2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2001
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/debug.h>
41 #include <linux/atomic.h>
42 #include <linux/bitops.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/export.h>
48 #include <linux/hardirq.h>
49 #include <linux/delay.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kthread.h>
52 #include <linux/tick.h>
53 #include <linux/rcupdate_wait.h>
54 #include <linux/sched/isolation.h>
56 #define CREATE_TRACE_POINTS
60 #ifdef MODULE_PARAM_PREFIX
61 #undef MODULE_PARAM_PREFIX
63 #define MODULE_PARAM_PREFIX "rcupdate."
65 #ifndef CONFIG_TINY_RCU
66 extern int rcu_expedited
; /* from sysctl */
67 module_param(rcu_expedited
, int, 0);
68 extern int rcu_normal
; /* from sysctl */
69 module_param(rcu_normal
, int, 0);
70 static int rcu_normal_after_boot
;
71 module_param(rcu_normal_after_boot
, int, 0);
72 #endif /* #ifndef CONFIG_TINY_RCU */
74 #ifdef CONFIG_DEBUG_LOCK_ALLOC
76 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
78 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
79 * RCU-sched read-side critical section. In absence of
80 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
81 * critical section unless it can prove otherwise. Note that disabling
82 * of preemption (including disabling irqs) counts as an RCU-sched
83 * read-side critical section. This is useful for debug checks in functions
84 * that required that they be called within an RCU-sched read-side
87 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
88 * and while lockdep is disabled.
90 * Note that if the CPU is in the idle loop from an RCU point of
91 * view (ie: that we are in the section between rcu_idle_enter() and
92 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
93 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
94 * that are in such a section, considering these as in extended quiescent
95 * state, so such a CPU is effectively never in an RCU read-side critical
96 * section regardless of what RCU primitives it invokes. This state of
97 * affairs is required --- we need to keep an RCU-free window in idle
98 * where the CPU may possibly enter into low power mode. This way we can
99 * notice an extended quiescent state to other CPUs that started a grace
100 * period. Otherwise we would delay any grace period as long as we run in
103 * Similarly, we avoid claiming an SRCU read lock held if the current
106 int rcu_read_lock_sched_held(void)
108 int lockdep_opinion
= 0;
110 if (!debug_lockdep_rcu_enabled())
112 if (!rcu_is_watching())
114 if (!rcu_lockdep_current_cpu_online())
117 lockdep_opinion
= lock_is_held(&rcu_sched_lock_map
);
118 return lockdep_opinion
|| !preemptible();
120 EXPORT_SYMBOL(rcu_read_lock_sched_held
);
123 #ifndef CONFIG_TINY_RCU
126 * Should expedited grace-period primitives always fall back to their
127 * non-expedited counterparts? Intended for use within RCU. Note
128 * that if the user specifies both rcu_expedited and rcu_normal, then
129 * rcu_normal wins. (Except during the time period during boot from
130 * when the first task is spawned until the rcu_set_runtime_mode()
131 * core_initcall() is invoked, at which point everything is expedited.)
133 bool rcu_gp_is_normal(void)
135 return READ_ONCE(rcu_normal
) &&
136 rcu_scheduler_active
!= RCU_SCHEDULER_INIT
;
138 EXPORT_SYMBOL_GPL(rcu_gp_is_normal
);
140 static atomic_t rcu_expedited_nesting
= ATOMIC_INIT(1);
143 * Should normal grace-period primitives be expedited? Intended for
144 * use within RCU. Note that this function takes the rcu_expedited
145 * sysfs/boot variable and rcu_scheduler_active into account as well
146 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
147 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
149 bool rcu_gp_is_expedited(void)
151 return rcu_expedited
|| atomic_read(&rcu_expedited_nesting
) ||
152 rcu_scheduler_active
== RCU_SCHEDULER_INIT
;
154 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited
);
157 * rcu_expedite_gp - Expedite future RCU grace periods
159 * After a call to this function, future calls to synchronize_rcu() and
160 * friends act as the corresponding synchronize_rcu_expedited() function
161 * had instead been called.
163 void rcu_expedite_gp(void)
165 atomic_inc(&rcu_expedited_nesting
);
167 EXPORT_SYMBOL_GPL(rcu_expedite_gp
);
170 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
172 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
173 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
174 * and if the rcu_expedited sysfs/boot parameter is not set, then all
175 * subsequent calls to synchronize_rcu() and friends will return to
176 * their normal non-expedited behavior.
178 void rcu_unexpedite_gp(void)
180 atomic_dec(&rcu_expedited_nesting
);
182 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp
);
185 * Inform RCU of the end of the in-kernel boot sequence.
187 void rcu_end_inkernel_boot(void)
190 if (rcu_normal_after_boot
)
191 WRITE_ONCE(rcu_normal
, 1);
194 #endif /* #ifndef CONFIG_TINY_RCU */
197 * Test each non-SRCU synchronous grace-period wait API. This is
198 * useful just after a change in mode for these primitives, and
201 void rcu_test_sync_prims(void)
203 if (!IS_ENABLED(CONFIG_PROVE_RCU
))
206 synchronize_rcu_expedited();
209 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
212 * Switch to run-time mode once RCU has fully initialized.
214 static int __init
rcu_set_runtime_mode(void)
216 rcu_test_sync_prims();
217 rcu_scheduler_active
= RCU_SCHEDULER_RUNNING
;
218 rcu_test_sync_prims();
221 core_initcall(rcu_set_runtime_mode
);
223 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 static struct lock_class_key rcu_lock_key
;
227 struct lockdep_map rcu_lock_map
=
228 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key
);
229 EXPORT_SYMBOL_GPL(rcu_lock_map
);
231 static struct lock_class_key rcu_bh_lock_key
;
232 struct lockdep_map rcu_bh_lock_map
=
233 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key
);
234 EXPORT_SYMBOL_GPL(rcu_bh_lock_map
);
236 static struct lock_class_key rcu_sched_lock_key
;
237 struct lockdep_map rcu_sched_lock_map
=
238 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key
);
239 EXPORT_SYMBOL_GPL(rcu_sched_lock_map
);
241 static struct lock_class_key rcu_callback_key
;
242 struct lockdep_map rcu_callback_map
=
243 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key
);
244 EXPORT_SYMBOL_GPL(rcu_callback_map
);
246 int notrace
debug_lockdep_rcu_enabled(void)
248 return rcu_scheduler_active
!= RCU_SCHEDULER_INACTIVE
&& debug_locks
&&
249 current
->lockdep_recursion
== 0;
251 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled
);
254 * rcu_read_lock_held() - might we be in RCU read-side critical section?
256 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
257 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
258 * this assumes we are in an RCU read-side critical section unless it can
259 * prove otherwise. This is useful for debug checks in functions that
260 * require that they be called within an RCU read-side critical section.
262 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
263 * and while lockdep is disabled.
265 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
266 * occur in the same context, for example, it is illegal to invoke
267 * rcu_read_unlock() in process context if the matching rcu_read_lock()
268 * was invoked from within an irq handler.
270 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
271 * offline from an RCU perspective, so check for those as well.
273 int rcu_read_lock_held(void)
275 if (!debug_lockdep_rcu_enabled())
277 if (!rcu_is_watching())
279 if (!rcu_lockdep_current_cpu_online())
281 return lock_is_held(&rcu_lock_map
);
283 EXPORT_SYMBOL_GPL(rcu_read_lock_held
);
286 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
288 * Check for bottom half being disabled, which covers both the
289 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
290 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
291 * will show the situation. This is useful for debug checks in functions
292 * that require that they be called within an RCU read-side critical
295 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
297 * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
298 * offline from an RCU perspective, so check for those as well.
300 int rcu_read_lock_bh_held(void)
302 if (!debug_lockdep_rcu_enabled())
304 if (!rcu_is_watching())
306 if (!rcu_lockdep_current_cpu_online())
308 return in_softirq() || irqs_disabled();
310 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held
);
312 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
315 * wakeme_after_rcu() - Callback function to awaken a task after grace period
316 * @head: Pointer to rcu_head member within rcu_synchronize structure
318 * Awaken the corresponding task now that a grace period has elapsed.
320 void wakeme_after_rcu(struct rcu_head
*head
)
322 struct rcu_synchronize
*rcu
;
324 rcu
= container_of(head
, struct rcu_synchronize
, head
);
325 complete(&rcu
->completion
);
327 EXPORT_SYMBOL_GPL(wakeme_after_rcu
);
329 void __wait_rcu_gp(bool checktiny
, int n
, call_rcu_func_t
*crcu_array
,
330 struct rcu_synchronize
*rs_array
)
335 /* Initialize and register callbacks for each crcu_array element. */
336 for (i
= 0; i
< n
; i
++) {
338 (crcu_array
[i
] == call_rcu
||
339 crcu_array
[i
] == call_rcu_bh
)) {
343 init_rcu_head_on_stack(&rs_array
[i
].head
);
344 init_completion(&rs_array
[i
].completion
);
345 for (j
= 0; j
< i
; j
++)
346 if (crcu_array
[j
] == crcu_array
[i
])
349 (crcu_array
[i
])(&rs_array
[i
].head
, wakeme_after_rcu
);
352 /* Wait for all callbacks to be invoked. */
353 for (i
= 0; i
< n
; i
++) {
355 (crcu_array
[i
] == call_rcu
||
356 crcu_array
[i
] == call_rcu_bh
))
358 for (j
= 0; j
< i
; j
++)
359 if (crcu_array
[j
] == crcu_array
[i
])
362 wait_for_completion(&rs_array
[i
].completion
);
363 destroy_rcu_head_on_stack(&rs_array
[i
].head
);
366 EXPORT_SYMBOL_GPL(__wait_rcu_gp
);
368 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
369 void init_rcu_head(struct rcu_head
*head
)
371 debug_object_init(head
, &rcuhead_debug_descr
);
373 EXPORT_SYMBOL_GPL(init_rcu_head
);
375 void destroy_rcu_head(struct rcu_head
*head
)
377 debug_object_free(head
, &rcuhead_debug_descr
);
379 EXPORT_SYMBOL_GPL(destroy_rcu_head
);
381 static bool rcuhead_is_static_object(void *addr
)
387 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
388 * @head: pointer to rcu_head structure to be initialized
390 * This function informs debugobjects of a new rcu_head structure that
391 * has been allocated as an auto variable on the stack. This function
392 * is not required for rcu_head structures that are statically defined or
393 * that are dynamically allocated on the heap. This function has no
394 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
396 void init_rcu_head_on_stack(struct rcu_head
*head
)
398 debug_object_init_on_stack(head
, &rcuhead_debug_descr
);
400 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack
);
403 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
404 * @head: pointer to rcu_head structure to be initialized
406 * This function informs debugobjects that an on-stack rcu_head structure
407 * is about to go out of scope. As with init_rcu_head_on_stack(), this
408 * function is not required for rcu_head structures that are statically
409 * defined or that are dynamically allocated on the heap. Also as with
410 * init_rcu_head_on_stack(), this function has no effect for
411 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
413 void destroy_rcu_head_on_stack(struct rcu_head
*head
)
415 debug_object_free(head
, &rcuhead_debug_descr
);
417 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack
);
419 struct debug_obj_descr rcuhead_debug_descr
= {
421 .is_static_object
= rcuhead_is_static_object
,
423 EXPORT_SYMBOL_GPL(rcuhead_debug_descr
);
424 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
426 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
427 void do_trace_rcu_torture_read(const char *rcutorturename
, struct rcu_head
*rhp
,
429 unsigned long c_old
, unsigned long c
)
431 trace_rcu_torture_read(rcutorturename
, rhp
, secs
, c_old
, c
);
433 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read
);
435 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
439 #ifdef CONFIG_RCU_STALL_COMMON
441 #ifdef CONFIG_PROVE_RCU
442 #define RCU_STALL_DELAY_DELTA (5 * HZ)
444 #define RCU_STALL_DELAY_DELTA 0
447 int rcu_cpu_stall_suppress __read_mostly
; /* 1 = suppress stall warnings. */
448 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress
);
449 static int rcu_cpu_stall_timeout __read_mostly
= CONFIG_RCU_CPU_STALL_TIMEOUT
;
451 module_param(rcu_cpu_stall_suppress
, int, 0644);
452 module_param(rcu_cpu_stall_timeout
, int, 0644);
454 int rcu_jiffies_till_stall_check(void)
456 int till_stall_check
= READ_ONCE(rcu_cpu_stall_timeout
);
459 * Limit check must be consistent with the Kconfig limits
460 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
462 if (till_stall_check
< 3) {
463 WRITE_ONCE(rcu_cpu_stall_timeout
, 3);
464 till_stall_check
= 3;
465 } else if (till_stall_check
> 300) {
466 WRITE_ONCE(rcu_cpu_stall_timeout
, 300);
467 till_stall_check
= 300;
469 return till_stall_check
* HZ
+ RCU_STALL_DELAY_DELTA
;
471 EXPORT_SYMBOL_GPL(rcu_jiffies_till_stall_check
);
473 void rcu_sysrq_start(void)
475 if (!rcu_cpu_stall_suppress
)
476 rcu_cpu_stall_suppress
= 2;
479 void rcu_sysrq_end(void)
481 if (rcu_cpu_stall_suppress
== 2)
482 rcu_cpu_stall_suppress
= 0;
485 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
487 rcu_cpu_stall_suppress
= 1;
491 static struct notifier_block rcu_panic_block
= {
492 .notifier_call
= rcu_panic
,
495 static int __init
check_cpu_stall_init(void)
497 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
500 early_initcall(check_cpu_stall_init
);
502 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
504 #ifdef CONFIG_TASKS_RCU
507 * Simple variant of RCU whose quiescent states are voluntary context
508 * switch, cond_resched_rcu_qs(), user-space execution, and idle.
509 * As such, grace periods can take one good long time. There are no
510 * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
511 * because this implementation is intended to get the system into a safe
512 * state for some of the manipulations involved in tracing and the like.
513 * Finally, this implementation does not support high call_rcu_tasks()
514 * rates from multiple CPUs. If this is required, per-CPU callback lists
518 /* Global list of callbacks and associated lock. */
519 static struct rcu_head
*rcu_tasks_cbs_head
;
520 static struct rcu_head
**rcu_tasks_cbs_tail
= &rcu_tasks_cbs_head
;
521 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq
);
522 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock
);
524 /* Track exiting tasks in order to allow them to be waited for. */
525 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu
);
527 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
528 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
529 static int rcu_task_stall_timeout __read_mostly
= RCU_TASK_STALL_TIMEOUT
;
530 module_param(rcu_task_stall_timeout
, int, 0644);
532 static struct task_struct
*rcu_tasks_kthread_ptr
;
535 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
536 * @rhp: structure to be used for queueing the RCU updates.
537 * @func: actual callback function to be invoked after the grace period
539 * The callback function will be invoked some time after a full grace
540 * period elapses, in other words after all currently executing RCU
541 * read-side critical sections have completed. call_rcu_tasks() assumes
542 * that the read-side critical sections end at a voluntary context
543 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
544 * or transition to usermode execution. As such, there are no read-side
545 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
546 * this primitive is intended to determine that all tasks have passed
547 * through a safe state, not so much for data-strcuture synchronization.
549 * See the description of call_rcu() for more detailed information on
550 * memory ordering guarantees.
552 void call_rcu_tasks(struct rcu_head
*rhp
, rcu_callback_t func
)
559 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock
, flags
);
560 needwake
= !rcu_tasks_cbs_head
;
561 *rcu_tasks_cbs_tail
= rhp
;
562 rcu_tasks_cbs_tail
= &rhp
->next
;
563 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock
, flags
);
564 /* We can't create the thread unless interrupts are enabled. */
565 if (needwake
&& READ_ONCE(rcu_tasks_kthread_ptr
))
566 wake_up(&rcu_tasks_cbs_wq
);
568 EXPORT_SYMBOL_GPL(call_rcu_tasks
);
571 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
573 * Control will return to the caller some time after a full rcu-tasks
574 * grace period has elapsed, in other words after all currently
575 * executing rcu-tasks read-side critical sections have elapsed. These
576 * read-side critical sections are delimited by calls to schedule(),
577 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
578 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
580 * This is a very specialized primitive, intended only for a few uses in
581 * tracing and other situations requiring manipulation of function
582 * preambles and profiling hooks. The synchronize_rcu_tasks() function
583 * is not (yet) intended for heavy use from multiple CPUs.
585 * Note that this guarantee implies further memory-ordering guarantees.
586 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
587 * each CPU is guaranteed to have executed a full memory barrier since the
588 * end of its last RCU-tasks read-side critical section whose beginning
589 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
590 * having an RCU-tasks read-side critical section that extends beyond
591 * the return from synchronize_rcu_tasks() is guaranteed to have executed
592 * a full memory barrier after the beginning of synchronize_rcu_tasks()
593 * and before the beginning of that RCU-tasks read-side critical section.
594 * Note that these guarantees include CPUs that are offline, idle, or
595 * executing in user mode, as well as CPUs that are executing in the kernel.
597 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
598 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
599 * to have executed a full memory barrier during the execution of
600 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
601 * (but again only if the system has more than one CPU).
603 void synchronize_rcu_tasks(void)
605 /* Complain if the scheduler has not started. */
606 RCU_LOCKDEP_WARN(rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
,
607 "synchronize_rcu_tasks called too soon");
609 /* Wait for the grace period. */
610 wait_rcu_gp(call_rcu_tasks
);
612 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks
);
615 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
617 * Although the current implementation is guaranteed to wait, it is not
618 * obligated to, for example, if there are no pending callbacks.
620 void rcu_barrier_tasks(void)
622 /* There is only one callback queue, so this is easy. ;-) */
623 synchronize_rcu_tasks();
625 EXPORT_SYMBOL_GPL(rcu_barrier_tasks
);
627 /* See if tasks are still holding out, complain if so. */
628 static void check_holdout_task(struct task_struct
*t
,
629 bool needreport
, bool *firstreport
)
633 if (!READ_ONCE(t
->rcu_tasks_holdout
) ||
634 t
->rcu_tasks_nvcsw
!= READ_ONCE(t
->nvcsw
) ||
635 !READ_ONCE(t
->on_rq
) ||
636 (IS_ENABLED(CONFIG_NO_HZ_FULL
) &&
637 !is_idle_task(t
) && t
->rcu_tasks_idle_cpu
>= 0)) {
638 WRITE_ONCE(t
->rcu_tasks_holdout
, false);
639 list_del_init(&t
->rcu_tasks_holdout_list
);
643 rcu_request_urgent_qs_task(t
);
647 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
648 *firstreport
= false;
651 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
652 t
, ".I"[is_idle_task(t
)],
653 "N."[cpu
< 0 || !tick_nohz_full_cpu(cpu
)],
654 t
->rcu_tasks_nvcsw
, t
->nvcsw
, t
->rcu_tasks_holdout
,
655 t
->rcu_tasks_idle_cpu
, cpu
);
659 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
660 static int __noreturn
rcu_tasks_kthread(void *arg
)
663 struct task_struct
*g
, *t
;
664 unsigned long lastreport
;
665 struct rcu_head
*list
;
666 struct rcu_head
*next
;
667 LIST_HEAD(rcu_tasks_holdouts
);
670 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
671 housekeeping_affine(current
, HK_FLAG_RCU
);
674 * Each pass through the following loop makes one check for
675 * newly arrived callbacks, and, if there are some, waits for
676 * one RCU-tasks grace period and then invokes the callbacks.
677 * This loop is terminated by the system going down. ;-)
681 /* Pick up any new callbacks. */
682 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock
, flags
);
683 list
= rcu_tasks_cbs_head
;
684 rcu_tasks_cbs_head
= NULL
;
685 rcu_tasks_cbs_tail
= &rcu_tasks_cbs_head
;
686 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock
, flags
);
688 /* If there were none, wait a bit and start over. */
690 wait_event_interruptible(rcu_tasks_cbs_wq
,
692 if (!rcu_tasks_cbs_head
) {
693 WARN_ON(signal_pending(current
));
694 schedule_timeout_interruptible(HZ
/10);
700 * Wait for all pre-existing t->on_rq and t->nvcsw
701 * transitions to complete. Invoking synchronize_rcu()
702 * suffices because all these transitions occur with
703 * interrupts disabled. Without this synchronize_rcu(),
704 * a read-side critical section that started before the
705 * grace period might be incorrectly seen as having started
706 * after the grace period.
708 * This synchronize_rcu() also dispenses with the
709 * need for a memory barrier on the first store to
710 * ->rcu_tasks_holdout, as it forces the store to happen
711 * after the beginning of the grace period.
716 * There were callbacks, so we need to wait for an
717 * RCU-tasks grace period. Start off by scanning
718 * the task list for tasks that are not already
719 * voluntarily blocked. Mark these tasks and make
720 * a list of them in rcu_tasks_holdouts.
723 for_each_process_thread(g
, t
) {
724 if (t
!= current
&& READ_ONCE(t
->on_rq
) &&
727 t
->rcu_tasks_nvcsw
= READ_ONCE(t
->nvcsw
);
728 WRITE_ONCE(t
->rcu_tasks_holdout
, true);
729 list_add(&t
->rcu_tasks_holdout_list
,
730 &rcu_tasks_holdouts
);
736 * Wait for tasks that are in the process of exiting.
737 * This does only part of the job, ensuring that all
738 * tasks that were previously exiting reach the point
739 * where they have disabled preemption, allowing the
740 * later synchronize_rcu() to finish the job.
742 synchronize_srcu(&tasks_rcu_exit_srcu
);
745 * Each pass through the following loop scans the list
746 * of holdout tasks, removing any that are no longer
747 * holdouts. When the list is empty, we are done.
749 lastreport
= jiffies
;
751 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
758 struct task_struct
*t1
;
760 if (list_empty(&rcu_tasks_holdouts
))
763 /* Slowly back off waiting for holdouts */
764 schedule_timeout_interruptible(HZ
/fract
);
769 rtst
= READ_ONCE(rcu_task_stall_timeout
);
770 needreport
= rtst
> 0 &&
771 time_after(jiffies
, lastreport
+ rtst
);
773 lastreport
= jiffies
;
775 WARN_ON(signal_pending(current
));
776 list_for_each_entry_safe(t
, t1
, &rcu_tasks_holdouts
,
777 rcu_tasks_holdout_list
) {
778 check_holdout_task(t
, needreport
, &firstreport
);
784 * Because ->on_rq and ->nvcsw are not guaranteed
785 * to have a full memory barriers prior to them in the
786 * schedule() path, memory reordering on other CPUs could
787 * cause their RCU-tasks read-side critical sections to
788 * extend past the end of the grace period. However,
789 * because these ->nvcsw updates are carried out with
790 * interrupts disabled, we can use synchronize_rcu()
791 * to force the needed ordering on all such CPUs.
793 * This synchronize_rcu() also confines all
794 * ->rcu_tasks_holdout accesses to be within the grace
795 * period, avoiding the need for memory barriers for
796 * ->rcu_tasks_holdout accesses.
798 * In addition, this synchronize_rcu() waits for exiting
799 * tasks to complete their final preempt_disable() region
800 * of execution, cleaning up after the synchronize_srcu()
805 /* Invoke the callbacks. */
814 /* Paranoid sleep to keep this from entering a tight loop */
815 schedule_timeout_uninterruptible(HZ
/10);
819 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
820 static int __init
rcu_spawn_tasks_kthread(void)
822 struct task_struct
*t
;
824 t
= kthread_run(rcu_tasks_kthread
, NULL
, "rcu_tasks_kthread");
826 smp_mb(); /* Ensure others see full kthread. */
827 WRITE_ONCE(rcu_tasks_kthread_ptr
, t
);
830 core_initcall(rcu_spawn_tasks_kthread
);
832 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
833 void exit_tasks_rcu_start(void)
836 current
->rcu_tasks_idx
= __srcu_read_lock(&tasks_rcu_exit_srcu
);
840 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
841 void exit_tasks_rcu_finish(void)
844 __srcu_read_unlock(&tasks_rcu_exit_srcu
, current
->rcu_tasks_idx
);
848 #endif /* #ifdef CONFIG_TASKS_RCU */
850 #ifndef CONFIG_TINY_RCU
853 * Print any non-default Tasks RCU settings.
855 static void __init
rcu_tasks_bootup_oddness(void)
857 #ifdef CONFIG_TASKS_RCU
858 if (rcu_task_stall_timeout
!= RCU_TASK_STALL_TIMEOUT
)
859 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout
);
861 pr_info("\tTasks RCU enabled.\n");
862 #endif /* #ifdef CONFIG_TASKS_RCU */
865 #endif /* #ifndef CONFIG_TINY_RCU */
867 #ifdef CONFIG_PROVE_RCU
870 * Early boot self test parameters.
872 static bool rcu_self_test
;
873 module_param(rcu_self_test
, bool, 0444);
875 static int rcu_self_test_counter
;
877 static void test_callback(struct rcu_head
*r
)
879 rcu_self_test_counter
++;
880 pr_info("RCU test callback executed %d\n", rcu_self_test_counter
);
883 DEFINE_STATIC_SRCU(early_srcu
);
885 static void early_boot_test_call_rcu(void)
887 static struct rcu_head head
;
888 static struct rcu_head shead
;
890 call_rcu(&head
, test_callback
);
891 if (IS_ENABLED(CONFIG_SRCU
))
892 call_srcu(&early_srcu
, &shead
, test_callback
);
895 void rcu_early_boot_tests(void)
897 pr_info("Running RCU self tests\n");
900 early_boot_test_call_rcu();
901 rcu_test_sync_prims();
904 static int rcu_verify_early_boot_tests(void)
907 int early_boot_test_counter
= 0;
910 early_boot_test_counter
++;
912 if (IS_ENABLED(CONFIG_SRCU
)) {
913 early_boot_test_counter
++;
914 srcu_barrier(&early_srcu
);
917 if (rcu_self_test_counter
!= early_boot_test_counter
) {
924 late_initcall(rcu_verify_early_boot_tests
);
926 void rcu_early_boot_tests(void) {}
927 #endif /* CONFIG_PROVE_RCU */
929 #ifndef CONFIG_TINY_RCU
932 * Print any significant non-default boot-time settings.
934 void __init
rcupdate_announce_bootup_oddness(void)
937 pr_info("\tNo expedited grace period (rcu_normal).\n");
938 else if (rcu_normal_after_boot
)
939 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
940 else if (rcu_expedited
)
941 pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
942 if (rcu_cpu_stall_suppress
)
943 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
944 if (rcu_cpu_stall_timeout
!= CONFIG_RCU_CPU_STALL_TIMEOUT
)
945 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout
);
946 rcu_tasks_bootup_oddness();
949 #endif /* #ifndef CONFIG_TINY_RCU */