp
, rdp
) || needgp
;
2023 /* smp_mb() provided by prior unlock-lock pair. */
2024 needgp
= rcu_future_gp_cleanup(rnp
) || needgp
;
2025 sq
= rcu_nocb_gp_get(rnp
);
2026 raw_spin_unlock_irq_rcu_node(rnp
);
2027 rcu_nocb_gp_cleanup(sq
);
2028 cond_resched_tasks_rcu_qs();
2029 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
2030 rcu_gp_slow(gp_cleanup_delay
);
2032 rnp
= rcu_get_root();
2033 raw_spin_lock_irq_rcu_node(rnp
); /* GP before ->gp_seq update. */
2035 /* Declare grace period done. */
2036 rcu_seq_end(&rcu_state
.gp_seq
);
2037 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
, TPS("end"));
2038 rcu_state
.gp_state
= RCU_GP_IDLE
;
2039 /* Check for GP requests since above loop. */
2040 rdp
= this_cpu_ptr(&rcu_data
);
2041 if (!needgp
&& ULONG_CMP_LT(rnp
->gp_seq
, rnp
->gp_seq_needed
)) {
2042 trace_rcu_this_gp(rnp
, rdp
, rnp
->gp_seq_needed
,
2043 TPS("CleanupMore"));
2046 /* Advance CBs to reduce false positives below. */
2047 if (!rcu_accelerate_cbs(rnp
, rdp
) && needgp
) {
2048 WRITE_ONCE(rcu_state
.gp_flags
, RCU_GP_FLAG_INIT
);
2049 rcu_state
.gp_req_activity
= jiffies
;
2050 trace_rcu_grace_period(rcu_state
.name
,
2051 READ_ONCE(rcu_state
.gp_seq
),
2054 WRITE_ONCE(rcu_state
.gp_flags
,
2055 rcu_state
.gp_flags
& RCU_GP_FLAG_INIT
);
2057 raw_spin_unlock_irq_rcu_node(rnp
);
2061 * Body of kthread that handles grace periods.
2063 static int __noreturn
rcu_gp_kthread(void *unused
)
2065 rcu_bind_gp_kthread();
2068 /* Handle grace-period start. */
2070 trace_rcu_grace_period(rcu_state
.name
,
2071 READ_ONCE(rcu_state
.gp_seq
),
2073 rcu_state
.gp_state
= RCU_GP_WAIT_GPS
;
2074 swait_event_idle_exclusive(rcu_state
.gp_wq
,
2075 READ_ONCE(rcu_state
.gp_flags
) &
2077 rcu_state
.gp_state
= RCU_GP_DONE_GPS
;
2078 /* Locking provides needed memory barrier. */
2081 cond_resched_tasks_rcu_qs();
2082 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
2083 WARN_ON(signal_pending(current
));
2084 trace_rcu_grace_period(rcu_state
.name
,
2085 READ_ONCE(rcu_state
.gp_seq
),
2089 /* Handle quiescent-state forcing. */
2092 /* Handle grace-period end. */
2093 rcu_state
.gp_state
= RCU_GP_CLEANUP
;
2095 rcu_state
.gp_state
= RCU_GP_CLEANED
;
2100 * Report a full set of quiescent states to the rcu_state data structure.
2101 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2102 * another grace period is required. Whether we wake the grace-period
2103 * kthread or it awakens itself for the next round of quiescent-state
2104 * forcing, that kthread will clean up after the just-completed grace
2105 * period. Note that the caller must hold rnp->lock, which is released
2108 static void rcu_report_qs_rsp(unsigned long flags
)
2109 __releases(rcu_get_root()->lock
)
2111 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2112 WARN_ON_ONCE(!rcu_gp_in_progress());
2113 WRITE_ONCE(rcu_state
.gp_flags
,
2114 READ_ONCE(rcu_state
.gp_flags
) | RCU_GP_FLAG_FQS
);
2115 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags
);
2116 rcu_gp_kthread_wake();
2120 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2121 * Allows quiescent states for a group of CPUs to be reported at one go
2122 * to the specified rcu_node structure, though all the CPUs in the group
2123 * must be represented by the same rcu_node structure (which need not be a
2124 * leaf rcu_node structure, though it often will be). The gps parameter
2125 * is the grace-period snapshot, which means that the quiescent states
2126 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2127 * must be held upon entry, and it is released before return.
2129 * As a special case, if mask is zero, the bit-already-cleared check is
2130 * disabled. This allows propagating quiescent state due to resumed tasks
2131 * during grace-period initialization.
2133 static void rcu_report_qs_rnp(unsigned long mask
, struct rcu_node
*rnp
,
2134 unsigned long gps
, unsigned long flags
)
2135 __releases(rnp
->lock
)
2137 unsigned long oldmask
= 0;
2138 struct rcu_node
*rnp_c
;
2140 raw_lockdep_assert_held_rcu_node(rnp
);
2142 /* Walk up the rcu_node hierarchy. */
2144 if ((!(rnp
->qsmask
& mask
) && mask
) || rnp
->gp_seq
!= gps
) {
2147 * Our bit has already been cleared, or the
2148 * relevant grace period is already over, so done.
2150 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2153 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2154 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
) &&
2155 rcu_preempt_blocked_readers_cgp(rnp
));
2156 rnp
->qsmask
&= ~mask
;
2157 trace_rcu_quiescent_state_report(rcu_state
.name
, rnp
->gp_seq
,
2158 mask
, rnp
->qsmask
, rnp
->level
,
2159 rnp
->grplo
, rnp
->grphi
,
2161 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2163 /* Other bits still set at this level, so done. */
2164 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2167 rnp
->completedqs
= rnp
->gp_seq
;
2168 mask
= rnp
->grpmask
;
2169 if (rnp
->parent
== NULL
) {
2171 /* No more levels. Exit loop holding root lock. */
2175 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2178 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2179 oldmask
= rnp_c
->qsmask
;
2183 * Get here if we are the last CPU to pass through a quiescent
2184 * state for this grace period. Invoke rcu_report_qs_rsp()
2185 * to clean up and start the next grace period if one is needed.
2187 rcu_report_qs_rsp(flags
); /* releases rnp->lock. */
2191 * Record a quiescent state for all tasks that were previously queued
2192 * on the specified rcu_node structure and that were blocking the current
2193 * RCU grace period. The caller must hold the corresponding rnp->lock with
2194 * irqs disabled, and this lock is released upon return, but irqs remain
2197 static void __maybe_unused
2198 rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
2199 __releases(rnp
->lock
)
2203 struct rcu_node
*rnp_p
;
2205 raw_lockdep_assert_held_rcu_node(rnp
);
2206 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT
)) ||
2207 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)) ||
2209 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2210 return; /* Still need more quiescent states! */
2213 rnp
->completedqs
= rnp
->gp_seq
;
2214 rnp_p
= rnp
->parent
;
2215 if (rnp_p
== NULL
) {
2217 * Only one rcu_node structure in the tree, so don't
2218 * try to report up to its nonexistent parent!
2220 rcu_report_qs_rsp(flags
);
2224 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2226 mask
= rnp
->grpmask
;
2227 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2228 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2229 rcu_report_qs_rnp(mask
, rnp_p
, gps
, flags
);
2233 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2234 * structure. This must be called from the specified CPU.
2237 rcu_report_qs_rdp(int cpu
, struct rcu_data
*rdp
)
2239 unsigned long flags
;
2242 struct rcu_node
*rnp
;
2245 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2246 if (rdp
->cpu_no_qs
.b
.norm
|| rdp
->gp_seq
!= rnp
->gp_seq
||
2250 * The grace period in which this quiescent state was
2251 * recorded has ended, so don't report it upwards.
2252 * We will instead need a new quiescent state that lies
2253 * within the current grace period.
2255 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2256 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2259 mask
= rdp
->grpmask
;
2260 if ((rnp
->qsmask
& mask
) == 0) {
2261 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2263 rdp
->core_needs_qs
= false;
2266 * This GP can't end until cpu checks in, so all of our
2267 * callbacks can be processed during the next GP.
2269 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
2271 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
2272 /* ^^^ Released rnp->lock */
2274 rcu_gp_kthread_wake();
2279 * Check to see if there is a new grace period of which this CPU
2280 * is not yet aware, and if so, set up local rcu_data state for it.
2281 * Otherwise, see if this CPU has just passed through its first
2282 * quiescent state for this grace period, and record that fact if so.
2285 rcu_check_quiescent_state(struct rcu_data
*rdp
)
2287 /* Check for grace-period ends and beginnings. */
2288 note_gp_changes(rdp
);
2291 * Does this CPU still need to do its part for current grace period?
2292 * If no, return and let the other CPUs do their part as well.
2294 if (!rdp
->core_needs_qs
)
2298 * Was there a quiescent state since the beginning of the grace
2299 * period? If no, then exit and wait for the next call.
2301 if (rdp
->cpu_no_qs
.b
.norm
)
2305 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2308 rcu_report_qs_rdp(rdp
->cpu
, rdp
);
2312 * Near the end of the offline process. Trace the fact that this CPU
2315 int rcutree_dying_cpu(unsigned int cpu
)
2317 RCU_TRACE(bool blkd
;)
2318 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);)
2319 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
;)
2321 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2324 RCU_TRACE(blkd
= !!(rnp
->qsmask
& rdp
->grpmask
);)
2325 trace_rcu_grace_period(rcu_state
.name
, rnp
->gp_seq
,
2326 blkd
? TPS("cpuofl") : TPS("cpuofl-bgp"));
2331 * All CPUs for the specified rcu_node structure have gone offline,
2332 * and all tasks that were preempted within an RCU read-side critical
2333 * section while running on one of those CPUs have since exited their RCU
2334 * read-side critical section. Some other CPU is reporting this fact with
2335 * the specified rcu_node structure's ->lock held and interrupts disabled.
2336 * This function therefore goes up the tree of rcu_node structures,
2337 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2338 * the leaf rcu_node structure's ->qsmaskinit field has already been
2341 * This function does check that the specified rcu_node structure has
2342 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2343 * prematurely. That said, invoking it after the fact will cost you
2344 * a needless lock acquisition. So once it has done its work, don't
2347 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2350 struct rcu_node
*rnp
= rnp_leaf
;
2352 raw_lockdep_assert_held_rcu_node(rnp_leaf
);
2353 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2354 WARN_ON_ONCE(rnp_leaf
->qsmaskinit
) ||
2355 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf
)))
2358 mask
= rnp
->grpmask
;
2362 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2363 rnp
->qsmaskinit
&= ~mask
;
2364 /* Between grace periods, so better already be zero! */
2365 WARN_ON_ONCE(rnp
->qsmask
);
2366 if (rnp
->qsmaskinit
) {
2367 raw_spin_unlock_rcu_node(rnp
);
2368 /* irqs remain disabled. */
2371 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2376 * The CPU has been completely removed, and some other CPU is reporting
2377 * this fact from process context. Do the remainder of the cleanup.
2378 * There can only be one CPU hotplug operation at a time, so no need for
2381 int rcutree_dead_cpu(unsigned int cpu
)
2383 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2384 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2386 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2389 /* Adjust any no-longer-needed kthreads. */
2390 rcu_boost_kthread_setaffinity(rnp
, -1);
2391 /* Do any needed no-CB deferred wakeups from this CPU. */
2392 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data
, cpu
));
2397 * Invoke any RCU callbacks that have made it to the end of their grace
2398 * period. Thottle as specified by rdp->blimit.
2400 static void rcu_do_batch(struct rcu_data
*rdp
)
2402 unsigned long flags
;
2403 struct rcu_head
*rhp
;
2404 struct rcu_cblist rcl
= RCU_CBLIST_INITIALIZER(rcl
);
2407 /* If no callbacks are ready, just return. */
2408 if (!rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2409 trace_rcu_batch_start(rcu_state
.name
,
2410 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2411 rcu_segcblist_n_cbs(&rdp
->cblist
), 0);
2412 trace_rcu_batch_end(rcu_state
.name
, 0,
2413 !rcu_segcblist_empty(&rdp
->cblist
),
2414 need_resched(), is_idle_task(current
),
2415 rcu_is_callbacks_kthread());
2420 * Extract the list of ready callbacks, disabling to prevent
2421 * races with call_rcu() from interrupt handlers. Leave the
2422 * callback counts, as rcu_barrier() needs to be conservative.
2424 local_irq_save(flags
);
2425 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2427 trace_rcu_batch_start(rcu_state
.name
,
2428 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2429 rcu_segcblist_n_cbs(&rdp
->cblist
), bl
);
2430 rcu_segcblist_extract_done_cbs(&rdp
->cblist
, &rcl
);
2431 local_irq_restore(flags
);
2433 /* Invoke callbacks. */
2434 rhp
= rcu_cblist_dequeue(&rcl
);
2435 for (; rhp
; rhp
= rcu_cblist_dequeue(&rcl
)) {
2436 debug_rcu_head_unqueue(rhp
);
2437 if (__rcu_reclaim(rcu_state
.name
, rhp
))
2438 rcu_cblist_dequeued_lazy(&rcl
);
2440 * Stop only if limit reached and CPU has something to do.
2441 * Note: The rcl structure counts down from zero.
2443 if (-rcl
.len
>= bl
&&
2445 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2449 local_irq_save(flags
);
2451 trace_rcu_batch_end(rcu_state
.name
, count
, !!rcl
.head
, need_resched(),
2452 is_idle_task(current
), rcu_is_callbacks_kthread());
2454 /* Update counts and requeue any remaining callbacks. */
2455 rcu_segcblist_insert_done_cbs(&rdp
->cblist
, &rcl
);
2456 smp_mb(); /* List handling before counting for rcu_barrier(). */
2457 rcu_segcblist_insert_count(&rdp
->cblist
, &rcl
);
2459 /* Reinstate batch limit if we have worked down the excess. */
2460 count
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2461 if (rdp
->blimit
== LONG_MAX
&& count
<= qlowmark
)
2462 rdp
->blimit
= blimit
;
2464 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2465 if (count
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2466 rdp
->qlen_last_fqs_check
= 0;
2467 rdp
->n_force_qs_snap
= rcu_state
.n_force_qs
;
2468 } else if (count
< rdp
->qlen_last_fqs_check
- qhimark
)
2469 rdp
->qlen_last_fqs_check
= count
;
2472 * The following usually indicates a double call_rcu(). To track
2473 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2475 WARN_ON_ONCE(rcu_segcblist_empty(&rdp
->cblist
) != (count
== 0));
2477 local_irq_restore(flags
);
2479 /* Re-invoke RCU core processing if there are callbacks remaining. */
2480 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2485 * Check to see if this CPU is in a non-context-switch quiescent state
2486 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2487 * Also schedule RCU core processing.
2489 * This function must be called from hardirq context. It is normally
2490 * invoked from the scheduling-clock interrupt.
2492 void rcu_check_callbacks(int user
)
2494 trace_rcu_utilization(TPS("Start scheduler-tick"));
2495 raw_cpu_inc(rcu_data
.ticks_this_gp
);
2496 /* The load-acquire pairs with the store-release setting to true. */
2497 if (smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
))) {
2498 /* Idle and userspace execution already are quiescent states. */
2499 if (!rcu_is_cpu_rrupt_from_idle() && !user
) {
2500 set_tsk_need_resched(current
);
2501 set_preempt_need_resched();
2503 __this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
2505 rcu_flavor_check_callbacks(user
);
2509 trace_rcu_utilization(TPS("End scheduler-tick"));
2513 * Scan the leaf rcu_node structures, processing dyntick state for any that
2514 * have not yet encountered a quiescent state, using the function specified.
2515 * Also initiate boosting for any threads blocked on the root rcu_node.
2517 * The caller must have suppressed start of new grace periods.
2519 static void force_qs_rnp(int (*f
)(struct rcu_data
*rdp
))
2522 unsigned long flags
;
2524 struct rcu_node
*rnp
;
2526 rcu_for_each_leaf_node(rnp
) {
2527 cond_resched_tasks_rcu_qs();
2529 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2530 if (rnp
->qsmask
== 0) {
2531 if (!IS_ENABLED(CONFIG_PREEMPT
) ||
2532 rcu_preempt_blocked_readers_cgp(rnp
)) {
2534 * No point in scanning bits because they
2535 * are all zero. But we might need to
2536 * priority-boost blocked readers.
2538 rcu_initiate_boost(rnp
, flags
);
2539 /* rcu_initiate_boost() releases rnp->lock */
2542 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2545 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
2546 unsigned long bit
= leaf_node_cpu_bit(rnp
, cpu
);
2547 if ((rnp
->qsmask
& bit
) != 0) {
2548 if (f(per_cpu_ptr(&rcu_data
, cpu
)))
2553 /* Idle/offline CPUs, report (releases rnp->lock). */
2554 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
2556 /* Nothing to do here, so just drop the lock. */
2557 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2563 * Force quiescent states on reluctant CPUs, and also detect which
2564 * CPUs are in dyntick-idle mode.
2566 static void force_quiescent_state(void)
2568 unsigned long flags
;
2570 struct rcu_node
*rnp
;
2571 struct rcu_node
*rnp_old
= NULL
;
2573 /* Funnel through hierarchy to reduce memory contention. */
2574 rnp
= __this_cpu_read(rcu_data
.mynode
);
2575 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2576 ret
= (READ_ONCE(rcu_state
.gp_flags
) & RCU_GP_FLAG_FQS
) ||
2577 !raw_spin_trylock(&rnp
->fqslock
);
2578 if (rnp_old
!= NULL
)
2579 raw_spin_unlock(&rnp_old
->fqslock
);
2584 /* rnp_old == rcu_get_root(), rnp == NULL. */
2586 /* Reached the root of the rcu_node tree, acquire lock. */
2587 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2588 raw_spin_unlock(&rnp_old
->fqslock
);
2589 if (READ_ONCE(rcu_state
.gp_flags
) & RCU_GP_FLAG_FQS
) {
2590 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2591 return; /* Someone beat us to it. */
2593 WRITE_ONCE(rcu_state
.gp_flags
,
2594 READ_ONCE(rcu_state
.gp_flags
) | RCU_GP_FLAG_FQS
);
2595 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2596 rcu_gp_kthread_wake();
2600 * This function checks for grace-period requests that fail to motivate
2601 * RCU to come out of its idle mode.
2604 rcu_check_gp_start_stall(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
2606 const unsigned long gpssdelay
= rcu_jiffies_till_stall_check() * HZ
;
2607 unsigned long flags
;
2609 struct rcu_node
*rnp_root
= rcu_get_root();
2610 static atomic_t warned
= ATOMIC_INIT(0);
2612 if (!IS_ENABLED(CONFIG_PROVE_RCU
) || rcu_gp_in_progress() ||
2613 ULONG_CMP_GE(rnp_root
->gp_seq
, rnp_root
->gp_seq_needed
))
2615 j
= jiffies
; /* Expensive access, and in common case don't get here. */
2616 if (time_before(j
, READ_ONCE(rcu_state
.gp_req_activity
) + gpssdelay
) ||
2617 time_before(j
, READ_ONCE(rcu_state
.gp_activity
) + gpssdelay
) ||
2618 atomic_read(&warned
))
2621 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2623 if (rcu_gp_in_progress() ||
2624 ULONG_CMP_GE(rnp_root
->gp_seq
, rnp_root
->gp_seq_needed
) ||
2625 time_before(j
, READ_ONCE(rcu_state
.gp_req_activity
) + gpssdelay
) ||
2626 time_before(j
, READ_ONCE(rcu_state
.gp_activity
) + gpssdelay
) ||
2627 atomic_read(&warned
)) {
2628 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2631 /* Hold onto the leaf lock to make others see warned==1. */
2633 if (rnp_root
!= rnp
)
2634 raw_spin_lock_rcu_node(rnp_root
); /* irqs already disabled. */
2636 if (rcu_gp_in_progress() ||
2637 ULONG_CMP_GE(rnp_root
->gp_seq
, rnp_root
->gp_seq_needed
) ||
2638 time_before(j
, rcu_state
.gp_req_activity
+ gpssdelay
) ||
2639 time_before(j
, rcu_state
.gp_activity
+ gpssdelay
) ||
2640 atomic_xchg(&warned
, 1)) {
2641 raw_spin_unlock_rcu_node(rnp_root
); /* irqs remain disabled. */
2642 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2645 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
2646 __func__
, (long)READ_ONCE(rcu_state
.gp_seq
),
2647 (long)READ_ONCE(rnp_root
->gp_seq_needed
),
2648 j
- rcu_state
.gp_req_activity
, j
- rcu_state
.gp_activity
,
2649 rcu_state
.gp_flags
, rcu_state
.gp_state
, rcu_state
.name
,
2650 rcu_state
.gp_kthread
? rcu_state
.gp_kthread
->state
: 0x1ffffL
);
2652 if (rnp_root
!= rnp
)
2653 raw_spin_unlock_rcu_node(rnp_root
);
2654 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2658 * This does the RCU core processing work for the specified rcu_data
2659 * structures. This may be called only from the CPU to whom the rdp
2662 static __latent_entropy
void rcu_process_callbacks(struct softirq_action
*unused
)
2664 unsigned long flags
;
2665 struct rcu_data
*rdp
= raw_cpu_ptr(&rcu_data
);
2666 struct rcu_node
*rnp
= rdp
->mynode
;
2668 if (cpu_is_offline(smp_processor_id()))
2670 trace_rcu_utilization(TPS("Start RCU core"));
2671 WARN_ON_ONCE(!rdp
->beenonline
);
2673 /* Report any deferred quiescent states if preemption enabled. */
2674 if (!(preempt_count() & PREEMPT_MASK
)) {
2675 rcu_preempt_deferred_qs(current
);
2676 } else if (rcu_preempt_need_deferred_qs(current
)) {
2677 set_tsk_need_resched(current
);
2678 set_preempt_need_resched();
2681 /* Update RCU state based on any recent quiescent states. */
2682 rcu_check_quiescent_state(rdp
);
2684 /* No grace period and unregistered callbacks? */
2685 if (!rcu_gp_in_progress() &&
2686 rcu_segcblist_is_enabled(&rdp
->cblist
)) {
2687 local_irq_save(flags
);
2688 if (!rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
2689 rcu_accelerate_cbs_unlocked(rnp
, rdp
);
2690 local_irq_restore(flags
);
2693 rcu_check_gp_start_stall(rnp
, rdp
);
2695 /* If there are callbacks ready, invoke them. */
2696 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2697 invoke_rcu_callbacks(rdp
);
2699 /* Do any needed deferred wakeups of rcuo kthreads. */
2700 do_nocb_deferred_wakeup(rdp
);
2701 trace_rcu_utilization(TPS("End RCU core"));
2705 * Schedule RCU callback invocation. If the running implementation of RCU
2706 * does not support RCU priority boosting, just do a direct call, otherwise
2707 * wake up the per-CPU kernel kthread. Note that because we are running
2708 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2709 * cannot disappear out from under us.
2711 static void invoke_rcu_callbacks(struct rcu_data
*rdp
)
2713 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
2715 if (likely(!rcu_state
.boost
)) {
2719 invoke_rcu_callbacks_kthread();
2722 static void invoke_rcu_core(void)
2724 if (cpu_online(smp_processor_id()))
2725 raise_softirq(RCU_SOFTIRQ
);
2729 * Handle any core-RCU processing required by a call_rcu() invocation.
2731 static void __call_rcu_core(struct rcu_data
*rdp
, struct rcu_head
*head
,
2732 unsigned long flags
)
2735 * If called from an extended quiescent state, invoke the RCU
2736 * core in order to force a re-evaluation of RCU's idleness.
2738 if (!rcu_is_watching())
2741 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2742 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
2746 * Force the grace period if too many callbacks or too long waiting.
2747 * Enforce hysteresis, and don't invoke force_quiescent_state()
2748 * if some other CPU has recently done so. Also, don't bother
2749 * invoking force_quiescent_state() if the newly enqueued callback
2750 * is the only one waiting for a grace period to complete.
2752 if (unlikely(rcu_segcblist_n_cbs(&rdp
->cblist
) >
2753 rdp
->qlen_last_fqs_check
+ qhimark
)) {
2755 /* Are we ignoring a completed grace period? */
2756 note_gp_changes(rdp
);
2758 /* Start a new grace period if one not already started. */
2759 if (!rcu_gp_in_progress()) {
2760 rcu_accelerate_cbs_unlocked(rdp
->mynode
, rdp
);
2762 /* Give the grace period a kick. */
2763 rdp
->blimit
= LONG_MAX
;
2764 if (rcu_state
.n_force_qs
== rdp
->n_force_qs_snap
&&
2765 rcu_segcblist_first_pend_cb(&rdp
->cblist
) != head
)
2766 force_quiescent_state();
2767 rdp
->n_force_qs_snap
= rcu_state
.n_force_qs
;
2768 rdp
->qlen_last_fqs_check
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2774 * RCU callback function to leak a callback.
2776 static void rcu_leak_callback(struct rcu_head
*rhp
)
2781 * Helper function for call_rcu() and friends. The cpu argument will
2782 * normally be -1, indicating "currently running CPU". It may specify
2783 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier()
2784 * is expected to specify a CPU.
2787 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
, int cpu
, bool lazy
)
2789 unsigned long flags
;
2790 struct rcu_data
*rdp
;
2792 /* Misaligned rcu_head! */
2793 WARN_ON_ONCE((unsigned long)head
& (sizeof(void *) - 1));
2795 if (debug_rcu_head_queue(head
)) {
2797 * Probable double call_rcu(), so leak the callback.
2798 * Use rcu:rcu_callback trace event to find the previous
2799 * time callback was passed to __call_rcu().
2801 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2803 WRITE_ONCE(head
->func
, rcu_leak_callback
);
2808 local_irq_save(flags
);
2809 rdp
= this_cpu_ptr(&rcu_data
);
2811 /* Add the callback to our list. */
2812 if (unlikely(!rcu_segcblist_is_enabled(&rdp
->cblist
)) || cpu
!= -1) {
2816 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2817 if (likely(rdp
->mynode
)) {
2818 /* Post-boot, so this should be for a no-CBs CPU. */
2819 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
2820 WARN_ON_ONCE(offline
);
2821 /* Offline CPU, _call_rcu() illegal, leak callback. */
2822 local_irq_restore(flags
);
2826 * Very early boot, before rcu_init(). Initialize if needed
2827 * and then drop through to queue the callback.
2830 WARN_ON_ONCE(!rcu_is_watching());
2831 if (rcu_segcblist_empty(&rdp
->cblist
))
2832 rcu_segcblist_init(&rdp
->cblist
);
2834 rcu_segcblist_enqueue(&rdp
->cblist
, head
, lazy
);
2836 rcu_idle_count_callbacks_posted();
2838 if (__is_kfree_rcu_offset((unsigned long)func
))
2839 trace_rcu_kfree_callback(rcu_state
.name
, head
,
2840 (unsigned long)func
,
2841 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2842 rcu_segcblist_n_cbs(&rdp
->cblist
));
2844 trace_rcu_callback(rcu_state
.name
, head
,
2845 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2846 rcu_segcblist_n_cbs(&rdp
->cblist
));
2848 /* Go handle any RCU core processing required. */
2849 __call_rcu_core(rdp
, head
, flags
);
2850 local_irq_restore(flags
);
2854 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2855 * @head: structure to be used for queueing the RCU updates.
2856 * @func: actual callback function to be invoked after the grace period
2858 * The callback function will be invoked some time after a full grace
2859 * period elapses, in other words after all pre-existing RCU read-side
2860 * critical sections have completed. However, the callback function
2861 * might well execute concurrently with RCU read-side critical sections
2862 * that started after call_rcu() was invoked. RCU read-side critical
2863 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2864 * may be nested. In addition, regions of code across which interrupts,
2865 * preemption, or softirqs have been disabled also serve as RCU read-side
2866 * critical sections. This includes hardware interrupt handlers, softirq
2867 * handlers, and NMI handlers.
2869 * Note that all CPUs must agree that the grace period extended beyond
2870 * all pre-existing RCU read-side critical section. On systems with more
2871 * than one CPU, this means that when "func()" is invoked, each CPU is
2872 * guaranteed to have executed a full memory barrier since the end of its
2873 * last RCU read-side critical section whose beginning preceded the call
2874 * to call_rcu(). It also means that each CPU executing an RCU read-side
2875 * critical section that continues beyond the start of "func()" must have
2876 * executed a memory barrier after the call_rcu() but before the beginning
2877 * of that RCU read-side critical section. Note that these guarantees
2878 * include CPUs that are offline, idle, or executing in user mode, as
2879 * well as CPUs that are executing in the kernel.
2881 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2882 * resulting RCU callback function "func()", then both CPU A and CPU B are
2883 * guaranteed to execute a full memory barrier during the time interval
2884 * between the call to call_rcu() and the invocation of "func()" -- even
2885 * if CPU A and CPU B are the same CPU (but again only if the system has
2886 * more than one CPU).
2888 void call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
2890 __call_rcu(head
, func
, -1, 0);
2892 EXPORT_SYMBOL_GPL(call_rcu
);
2895 * Queue an RCU callback for lazy invocation after a grace period.
2896 * This will likely be later named something like "call_rcu_lazy()",
2897 * but this change will require some way of tagging the lazy RCU
2898 * callbacks in the list of pending callbacks. Until then, this
2899 * function may only be called from __kfree_rcu().
2901 void kfree_call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
2903 __call_rcu(head
, func
, -1, 1);
2905 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
2908 * get_state_synchronize_rcu - Snapshot current RCU state
2910 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2911 * to determine whether or not a full grace period has elapsed in the
2914 unsigned long get_state_synchronize_rcu(void)
2917 * Any prior manipulation of RCU-protected data must happen
2918 * before the load from ->gp_seq.
2921 return rcu_seq_snap(&rcu_state
.gp_seq
);
2923 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
2926 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2928 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2930 * If a full RCU grace period has elapsed since the earlier call to
2931 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2932 * synchronize_rcu() to wait for a full grace period.
2934 * Yes, this function does not take counter wrap into account. But
2935 * counter wrap is harmless. If the counter wraps, we have waited for
2936 * more than 2 billion grace periods (and way more on a 64-bit system!),
2937 * so waiting for one additional grace period should be just fine.
2939 void cond_synchronize_rcu(unsigned long oldstate
)
2941 if (!rcu_seq_done(&rcu_state
.gp_seq
, oldstate
))
2944 smp_mb(); /* Ensure GP ends before subsequent accesses. */
2946 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
2949 * Check to see if there is any immediate RCU-related work to be done by
2950 * the current CPU, returning 1 if so and zero otherwise. The checks are
2951 * in order of increasing expense: checks that can be carried out against
2952 * CPU-local state are performed first. However, we must check for CPU
2953 * stalls first, else we might not get a chance.
2955 static int rcu_pending(void)
2957 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
2958 struct rcu_node
*rnp
= rdp
->mynode
;
2960 /* Check for CPU stalls, if enabled. */
2961 check_cpu_stall(rdp
);
2963 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2964 if (rcu_nohz_full_cpu())
2967 /* Is the RCU core waiting for a quiescent state from this CPU? */
2968 if (rdp
->core_needs_qs
&& !rdp
->cpu_no_qs
.b
.norm
)
2971 /* Does this CPU have callbacks ready to invoke? */
2972 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2975 /* Has RCU gone idle with this CPU needing another grace period? */
2976 if (!rcu_gp_in_progress() &&
2977 rcu_segcblist_is_enabled(&rdp
->cblist
) &&
2978 !rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
2981 /* Have RCU grace period completed or started? */
2982 if (rcu_seq_current(&rnp
->gp_seq
) != rdp
->gp_seq
||
2983 unlikely(READ_ONCE(rdp
->gpwrap
))) /* outside lock */
2986 /* Does this CPU need a deferred NOCB wakeup? */
2987 if (rcu_nocb_need_deferred_wakeup(rdp
))
2995 * Return true if the specified CPU has any callback. If all_lazy is
2996 * non-NULL, store an indication of whether all callbacks are lazy.
2997 * (If there are no callbacks, all of them are deemed to be lazy.)
2999 static bool rcu_cpu_has_callbacks(bool *all_lazy
)
3003 struct rcu_data
*rdp
;
3005 rdp
= this_cpu_ptr(&rcu_data
);
3006 if (!rcu_segcblist_empty(&rdp
->cblist
)) {
3008 if (rcu_segcblist_n_nonlazy_cbs(&rdp
->cblist
))
3017 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3018 * the compiler is expected to optimize this away.
3020 static void rcu_barrier_trace(const char *s
, int cpu
, unsigned long done
)
3022 trace_rcu_barrier(rcu_state
.name
, s
, cpu
,
3023 atomic_read(&rcu_state
.barrier_cpu_count
), done
);
3027 * RCU callback function for rcu_barrier(). If we are last, wake
3028 * up the task executing rcu_barrier().
3030 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3032 if (atomic_dec_and_test(&rcu_state
.barrier_cpu_count
)) {
3033 rcu_barrier_trace(TPS("LastCB"), -1,
3034 rcu_state
.barrier_sequence
);
3035 complete(&rcu_state
.barrier_completion
);
3037 rcu_barrier_trace(TPS("CB"), -1, rcu_state
.barrier_sequence
);
3042 * Called with preemption disabled, and from cross-cpu IRQ context.
3044 static void rcu_barrier_func(void *unused
)
3046 struct rcu_data
*rdp
= raw_cpu_ptr(&rcu_data
);
3048 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state
.barrier_sequence
);
3049 rdp
->barrier_head
.func
= rcu_barrier_callback
;
3050 debug_rcu_head_queue(&rdp
->barrier_head
);
3051 if (rcu_segcblist_entrain(&rdp
->cblist
, &rdp
->barrier_head
, 0)) {
3052 atomic_inc(&rcu_state
.barrier_cpu_count
);
3054 debug_rcu_head_unqueue(&rdp
->barrier_head
);
3055 rcu_barrier_trace(TPS("IRQNQ"), -1,
3056 rcu_state
.barrier_sequence
);
3061 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3063 * Note that this primitive does not necessarily wait for an RCU grace period
3064 * to complete. For example, if there are no RCU callbacks queued anywhere
3065 * in the system, then rcu_barrier() is within its rights to return
3066 * immediately, without waiting for anything, much less an RCU grace period.
3068 void rcu_barrier(void)
3071 struct rcu_data
*rdp
;
3072 unsigned long s
= rcu_seq_snap(&rcu_state
.barrier_sequence
);
3074 rcu_barrier_trace(TPS("Begin"), -1, s
);
3076 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3077 mutex_lock(&rcu_state
.barrier_mutex
);
3079 /* Did someone else do our work for us? */
3080 if (rcu_seq_done(&rcu_state
.barrier_sequence
, s
)) {
3081 rcu_barrier_trace(TPS("EarlyExit"), -1,
3082 rcu_state
.barrier_sequence
);
3083 smp_mb(); /* caller's subsequent code after above check. */
3084 mutex_unlock(&rcu_state
.barrier_mutex
);
3088 /* Mark the start of the barrier operation. */
3089 rcu_seq_start(&rcu_state
.barrier_sequence
);
3090 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state
.barrier_sequence
);
3093 * Initialize the count to one rather than to zero in order to
3094 * avoid a too-soon return to zero in case of a short grace period
3095 * (or preemption of this task). Exclude CPU-hotplug operations
3096 * to ensure that no offline CPU has callbacks queued.
3098 init_completion(&rcu_state
.barrier_completion
);
3099 atomic_set(&rcu_state
.barrier_cpu_count
, 1);
3103 * Force each CPU with callbacks to register a new callback.
3104 * When that callback is invoked, we will know that all of the
3105 * corresponding CPU's preceding callbacks have been invoked.
3107 for_each_possible_cpu(cpu
) {
3108 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
3110 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3111 if (rcu_is_nocb_cpu(cpu
)) {
3112 if (!rcu_nocb_cpu_needs_barrier(cpu
)) {
3113 rcu_barrier_trace(TPS("OfflineNoCB"), cpu
,
3114 rcu_state
.barrier_sequence
);
3116 rcu_barrier_trace(TPS("OnlineNoCB"), cpu
,
3117 rcu_state
.barrier_sequence
);
3118 smp_mb__before_atomic();
3119 atomic_inc(&rcu_state
.barrier_cpu_count
);
3120 __call_rcu(&rdp
->barrier_head
,
3121 rcu_barrier_callback
, cpu
, 0);
3123 } else if (rcu_segcblist_n_cbs(&rdp
->cblist
)) {
3124 rcu_barrier_trace(TPS("OnlineQ"), cpu
,
3125 rcu_state
.barrier_sequence
);
3126 smp_call_function_single(cpu
, rcu_barrier_func
, NULL
, 1);
3128 rcu_barrier_trace(TPS("OnlineNQ"), cpu
,
3129 rcu_state
.barrier_sequence
);
3135 * Now that we have an rcu_barrier_callback() callback on each
3136 * CPU, and thus each counted, remove the initial count.
3138 if (atomic_dec_and_test(&rcu_state
.barrier_cpu_count
))
3139 complete(&rcu_state
.barrier_completion
);
3141 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3142 wait_for_completion(&rcu_state
.barrier_completion
);
3144 /* Mark the end of the barrier operation. */
3145 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state
.barrier_sequence
);
3146 rcu_seq_end(&rcu_state
.barrier_sequence
);
3148 /* Other rcu_barrier() invocations can now safely proceed. */
3149 mutex_unlock(&rcu_state
.barrier_mutex
);
3151 EXPORT_SYMBOL_GPL(rcu_barrier
);
3154 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3155 * first CPU in a given leaf rcu_node structure coming online. The caller
3156 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3159 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
3163 struct rcu_node
*rnp
= rnp_leaf
;
3165 raw_lockdep_assert_held_rcu_node(rnp_leaf
);
3166 WARN_ON_ONCE(rnp
->wait_blkd_tasks
);
3168 mask
= rnp
->grpmask
;
3172 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
3173 oldmask
= rnp
->qsmaskinit
;
3174 rnp
->qsmaskinit
|= mask
;
3175 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
3182 * Do boot-time initialization of a CPU's per-CPU RCU data.
3185 rcu_boot_init_percpu_data(int cpu
)
3187 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3189 /* Set up local state, ensuring consistent view of global state. */
3190 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
3191 WARN_ON_ONCE(rdp
->dynticks_nesting
!= 1);
3192 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp
)));
3193 rdp
->rcu_ofl_gp_seq
= rcu_state
.gp_seq
;
3194 rdp
->rcu_ofl_gp_flags
= RCU_GP_CLEANED
;
3195 rdp
->rcu_onl_gp_seq
= rcu_state
.gp_seq
;
3196 rdp
->rcu_onl_gp_flags
= RCU_GP_CLEANED
;
3198 rcu_boot_init_nocb_percpu_data(rdp
);
3202 * Invoked early in the CPU-online process, when pretty much all services
3203 * are available. The incoming CPU is not present.
3205 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3206 * offline event can be happening at a given time. Note also that we can
3207 * accept some slop in the rsp->gp_seq access due to the fact that this
3208 * CPU cannot possibly have any RCU callbacks in flight yet.
3210 int rcutree_prepare_cpu(unsigned int cpu
)
3212 unsigned long flags
;
3213 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3214 struct rcu_node
*rnp
= rcu_get_root();
3216 /* Set up local state, ensuring consistent view of global state. */
3217 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3218 rdp
->qlen_last_fqs_check
= 0;
3219 rdp
->n_force_qs_snap
= rcu_state
.n_force_qs
;
3220 rdp
->blimit
= blimit
;
3221 if (rcu_segcblist_empty(&rdp
->cblist
) && /* No early-boot CBs? */
3222 !init_nocb_callback_list(rdp
))
3223 rcu_segcblist_init(&rdp
->cblist
); /* Re-enable callbacks. */
3224 rdp
->dynticks_nesting
= 1; /* CPU not up, no tearing. */
3225 rcu_dynticks_eqs_online();
3226 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
3229 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3230 * propagation up the rcu_node tree will happen at the beginning
3231 * of the next grace period.
3234 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
3235 rdp
->beenonline
= true; /* We have now been online. */
3236 rdp
->gp_seq
= rnp
->gp_seq
;
3237 rdp
->gp_seq_needed
= rnp
->gp_seq
;
3238 rdp
->cpu_no_qs
.b
.norm
= true;
3239 rdp
->core_needs_qs
= false;
3240 rdp
->rcu_iw_pending
= false;
3241 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
- 1;
3242 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("cpuonl"));
3243 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3244 rcu_prepare_kthreads(cpu
);
3245 rcu_spawn_all_nocb_kthreads(cpu
);
3251 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3253 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3255 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3257 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3261 * Near the end of the CPU-online process. Pretty much all services
3262 * enabled, and the CPU is now very much alive.
3264 int rcutree_online_cpu(unsigned int cpu
)
3266 unsigned long flags
;
3267 struct rcu_data
*rdp
;
3268 struct rcu_node
*rnp
;
3270 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3272 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3273 rnp
->ffmask
|= rdp
->grpmask
;
3274 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3275 if (IS_ENABLED(CONFIG_TREE_SRCU
))
3276 srcu_online_cpu(cpu
);
3277 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
3278 return 0; /* Too early in boot for scheduler work. */
3279 sync_sched_exp_online_cleanup(cpu
);
3280 rcutree_affinity_setting(cpu
, -1);
3285 * Near the beginning of the process. The CPU is still very much alive
3286 * with pretty much all services enabled.
3288 int rcutree_offline_cpu(unsigned int cpu
)
3290 unsigned long flags
;
3291 struct rcu_data
*rdp
;
3292 struct rcu_node
*rnp
;
3294 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3296 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3297 rnp
->ffmask
&= ~rdp
->grpmask
;
3298 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3300 rcutree_affinity_setting(cpu
, cpu
);
3301 if (IS_ENABLED(CONFIG_TREE_SRCU
))
3302 srcu_offline_cpu(cpu
);
3306 static DEFINE_PER_CPU(int, rcu_cpu_started
);
3309 * Mark the specified CPU as being online so that subsequent grace periods
3310 * (both expedited and normal) will wait on it. Note that this means that
3311 * incoming CPUs are not allowed to use RCU read-side critical sections
3312 * until this function is called. Failing to observe this restriction
3313 * will result in lockdep splats.
3315 * Note that this function is special in that it is invoked directly
3316 * from the incoming CPU rather than from the cpuhp_step mechanism.
3317 * This is because this function must be invoked at a precise location.
3319 void rcu_cpu_starting(unsigned int cpu
)
3321 unsigned long flags
;
3324 unsigned long oldmask
;
3325 struct rcu_data
*rdp
;
3326 struct rcu_node
*rnp
;
3328 if (per_cpu(rcu_cpu_started
, cpu
))
3331 per_cpu(rcu_cpu_started
, cpu
) = 1;
3333 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3335 mask
= rdp
->grpmask
;
3336 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3337 rnp
->qsmaskinitnext
|= mask
;
3338 oldmask
= rnp
->expmaskinitnext
;
3339 rnp
->expmaskinitnext
|= mask
;
3340 oldmask
^= rnp
->expmaskinitnext
;
3341 nbits
= bitmap_weight(&oldmask
, BITS_PER_LONG
);
3342 /* Allow lockless access for expedited grace periods. */
3343 smp_store_release(&rcu_state
.ncpus
, rcu_state
.ncpus
+ nbits
); /* ^^^ */
3344 rcu_gpnum_ovf(rnp
, rdp
); /* Offline-induced counter wrap? */
3345 rdp
->rcu_onl_gp_seq
= READ_ONCE(rcu_state
.gp_seq
);
3346 rdp
->rcu_onl_gp_flags
= READ_ONCE(rcu_state
.gp_flags
);
3347 if (rnp
->qsmask
& mask
) { /* RCU waiting on incoming CPU? */
3348 /* Report QS -after- changing ->qsmaskinitnext! */
3349 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
3351 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3353 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3356 #ifdef CONFIG_HOTPLUG_CPU
3358 * The outgoing function has no further need of RCU, so remove it from
3359 * the rcu_node tree's ->qsmaskinitnext bit masks.
3361 * Note that this function is special in that it is invoked directly
3362 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3363 * This is because this function must be invoked at a precise location.
3365 void rcu_report_dead(unsigned int cpu
)
3367 unsigned long flags
;
3369 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3370 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
3372 /* QS for any half-done expedited grace period. */
3374 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data
));
3376 rcu_preempt_deferred_qs(current
);
3378 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3379 mask
= rdp
->grpmask
;
3380 raw_spin_lock(&rcu_state
.ofl_lock
);
3381 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
3382 rdp
->rcu_ofl_gp_seq
= READ_ONCE(rcu_state
.gp_seq
);
3383 rdp
->rcu_ofl_gp_flags
= READ_ONCE(rcu_state
.gp_flags
);
3384 if (rnp
->qsmask
& mask
) { /* RCU waiting on outgoing CPU? */
3385 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3386 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
3387 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3389 rnp
->qsmaskinitnext
&= ~mask
;
3390 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3391 raw_spin_unlock(&rcu_state
.ofl_lock
);
3393 per_cpu(rcu_cpu_started
, cpu
) = 0;
3397 * The outgoing CPU has just passed through the dying-idle state, and we
3398 * are being invoked from the CPU that was IPIed to continue the offline
3399 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3401 void rcutree_migrate_callbacks(int cpu
)
3403 unsigned long flags
;
3404 struct rcu_data
*my_rdp
;
3405 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3406 struct rcu_node
*rnp_root
= rcu_get_root();
3409 if (rcu_is_nocb_cpu(cpu
) || rcu_segcblist_empty(&rdp
->cblist
))
3410 return; /* No callbacks to migrate. */
3412 local_irq_save(flags
);
3413 my_rdp
= this_cpu_ptr(&rcu_data
);
3414 if (rcu_nocb_adopt_orphan_cbs(my_rdp
, rdp
, flags
)) {
3415 local_irq_restore(flags
);
3418 raw_spin_lock_rcu_node(rnp_root
); /* irqs already disabled. */
3419 /* Leverage recent GPs and set GP for new callbacks. */
3420 needwake
= rcu_advance_cbs(rnp_root
, rdp
) ||
3421 rcu_advance_cbs(rnp_root
, my_rdp
);
3422 rcu_segcblist_merge(&my_rdp
->cblist
, &rdp
->cblist
);
3423 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp
->cblist
) !=
3424 !rcu_segcblist_n_cbs(&my_rdp
->cblist
));
3425 raw_spin_unlock_irqrestore_rcu_node(rnp_root
, flags
);
3427 rcu_gp_kthread_wake();
3428 WARN_ONCE(rcu_segcblist_n_cbs(&rdp
->cblist
) != 0 ||
3429 !rcu_segcblist_empty(&rdp
->cblist
),
3430 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3431 cpu
, rcu_segcblist_n_cbs(&rdp
->cblist
),
3432 rcu_segcblist_first_cb(&rdp
->cblist
));
3437 * On non-huge systems, use expedited RCU grace periods to make suspend
3438 * and hibernation run faster.
3440 static int rcu_pm_notify(struct notifier_block
*self
,
3441 unsigned long action
, void *hcpu
)
3444 case PM_HIBERNATION_PREPARE
:
3445 case PM_SUSPEND_PREPARE
:
3446 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3449 case PM_POST_HIBERNATION
:
3450 case PM_POST_SUSPEND
:
3451 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3452 rcu_unexpedite_gp();
3461 * Spawn the kthreads that handle RCU's grace periods.
3463 static int __init
rcu_spawn_gp_kthread(void)
3465 unsigned long flags
;
3466 int kthread_prio_in
= kthread_prio
;
3467 struct rcu_node
*rnp
;
3468 struct sched_param sp
;
3469 struct task_struct
*t
;
3471 /* Force priority into range. */
3472 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 2
3473 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST
))
3475 else if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
3477 else if (kthread_prio
< 0)
3479 else if (kthread_prio
> 99)
3482 if (kthread_prio
!= kthread_prio_in
)
3483 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3484 kthread_prio
, kthread_prio_in
);
3486 rcu_scheduler_fully_active
= 1;
3487 t
= kthread_create(rcu_gp_kthread
, NULL
, "%s", rcu_state
.name
);
3489 rnp
= rcu_get_root();
3490 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3491 rcu_state
.gp_kthread
= t
;
3493 sp
.sched_priority
= kthread_prio
;
3494 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
3496 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3498 rcu_spawn_nocb_kthreads();
3499 rcu_spawn_boost_kthreads();
3502 early_initcall(rcu_spawn_gp_kthread
);
3505 * This function is invoked towards the end of the scheduler's
3506 * initialization process. Before this is called, the idle task might
3507 * contain synchronous grace-period primitives (during which time, this idle
3508 * task is booting the system, and such primitives are no-ops). After this
3509 * function is called, any synchronous grace-period primitives are run as
3510 * expedited, with the requesting task driving the grace period forward.
3511 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3512 * runtime RCU functionality.
3514 void rcu_scheduler_starting(void)
3516 WARN_ON(num_online_cpus() != 1);
3517 WARN_ON(nr_context_switches() > 0);
3518 rcu_test_sync_prims();
3519 rcu_scheduler_active
= RCU_SCHEDULER_INIT
;
3520 rcu_test_sync_prims();
3524 * Helper function for rcu_init() that initializes the rcu_state structure.
3526 static void __init
rcu_init_one(void)
3528 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
3529 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
3530 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
3531 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
3533 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
3537 struct rcu_node
*rnp
;
3539 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
3541 /* Silence gcc 4.8 false positive about array index out of range. */
3542 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
3543 panic("rcu_init_one: rcu_num_lvls out of range");
3545 /* Initialize the level-tracking arrays. */
3547 for (i
= 1; i
< rcu_num_lvls
; i
++)
3548 rcu_state
.level
[i
] =
3549 rcu_state
.level
[i
- 1] + num_rcu_lvl
[i
- 1];
3550 rcu_init_levelspread(levelspread
, num_rcu_lvl
);
3552 /* Initialize the elements themselves, starting from the leaves. */
3554 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
3555 cpustride
*= levelspread
[i
];
3556 rnp
= rcu_state
.level
[i
];
3557 for (j
= 0; j
< num_rcu_lvl
[i
]; j
++, rnp
++) {
3558 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
3559 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
3560 &rcu_node_class
[i
], buf
[i
]);
3561 raw_spin_lock_init(&rnp
->fqslock
);
3562 lockdep_set_class_and_name(&rnp
->fqslock
,
3563 &rcu_fqs_class
[i
], fqs
[i
]);
3564 rnp
->gp_seq
= rcu_state
.gp_seq
;
3565 rnp
->gp_seq_needed
= rcu_state
.gp_seq
;
3566 rnp
->completedqs
= rcu_state
.gp_seq
;
3568 rnp
->qsmaskinit
= 0;
3569 rnp
->grplo
= j
* cpustride
;
3570 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
3571 if (rnp
->grphi
>= nr_cpu_ids
)
3572 rnp
->grphi
= nr_cpu_ids
- 1;
3578 rnp
->grpnum
= j
% levelspread
[i
- 1];
3579 rnp
->grpmask
= BIT(rnp
->grpnum
);
3580 rnp
->parent
= rcu_state
.level
[i
- 1] +
3581 j
/ levelspread
[i
- 1];
3584 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
3585 rcu_init_one_nocb(rnp
);
3586 init_waitqueue_head(&rnp
->exp_wq
[0]);
3587 init_waitqueue_head(&rnp
->exp_wq
[1]);
3588 init_waitqueue_head(&rnp
->exp_wq
[2]);
3589 init_waitqueue_head(&rnp
->exp_wq
[3]);
3590 spin_lock_init(&rnp
->exp_lock
);
3594 init_swait_queue_head(&rcu_state
.gp_wq
);
3595 init_swait_queue_head(&rcu_state
.expedited_wq
);
3596 rnp
= rcu_first_leaf_node();
3597 for_each_possible_cpu(i
) {
3598 while (i
> rnp
->grphi
)
3600 per_cpu_ptr(&rcu_data
, i
)->mynode
= rnp
;
3601 rcu_boot_init_percpu_data(i
);
3606 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3607 * replace the definitions in tree.h because those are needed to size
3608 * the ->node array in the rcu_state structure.
3610 static void __init
rcu_init_geometry(void)
3614 int rcu_capacity
[RCU_NUM_LVLS
];
3617 * Initialize any unspecified boot parameters.
3618 * The default values of jiffies_till_first_fqs and
3619 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3620 * value, which is a function of HZ, then adding one for each
3621 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3623 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
3624 if (jiffies_till_first_fqs
== ULONG_MAX
)
3625 jiffies_till_first_fqs
= d
;
3626 if (jiffies_till_next_fqs
== ULONG_MAX
)
3627 jiffies_till_next_fqs
= d
;
3628 if (jiffies_till_sched_qs
== ULONG_MAX
)
3629 adjust_jiffies_till_sched_qs();
3631 /* If the compile-time values are accurate, just leave. */
3632 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
3633 nr_cpu_ids
== NR_CPUS
)
3635 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3636 rcu_fanout_leaf
, nr_cpu_ids
);
3639 * The boot-time rcu_fanout_leaf parameter must be at least two
3640 * and cannot exceed the number of bits in the rcu_node masks.
3641 * Complain and fall back to the compile-time values if this
3642 * limit is exceeded.
3644 if (rcu_fanout_leaf
< 2 ||
3645 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
3646 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
3652 * Compute number of nodes that can be handled an rcu_node tree
3653 * with the given number of levels.
3655 rcu_capacity
[0] = rcu_fanout_leaf
;
3656 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
3657 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
3660 * The tree must be able to accommodate the configured number of CPUs.
3661 * If this limit is exceeded, fall back to the compile-time values.
3663 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
3664 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
3669 /* Calculate the number of levels in the tree. */
3670 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
3672 rcu_num_lvls
= i
+ 1;
3674 /* Calculate the number of rcu_nodes at each level of the tree. */
3675 for (i
= 0; i
< rcu_num_lvls
; i
++) {
3676 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
3677 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
3680 /* Calculate the total number of rcu_node structures. */
3682 for (i
= 0; i
< rcu_num_lvls
; i
++)
3683 rcu_num_nodes
+= num_rcu_lvl
[i
];
3687 * Dump out the structure of the rcu_node combining tree associated
3688 * with the rcu_state structure.
3690 static void __init
rcu_dump_rcu_node_tree(void)
3693 struct rcu_node
*rnp
;
3695 pr_info("rcu_node tree layout dump\n");
3697 rcu_for_each_node_breadth_first(rnp
) {
3698 if (rnp
->level
!= level
) {
3703 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
3708 struct workqueue_struct
*rcu_gp_wq
;
3709 struct workqueue_struct
*rcu_par_gp_wq
;
3711 void __init
rcu_init(void)
3715 rcu_early_boot_tests();
3717 rcu_bootup_announce();
3718 rcu_init_geometry();
3721 rcu_dump_rcu_node_tree();
3722 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
3725 * We don't need protection against CPU-hotplug here because
3726 * this is called early in boot, before either interrupts
3727 * or the scheduler are operational.
3729 pm_notifier(rcu_pm_notify
, 0);
3730 for_each_online_cpu(cpu
) {
3731 rcutree_prepare_cpu(cpu
);
3732 rcu_cpu_starting(cpu
);
3733 rcutree_online_cpu(cpu
);
3736 /* Create workqueue for expedited GPs and for Tree SRCU. */
3737 rcu_gp_wq
= alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM
, 0);
3738 WARN_ON(!rcu_gp_wq
);
3739 rcu_par_gp_wq
= alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM
, 0);
3740 WARN_ON(!rcu_par_gp_wq
);
3744 #include "tree_exp.h"
3745 #include "tree_plugin.h"